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Abstract

A new way to train a virtual assistant with unsupervised learning is presented in this

thesis. Rather than integrating with a particular set of programs and interfaces, this

new approach involves shallow integration between the virtual assistant and computer

through machine vision. In effect the assistant interprets the computer screen in order

to produce helpful recommendations to assist the computer user. In developing this new

approach, called AVRA, the following methods are described: an unsupervised learning

algorithm which enables the system to watch and learn from user behavior, a method

for fast filtering of the text displayed on the computer screen, a deep learning classifier

used to recognize key onscreen text in the presence of OCR translation errors, and a

recommendation filtering algorithm to triage the many possible action recommendations.

AVRA is compared to a similar commercial state-of-the-art system, to highlight how this

work adds to the state of the art.

AVRA is a deep learning image processing and recommender system that can col-

laborate with the computer user to accomplish various tasks. This document presents a

comprehensive overview of the development and possible applications of this novel vir-

tual assistant technology. It detects onscreen tasks based upon the context it perceives

by analyzing successive computer screen images with neural networks. AVRA is a rec-

ommender system, as it assists the user by producing action recommendations regarding

onscreen tasks. In order to simplify the interaction between the user and AVRA, the

system was designed to only produce action recommendations that can be accepted with

a single mouse click. These action recommendations are produced without integration

into each individual application executing on the computer. Furthermore, the action

recommendations are personalized to the user’s interests utilizing a history of the user’s

interaction.
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Chapter 1

Introduction

Computers typically push the cognitive effort of solving a problem onto the user. Dis-

covery of new tasks to perform on the computer is similarly left to the user’s initia-

tive. Even very descriptive prompts such as ‘Unable to lock the administration

directory. Are you root?’ typically do not recommend to the user an action with

the option to accept it; for example ‘To run this command as root, press Y:’. In-

stead, these prompts generally require the user to tell the computer how to solve the

problem based upon hints provided by the computer. This work addresses with a Rec-

ommender System (RS) this basic communication barrier between the computer and the

user.

The RS in this work is called Automated Virtual Recommendation Agent (AVRA),

and operates in tandem with a human user to solve a common goal, such as information

retrieval. This approach works by offloading to the RS some of the cognitive pressure

of understanding the problem and recommending a solution. The RS follows a series of

steps in order to produce recommendations. First, it automatically detects the particular

contexts appearing on the computer screen, followed by the detection of tasks within

those contexts that the RS knows how to help the user with, and then it weighs these

solution recommendations for the user so that they are customized to the user’s past

behavior, and finally the RS presents three recommendations to the user via a Graphical

User Interface (GUI) containing three action triggering buttons. When the user presses

one of these buttons, the action corresponding to the solution recommendation in that

button is executed. These actions may be email composition, opening a browser window

to a particular website, opening a document, etc.

Consider, for example, a case where the RS analyzes the computer screen and detects

1



Introduction 2

that the user is doing something related to the domain of computer programming. The

RS then proceeds to recognize (within the context of computer programming) the known

error message OutOfMemoryError appearing onscreen. The RS therefore proposes to the

user (through a GUI button) to launch a web page in a browser window. This web page

describes the commands to execute in order to increase the memory space allocated to

the program in question. The user can choose to click the button, launching the browser

and opening the page, or simply ignore the recommendation.

Perhaps in the not so distant future, computers will operate as the user’s “intellectual

partners” to solve tasks together [267]. AVRA’s design takes a Mixed-Initiative (MI)

approach to human-computer interaction by applying an RS to assist the computer

user on its own initiative. This approach is different from contemporary user assistance

software, which typically provides a text box for the user to enter a command (e.g.

Launchy [108]), voice recognition to speak commands to the computer (e.g. Google

Chrome [78]), or other such user-driven computer interaction mechanisms. The difference

in AVRA is that it observes the visible information on the computer screen to produce

recommendations on its own.

AVRA is not tightly integrated into each specific application producing onscreen

information. Rather, an image of the computer screen is analyzed in order to detect

the presence of information which AVRA can use to recommend actions. This shallow

integration of an RS into a personal computer system is novel. Fundamentally, computer

users operate in a multitasking environment where a task identified in one program (e.g.

bash) is researched in another program (e.g. chrome) and fixed in a third program

(e.g. eclipse). Because of the shallow integration approach, AVRA has visibility over

all programs visible to the user, and can therefore help with multitasking, whereas an

isolated program restricted to text or voice commands has insufficient visibility into the

workspace (i.e. the computer). Effectively, AVRA sees what the user sees.

This shallow integration approach generalizes to non-programming domains where

the user researches items that appear onscreen. For example, when the user is browsing

social media, the RS could detect the names of friends and recommend an action such

as “Compose an e-mail to Daniel” when that friend’s name appears onscreen. Another

example is genetic research, where the user is reading a PDF document involving genetic

research. The RS can detect this genetic research context, and propose to open a browser

window to a web page detailing the relationship between a gene name recognized on the

computer screen (e.g. 1-acylglycerol-3-phosphate O-acyltransferase 1) and other genes

(e.g. There are 11 genes in the AGPAT/LPAAT family [80]).



Introduction 3

It is amazing to see the fast and complex responses of machines to human generated

queries. With Natural Language Understanding (NLU) these queries can even be issued

as plain speech or text. Sidestepping the user having to type or speak a few words to

launch an action comes at a cost. This cost includes lost screen real estate taken up by

AVRA, and the annoyance of being bombarded with suggestions where the vast majority

will be ignored. The benefit to consider is the lowered cognitive pressure placed on the

user when interacting with the computer.

A computer’s state can be defined at a high level (e.g list of executing programs)

or at various lower levels (e.g. an image of the memory and hard disk, or the state

of the program memory and processor registers, or simply by the image displayed on

the computer screen). States capture the dynamic nature of computer components from

transistors, which switch on and off, to programs which can contain many variables, each

with their own state, to the aggregate state of the computer composed of the state of

each program in memory. This work demonstrates that a trained classifier can associate

one or more contexts to the current state of the computer by examining an image of the

computer screen. Being aware of the context of onscreen information provides the RS

with the ability to switch between modes of intent. For example, to activate “program-

ming mode” the system will evaluate the computer screen, assess that the visible area

of the screen implies that the user is programming, interpret the screen in that context,

and then provide programming recommendations to the user based upon the detected

onscreen keywords such as error messages. In another example, the system may assess

that the user is reading online cartoons, and begin offering relevant entertainment con-

tent and other “consumption mode” recommendations. In a third example, the system

may detect social media activity on the screen and enter into “networking mode” where

it offers to email contacts seen onscreen.

AVRA provides personalized recommendations that adapt over time to the changing

behavior of the user. The RS learns from the history of user interaction with the GUI

to adapt recommendations to the user’s needs, and maintains a traceable history for

post-hoc analysis.

This proof of concept prototype has many limitations, including a strict learning algo-

rithm, limited domain knowledge, privacy concerns over a system that collects computer

screen images, a very basic user interface, and unanswered questions about commercial

scalability of the technology. Also, this prototype was not validated with user testing.

Rather it has been characterized quantitatively as a first step toward broader user ac-

ceptance testing.
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1.1 Research Motivation

Clearly the computer has access to the information rendered on the computer monitor,

as it is rendering the image. Why not integrate AVRA directly into each program run-

ning on the computer? Perhaps it is feasible to monitor all operating system events

and messages with a service or daemon and learn to recommend actions based upon

those messages. This approach would avoid image processing and related uncertainty.

Although this is one possibility, it is very interesting for AVRA to have visual input

from the computer screen rather than a data integration for several reasons. First, hu-

mans interact with computers through vision, and restricting AVRA to processing visual

input is one step on the way to developing a mobile robot that can sit on the user’s

shoulder and look at and computer screen to then understand the content and speak

recommendations. Second, integrating deeply into programs running on the computer

is not easy. Applications are built using a wide variety of programming languages and

compilers, hiding many key details from a generic application monitor. There is a lack

of deep access into program state as programs run as stovepipe systems on top of the

operating system. Maintaining interfaces into a large array of software programs on an

average desktop is an integration nightmare. Even so, representing the state of every

component of every program executing on a computer would be a challenge. Finally,

processing images rather than creating programming interfaces exposes information that

is not otherwise accessible. For example, visual processing exposes remote desktop in-

formation, the contents of images, document styles, and other information that is only

apparent when analyzing image information.

This research was originally motivated by an initiative gap in the interaction between

computers and computer users. Specifically, state of the art virtual assistance technolo-

gies focus on processing user-provided natural language or text input. Table 1.1 contains

a non-comprehensive list of virtual assistant technologies. The goal of these systems is

usually to identify the intent of the user from the user’s input, transform the identified

intent into a query, and then to return query results to the user. Some systems go further

and attempt to support interactive dialog, reminders, and application launching. This

command and dialog approach to virtual assistants puts the onus of specifying intent

squarely onto the user. It is that cognitive pressure applied to user by the assistant - the

need to have the user specify what the user wants - that is a limitation of existing work.

To elaborate further on this limitation in state of the art virtual assistants, consider

the following motivating use case, which makes it clear that forcing the user to specify
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Table 1.1: A non-comprehensive list of commercial virtual assistant technologies.

Project Company Voice Assistant Conversational Image

Control Processing

Google Now on Tap Google NO YES NO YES

(Screen Search) [74] [18]

M (beta) [193] [86] [29] Facebook YES YES YES LIMITED [119]

Google assistant [128] Google YES YES YES NO

Watson [97] [98] IBM YES YES YES NO

Viv [113] [116] Viv Labs YES YES YES NO

Hound [220] SoundHound YES YES YES NO

Assistant.ai [20] Api.ai YES YES LIMITED NO

Alexa [15] Amazon YES YES “Skills Kit” NO

Google Now [73] Google YES YES NO NO

Cortana [142] Microsoft YES YES NO NO

Siri [21] Apple YES YES NO NO

NextOS [166] NextOS YES YES NO NO

Kite [215] Kite NO YES NO NO

their intent is undesirable. A programmer using a personal computer compiles her pro-

gram, and then the compiler returns with an error message. The programmer must first

detect that the program did not compile correctly. Next she decides that she does not

know how to resolve this onscreen error without assistance, and so she copies the error

message text and pastes it into a search engine, in order to explore the Internet in search

of a solution. Once an interesting page discussing a solution is found, the programmer

may copy some text to the clipboard and paste it back into the integrated development

environment. In the past, simply having an error message to specify to the program-

mer the details behind the problem was significant progress over the computer crashing

with no explanation. However, contemporary computer users should expect more than

just an error message. Users should expect meaningful assistance presented in the form

of an action recommendation, rather than a problem report. It is the absence of this

participation in problem solving on the part of the computer that motivates this work.

The research motivation driving this work is the unexplored intersection of whole-

screen image processing with virtual assistant technology. Although it is not a com-

prehensive listing, Table 1.1 makes it clear that contemporary design efforts on assistant
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technologies are focused elsewhere. While some virtual assistants can converse with users,

no virtual assistants can yet see what the user sees, and then understand the computer

screen in some intuitive way. Facebook M reportedly can discuss images with users as

demonstrated in [119], although at this time the product is still in closed beta. The

closest realization of this concept available today is Google Now on Tap, an assistant for

mobile phones that takes an image of the phone screen and interprets the contents (text

and images) to come up with cards (information recommendations). Employing this type

of virtual assistant on a personal computer is a novel approach to helping the user with

tasks. In the context of programming, the assistant can share the task of identifying the

error message on the computer screen, looking up actions which may help the user with

the error, and recommending only the most relevant action recommendations to the user.

This approach puts little or no pressure on the mind of the user in the course of normal

computer use.

Integrating whole-screen image processing with virtual assistant technology is a hard

problem and an open research topic. Specifically, obtaining a deep analysis of what

the computer screen really means is a very difficult problem that is not solved by this

work. Instead, this work presents one specific solution for integrating whole-screen im-

age processing with virtual assistant technology. More specifically, this work shows how

such a system can be created so that others may follow the design patterns presented

in this work. Even under this relaxed design constraint of integrating the domains of

whole-screen image processing with virtual assistant technology, this motivating semi-

autonomous virtual assistant idea is quite challenging to implement in practice. Consider

as a motivating example an image capture from a computer screen showing text in a pop-

up warning box in the foreground with a programming editor open in the background.

Imagine writing a computer program that has only this image as an input, and must

return 3 action recommendations to be presented to the user. How can one write such

a program? Assisting the user in this situation is actually quite difficult. This hypo-

thetical program (which is in fact the virtual assistant) must detect within the features

of the image that the user is doing something related to computer programming, and

then detect within the onscreen text the keyword representing the error message in the

dialog box. Even assuming that the virtual assistant can obtain all of the onscreen text

without spelling errors, and including bounding boxes for the onscreen location of the

text, obtaining the context from the screen is still a big challenge. Furthermore, the

program must associate the detected text with some action to recommend to the user.

Figure 1.1 presents the research problems that need to be tackled to make this desktop
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assistant a reality. The four branches of research that come together in this thesis are

desktop assistants, keyword recognition within noisy text, recommender systems, and

unsupervised learning.

Figure 1.1: An overview of the research problems associated with the thesis topic.

1.2 Objective

The objective of this work is to characterize a proof-of-concept virtual assistant for

personal computer users, assisting with onscreen tasks by interpreting an image of the

computer screen and providing action recommendations. Accomplishing this objective

provides new knowledge on desktop assistant technology, image and text processing, and

unsupervised learning (Figure 1.1).
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1.3 Contributions

The primary contribution of this work is to describe in detail a virtual assistant that

can be trained, observe the computer screen, learn action recommendations,

and provide the user with timely action recommendations. This is also the thesis

objective. The key component of this contribution is unsupervised learning, discussed in

Chapter 9. This new type of assistant is a high-initiative task partner for the desktop

computer user which does not require tight integration into the operating system and

executing programs in order to assist the user in making progress towards the completion

of a task or the discovery of a new task. In order to make this primary contribution a

reality, several sub-problems had to be solved, and these are also contributions of this

work to the state of the art. The following contributions are related to sub-problems

that were solved in completing the primary contribution of this work. Each contribution

is also mapped out in Figure 1.1 to make it clear how these contributions fit into the

overall thesis objective.

1. Context Recognition with a Convolutional Neural Network (Chapter 5):

Whole-screen image processing resolves the problem of having too many programs

to integrate into when trying to understand the state of the computer. However,

it introduces the problem of too few hints about the meaning of the image data.

This first problem that arose in designing the system architecture for the virtual

assistant is simply a lack of information about the meaning of the image. Assuming

a dictionary of keywords is known to the virtual assistant, and each keyword is

paired with an action recommendation, the ambiguity of the keywords is generally

unacceptably high. For example, the error message “Error: NullPointerException”

printed into a terminal window indicates an onscreen error message for which a

solution should be recommended, while the same message presented in an online

programming tutorial does not call for a recommendation to be presented to the

user. In order to guide the interpretation of onscreen keywords, this work proposes

a way to guide the interpretation using image features. This is called shallow

application integration, because the generated recommendations can be provided

without integration into the individual programs shown on the computer screen.

This type of shallow integration is accomplished by processing and understanding

images of the computer screen, rather than integrating into each and every program

executing on the computer. Quantitatively this contribution is measured in terms

of execution time, precision, recall, and hyperparameter settings. This contribution
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is framed within the state of the art in Chapters 2.3 and 2.4.

2. Fast context-specific text filtering (Chapter 6): The contribution above is

only a partial solution to the overall goal of completing the primary contribution,

providing for context-specific slow extraction of text from an image. The extraction

is too slow. The solution is to accelerate the text analysis with approximate string

matching. Discarding text that is very highly likely to fail the classification task

reduces the amount of text to be classified. A fast text similarity algorithm is

described which is used to discard irrelevant candidate input text prior to context-

specific classification. Quantitatively this contribution is measured in terms of

execution time, precision, recall, specificity, and hyperparameter settings. This

contribution is framed within the state of the art in Chapter 2.5.

3. Deep Learning Classification of OCR Output (Chapter 7): The two con-

tributions above led to a system that identifies interesting text in a context-specific

way. The next problem is to identify or discard the candidate onscreen keywords.

Making this task even more challenging, the image to text conversion process

called Optical Character Recognition (OCR) introduces spelling errors into the

text. These errors are especially prevalent among long non-dictionary keywords

that are essential in many applications (e.g. computer programming and genet-

ics). The solution was to learn the mistakes made by the OCR software for the

keywords of interest. When the errors are learned, 97% of the text can be detected

accurately. The contribution here was to maximize keyword recognition accuracy

within the OCR output. A deep learning neural network was used to learn and

correct these commonly made OCR mistakes. Only when a specific topic is rec-

ognized onscreen are the keywords for that topic sought out by the virtual agent.

This is a context-aware approach to text recognition. This contribution is framed

within the state of the art in Chapter 2.6.

4. Recommendation Filtering Algorithm (Chapter 8): The three contributions

above lead to a system that can provide many relevant action recommendations.

However, sometimes there are too many actions to recommend and not enough

space in the user interface to present them all. The system required a way to

rank the available recommendations in a way that takes into account both the

relevance based upon the user’s behavior profile and also taking into account the

classification confidence of the neural networks that the information that triggered
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the recommended really was present on the computer screen. The contribution

here was to find an useful way to integrate image recognition information with

keyword recognition information such that recommendation quality is ranked. The

solution is to apply a recommendation filtering algorithm which is a hybrid filter-

ing approach incorporating a content-based, context-aware ranking of predictions

modified by user history-based and probabilistic approaches. This contribution is

framed within the state of the art in Chapter 2.3.

5. Unsupervised Recommendation Learning (Chapter 9): The final problem

solved in this work relates to the limits of supervised training. No matter how much

general knowledge is trained into the virtual assistant, it still needs to learn more

in order to satisfy users. The solution was watch the user and then draw causal

relationships from the user’s actions. These actions could then be associated with

topics using image recognition, image similarity, and semantic text similarity. The

action recommendations produced by the virtual agent can therefore be personal-

ized to the user’s interests utilizing unsupervised learning. Overall the contribution

was to describe how to perform unsupervised learning of new keywords, visual top-

ics (contexts), and action recommendations. The unsupervised learning approach

was developed to be compatible with supervised learning techniques. Therefore

the virtual assistant can be trained on specific topics and also can learn from the

user’s actions. This contribution is framed within the state of the art in Chapter

2.1.

Prior to submitting this thesis, descriptions of various aspects of AVRA were sub-

mitted or accepted for publication. An overview of this work appears in [209]. Sections

of Chapters 2.6, 7, 7.1, and 7.2 appear in [204]. Sections of Chapter 2.5 appear in [206],

and sections of Chapter 9 appear in [208]. Part of the discussion in Chapter 4 appeared

in [205].

1.3.1 Thesis Questions

Is it possible for a virtual assistant for personal computer users to interpret images of

the computer screen to provide action recommendations? Could such a system learn

unsupervised? How could one implement a proof of concept for this system?
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1.3.2 Thesis Statement

A deep learning artificial intelligence can provide action recommendations related to

onscreen messages. These action recommendations can be provided without integration

into each individual program executing on the computer. These action recommendations

can be provided within a reasonable response time, and can be acted upon with a single

mouse click. These recommendations can be personalized to the user by utilizing the

user’s interaction history and unsupervised learning.

1.4 Scope of the Thesis

Included in scope of thesis are the following parameters:

• PROTOTYPE: Development of a proof-of-concept artificial intelligence perform-

ing the following tasks and sub-tasks.

• DETECTION: Context-specific detection of onscreen textual keywords in screen

image captures.

• RECOMMENDATION: Recommendation of actions, and execution of an ac-

cepted action recommendation within a reasonable response time.

• LEARNING: Learning new keywords, visual contexts, and action recommenda-

tions using supervised and unsupervised learning.

Excluded from the scope of this work are the following topics:

• USER TESTING: As described in the research motivation, AVRA is useful as a

launching pad demonstration that reveals the design patterns to follow in creating

a virtual agent based upon whole-screen image processing. The point of this work

is not to characterize the infinite variety of good and bad applications for which

this type of system can be applied. Products or projects that are based on this

work should include rigorous user testing to ensure that users are not annoyed by

prompts from the system, and that the system is in fact accelerating the user’s

workflow.

• USER INTERFACE: Optimization of the graphical user interface design and

related human factors engineering can be achieved following the completion of the
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proof of concept prototype. In this work a ‘good enough’ user interface was devel-

oped to facilitate the practical implementation of the system prototype. Although

the user interface is discussed in this work, it is not the focus of this work.

• PRIVACY: Privacy concerns related to this work are serious and numerous. Al-

though they are not addressed as part of this work, a subset of these concerns are

mentioned here. As the system in this work takes many screen captures of personal

computer screens, there is a high chance of compromising data being acquired by

the image recording and other components of the system. It may be necessary to

limit the aggregation of personal data to avoid the bad behavior of one user being

recommended to another user. Furthermore there may be commercially sensitive

information captured onscreen. These concerns are very important and are left as

future work.

• COMMERCIAL CONSIDERATIONS: Commercial considerations such as

role-based access control, optimizing cloud architecture for cost and performance,

database optimization for cost and performance, data backup and restore systems,

and other non-academic considerations are not fully addressed in this work.

1.5 How to Read this Document

This thesis is organized as a set of standalone chapters. Each chapter begins by explaining

what the chapter is about and situating the contents of the chapter into the objective

of the thesis, which is to develop and characterize a proof-of-concept virtual assistant

for personal computer users. Chapter 2 presents the reader with concepts, technologies

and systems related to this work. AVRA’s design is presented in Chapter 3. This design

calls for several subsystems to be designed, which are described in detail in the following

chapters. Next, a description of specific use cases is presented in Chapter 4. Chapter 5

describes the method used for recognition of features in images, and training the system

to recognize these features with supervised learning. Chapter 6 compares methods for

accelerating AVRA’s text analysis functionality using a text similarity filter prior to text

classification. Chapter 7 discusses the recognition of keywords in text extracted from

images, and training the system to recognize these keywords with supervised learning.

Chapter 8 presents a method for choosing which actions to recommend to the user based

upon the user history and the contents displayed on the computer screen. An approach
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allowing the system to learn autonomously is presented in Chapter 9. Chapter 10 contains

a summary of this work and a discussion of future research directions.



Chapter 2

Background

This chapter provides the reader with some grounding in the neural network and software

systems used in this work. Many of the tools and techniques leveraged in this work

are quite new, and so the average practitioner may not be aware of the background

information needed in order to fully understand this thesis. The prior art discussion in

this work is subdivided into six topics: a general background on neural networks and

deep learning in Section 2.1, quality measurement for systems and classifiers in Section

2.2, Recommender Systems (RS) in Section 2.3 related to the AVRA RS presented in

Chapter 8, Mixed-Initiative (MI) Systems in Section 2.4 related to the AVRA system

as a whole presented in Chapter 3, text similarity comparison algorithms in Section 2.5

related to the filtering algorithm presented in Chapter 6, and text classification in Section

2.6 related to correction of OCR output using deep learning techniques in Chapter 7.1.

2.1 Neural Networks and Deep Learning

“The ability to predict is the essence of intelligence” - Yann LeCun, NYU,

October 2016 [118].

This section of the thesis presents a series of definitions and concepts that are used

later on in the thesis. It is not a comprehensive overview of the topic. Rather, this sec-

tion gives the reader enough information to understand the thesis terms and approach

regarding data science, neural networks, deep learning and related fields. A comprehen-

sive review on deep learning is [198].

A perceptron is a basic building block in neural networks, where the neuron computes

an activation function that first sums each incoming signal multiplied by a weight, then

14
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adds a bias, and finally processes this total using an activation function to see what the

neuron should output [190]. Because of efficient gradient propagation through multiple

layers among other advantages, the activation function is typically a rectified linear

unit, or ReLU, performing f(x) = max(0, x) [161]. A ReLU propagates positive results

forward to the neuron’s output.

An Artificial Neural Network (ANN) is a computational model of a neuron which

combines many individual neurons into a network [198]. These networks can perform

interesting calculations on data such as classification, memory, and computation. A

Restricted Boltzmann Machine (RBM) [218] is a layer in a neural network where the

neurons do not connect to each other (the restriction) but rather accept input from

a previous layer (or the input to the overall network), and then feed this information

forward (feed-forward).

Machine learning, first described in 1959 by Arthur Samuel, is a very broad area

of research investigating how autonomous entities can learn without explicitly being

programmed by humans [192]. Deep learning is a kind of machine learning applied in

many fields, and so it is important to make the distinction here between Deep Learning

(DL) and a Deep Neural Network (DNN). DL is an approach in artificial intelligence

using many layers of neurons in a neural network to implement machine learning. The

hallmarks of DL are the formation of hierarchical representations of data within the layers

on the neural network, and the training of the neural network using a learning algorithm

[70]. DL is a field studying neural networks that learn “to perceive / encode / predict /

classify patterns or pattern sequences” [198], whereas a DNN is a particularly organized

feed-forward stack of neural network layers used to assemble increasingly complex levels

of feature representations [65]. Through backpropagation training (an algorithm using

the chain rule for derivatives), DL ANNs can learn to model data representations at

multiple levels of abstraction by adjusting the network weights through iterative steps

to minimize or maximize an objective function [120].

A Deep Belief Network (DBN) is a stack of fully connected RBMs where each layer

accepts pattern representations from the level below it, and learns to encode these pat-

terns into output classes [198]. An early layer may be involved in crude tasks such as edge

detection in an image input, while a middle layer among the many hidden layers may

build up a representation of shapes (e.g. round, oval, square) and near the output very

specific classes can be encoded into the neural network. A favourite example of this type

of heirarchical representation in biological (human) neural networks is the activation of

a specific neuron in the medial temporal lobe of the brain only when the subject was
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shown a picture of celebrity Jennifer Aniston or in another case former U.S. president

Bill Clinton [182]. In order to reach such a level of abstraction, many neural network

layers are required.

Inputs to neural network (and the data structures flowing through the network) are

commonly thought of as tensors. A tensor is simply a high dimensional data structure.

A zero dimensional tensor is a scalar (e.g. 4). A one dimensional tensor is a vector (e.g.

[1.6, 9.7, 7.9, ...22.0]). A 2-dimensional tensor is matrix. For example:











x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

. . . . . . . . . . . .

xm1 xm2 xm3 . . . xmn











And an n-dimensional array is simply a tensor. The dimension count of a tensor is called

the rank [264, page 35]. Consider that each tensor input to a neural network is a single

point in a multidimensional vector space. A neural network learns to partition points

in the space of all possible inputs into clusters using training data. A DNN partitions

the vector space into classes associated to labels, and a training procedure is employed

to signal to the neural network which outputs (e.g. classification = cat) correspond to

which inputs (e.g. input = image of a cat). To quantize the signals from the final layer

of a neural network into one single output classification, a multinomial logistic regression

called softmax is used to create a probability distribution as the network output [14].

The “neural network confidence level” or “score” is simply the softmax output score for

a given output class. The sum of the softmax outputs is 1.0, and so each output for

a particular class to be recognized represents the confidence that the class is present

in the data sent into the neural network. Argmax can be used to squash the softmax

outputs (one value per output neuron), and encode the result information into a one-hot

encoding. The highest valued softmax output can be taken as the classification output.

This highest value can be accessed using an argmax unit, which returns the index of the

neuron with the highest softmax output. For example, consider the output of a classifier

trained to detect the words “cat” and “dog” in text input. Imagine that the softmax

output is [0, 1], followed by argmax([0, 1]) returning the index 1. Finally, in an index to

class lookup table [cat, dog] we find that the neural network is indicating that it thinks

it saw the text dog.

A Convolutional Neural Network (CNN) is a classifier designed to process images

and other array data without strictly following the fully connected structure of a DNN
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[198] [120]. Instead, a CNN is structured as feed-forward stages containing convolution

kernels called filter banks that do not communicate (connect to) other filter banks in the

same layer. Each filter bank layer is followed by a neural network activation function

layer (e.g. ReLU). A CNN is a deep learning image classifier which applies many small

filters to an image in order to produce a hierarchical understanding of the contents of

the image. Unlike DNNs, a CNN’s layers are not fully connected. Layers near the

input “understand” simple features such as edge detection, while deeper layers in the

network summarize these low level features into higher-level concepts. The weights in

the CNN correspond to the filter function performed by each small filter in the CNN.

Each convolution layer is typically followed by a sub-sampling layer. The final layers

in the output of a CNN form a fully connected multi-layer perceptron (a DNN) which

classifies the high-level features into classes [121] [54]. As depicted in Figure 2.1, each

filter bank and perceptron layer taken together form a feature map. At each level of

the CNN, feature maps are subsampled using a procedure called max-pooling to create

several smaller feature maps. The goal of a CNN is to reduce an image at the input to

a set of features encoded into a vector (subsampling until the rank of the tensor is equal

to 1, yielding an output vector), and then to perform feature classification with a fully

connected DNN (e.g. to label the detected image features). In this work each pattern

recognized by the CNN as a distinct class is called a context.

Figure 2.1: A typical Convolutional Neural Network (CNN) pipeline

DL includes three methods for learning: supervised, reinforcement, and unsupervised

learning [120]. Supervised Learning (SL) is the best understood and involves training the

classifier using many labeled examples. For example, images of cars accompanied by the

label “car”, alongside images of dogs accompanied by the label “dog” can be used to train

a classifier to discriminate between images of cars and dogs. In supervised learning the

classifier adjusts weights during each training iteration of processing the dataset in order
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to minimize the classification error. Unlike supervised learning, reinforcement learning

involves training without an immediate reward signal [227] [153]. Reinforcement learning

is useful in use cases such as autonomous driving cars and strategy games, where the

feedback to the learning system only arrives after some end state is reached, or after

a significant delay. And finally, Unsupervised Learning (UL) is the process of learning

without labeled examples organized into a dataset [88]. This form of learning gets no

feedback, and therefore requires that the learner figure out a pattern from raw data and

also figure out a metric for evaluating the accuracy of what was learned. In terms of

information content, reinforcement learning predicts at most only a few bits per input

sample (e.g. position of steering wheel and pedals to control car), supervised learning

predicts at most a few thousand bits (e.g. class labels to add to an image), and finally

unsupervised learning predicts anything to do with the input (e.g. given a video, predict

images of the next few frames [184]) [118]. There are exceptions to this generalization

about the maximum number of bits generated by these types of networks, but it is a

useful heuristic for thinking about what type of approach to apply to a problem.

Transfer learning is an approach in ML where the training data is augmented by some

other already trained model [172, page 243]. The advantage of using transfer learning is

that it enables a model to start from some already trained set of learned features and

extend this initial set of knowledge by training on additional data, rather than randomly

initializing the weights and training from that random starting point. Transfer learning

was accomplished in this work using an Inception v3 tensorflow CNN model that was

trained on ImageNet images [2] [230] [6]. The model was extended by training a new last

neural network layer on top of the existing fixed network that can recognize new classes

of images after training. This final layer of the CNN received a 2048-dimensional input

vector for each image, after which a softmax layer is added. As explained in [178], for N

labels this CNN learns only N + 2048*N model parameters corresponding to the learned

biases and weights. This is a vast decrease in the number of parameters to learn over

training all layers of the model.

Training a neural network using supervised learning to perform a function such as

classification can take a long time [171]. Consider for example the time required to do

simple linear regression on sample points. The line of best fit slowly adjusts to fit the

data until the training is completed. In a deep neural network, the system must process

and backpropagate the data several times, optimizing in each layer the weights and

bias for each neuron. The low-level training process notwithstanding, training artificial

neural networks is a slow process. However, once the neural network is trained to be
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a classifier, it can perform classification much faster than the training time. In general

one can expect that runtime for a neural network is much faster (relatively speaking)

than the training time. General Purpose Graphics Processing Units (GP-GPU) can be

leveraged to accelerate neural network training time and runtime by executing compute

operations in vector form on highly parallel and pipelined processing units rather than

the more sequenial coponents of a Central Processing Unit (CPU) [171]. To accomplish

this speedup, a software package such as TensorFlow or Theano is used to load and store

data into and out of the GP-GPU memory from the hard disk [6] [31].

The training effectiveness of supervised learning can be enhanced by injecting random

noise into the inputs to each layer of the neural network during the training process

[37] [212], and by randomly dropping out inputs in each layer of the neural netowrk

(dropout) [221]. Dropout and random noise injection each help to prevent the model

from overfitting the data during training.

Feature engineering is the process of applying domain knowledge and human data

analysis to strengthen predictive models such as neural networks [49] [203]. The idea

of feature engineering is to reorganize existing data into new formats that the learning

system can learn more easily. For example, humans perceive the direction “walk straight”

more effectively than “walk in the ventral direction orthogonal to the plane formed by

the corners of your torso that faces out from your eyes”. These two statements contain

the same information, but presenting this data in an easy to process format makes all the

difference. In feature engineering that can mean re-encoding the data between acquisition

and training.

The word “filtering” in this thesis is used to describe a particular feature engineering

approach (Contribution 2: Fast filtering of text), but is also used to describe the pri-

oritization of recommendations (Contribution 4: Recommendation filtering). These two

types of “filtering” are totally unrelated.

Supervised learning can be thought of as a clustering problem, where a classifier must

learn a linear boundary function between two sets of labeled points on a 2 dimensional

graph. This idea is illustrated in Figure 2.2. In reality this graph could be of higher

dimension, the classifier function could be nonlinear, and the graph could contain more

than 2 classes, but the idea serves to illustrate the point of what a SL classifier is doing.

It learns a classification function based upon labeled data in order to be able to classify

novel data. Unsupervised learning can be thought of as a similar clustering problem,

with all of the points having no labels, as shown in Figure 2.3. The main difference here

is that in the unsupervised learning case, it is not known to the algorithm which points
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belong on which side of the line. Worse yet, it is not known ahead of time how many

clusters the data should break into.

Figure 2.2: Supervised learning problem illustration

Figure 2.3: Unsupervised learning problem illustration
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A good example of an unsupervised learning algorithm is Google News story clustering

[53]. The system collects similar stories based on their content, and presents them to the

user in an organized way. These stories are organized by their content, rather than by an

editor. On a related note, using this same dataset, a 300-dimensional set of approximately

3 million vectors extracted/trained from the Google News dataset of approximately 100

billion words is used in this work [147].

In this work, unsupervised learning is considered in the domain of RS. This means

learning new recommendations from unlabeled recordings of computer state and user ac-

tion data. Unlike reinforcement learning and supervised learning, unlabeled data means

that there is no error or reward feedback signal available to create a cost function based

upon which the quality of new recommendations can be evaluated. The “right” answer is

simply not known to the system. The UL algorithm must make its own decisions about

creating image classes and text classes (creating keywords and contexts), and deciding

the association between them (what keyword belongs in what context).

Neural network approaches to unsupervised learning include dimensionality reduction

(such as t-sne with the goal to cluster high dimensional data into lower dimensional data

while maintaining the information encoded in the distance between points [130]), Hebbian

learning (learning through experience, popularly known by the idea that neurons that fire

together, wire together [85]), hierarchical Self-Organizing Maps (SOMs take a population

of samples and their attributes, and learns a representation of these points in a model

which iteratively adjusts its weights over many iterations one “winner neuron” at a time

[135] [186]), unsupervised word embedding (building a model that encodes the meaning

between words as described further in Section 2.5 [148]), and generative adversarial

networks (two neural networks, a verifier and a generator, face off where the objective

of the generator is to synthesize fake data that fools the verifier into classifying the data

as “real”, while the objective of the verifier is to minimize the error when classifying

the output of the generator [71] [184]). K-means is one of several non-neural clustering

approaches, and it is similar to hierarchical SOM in that the centroid for each cluster is

adjusted for many iterations until the points nearest to each centroid are not closer to

another centroid [172, page 5].

Comparison of Probability Density Functions (PDFs) is a useful tool for selecting

among discrete and finite elements such as recommendations from a database [41]. The

distance between two PDFs is equivalent to a Bayesian probability [41]. In probabilistic

modeling, the Markov condition (also called the Markov assumption) is the idea that one

can assume that the current state of a Bayesian network of probabilities is independent
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of past sequences of states, and so only the current state and the previous state need

be considered in order to model the Baysian network [38, page 130]. Positing this as-

sumption simplifies calculations considerably when modeling a Baysian network. DNNs

and CNNs do not contain state information. A given input deterministically results in a

given output. Other types of neural nets such as Long Short Term Memory (LSTM) or

Recurrent Neural Nets (RNN) contain state information and in addition to containing

memory units, the output of the neural network can feed back into the input [198]. RNN

do not make the Markov assumption, and even so it is difficult for RNN to encapsulate

long-term relationships [30]. In this work LSTM and RNN were not used, as there was

a conscious effort to keep the Markovian assumption in an effort to ease the feasibility

of developing an unsupervised learning capability, as further discussed in Chapter 9.

UL is often applied to facilitate the success of SL [198, page 14]. Often the UL is

applied to encode raw data into a form that an SL algorithm can succeed with, where the

SL algorithm would not succeed on the raw data. For example, pre-training autoencoder

weights prior to applying SL with backpropagation [25], and pre-training RNN [197, page

17].

An important idea to present at this point is learning hierarchical representations.

The idea presented previously above, that deeper RBM layers in a DNN encode more

complex information, is only one type of hierarchy. Another type is building up a repre-

sentation over time, learning new classes by integrating previously learned classes [198,

page 8]. This becomes an important idea in Chapter 9 when learning new information

with unsupervised learning is accomplished based upon all previously learned informa-

tion.

This section concludes with a discussion on approaches to unsupervised learning of

semantic word similarity. Learning semantic word similarity facilitates clustering words

into related topics [248]. A reference textbook on learning semantic similarity is [84].

AVRA’s approach is described in Chapter 9. AVRA’s algorithm was developed because

no suitable unsupervised learning algorithm was found in the literature that solves the

specific image and text pattern combination learning problem that AVRA addresses.

Relation extraction, named-entity extraction, information extraction, set expansion, and

semantic similarity models all aim to expose relationships between entities represented by

words or phrases in a corpus. This set of approaches to learning the semantic relationships

between words is applied in many fields such as search engines and question answering

systems [149].

AVRA’s unsupervised learning algorithm finds the similarity of keywords to topics,
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and the similarity of screen images to learned image features. To learn the relationship

between keywords unsupervised, a corpus of online text is extracted and analyzed similar

to the approaches of [47], [82], [174], [59], [241], [42], [150],[246], [247], [12], [149] and oth-

ers. To model the semantic relationships between words in the corpus, word embedding is

a common approach (e.g. [47], [248], [150], [126], [12], [149]). Approaches to unsupervised

learning applied to semantic word similarity for a corpus obtained from the web include

[47] (keyword extraction from spoken documents), [59] (named-entity extraction), [241]

(synonym identification), [150] (identifying relationships in a medical corpus), [246] (set

expansion), [149] (relation extraction), and [12]. AVRA follows the approach of [12] to

iteratively grow topics one keyword at a time based upon the detected context. AVRA

also uses the concept of a “Class Vector” introduced in [12] to represent each topic, and

the cosine similarity was used in both approaches to measure the distance between vec-

tors. Furthermore, [12] included a crawling mechanism and removed stop words. Named

Entity Recognition (NER) was the goal of [12] and the context surrounding the named

entity was textual, forming a Bag-of-Context-Words. AVRA instead focuses on keyword

recognition (not NER), where the context is visual: what the computer screen looks like

when the keyword is detected. Another difference is that [12] focused on different levels

of query complexity (Focused, Very Focused, Unfocused) whereas AVRA makes no such

distinction between keywords.

2.2 Quality Measurement for Systems and Classi-

fiers

A confusion table or confusion matrix is a supervised learning classifier characterization

entity which records classification results for some dataset after when assessed by a clas-

sifier [191] [140]. This type of table is useful for determining classification precision and

recall (sometimes called sensitivity). Precision is the rate of true negative classification

of data, while recall is the rate of true positive classification of data. The true negative

rate of Equation 2.3 is also called the specificity.

The equation for precision from [191, page 780] is:

Precision = TP/(TP + FP ) (2.1)

The equation for recall from [191, page 902] is:

Recall(R) = TP/(TP + FN) (2.2)
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The equation for specificity from [191, page 902] is:

Specificity = TN/(TN + FP ) (2.3)

Understanding how variables in a multidimensional model are related is difficult when

the model contains many hyperparameters. The Pearson correlation coefficient measures

the association between independent variables [173, page 38]. It is a useful method used

later on in this work to assess at a high level what variables in a model are affected by

what other variables. Another way of assessing how variables in a multidimensional model

are related to each other is to train a regression model on many discrete samples with

the training goal to reproduce the data points in a lower dimensional space. This type of

dimensionality reduction is very popular in machine learning, as it helps humans to make

judgments and reason in 2 or 3 dimensions about data that exists in high dimensional

spaces. This approach is particularly popular in assessing word embedding models where

the “distance” between words in the model at high dimensional scale remains intact in

the lower dimensional (squashed) representation. This is also called preserving local

structure [129]. t-Distributed Stochastic Neighbor Embedding (t-SNE) [130] is one such

dimensionality reduction tool, and is used in this work to visualize a multidimensional

dataset.

The Receiver Operating Characteristic (ROC) is a graphical method of assessing the

trade-off between the sensitivity and specificity probabilities [137]. The vertical axis

of the graph represents the true positive rate of classification, and the horizontal axis

represents the false positive rate of classification [23]. Ideally a classifier will have all

true positive and no false positive classifications: an ROC curve drawn from bottom left

to near the top left of the graph and then across to the top right. However, the ROC

curve plotted on the graph represents the real (measured) trade-off between sensitivity

and specificity from observations on test data. The overall accuracy of the classifier is

measured by the area under the ROC curve, where 1 (the area of a unit square) is the

best possible score. Two excellent practical sources relied on in this work to produce

ROC curves are an example from Google using python and TensorFlow [185] [232] and

a scikit-learn tutorial on plotting ROC curves for multi-class classifiers [201] [176]. On

an ROC curve, results above the y=x line are considered meaningful, while below the

line is considered worse than chance. Curves below this line can be produced by an

algorithm using chance alone to classify the input. A convenient method for converting

ROC area under the curve metric into quality labels used in [22] for recommender systems

classification is the following: above 0.9 is “excellent”, above 0.8 and up to 0.9 is “good”,
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above 0.7 and up to 0.8 is “fair”, above 0.6 and up to 0.7 is “poor” and between 0.5 and

0.6 is considered a “fail”. Below 0.5 is worse than chance, as so was not assigned a label.

We will call less than 0.5 “worse than chance”.

Another way of evaluating a classifier is with a precision-recall curve [199, page 158],

which is commonly applied to text classification problems. The difference between ROC

and precision-recall is subtle but important. Whereas ROC reveals the trade-off between

the true positive rate (also called sensitivity and recall) against the true negative rate,

the precision-recall curve instead reveals the trade-off between that same true positive

rate and the precision of the classifier. Precision, measured by the precision-recall curve

and defined in Equation 2.1, reveals how often a classifier is correct in the predictions

it makes. And so the precision-recall curve is useful in selecting the level of precision

required in order to achieve high recall. To assess the trade-off between precision and

recall on the precision-recall curve, the F measure can be used [199, page 156]. The F

measure computes the harmonic mean of the recall and precision. However, not that

other trade-off points on the precision versus recall curve are valid points to select from

if the weight of one measure is more important to the classifier outcome than the other

(e.g. precision more important than recall). Another interesting point to think about is

is the point where precision is equal to recall. This is called the Break Even Point (BEP)

[199, page 161] [23].

In the trade-off between precision and recall of a classifier that can return multiple

ranked results, it is interesting to evaluate the overall classifier performance in one metric.

To assess the entire precision-recall curve with one metric, the Mean Average Precision

(MAP) is applied [199, page 159]. It gives more weight to correct results the higher they

are ranked.

When measuring latency and execution time, it is important to cast qualitative labels

such as “slow” and “fast” into quantitative measures for comparison and analysis. This

thesis refers many times to a “reasonable response time”. Between 0.1 seconds and 1

second of delay, the user flow of thought is not interrupted, while 10 seconds is the limit

for keeping the user’s attention regaring an onscreen event [167, page 135]. Response

times should be as fast as possible, but of course processing latency is a reality that

can force the user to wait while the computer processes information. In this work a 3

second delay is considered a reasonable response time between information appearing

onscreen and the appearance of a recommendation to the user. Note that the user may

be unaware that the 3 second time window has started. The first notification to the user

is the recommendation. The reasonable response time is instead measuring how long



Background 26

after an event a recommendation is still timely. The usefulness of the recommendation

likely decays to nothing over time as in a traditional soft real-time system.

The concept of speedup is useful for comparing the runtime of a program running on

different machines, or with different configuration parameters on the same machine, or

for comparing competing options to implement a solution. Speedup is defined as follows

in [87]:

Speedupoverall = Execution timeold/Execution timenew (2.4)

When reporting execution time for several samples, the statement “X ± Y seconds”

means X seconds was the mean (x̄) and the standard deviation (σ) was Y seconds.

To this point the thesis has presented approaches and metrics for evaluating classi-

fiers, but not a framework for comparing two classifiers to each other, or for evaluating

the success or failure of an approach. To that end, Measures of Effectiveness (MOEs)

are defined to be able to evaluate how an implementation performs in comparison to the

stated objectives (regardless of implementation details) [189], and Measures of Perfor-

mance (MOPs) specify the technical performance characteristics the system must meet.

Each MOP should relate back to one or more of the MOEs, which are the base re-

quirements from which all system measurements derive meaning [189]. Both MOE and

MOP correspond to measurements that can be recorded, although MOEs and MOPs may

sometimes conflict, as the MOE may demand better performance than a real system mea-

sured by an MOP can deliver. In other words, the MOP measures a capability whereas

an MOE measures a feature. Both MOE and MOP do not naturally aggregate into an

overall score. Rather, these measures capture different dimensions of performance. Also,

MOP and MOE are typically applied throughout the life of a project, while in this work

the methodology was applied only in the final stages of data analysis.

2.3 Recommender Systems (RS)

Recommender Systems (RS) are systems which recommend items to a user, often based

upon some data about the user and the items to be recommended. Advertisements

appearing alongside search results are a good example of an RS application, where the

search engine uses information such as the keyword(s) searched, the location of the

searcher, the time of day, the bid of the advertisers, and other information to present

useful targeted advertisements. A search engine itself is a recommender system, as it
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recommends results based upon keywords. The review article [35] provides an overview

of the RS state of the art, and the textbook [188] provides an in-depth explanation of

the topic, methodologies and related issues. This section is based on those sources.

A key aspect of RS is scoring and ranking recommendations in order to present high-

quality options to the user. Content-Based Filtering (CBF) is an approach where the

recommendation score is increased if related items were rated positively in the past. CBF

makes it more likely for items and topics preferred in the past to be recommended in

the future [24] [175]. CBF provides a mechanism to rank recommendations where the

recommendation score is increased if items related to the recommendation in question

were rated positively in the past. As described in later chapters, CBF in AVRA involves

items (action recommendations), and ratings (created by the user accepting an action

recommendation). The score of a recommendation can be modified based on both topic

and item similarity as described in [196], and the user’s tagging history can be used to

inform the likelihood of recommending an item as described in [68].

Scoring recommendations based upon context and user preferences is described in

[251], which combines CBF with taxonomic preferences, and also is discussed in [136],

which combined CBF with knowledge of the domain. Context-aware recommender sys-

tems can focus on using the context of the user (as in [243] where the user profile can

guide the recommendation score) and/or the context of the recommendation (as in [10])

to modulate recommendation scores. The cold start problem is a situation where the

RS has insufficient information about a user to make high-quality recommendations [35].

The input to the RS model can modify the output (recommendations) provided by the

RS. For example, the confidence of the RS that the user will prefer a recommendation can

rely on time-varying inputs outside of the RS, such as the time of day, weather the user

is logged in, the page from which the user arrived to the current page, and many other

examples of state information. In this work the classifier confidence levels represent state

information. These confidence levels indicate the classifier confidence that graphical or

textual information has been detected. The confidence of the system that it sees what

it thinks it sees modifies the RS prediction.

Additional application-specific RS provide interesting context to this discussion on

recommendation quality. Reverb [195] is an IDE plug-in that recommends previously

visited web pages related to code being written by a programmer in the IDE. The idea

is to reduce false-positive recommendations when offering the programmer a recipe to

look up as she is writing a program. This increase in quality is accomplished by only

recommending pages that have been previously visited by the user. A predecessor of
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Reverb is Fishtail [194], which recommends web pages for the same purpose but without

restricting recommendations using the user history as Reverb does. The consequence

of recommending pages based only upon keywords is lower quality recommendations

[160]. Another interesting example from application-specific RS is [215], an MI system

that works in tandem with the programmer to expose programming recipes and other

useful programming tips. The work of [215], [194], [195] and others integrate into specific

programs, rather than processing images of the computer screen as a whole, which would

loosen the integration between the applications and RS. However, in the unsupervised

learning chapter, the idea of watching the action history of the user was employed.

Employing probabilities to modify recommendations is a common approach to dealing

with uncertainty in the RS domain [188, page 64].

Recommendations from a learning RS should change over time. Concept drift is the

idea that the goal of a learning system can be a moving target [238]. User tastes change.

Recent actions are more significant than actions performed long ago. A variety of rec-

ommendations can keep the user attentive to the RS, while consistent recommendations

allow the user to rely on recommendation predictability. Concept drift can manifest

when there is an aggregation of learning errors over time. Generally, a learning system

that does no have the ability to forget or correct the objective, will over time increase

the difference between the perceived objective and the true objective. As discussed in

[256], when a learning system is approximating a concept based upon a hidden context,

a change in the context can alter the concept that the learning system was approximat-

ing. The resulting concept drift can be corrected by forgetting examples and hypotheses

over time, storing data (e.g. observations of use behaviour) for reuse when sufficient

data is available to make more reliable decisions (e.g. learn a new context, or adjust an

existing one), and monitoring the system’s behavior (a loss function) so that the system

obtains corrective feedback. Taking these ideas into more concrete terms, some ideas

to avoid concept drift are: enforcing a time window on data acquisition and retention,

learning new recommendations and adjusting existing ones based upon many examples

rather than one-shot learning, correcting mistakes learned into the recommender system

by integrating recommendation feedback. As [56] notes, a neural network that learns

from observational data can experience concept drift if the underlying data distribu-

tions change over time. It the case of learning new recommendations with unsupervised

learning, errors integrated into the model early in model development cause much more

concept drift than those learned later on. An incorrect data point represents a large frac-

tion of the overall model in a small model, but only a tiny fraction of a large model. This
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is related to the cold start problem discussed above. Initializing an RS for new users with

supervised learning helps to overcome the lack of high quality data, and initial concept

drift.

The idea in this work for shallow integration between the RS and the computer

relates to prior work whole-screen neural network image processing in [153] and high-

level query processing proposed in [43]. The concept in [43] is that shallow clues in

a query can hint at the correct databases to search in. Therefore, a query to many

databases need not be written for each database, rather, a high-level intermediate query

engine can dynamically steer the query to the right databases. The key information to

understand from [43] is that the low-level database by database integration was bypassed,

and instead a dynamic high-level database integration was achieved. The concept in [153]

was to develop one deep-learning artificial intelligence that can play many different video

games. The breadth of different applications played by the same neural network was an

impressive validation of the power of reinforcement learning.

A recent development in RS using neural networks called wide and deep learning

combines the speed and generality of shallow wide input feed-forward neural networks

with the feature extraction capabilities of deep learning [48]. Sparse input data (mostly

empty matrices linking events to actions) allow for shallow neural networks to recom-

mend actions in general cases essentially by memorizing patterns, while special cases

requiring high dimensional feature detection are not detected. Deep neural networks

can learn to extract these hidden features using deep learning. Wide and deep learning

combines these approaches into a single neural network with a deep branch and a shal-

low branch to the network, terminating at a shared softmax output. When tested to

provide app installation recommendations in the Google Play app store, wide and deep

learning outperformed (increased the number of times users accepted recommendations)

compared to past approaches based on wide neural networks, deep neural networks, and

the combination of wide and deep learning using separate neural networks.

Desktop assistant software for learning and predicting actions was described in [131].

In that work, a distinction is made between types of information extracted by the RS:

action features describe items that happened recently on the computer, while state fea-

tures describe the current state of the machine. Examples of action features are a history

of program calls, the stream of keyboard characters, and onscreen streaming video. Ex-

amples of state features are a list of programs that are currently running, the current

directory, and the current language settings. In [115] recommendations are mapped to

function keys, and the goal of the RS is prediction of the next command to be typed into
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a terminal program. Recommendations from this type of RS are based upon previous

input (action features), but cannot see the current or past output resulting from the

execution of these commands. The keyboard keys F1 to F5 were mapped to five different

command recommendations presented onscreen to the user.

Some deep learning desktop assistants do not wait for user input to act on recom-

mendations, as they form a narrow function. For example, the assistant described in

[89] uses a camera and facial recognition to detect an approaching manager in order to

hide the screen contents of a cubicle worker. A similar program can change the screen

brightness to match the ambient lighting conditions in a room [44].

Types of personalized RS are content-based/cognitive (identify the common charac-

teristics of items that have received a favorable rating from a user), collaborative filtering

(obtain recommendation ideas by extracting data from similar users), and hybrid ap-

proaches between these two concepts. Relying on cognitive recommendations alone leads

to overspecialization (only recommending items like those that were rated by the user,

losing the novelty of the RS) [188, page 38]. Collaborative filtering of recommendations

is the process of adding recommendation information that applies to one user A into the

recommendation information for another user B. Counting and user preference for a rec-

ommendation as a a rating, the RS can create a database of user preferences organized

by user. Collaborative filtering should provide users with novel suggestions the system

predicts with high probability that the user will desire. Two approaches to implement-

ing collaborative filtering are model-based and neighborhood. With the neighborhood

approach to collaborative filtering, recommendation ratings stored in the RS database

for all users can be used to predict ratings for a specific user. A user-based approach to

the neighborhood collaborative filtering is to identify users with similar ratings patterns

and to import these user preferences into the current user, even though the current user

has not specified these preferences. An item-based approach to neighborhood collabora-

tive filtering is to predict the ratings of a user based upon their past ratings for similar

items. With the model-based approach to collaborative filtering, a predictive model is

trained on recommendation history in order to produce/generate novel recommendations

for users.

To accomplish collaborative filtering with the user-based neighborhood approach the

first task is to identify for a user A, similar users such as user B. User B can be identified

by comparing the recommendation contents of both users, combining into one score

the similarity between any pair of users by scoring the Bayesian distance between their

recommendation database entries. Another approach is to score the Bayesian distance
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between their tastes for the learned recommendations. Given a close enough similarity,

with a threshold defined either by the user or the system administrator, entries from

user A’s database can be copied into the database of user B. This applies both to context

information and to keyword information. Bayesian recommender systems are described

in detail in [83] and simple example showing how Bayesian-inference can be applied to

social network data with either user-based similarity of recommendation-based similarity

is [152].

The effectiveness of an RS depends not only on accurate predictions. It also depends

on on human factors, such as how best to convey information to user [188, page 21]. As

described in [228] and [139], an RS must build trust with the user, perhaps by generating

consistent results. It should also recommend novel recommendations to keep things

fresh for the user, and should provide rich content. An example of rich content in the

movie recommendation domain is a movie recommendation containing a title, description,

community ratings, and a related image, rather than a title alone. These details about

recommended items enable the user to become more involved in the RS process, and to

think of the RS as an extension of their thinking process. The RS should also expose

functionality to refine recommendations by blocking specific topics (e.g. recommend no

western films), or specific items (e.g. no recommendations for this movie title). These

ideas about how to convey information to the user continue in the next section of the

prior art regarding mixed-initiative systems.

2.4 Mixed-Initiative (MI) Systems

The research motivation section of this thesis described the ability to shift the cognitive

effort of human-computer interaction to the computer. MI systems are designed around

the concept of assisting a human analyst to derive and take advantage of insights into

data. In MI systems, the breakdown of work between the computer and the human

focuses on the strength of each participant in the iterative problem solving activity [13].

An MI system is a system where a computer agent and human user interact collabo-

ratively to accomplish a task. MI systems are designed to leverage the strengths and

overcome the weaknesses of computers and machines as these two entities are good at dif-

ferent tasks. For example, computers can multiply large numbers quickly while humans

cannot, whereas humans can reason with common sense in situations where computers

cannot.

Automated assistant technology is available today for accessing content using natural



Background 32

language (bots [224], [144]) and for controlling basic computer functions (e.g. facebook

M (beta) [193], Google assistant [128], Watson [97], Viv [113], Hound [220], Assistant.ai

[20], Alexa [15], Google Now [73], Cortana [142], NextOS [166], Siri [21]). Such agents

can be applied in a variety of fields beyond computer assistance, including industrial,

commercial, medical, entertainment and others [104]. It is useful here to make the dis-

tinction between a program and an intellignet assistant. A taxonomy of the properties of

autonomous agents was presented in [63] including the following qualities: reactive, au-

tonomous, goal-oriented, temporally continuous, communicative, learning, mobile, flex-

ible, and character. Types of intelligent assistant mentioned in [170] are collaborative,

smart, mobile, informational, reactive, hybrid, and smart. In deciding if an assistant is

intelligent one can also consider the implementation details in addition to the software

qualities [158].

Context awareness involves detecting situation-based information in a computer screen

image in order to narrow down the search for onscreen meaning to a select few contexts.

Context awareness is achieved in this work using shallow integration. Cortana contains a

proactive action recommendation feature that can recommend registered actions to the

user based upon a history of observing the user on the computer and digesting user data

such as calendar and search history [142]. According to Microsoft “Cortanas insights are

situations or conditions based on her understanding of the users context or intent” [145].

Only registered proactive actions can be suggested to the user. For example, general

interest categories can be activated by the user, and notifications regarding these topics

can then be pushed to the user’s screen.

Google Now [73] contains an extension called Google Now on Tap [74] (also called

“screen search”). When the software is installed and the user holds down the Home

button on a mobile phone, the program analyzes the screen and presents related infor-

mation, applications to launch, and actions to perform. This seems like a very closely

related idea to AVRA and so an experiment was performed for this thesis to understand

how this feature is analyzing the screen. In order to assess the level of image processing

performed, the results for pressing the Home button on a given page were compared to

pressing the Home button when displaying an image (screenshot) of the same page. The

onscreen picture is identical in terms of the pixels on the mobile device, and therefore any

differences indicate that the program is parsing the information semantically rather than

using image processing. It turns out that Google Now on Tap does analyze the OCR for

screenshots compared to processing content displayed to the user from a particular web

page or application. However, it appears the program is also using the page or app url
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and displayed content as hints to the recommendation engine. In September 2016 the

results for screenshots were much worse than for in-app images, whereas is January 2017

the results for these cases is much closer. Figure 2.4 shows two examples, one where con-

tent is detected for an application but not for an image of the application, and another

where content is detected for both the application and an image of the application. The

difference seems to be that OCR is feeding the recommendations text, but a CNN is not

providing image labels. Furthermore the strange font in Figure 2.4d probably prevents

the OCR from understanding the text in the image, and without any other features to

assess, the system gives up.

Shallow Integration or Shallow Application Integration in this work is the approach to

understand what is happening in the computer without integrating into each application

running on the computer. This is accomplished by analyzing the a computer screen

image to extract text and context information.

Computer assistants can come in the form of assistive technologies such as screen

readers for the blind. This is an interesting area to think about because these screen

reading assistants are tasked in one form or another with interpreting the screen and

performing actions on the computer. The American Foundation for the Blind links to

several products of varying capability to help blind users to operate a computer [16].

These systems generally do not meet the definition outlined by [63] for an intelligent

assistant. For example, BRLTTY is software that reads commands as they are typed

and as they appear onscreen [146]. BRLTTY only works inside a terminal window. It

is not goal oriented or flexible, has no personality or character and does not learn [55].

Screen reader software enables users to perform many basic computer functions within a

fixed framework. It reads parts of the screen, can announce where on the screen the cursor

is located, and can perform actions when the user presses one of several hotkeys on the

keyboard. The software operates by parameterizing the screen components and cycling

through them. Screen readers understand the screen programattically using semantics

rather than visually using images. This is easy to verify by creating a custom checkbox

element in HTML and noticing that a screen reader announces the element as “group”

rather than the correct “unchecked checkbox” [75]. Some screen readers accept voice

commands and others are connected to OCR software in order to facilitate reading books

and magazines for the reader, but these products do not interpret graphical information

on the computer screen itself. A new wave of software for mobile phones performs real-

time word translation including word recognition (e.g. word lens, now integrated into

Google Translate [219] [33]). Mobile apps for object recognition such as Aipoly [11]
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(a) Google Now on Tap result

in-app

(b) Google Now on Tap result

for screenshot

(c) Google Now on Tap result

in-app. Background image by

XKCD [159]

(d) Google Now on Tap result

for screenshot. Background im-

age by XKCD [159]

Figure 2.4: Comparing Google Now on Tap response in-app v.s. screenshots
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translate images of objects into announced labels, and apps such as Wayfindr announce

step by step walking directions to the user directions [250]. Aipoly contains learning

neural networks, and in closer to an intelligent assistant than the aforementioned screen

readers. It interprets image data from the environment in real-time and classifies it into

labels.

A prompt is an action proposal or information message interrupting the user’s focus.

It is triggered based upon a timed event (e.g. after 8 seconds pop up an informational

dialog box), the detection of a particular context (e.g. if function return is null, pop

up an error message dialog box), or by some acquired intelligence (e.g. when an email

marked urgent arrives in the user’s email inbox, play a ringing sound to alert the user)

[92].

Two sources for MI system design advice are [51], and [132]. The design principles

(A1) through (A5) from [51], and (M1) through (M6) from [132] are listed below. These

design principles are discussed further in Chapter 3.5 in relation to AVRA.

ADE

MI system design principles in [51] were based upon a meeting of subject matter experts

discussing the design of the Active Data Environment (ADE) prototype, an MI system

for automating sensemaking by recommending tasks in real time. The ADE system

was tested against the MI dataset from [253] where the task is foraging through data

in search of connections around which to form a hypothesis. The ADE system exposes

data insights to the user without being asked for specific information from the user.

ADE’s automated recommendation system employs content-based pattern recognition

mixed with task awareness to identify candidate recommendations. ADE recommends

data and relationships based on a task model, enabling the user to co-reason with a

virtual agent about data in a single spatial workspace. Task recommendations, based

on user interaction history and pattern recognition, are generated graphically within the

workspace and can be invoked by the ADE user. ADE’s authors outline design principles

for MI systems including (A1) through (A5) below.

(A1) User control and non-interference

ADE was designed to be flexible and allow users to remain in control of their process.

Recommendations should enrich, not dictate, the process of foraging for data and synthe-

sis of recommendations. ADE was designed to remove routine tasks for the user, without
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adding additional tasks [57]. Another important aspect of any MI system design is the

prompt mechanism employed by the agent to alert the computer user.

(A2) Recommendations should enhance the current task with timely useful

information

(A3) Understanding what a recommendation signifies and why it is recom-

mended

Reducing cognitive effort is discussed in [160] from the perspective of the user interface

design for RS. Also in [160], there is a discussion on the user understanding the reason

for a recommendation being presented, and the danger to the reputation of the tool in

the mind of the user when no meaningful explanation for a recommendation is accessible.

See also (M5) below.

(A4) Fast visual interpretation of recommendations

Recommendations should be “presented in compact visual form, to allow users to quickly

assess the recommendation and explore or dismiss it with minimal effort.” [51].

(A5) Retaining recommendation context

See also (M5) below.

MIVAS

MIVAS is another MI prototype system providing a template for MI system design [132].

Visual Analytics involves organizing data to form hypotheses. MI adds machine learning

to VA, assisting the user in the task of sensemaking [132]. Reasoning about complex

datasets requires detail-level and high-level thinking, and MI visual analytic systems

complement human cognition with analytic techniques. The goal of the collaboration

between human and virtual agent is producing insights leading to one or more conclusions

regarding the data. More generally, adopting such a system should reduce the cognitive

pressure on the human user by offloading some computation to the virtual agent. To

that end, iterative sensemaking is the process of working with the data (often large

data sets with semi-reliable structure) to produce intermediate results along the way to

a conclusion [106] [265]. Each sensemaking iteration involves two steps: foraging and
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synthesis. These steps are easier to perform quickly with high-level (pattern) and low-

level (coding) assistance from a predictive intelligent system. MIVAS was designed to

address the field of Big Data with MI as a three part system containing a human user,

a visual workspace, and a predictive recommendation engine. MIVAS authors outline

design principles for MI systems including (M1) through (M6) below.

(M1) Speed improvement

An MI solution for a task must provide a faster user experience than manually performing

the same task without the MI system, or utilizing a non-intelligent programmed solution.

(M2) Data wrangling

(M3) Alternative discovery and comparison

(M4) Parametric interaction

MIVAS employs a feedback loop where a graphical visualization is manipulated by the

user to provide feedback to the MI system, and in turn the system analyses the feedback

and sets new model parameters, changing the data representation in the workspace.

(M5) History tracking and exploration

(M6) System agency and adaptation

2.5 Text Similarity Algorithms

To motivate this topic, consider a character-level text classification task performed by a

deep neural network on noisy text. How can this task be accelerated? A neural network

classifier takes candidate text as input, and outputs a classification, where each class

trained into the neural network is associated with a unique keyword. A keyword in this

work is a text string that a classifier can be trained to recognize. A text comparison

algorithm could quickly discard candidate text prior to classification when the candidate

text is not similar to any keywords known to the classifier.

Neural-network-based classification relies heavily on slow mathematical operations

such as multiplication and division. Character-level keyword recognition in noisy text

is one case where much of the data fed to a neural network classifier may be irrelevant,

and processing the irrelevant text is computationally expensive. Consider, for example, a
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situation where noisy text is recognized by a DNN as one of several keywords, or as noise.

This noisy text is the output of an Optical Character Recognition (OCR) system which

has processed a computer screen image into text. Classification of words in the OCR

system’s output should only be performed on text that is likely to be classified with some

degree of confidence. This discarding of candidate text with a filtering algorithm prior

to the neural network classification saves time. However, how can this filtering algorithm

know which parts of the OCR output are similar to keywords that the neural network

was trained to recognize? Is that not the purpose of the DNN classifier? The process of

discarding input data prior to reaching the DNN is analogous to a funnel, where the first

classifier discards clearly irrelevant text, and the DNN carefully classifies the surviving

text. To decide which components of the text to discard, this initial classifier should use

some objective measure such as the similarity between the candidate text and the set of

keywords that the DNN was trained to classify. The filter should minimize latency while

maintaining high specificity and recall. The trade-off between execution time, specificity,

and recall is made on a case by case basis depending on the application.

To motivate the development of the filter, consider the execution time for this classi-

fication task without acceleration. A text snippet in this work is defined as a short text

string extracted from the OCR of a computer screen image. These snippets can contain

up to two space characters. As depicted in Figure 2.5, each task involves classifying 3,000

text snippets into one of 300 classes, where 99.5% of the candidate input texts (snippets)

are not part of any class trained into the DNN. The expected latency for this task should

be under 1 second on average. As a first experiment, a DNN was deployed with 784

inputs, 625 neurons in the first hidden layer, 625 neurons in the second hidden layer, and

5000 output neurons. The DNN was trained to recognize text containing spelling errors.

10 samples were collected for CPU and GPU execution time for this character-level text

classification task. The mean execution time required to classify the 3,000 candidate text

strings was 433.9 seconds on a CPU (1.80GHz IntelR© XeonR©), and 333.1 seconds on a

GRID K520 GPU. This task is accelerated in this work by filtering out candidate input

text that is not likely to be classified accurately. As described in the following sections,

this approach can be implemented to complete the task in under 1 second using only one

computer, rather than a large GPU cluster.

The similarity of two text strings can be measured in terms of lexical or semantic

similarity. Lexical similarity involves comparing sequences of characters to measure sim-

ilarity, while semantic similarity involves studying a corpus to determine how similarly

two words are used [69]. Hybrid measures are also possible [50]. For example, [100] mixed
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semantic text similarity extracted from a corpus of text with lexical similarity obtained

from comparing character sequences to improve document comparison. Text similarity

metrics are applied in many fields including, for example, spelling correction, where an

autocorrect tool recommends words with low edit distance from a non-dictionary word

[36], and plagiarism detection, where similar texts are flagged for review [225].

Matching noisy text to a list of keywords is also referred to as fuzzy string matching,

string matching allowing errors, and approximate string matching [163]. The Levenshtein

distance is a lexical approach to quantifying text similarity by finding the minimum edit

distance between two text strings [124]. The idea is to count the minimum number of

operations (insertions, deletions and substitutions) required to transform one string of

text into the other. The Needleman-Wunsch distance (also known as Sellers Algorithm)

adds to the Levenshtein distance the idea of a distance dependent substitution cost [165].

It searches for approximate substring matches. The Smith-Waterman distance is a metric

for genetic sequence matching [217]. It finds the longest common sub-expression between

two strings with a smaller penalty than the Levenshtein distance for prefixes and suffixes

adjacent to the common substring [162]. The Monge-Elkan metric is a variant of the

Smith-Waterman distance function that uses variable costs depending on the substring

gaps between the two strings [155].

Calculating an approximate edit distance rather than a true minimum edit distance

can save execution time at the cost of accuracy [242]. Several approximate edit distance

approaches such as [96], [17] and [125] provide better worst-case execution times than

previous work due to improvements in estimating edit distance. The approach in these

works was to reduce the per-iteration algorithmic complexity, emphasizing algorithmic

improvements and utilizing low latency binary operations such as shifting, rather than

slow mathematical operations such as multiplication, exponentiation and division.

The L1 distance (also called city block distance or block distance) is the sum of the

absolute difference in value between words P and Q for each dimension d as in Equation

Figure 2.5: Text Classification Task.
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2.5 [41]. It measures the length of a line connecting P and Q drawn along one dimension

at a time. The L2 distance (also called euclidean distance) is the square root of the

sum of the absolute difference squared in each dimension as in Equation 2.6 [41]. The

L2 distance is the length of the line segment PQ in multidimensional space. Cosine

similarity computes the normalized dot product of P and Q as in Equation 2.7 [133].

Natural Language Processing (NLP) is the study of understanding text or speech

spoken or written by humans in a natural way. The goal in NLP is to come up with

useful models to extract meaning from this data [32]. Word embedding is a technique

for encoding the relationships between words [239] and Word2Vec is a popular word

embedding tool [147] [237]. Word embedding involves creating and training a model that

reconstructs the linguistic contexts of words as relationships in a high dimension vector

space. Famously, a word embedding on a large natural language dataset can be used to

algebraically find the vector for the word queen by summing the vectors for the words

king−man+woman [148]. Word embedding models trained on large datasets are useful

knowledge engines as they capture a lot of general knowledge and context. Quoting from

[148] “We find that these representations are surprisingly good at capturing syntactic

and semantic regularities in language ... the male/female relationship is automatically

learned”. At the character level, word embedding means encoding letters as vectors, and

words as sequences of vectors. This letter by letter encoding was used in this work to

model the L1 and L2 distances. A similarity score is formed as the distance (e.g. L1 or L2)

between points for each word in the constructed model. An average vector or paragraph

vector is a summary vector created by averaging contents of many vectors and dividing

by the total [117]. Average vectors are used for many purposes, including the creation

of a vector for a paragraph when the vectors for the words of the paragraph are known.

Common words that do not encode semantic meaning are called “stop words”, and can

be removed from a corpus prior to the conversion from text strings to word vectors.

A commonly used stopword corpus for English text was devised by Porter [180]. When

constructing a word embedding model, it is a good idea to remove common words with low

information content such as “the” and “a” in a process called stop word removal. To get

the same word presented in various forms to become the same vector, the variations of the

word must be associated to the same vector during the tokenization process. Stemming is

another text pre-processing approach that converts to a standard form each word in the

corpus that will be converted into a word embedding model. More specifically, stemming

is the process of chopping off parts of words (e.g. retooling → retooling) [199]. Similar

to AVRA, stemming was applied in [82] to process the results of a crawler-built corpus
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prior to vectorization into a word embedding. Lemmatization finds words that mean the

same thing and map them onto the same vector (e.g. sees, sawseen, seeing should all get

one vector in a word embedding model) [199]. Word frequency in documents contains

useful information for building models of text data (e.g. tf-idf and word embedding)

[199]. Stop words and stemming are applied during unsupervised learning in Chapter

9.3.
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JaroWinkler(P,Q) = Jaro(P,Q) + |ρ|f(1− Jaro(P,Q)) (2.9)

ratio(P,Q) =
|P |+ |Q| − Levenshtein(P,Q)

|P |+ |Q|
(2.10)

The Jaro similarity is another edit distance metric shown in Equation 2.8 [103] [102].

It considers four quantities: the length of both strings to be compared (|P | and |Q|),

the number of “matching” characters σ, and t defined as the number of transpositions

(characters that match but are out of sequence) [162]. Calculating σ, matching is true if

two characters are not more distant that half the length of the shorter string i.e. for Pi

and Qj , |i− j| ≤ min(|P |,|Q|)
2

[162].

Jaro-Winkler extends the Jaro similarity with the concept of rewarding a common

prefix shared between the two strings [258]. As in Equation 2.9, the longest common

prefix ρ and scaling factor f are used to increase the similarity of strings sharing a

common prefix [162].

In this work the ratio metric implementation from [164] is considered, where the

metric shown in Equation 2.10 is followed. The sum of the length of both compared

strings (|p|+ |q|) less the edit distance (Levenshtein distance) is divided by the length of

both strings (|p|+ |q|).
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Locality Sensitive Hashing (LSH) involves constructing a one way hash function which

quickly reduces an input string to a fixed-length hash with the special property that

similar strings generate hash outputs with low Hamming distance between them [99]. The

idea behind these hashes is to reduce the dimensionality of the data while preserving the

similarity features encoded into the data. Several LSH hashes such as SimHash [46] and

MinHash [210] are studied in detail in the literature. Among many other applications,

these hashes are used to build an index for comparing documents to discover approximate

similarity [134].

Some distance measurement algorithms do not apply to the fuzzy string matching

problem considered in this work. For example, comparison algorithms such as mean

squared error and Hamming distance work well for computing image similarity for images

with identical dimensions, but do not work well for string similarity computations as

the strings are often of different length. Truncating one of the strings to perform the

comparison on equal length strings causes unacceptable information loss. q-grams [79]

also called n-grams [114] are small substring snippets of a fixed length created from

each of the strings to be compared [162]. This string representation is an efficient data

structure for computing token-based similarity. The Jaccard similarity takes into account

string similarity and diversity of two tokenized strings [162]. Tokenization-based methods

Jaccard similarity, Monge-Elkan similarity, and n-grams were not considered for this

work.

Semantic text similarity measurement is an evolving field with ongoing metric quality

problems for various applications such as constructing word embeddings [62]. Lexical

similarity metrics also suffer from quality problems when comparing short strings. In such

cases the compared strings have a low edit distance even though they are not related. For

example, the word ‘a’ is only one substitution away from the word ‘I’. Therefore consider

that this is an imperfect measure of text similarity. It does not account for context

as, for example, a distributed word embedding does [239]. In fact, each of the string

comparison algorithms presented in this work has some drawbacks and advantages based

upon the constraints of the application and the data used to evaluate the algorithm’s

performance. The performance results presented in this work are expected to vary under

datasets that differ significantly from those described below. This reality recalls the “no

free lunch theorem” for effective optimization algorithms [259], which states that “for any

algorithm, any elevated performance over one class of problems is offset by performance

over another class” [260].
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2.6 Text Classification on OCR output

This section of the thesis focuses on relevant prior art on understanding the output of

Optical Character Recognition (OCR) systems. A recent survey on the general topic of

text detection and extraction from images is [262].

OCR is the process of translating text from images into text strings in a computer

by detecting and then recognizing text within the image data [198] [262]. Optical word

recognition or word spotting is the process of detecting words as symbols in the way that

objects are recognized in a scene, rather than detecting words as sequences of characters

[245]. This idea of pulling out specific words from a noisy scene relates closely to Text

Categorization (TC), the assignment of category labels to a document. In a book store

example TC would involve an algorithm that analyzes the text in each book and sorts

new books automatically into the right section of the store (e.g. fiction, science-fiction,

poetry, science, kids books, etc.). With noisy TC, text is extracted from a noisy source

such as OCR or speech to text, and in these cases the extraction process itself adds noise

to the text [244]. The problem with training a classifier to recognize noisy text is that the

classifier’s model learns the noise features and is therefore less effective at understanding

text without the added noise, or text with different noise characteristics [244]. In [244] it

is proposed that each type of noise source can be paired with a classifier that is trained

to see through that specific type of noise: text classifier 1 for OCR output, text classifier

2 for speech to text output, and so forth.

Regarding spelling, context, and grammar-related approaches to correcting OCR out-

put, several examples are available in the literature where the text to be extracted is

known in advance (e.g. [234], [151], [254]). The context of text computed as the wondow

of words preceding and following each word can also be a helpful hint to OCR software

as to the correct reading of text as in [254] where the OCR process attempts to extract

text based upon the context surrounding it. A more narrow example of OCR correction

using context awareness is [64], where transcription by OCR of mathematical formulae

was improved by excluding non-syntactically valid candidate readings of the mathemat-

ical text. When processing ancient medical documents, [234] correct OCR output errors

caused by processing archaic vocabulary. The approach in [234] used regular expression

correction of common OCR spelling errors in conjunction with a grammar-aware and

context-aware spell-checking system trained on medical terms. In [151], the goal was to

extract metadata from documents using the FineReader OCR engine [8]. Rather than

focusing exclusively on OCR, Support Vector Machine and Hidden Markov Model ap-
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proaches were combined in [151] to build a model of the layout of the document in order

to narrow the focus of the OCR system. This allowed the OCR to focus on specific

locations in the document, backed by a text parsing search used to extract information

fitting some expected data format. String pattern analysis was also included in the layout

recognition and data analysis approach.

Spell-checking text involves learning from large sets of text in word dictionaries and

online documents, and can achieve high accuracy on English language texts [252]. In

[252] a spelling correction database for autocorrect systems is described where the prob-

lem involves identifying words, and then identifying how they are spelled correctly and

incorrectly. The system operates without a human-designed dictionary of correct and

incorrect spelling by processing a large corpus of text to learn words and their possible

misspellings. In [26], an OCR post-processing algorithm using spell-checking was pro-

posed. The system used the Google search engine results page search refinement spelling

correction system (see suggested search refinements in [34, page 10]) as an online spelling

correction database. The idea to correct common OCR errors with a spell-checking ap-

proach (e.g. [234], [151], [252], [26]) is explored in Section 7.1.4 as a means to correct

OCR output mistakes in error message text. In [112], OCR output text is corrected

using a dictionary-based approach paired with a trained regression model, where the

system is trained with a noisy channel model to correct OCR errors. The idea in [26]

and [112] to catalog common OCR errors and their corrections in a dictionary is em-

ployed in this work as discussed in Section 7.1.2, and is combined with deep learning to

improve classification accuracy as discussed in Section 7.1.5.

Regarding black-box testing approaches to correcting OCR output, [213] addresses

the problem of recognizing text from unusual typefaces or languages using OCR. For

example, processing obsolete Indian font Bangla printed 100 years ago and now available

as scanned documents. The approach begins with a baseline OCR engine used as a black

box to process a set of unlabeled images. The OCR output text was then calculated as

the centroid of a set of many candidate OCR words, measured by edit distance. This type

of unsupervised pre-training is a well-known technique in deep learning for accelerating

training and improving feature learning by exploiting unlabeled data [58].

When measureing the effectiveness of an OCR system in general, several quality met-

rics can be helpful. These metrics typically need to be compared to a ground truth, which

can be provided by human transcription of the input to the OCR, or by sending already

transcribed text into an image generator and then through the OCR system. Comparing

the ground truth to the OCR output provides insight into where the errors in the text are
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coming from. The Character Error Rate (CER) defined in Equation 2.11a represents the

proportion of characters in a dataset that were incorrectly classified during image to text

conversion [38, page 51] [61]. Similarly the Word Error Rate (WER) of Equation 2.12a

represents the proportion of words in a dataset that were incorrectly classified during

image to text conversion [61]. The CER and WER are not as important in a classifier

trained only to detect specific onscreen keywords, which is the task considered in this

thesis. The Term Error Rate (TER) is a more significant metric for TC on noisy text, as

it measures the error rate for specific terms (keywords). Recall (ρ) for text classification

is defined in this thesis in terms of TER for keywords that are learned terms known the

text classifier, rather than all words presented to the OCR system. Therefore recall is in

fact referring to “term recall”.

CER =
character deletions + character insertions + character substitutions

total number of characters in reference
(2.11a)

=
LevenshteinEditDistance(ground truth, OCR output)

total number of characters in reference
(2.11b)

WER =
word deletions + word insertions + word substitutions

total number of characters in reference
(2.12a)

=
WordEditDistance(ground truth, OCR output)

total number of words in reference
(2.12b)

Regarding deep learning approaches to text classification when analyzing character-

level information, [266] analyzed character-level data to characterize text while [33] and

[101] extract text from images. All of these approaches utilize character-level text pro-

cessing of some kind, and none of them assumes that the text to be processed is known

apriori. The goal in [266] was to classify text, including text containing spelling errors.

An example of a classification task in [266] is the prediction of the user rating of a product

(e.g. 0-5 stars) given a user’s comment on the product. [266] used a deep convolutional

neural network with memory units (9 layers deep with 6 convolutional layers and 3 fully-

connected layers) and sends text character by character into the neural network (multiple

vectors per word). In this work a shallow (3 fully connected layers) deep neural network

will be described for representing particular words and their misspellings (1 vector per

word) in Chapter 7.

The International Conference on Document Analysis and Recognition (ICDAR) dataset

is a well-known benchmark for word recognition which does not assume that the text to
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be recognized is known apriori, and presents very challenging fonts and image artifacts

that are not expected in onscreen error messages [107]. ICDAR TASK 1.3 involves ex-

tracting text from computer-originating images, and is of particular interest to discuss

in the context of this work. Why not use ICDAR data in this work? As it turns out, the

images in the ICDAR dataset are quite dissimilar from typical screenshots containing,

for example, error message text. And so ICDAR is a poor test for the type of detection

problem addressed in this work.

As mentioned earlier, it was proposed in [244] that differing OCR use cases result in

different problems and solutions. For example, OCR failures from low quality camera

images [66], and blur from low resolution documents [177] require different solutions than

the fade of a scanned aging paper document [234]. In this work, concerned with extraction

of error messages from onscreen text, low image resolution and non-dictionary keywords

appear to be the main cause of OCR errors. The goal in [33] was text extraction from

smartphone images on a character by character basis. Traditional OCR systems tend to

fail at character extraction from images in conditions such as high blur, low resolution,

low contrast, high image noise, and other distortions. Character level classification was

achieved with a deep learning neural network with 5 hidden layers. The input layer

consists of histograms of oriented gradients coefficients and three geometry features.

The output layer is a softmax over 99 character classes plus a noise class. Just as this

character classification system extracts features using a histogram with bins, the system

in this work uses letter frequency encoding at the word level as a secondary feature of

the error message text. [33] extracts text very quickly, with a mean processing time

of 600 ms per image. For the cropped word recognition task the accuracy was 90.39%

on the Street View Text dataset, and on the previously discussed ICDAR 2013 Robust

Reading Competition TASK 1.3 was 82.21% [107]. The system in [33] is available for

experimentation. An input to the system is shown in Figure 2.6 (A) and the OCR output

is shown in Figure 2.6 (B). Of the 23 onscreen error messages, only 15 were correctly

processed into text by [33]. The OCR output for tesseract-OCR is shown in Figure 2.6

(C) where 15 of 23 keywords were misspelled as a result of OCR processing. A common

spelling mistake was to swap a lowercase L character for an uppercase I character. This

example provides further motivation for the development of a specialized tool for error

message detection.

In [101] the goal was extraction of text from images, and was accomplished with a

convolutional neural network including character-level examination of the text in each

image. In this work the goal is to accurately detect specific error message text with very
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(a) A cropped image of a webpage containing error message keywords

(b) OCR output containing 8 spelling mistakes for 23 keywords processed by PhotoOCR

(c) OCR output containing 15 spelling mistakes for 23 keywords processed by tessetact-OCR

Figure 2.6: OCR of error message text using PhotoOCR [33] and tessetact-OCR [111]



Background 48

high accuracy, a much different task than extracting arbitrary text from an arbitrary

image with high accuracy. The detection of onscreen keywords in whole screen desktop

screen captures. Approaches to correcting OCR output are discussed including spell-

check and dictionary-based methods. Recent work on character-level classification of

text using deep learning is discussed.



Chapter 3

AVRA System Overview

This chapter outlines the design of a virtual assistant for personal computer users. First,

the system requirements are defined in terms of MOE and MOP. AVRA and another

system are compared in this chapter in relation to these MOE and MOP. Next, the

basic functionality of the system and implementation considerations are discussed. The

function of an assistant like AVRA is to interpret an image of the computer screen

and provide action recommendations. The details of sub-component implementation

are contained in other chapters. This chapter is more concerned with the high-level

description of the system, and how the subcomponents fit together. For example, the

essential qualities of Mixed Initiative systems were designed into AVRA, as discussed

later on in this Chapter.

3.1 Measures of Effectiveness (MOEs)

MOE defines what the user needs, while MOP defines the user requirements. Rather than

defining MOEs only for AVRA, it is helpful to step back and define MOEs for the general

problem defined in the thesis statement relating to an assistant with shallow integration.

This is accomplished by decomposing the thesis statement into measurable components.

Recall that the thesis statement was: “A deep learning artificial intelligence can provide

action recommendations related to onscreen messages. These action recommendations

can be provided without integration into each individual program executing on the com-

puter. These action recommendations can be provided within a reasonable response

time, and can be acted upon with a single mouse click. These recommendations can

be personalized to the user by utilizing the user’s interaction history and unsupervised

49
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learning.” The following is a list of 7 MOEs derived from this thesis statement:

• MOE1: Recommendations related to onscreen messages are produced when ex-

pected (THRESHOLD=[classification quality is “good” or “excellent” according to

the scale from [22]])

• MOE2: Adding new recommendations does not require new software integration

(THRESHOLD=[#integrations/(new context) = 0])

• MOE3: Recommendations are provided within a reasonable response time (THRESH-

OLD=[On desktop with 4800x3600 pixel resolution, detection to recommendation

latency< 3 seconds])

• MOE4: Recommendations are seen and executed with a single mouse click by the

user (THRESHOLD=YES)

• MOE5: Recommendations are personalized to the user (THRESHOLD=YES)

• MOE6: Recommendations can be added to the system through supervised learning

(THRESHOLD=YES)

• MOE7: Recommendations can be added to the system through unsupervised

learning (THRESHOLD=YES)

Of the seven user needs captured by these MOEs, four entail achieving a skill (MOE4,

MOE5, MOE6, MOE7), one is a limit on the form of the implementation (MOE2), and

two MOEs involve a limit on the system requirements (MOE1, MOE3). Note that the

level of personalization of the RS is not captured in MOE5.

3.2 Measures of Performance (MOPs)

Switching perspective from the user to the technical requirements, the following MOPs

are defined based upon MOE1 and MOE3:

• MOP1 for MOE3: Scalability of execution time with many contexts and key-

words learned into the system (THRESHOLD=[The latency from detection to rec-

ommendation is maintained when many contexts and keywords are trained into the

system])
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• MOP2 for MOE1: Detect multiple onscreen recommendation opportunities at

once (THRESHOLD=[80% of possible recommendations are detected and recom-

mended])

• MOP3 for MOE1: Detect multiple onscreen recommendation opportunities when

recommendation features overlap on the screen (THRESHOLD=YES)

3.3 AVRA System

AVRA is an item-based and content-based/cognitive RS designed to scale to many users

as a web service. Collaborative filtering has not yet been implemented. It is a client-

server system where the client captures an image of the screen which is then interpreted

by a server-side program. The server processes the image by parsing and classifying the

text and graphics on the computer screen. The server responds to the client’s image

submission with a set of 3 personalized action recommendations presented to the user

as buttons in a graphical user interface shown in Figure 3.2. The three icon-decorated

buttons of the AVRA GUI are loaded with one solution recommendation per button for

the user to evaluate.

Figure 3.1: AVRA System Overview. See also revised design in Figure 3.3

AVRA is initialized with a corpus of graphical context-detection capabilities (contexts),

context-specific terms (keywords), and action recommendations corresponding to each

keyword/context pair. Figure 3.1 shows how each screen capture is processed by a Con-

volutional Neural Network (CNN) (Figure 3.1 B and Chapter 5) to identify what contexts

should be explored for this image. Optical Character Recognition (OCR) (Figure 3.1 E)

converts the screen image (Figure 3.1 A) into a string of text to be processed. The raw

text from the OCR system (Figure 3.1 E) is cut into many small text segments which are

then filtered (Figure 3.1 F and Chapter 6), selecting for similarity to the terms within
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each context (Figure 3.1 B). A Deep Neural Network (DNN) for each activated con-

text (Figure 3.1 G and Chapter 7) processes the text output of the OCR tool to detect

keywords within the text that are associated with recommendations stored in the RS

database. The recommendations are filtered (Figure 3.1 H and Chapter 8) to identify

the top 3 ranked recommendations to be presented in the user interface (Figure 3.1 I

and Chapter 3.5). The user may accept recommendations by pressing a button in the

user interface. Clicking a GUI button causes the recommended action(s) to be executed

on the computer (Figure 3.1 D) and the user history is also updated (Figure 3.1 C).

Consider where the contributions of this work appear in Figure 3.1. Shallow appli-

cation integration involves the combination of all modules, while the context awareness

contribution is encapsulated in the way the CNN is used to extract a context from the

screen capture image (Figure 3.1 B). Fast text filtering for a given context is achieved

in the filter module (Figure 3.1 F ), and recommendation filtering is accomplished with

the module at (Figure 3.1 H).

3.4 Client-Server Architecture

Placing the RS on the server rather than the client avoids the need for the deep learning

software components to be installed on the client’s machine. This thin-client approach

facilitates leveraging GP-GPU acceleration on the server-side (in the cloud), which is

often unavailable on the client’s local machine. As the client computer may not have the

power to run the deep learning neural networking code, there is a need to offload the

heavy computation to allow for the system to run on a PC with a reasonable response

time. Furthermore, this thin-client architecture makes the user profile accessible from

multiple computers as a user moves from machine to machine. Therefore, AVRA proto-

type consists of a client-server framework. The client runs Ubuntu Linux or Microsoft

Windows along with a python-based client application. The user interface component

utilizes the Tkinter user interface library [1], records information in a sqlite3 file-based

database [95], and takes images of the computer screen with cross-platform desktop image

capture package pyscreenshot [3].

The server consists of a Virtual Machine (VM) running Ubuntu Linux operating

system. The server was initially deployed on a low cost VM at DigitalOcean with 2

CPUs, 2 GB RAM and 40 GB SSDs storage ($10/month USD in March 2016). This

proved insufficient in terms of RAM and so the VM was resized to 4GB RAM ($20/month

USD in March 2016). This 4GB RAM 2CPU VM was tested with OpenMP and without



AVRA System Overview 53

to assess the value of accelerating the theano neural networking code on a low-cost VM

(See Chapter 3.7.1) [31] [45]. Ultimately, the speedup achieved using OpenMP was not

significant enough to train the neural networks within a reasonable timeframe, and so, for

training the DNNs, a GPU-ready VM was needed. To accomplish this, an Amazon Web

Services (AWS) instance of type g2.2xlarge and a GRID K520 GPU was configured with

an existing AMI containing theano for cuda 6.5 [28] ($440/month USD in March 2016).

Execution time observations for these server configurations are presented in Chapter 3.7.

Unless otherwise specified, all results in this work are reported based upon the Dig-

italOcean VM with 4GB RAM without OpenMP. Supervised learning results were ob-

tained using the AWS GPU-accelerated VM. Installed on the server are docker for image

management, werkzeug to act as python application server [233], and backed by an

apache2 protocol server for HTTP [19]. Also installed on the server were the theano and

tensorflow libraries for neural network modeling, a sqlite3 server-side database, tesseract-

OCR for OCR image processing, tmux for detaching programs from sessions, and several

asynchronous server jobs written in python and Java implementing the algorithms de-

scribed in this work [6] [31] [111] [236]. Purely for convenience, some server jobs such

as image generation were written in Java, while others such as database management

written in python.

3.5 User Interface

This section describes AVRA’s GUI module, where the interaction between the human

user and RS is accomplished via 3 buttons in a GUI shown in Figure 3.2. These buttons

are decorated with meaningful icons making it clear what action recommendations are

being offered to the user, and reducing the footprint of the GUI on the screen. Further

insight into why the recommendation was made is available as a tooltip when the user’s

mouse scrolls over a GUI button. The GUI is highly parametric, limiting the scope of

the interaction between the RS and the user. The visible computer screen area is the

AVRA workspace, while the feedback accepted by AVRA is limited to button clicks.

Following the approach of [115] to offer user actions that can be accepted by the user

by pressing one key/button, AVRA uses three onscreen buttons to expose recommenda-

tions. As seen in Table 1.1, the virtual assistant field is currently focused on dialog-based

interaction systems, and so AVRA was designed to instead explore the interaction fo-

cused on visual representations. As discussed in [181], graphics-based interaction with

the MI system helps the user to more effectively concentrate on decision making. AVRA’s
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(a) AVRA’s Graphical User Interface for Ubuntu Linux.

(b) AVRA’s Graphical User Interface for Microsoft Windows.

Figure 3.2: AVRA’s Graphical User Interface

3 button UI design was influenced by similar interface designs including the “Smart Re-

ply” feature of Google Inbox implemented in TensorFlow. It offers up to 3 candidate

email message replies as draft responses [52]. Unlike Smart Reply, AVRA’s UI needs to

specify multiple items per button: an action, a short snippet of text describing the data

used by the action, and a longer tooltip message about the recommended action. The

representation of these 3 items per button is accomplished using action icons in the GUI

rather than action description text, saving real estate in the GUI that is better utilized by

the action data description text. The tooltip hides the longer full-text description of the

recommended action. The tooltip text feature allows the user to glean additional insight

by reading a longer text explanation for the proposed action recommendation. Having

compacted the form factor of the GUI, there is a tendency to increase the number of

GUI buttons. However, including too many buttons in the GUI would create a paradox

of choice where the interface is adding cognitive pressure onto the user by forcing her

to think about many possible options, rather than achieving the goal this system was

designed for, which is to reduce that cognitive pressure [200].

AVRA must behave predictably, and so the GUI buttons display action recommen-

dations as binary choices, limiting scope of user feedback and limiting scope of AVRA’s

freedom to act. This parametric interaction makes the user experience significantly more

intuitive than a voice command system, because the user does not know with certainty

when issuing a voice commend that the computer will comply correctly with the com-

mand, whereas AVRA advertises what actions it proposes to perform prior to the user
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commanding the action to be performed. Furthermore, the GUI only updates the rec-

ommendations when the mouse is stationary and not hovering over the GUI. This way,

if the user sees a recommendation in the GUI and begins to move the mouse toward the

buttons, the recommendation will not be replaced, annoying the user. Similarly, if the

user is pondering a recommendation, perhaps reading the tooltip text while hovering the

mouse over a button in the GUI, the action recommendation should not be replaced. This

type of confidence building is important in MI system design and is discussed in [255]

and [132]. On the topic of reliability, the GUI process executes in a separate thread from

the client-server communication process in order to avoid client-server communication

from producing lag in the responsiveness of the GUI.

In AVRA, prompts are intentionally monotonous and occur at even multi-second

intervals (e.g. button updates every 6 seconds). Ideally the GUI updates should to be

as innocuous as updates to the clock in the taskbar. However, the GUI updates are not

as innocuous, and so the impact on the user experience of many prompts over time is

addressed here.

[92] describes a smart home application for assisting the elderly which involves prompt-

ing the user many times. The system learns rules that define when activities normally

occur and utilizes these rules to automate prompting. Whereas [92] focuses on wait-

ing to prompt until the notification is needed, AVRA focuses on recommending quickly

based upon the current content on the computer screen, or not at all. AVRA does not

have a temporal sense when it comes to providing action recommendations. A key take-

away from [92] is that better measures are needed to quantify the risk and benefit of

prompting the user when many notifications are called for. Microsoft’s BusyBody was

one attempt to better understand the interruptability of the user [93]. The goal was to

manage notifications coming from many different applications. BusyBody was trained by

periodically asking users about their interruptability while recording during each answer

the computer’s context in terms of what is happening on the computer. Specifically,

the system recorded the computer activity history, meeting status, physical location, the

time of day, and other factors [93]. After this training phase, the BusyBody model could

predict the interruptibility of the user with a cost function which takes the computer’s

context as an input. Another approach to limiting the damage of repeatedly prompting

the user, described in [110], is to limit the prompting in the following ways: based upon

the past actions of the user (e.g. once an action is performed, stop offering that action for

a number of minutes), based upon the context when activities are typically performed

(e.g. offer traffic information just before leaving work, rather than just after arriving
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at home), and based upon action sequences (e.g. recommend actions based upon on-

tological or heirarchical knowledge of action sequences). Note that knowledge of action

sequences is different than knowledge of relationships between actions themselves which

was discussed in Chapter 2.3 regarding CBF [251] and [136].

RS user interface design is discussed in [160] from the perspective that the user in-

terface is a major driver of user adoption of RS technology, and concludes that GUI

design is a factor in the user’s trust of the RS recommendations. According to [160],

exposing the capability to explore and comprehend recommendations in the GUI can be

a negative influence on the user experience. In [160] the virtual assistant “Clippy” from

Microsoft Word is presented as an example of good RS design combined with bad GUI

design. Clippy was considered by many users to be too intrusive, even though the rec-

ommendations provided were typically useful. In contrast, less intrusive features such as

spellcheck, autocomplete and autocorrect are now widely adopted in many technologies.

Two independent factors influencing GUI design in RS are obviousness of the recom-

mendations and cognitive effort required to use the interface [160]. Cognitive effort in

AVRA is reduced by limiting the number of buttons in the GUI, restricting the action

recommendation type, and restricting the complexity of the action recommendations.

The obviousness of the recommendations in the GUI is enhanced by the graphical icons

used to symbolize various tasks. For example, a mail icon next to a person’s name (e.g.

“Daniel”) is more obvious than the sentence “Compose an e-mail to Daniel”. The former

contains only one word (the name), and can be interpreted at a glance without really

reading into the text of the recommendation with full focus.

Infrequently, the AVRA user may find recommendations from AVRA useful and click

a button. More commonly, a bottleneck in the user’s process such as an onscreen error

or interesting term causes the user to look at the AVRA user interface and check if

interesting action recommendations are available. This hand-off approach to human-

computer interaction minimizes the interference of the tool. However, when the buttons

of the AVRA GUI are updated, the change in color and shape of the icons can be

distracting. This is particularly true when all 3 buttons are updated simultaneously. On

a practical level, the user may elect to hide the user interface when she does not wish to

be disturbed by GUI updates.
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3.6 MI System Design

The design principles for MI system design were discussed in the prior art and are dis-

cussed in this section of the thesis in relation to AVRA. Also, to gauge the value of AVRA

to a user, five colleagues with engineering backgrounds were given a demo of AVRA, and

then asked to fill out a short anonymous survey.

3.6.1 MI Design Decisions Based Upon Prior Art

(A1) User control and non-interference: The user is always in control of AVRA,

and AVRA does not place a high burden on the user in terms of management of the tool

itself.

(A2) Recommendations should enhance the current task with timely use-

ful information: AVRA recommends solutions in within a reasonable response time,

ensuring that solutions to detected onscreen errors are available should the user choose

to seek assistance.

(A3) Understanding what a recommendation signifies and why it is recom-

mended: When the user seeks more information on why a recommendation was made,

AVRA provides limited recommendation context with a tooltip explanation.

(A4) Fast visual interpretation of recommendations: The AVRA user interface

therefore takes up a small onscreen footprint, and compactly exposes insights to the user.

(A5) Retaining recommendation context: Unlike ADE, AVRA does not provide

a natural-language rationale for recommendations. Rather, the history of each recom-

mendation can only be traced back programmatically by querying a database containing

timestamped records of all system events. The rationale behind this design decision is

to keep the user experience very simple. This is the same design decision made in Smart

Reply [52].

(M1) Speed improvement: It is not critical to show that adopting a given solution

or system is faster operationally than manually looking up information. This may indeed

be the case, but it is not claimed in the thesis statement. Rather, the goal in developing

this solution is to have the computer perform cognitive actions on behalf of the user. A

speed improvement over the user performing those sequential actions may result from

the user skipping steps such as detection of onscreen information, interpretation of the

detected information, retrieval of recommendations based upon the information inter-

pretation, ranking in a cognitive process the available recommendations, and acting on

the recommendation, perhaps by opening a program and typing.
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AVRA can achieve a speed improvement for the user by taking over several sequen-

tial actions including detection of onscreen information, interpretation of the detected

information, retrieval of recommendations based upon the information interpretation,

ranking of the recommendations, and exposing the recommended actions as options that

can be accepted with a single click of the mouse. Often the recommended actions would

require several mouse clicks to accomplish, and so the last step alone should provide a

speed improvement.

(M2) Data wrangling: Extraction of data for the user is accomplished in AVRA at

several levels. Wrangling image data into meaningful keywords is one aspect (Chapters

6 and 7), while understanding the context of the screen image is another (Chapter 5).

Data wrangling for supervised learning is required to train AVRA.

(M3) Alternative discovery and comparison: AVRA recommends more than

one action at the same time. If AVRA has learned how to resolve one keyword such as

an error message in several ways, it can recommend several alternatives.

(M4) Parametric interaction: MIVAS’ approach to limit the scope of the interac-

tion between the user and the MI system is apparent in AVRA’s design. User interface

in AVRA is intentionally limited. The AVRA user can either click a button to accept

a recommendation or ignore the recommendation. AVRA was designed with the princi-

ples of user control and non-interference in mind. Specifically, the RS recommendations

can be leveraged or ignored, based on the domain knowledge and decisions taken by the

user. If the user does not want to accept the current recommendations then she need

not interact with AVRA at all.

(M5) History tracking and exploration: The history of each recommendation

can be traced back programmatically by querying a database containing timestamped

records of all system events. As mentioned for (A5) above, there is a tradeoff between

simple user interface design and exposing in detail the reason for recommendations.

AVRA’s design falls on the side of user interaction simplification at the expense of a

complex explanation to the user about the source of the generated recommendation.

However, the reason for the modification is accessible from log files programmatically for

research and debugging purposes.

(M6) System agency and adaptation: AVRA demonstrates agency by work-

ing in parallel with the user to identify and recommend solutions for onscreen issues.

AVRA adapts by adjusting recommendation scoring over time according to the user’s

past preferences regarding action recommendations.
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3.6.2 User Feedback

To gauge the value of AVRA to a user, five colleagues with engineering backgrounds were

given a demo of AVRA, and then asked the following 5 questions into an anonymous

survey.

• Having observed how AVRA works, do you think AVRA will save time for pro-

gramming? (YES/NO)

• Would you use this tool (AVRA), or one like it? (YES/NO)

• How often do you use voice search? (Hourly/Daily/Sometimes/Rarely/Never)

• How often do you use text search? (Hourly/Daily/Sometimes/Rarely/Never)

• How often do you search the internet for solutions? (Hourly/Daily/Sometimes/Rarely/Never)

The demo consisted of an example program presented in the Eclipse IDE that throws

an error when compiled. The participant was shown how to manually search for the

explanation of the error by copying text from the console window and pasting it into a

browser-based search engine. Next the participant was shown how AVRA can recommend

the same search and execute it with the click of a button. The results of the user survey

are presented in Table 3.1. The few individuals surveyed indicated that a tool like AVRA

has some utility.

3.7 Performance Evaluation

This Section is on the evaluation of AVRA and a similar state of the art system in

relation to the MOE and MOP defined earlier in the chapter. The metrics used to

measure performance are noted, and the results of measurements are reported. These

results are then discussed. As a result of these performance experiments, the design of

AVRA was modified to improve execution time.

3.7.1 Execution Time

Performance in this section is evaluated on the basis of execution time. The require-

ments MOE3 and MOP1 are that the system react within a reasonable response time

after training, providing feedback to the user on the contents of the computer screen.



Table 3.1: User survey questions and responses, after AVRA demonstration

Participant Do you think AVRA will Would you use this How often do you How often do you How often do you search

save time for programming? tool, or one like it? use voice search? use text search? the internet for solutions?

1 YES YES Never Hourly Hourly

2 YES YES Never Hourly Hourly

3 YES YES Sometimes Hourly Hourly

4 YES YES Never Hourly Hourly

5 YES YES Daily Hourly Hourly

60
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Acceleration of the training time for AVRA is discussed. First OpenMP and multicore

approaches are reported. Next, GP-GPU acceleration with CUDA is presented.

AVRA is a prototype desktop computer assistant. It is interesting to compare the

performance of AVRA against a state of the art system that understands text and images.

Whereas Google Home, Cortana and Alexa are focused on speech, Google Now on Tap

(GNoT) [74] contains the necessary machinery to make an analogy with AVRA. However,

one drawback is that GNoT is only available at this time on mobile phones. Therefore,

the measurements reported here were collected on a mobile phone, rather than a desktop

computer.

OpenMP and Multicore DNN Training Acceleration

Each DNN in AVRA is trained for 150 epochs as shown in Figure 7.7, and each epoch

requires approximately 250 seconds to complete on a low cost VM. This execution time

is related to the size of the training and testing sets, and so these figures are different for

each DNN. Assuming 50 DNNs with 150 epochs each, and an average epoch execution

time of 250 seconds, the training time on a single VM would be: (50 DNNs) x (150 epochs)

x (250 seconds) which is approximately 520 hours. This slow training time and similarly

slow runtime do not agree with MOP1, which requires that a reasonable response time

is achieved at scale. Even if every DNN is trained on a different dedicated VM, the

execution time becomes (150 epochs) x (250 seconds) which is approximately 10.5 hours.

Reducing the number of epochs would reduce the accuracy of the DNN classification as

shown in Figure 7.7. This leaves the epoch execution time as the variable to be reduced.

OpenMP is a shared memory parallel programming API suitable for parallelizing ap-

plications on a multiprocessor computer [45]. Theano is compatible with OpenMP and

ships with a benchmark for testing the speedup provided by OpenMP [127]. This bench-

mark was used to generate the data in Table 3.2 which is a generic view of accelerating

theano with OpenMP.

The results from theano’s benchmark indicate that configuring theano with 2 OpenMP

threads is the best option for reducing epoch execution time. Perhaps this result is a

product of the VM having 2 CPUs and OpenMP mapping one OpenMP thread to each

CPU. However, testing with AVRA’s DNN code reported in Table 3.3 indicates that

3 OpenMP threads is best. This disagreement between the generic benchmark and the

AVRA code itself is a reminder that often benchmarks are a poor proxy for testing perfor-

mance improvements in computer architecture [87]. Note that even though a 2x speedup
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Table 3.2: Theano’s OpenMP benchmark timed with a vector of 200,000 elements

OpenMP CPU RAM Operation Time without Time with Speedup

Threads Cores (GB) Type OpenMP (s) OpenMP (s)

1 2 4 Fast 0.000113 0.000099 1.14

2 2 4 Fast 0.000110 0.000066 1.67

3 2 4 Fast 0.000114 0.000137 0.83

4 2 4 Fast 0.000111 0.000128 0.87

1 2 4 Slow 0.006590 0.006091 1.08

2 2 4 Slow 0.006208 0.003060 2.03

3 2 4 Slow 0.006107 0.004127 1.48

4 2 4 Slow 0.006253 0.003738 1.67

Table 3.3: AVRA DNN training time per epoch. The average baseline execution time is

calculated as (263+251)/2 which is 257.

OpenMP CPU RAM Epoch Training Time Speedup from

Threads Cores (GB) (s) Average Baseline

1 2 4 0 263 N/A

1 2 4 1 251 N/A

2 2 4 0 196 1.3

2 2 4 1 220 1.2

3 2 4 0 151 1.7

3 2 4 1 173 1.5

was achieved by using OpenMP, this only reduced the per-DNN execution time from 10.5

hours down to 5.25 hours (> 150s / training epoch), which is still impractically slow.

In the next section GP-GPU acceleration is leveraged to further reduce the per-epoch

execution time of DNN training.

DNN Training Acceleration using GPU and CUDA

An AWS instance of type g2.2xlarge with a GRID K520 GPU was configured with an

existing AMI containing theano for cuda 6.5 [28]. The system was tested with the same

DNN code and data used to produce the data in Table 3.3 above, although OpenMP was

not enabled.
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CUDA is a parallel computing programming model which enables GPU hardware

acceleration of computations [169]. The per-epoch execution time was reduced from 151

seconds without the using CUDA and the GPU, to 6.5 seconds when the GPU is used.

This represents a 23x speedup relative to the best OpenMP result in Table 3.3. With a

6.5 second epoch execution time, training a DNN can take (6.5 seconds) x (150 epochs)

which is approximately 16 minutes and 15 seconds. Note that the epoch execution

time is highly variable based upon the size of the training data, and the number of

classes trained into the DNN. With OpenMP, multicore, and GPU acceleration, the time

required to interpret the computer screen with AVRA did not scale as the number of

DNNs increased. With one DNN the latency from changes on the screen to updates in

the GUI was approximately 40 seconds. Execution time scaled linearly so that 10 DNNs

required 400s to analyze the screen and update the GUI. This challenge to meet MOP1

led to a change in approach, leaving behind the slow but precise DNNs as future work,

and instead using the text filter as the main text classifier in AVRA.

Execution Time Measurement for AVRA

The revised design is shown in Figure 3.3, removing the DNNs and connecting the output

of the text filter to the RS. The image capturing and OCR in AVRA were modified as well.

Instead of capturing the OCR of the whole screen, the fullscreen image was processed

into text in slices, with each slice processed in a separate thread. The advantage of this

approach was much faster OCR, but the downside was that this approach would miss

text sliced at the lines between slices where the image was cut. To counter this, a second

set of image slices offset by half of the slice height was also processed by OCR as well.

This ensured that no onscreen text was missed by the OCR process. Figure 3.4 shows

how a screen can be cut into 2n− 1 slices. Each thread is responsible for extracting text

from its image slice and uploading the text to the server. Testing various settings for n

yielded that n = 6 had the lowest execution time on average for a computer screen of size

4800x3600 pixels using an Intel Core i7 3.6GHz CPU, 16GB DDR3 RAM, an SSD hard

disk, and 2 GeForce GTX 770 GPUs. For 5 trials with fullscreen color images, n = 6

(11 image slices) led to an OCR execution time for a given slice of 4.4± 1.5 seconds per

slice, and an overall OCR execution time of 8.5 ± 1.4 seconds per image. For 5 trials

with fullscreen grayscale images, n = 6 (11 image slices) led to an execution time of

2.9± 0.5 seconds per slice, and an overall execution time of 5.4± 0.9 seconds per image.

The advantage of using color images was increased CNN precision and recall. To balance

MOE3 and MOP1 (reasonable response time of results and scalability) with MOE1 (high
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recall) AVRA was set to process color images to maintain the recall level at the expense

of execution time.

Figure 3.3: Revised AVRA System Overview, after removing DNN to reduce execution

time.

Figure 3.4: Revised OCR capture process, splitting fulscreen images into overlapping

subtasks in parallel threads to reduce OCR execution time. There are always 2n − 1

slices produced, and in this case n = 2.

Consider an example where AVRA is trained to recognize 11 contexts containing

2,103 keywords overall. Tracking the flow of information through the color image pro-

cessing design described above, and rounding to the nearest second, an image captured

at time 0 passed enough information for the CNN to complete context recognition after 4

seconds, and the first context-filtered OCR results emerge from the text filter one second

later. The RS results were available 4 seconds later, with another 2 seconds required

to update the GUI. The minimum time between information appearing onscreen and a

recommendation displaying on the GUI was therefore 11 seconds.

Improving on this design, the RS and filter were moved into the same file, obviating

the database communication between these two modules. Tracking the flow of informa-

tion through the new design and again rounding to the nearest second, an image captured
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at time 0 passed enough information for the CNN to complete context recognition after

4 seconds, and the first context-filtered OCR results emerged from the text filter com-

bined with the RS after 2 seconds, with an average of less than one second required

to update the GUI. The minimum time between information appearing onscreen and a

recommendation displaying on the GUI was therefore 6 seconds.

For a small computer screen size, AVRA’s execution time was dramatically faster

than the desktop image performance described above. In order to make a fair com-

parison between GNoT and AVRA, the same end-to-end execution time from detection

onscreen to recommendation in a button was measured. To collect data from GNoT

and AVRA, the search text “looking for restaurant English text” was inserted into the

Google Images API along with the restriction that the dimensions of the image results be

exactly 1080x1920 pixels, corresponding to the dimensions of the mobile phone used for

testing. The first 50 results were saved and then transferred to the phone. This dataset

of images is hence referred to as SMALL IMAGES.

To simulate the latency of image capture, a region of the desktop 1080x1920 pixels

was captured into a file for each processed image. After this simulated image capture

delay, the CNN and OCR processes of AVRA were passed one of the static images from

SMALL IMAGES. The total execution time required to fully process all 50 images of

SMALL IMAGES through the OCR, CNN, text filter, RS, and GUI was 176.0 seconds.

The average execution time per image was 3.52± 1.51 seconds.

To ensure that AVRA can execute relatively quickly when many contexts have been

trained into the CNN, ten latency samples were recorded for AVRA CNNs trained with

5, 50, 100, 200, and 400 contexts. Each sample was obtained by recording the CNN

output after processing an image with dimensions 4800x3600 pixels using an Intel Core

i7 3.6GHz CPU, 16GB DDR3 RAM, an SSD hard disk, and 2 GeForce GTX 770 GPUs.

The results, shown in Figure 3.5, reveal that the execution time grows with the number

of added contexts. However, the incremental cost of adding contexts decreases with the

number of contexts added, as shown in Figure 3.6. Furthermore, the execution time at

400 contexts remained low, at 3.97± 0.10 seconds.

To achieve scalability, AVRA will need to address many scenarios collaboratively

with the user. This means learning or being trained to understand many context and

associated keywords. Perhaps tens of thousands of context and millions of keywords. To

scale in this manner, unsupervised learning can help to fill in gaps in supervised learning

as described in Chapter 9. Another key technology that can enable AVRA to scale is

collaborative filtering of recommendations.



AVRA System Overview 66

Figure 3.5: CNN latency as number of context increases: The vertical axis in this Figure

shows the execution time required to process one 4800x3600 pixel image using AVRA’s

CNN. Results for 5, 50, 100, 200, and 400 contexts are shown with error bars indicating

the standard deviation for each measurement. A moving average line is added to the

figure, revealing with a decreasing slope that the latency cost of adding more contexts is

decreasing.

Execution Time Measurement for Google Now on Tap

GNoT delay tactics while it is processing the screenshot include waiting to activate

graphics while the user is still holding down the trigger button on phone, showing an

animation around the phone frame, showing an animation at the bottom of the screen,

and finally, as the card is being displayed by sliding upward, the elements in the card

such as images sometimes load after the card is shown onscreen.

The timing data from GNoT was captured with an external camera by recording video

of a phone running GNoT and analyzing images. The phone used was a Samsung Galaxy

S5 (Model SM-G900W8 running Android 6.0.1). Execution time was measured down to

the millisecond by analyzing the video using Media Player Classic [157], and recording

the time in milliseconds between holding down the button on the phone (marked on

the video by a clicking noise), and On Tap presenting a result on the screen (the first

video frame where the Google Now card is displayed and stopped moving). The average

execution time required to process an image from SMALL IMAGES through GNoT

and to see the results onscreen was 2.80± 0.47 seconds.



AVRA System Overview 67

Figure 3.6: CNN latency per context: The vertical axis in this Figure shows the execution

time required to process one 4800x3600 pixel image, divided by the number of contexts

trained into the CNN. Results for 5, 50, 100, 200, and 400 contexts are shown.

3.7.2 Recall, Precision, Precision-Recall and ROC Curve

AVRA and GNoT are characterized below, observing the recall and precision for each in

a confusion table. The procedure for testing each RS is described.

AVRA

It is interesting to observe the capabilities of AVRA regarding overlapping images because

a program like AVRA must recognize onscreen items such as program windows that may

overlap when observed. AVRA recognizes multiple items in one image. For example, as

shown in Figure 3.8, AVRA analyzing an image containing both a terminal window and

an Eclipse IDE window leads to the recognition of both by the CNN. AVRA sometimes

recognizes both contexts when they are partially occluded as shown in Figure 3.8, but

when overlap is high, as in Figure 3.8e, the occluded context (eclipse) was not recognized.

However, in some cases such as Figure 3.8f, the occluded context (in this case a terminal

window) was recognized by the CNN. When two windows appeared side by side, the

CNN usually recognized the context associated with each one as show in Figure 3.7.

To observe the precision and recall for AVRA, it was tested by displaying to the

system images on the full screen area one at a time. There were 50 4800x3600 pixel

fullscreen desktop images which contained one of two contexts (eclipse or console) and
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Figure 3.7: AVRA’s CNN recognizing content in side by side windows. CNN output

score was: eclipse (79.64%), console (12.73%), facebook (3.74%).

one specific keyword known to the CNN for that context. The images were collected

from real examples, and so they sometimes contained several other keywords trained into

AVRA for the context in question. For the eclipse context the keyword was import, and

for the console context the keyword was apt-get. Note that in eclipse the text is blue on

a white background, and in a terminal the text is white on a black background. Neither

of these scenarios is the typical OCR situation of black text on a white background.

These examples were selected because they are a more realistic sample of text on a

desktop computer than the obvious case of black text on a white background. To test

for TN results 50 additional images containing no relevant context or keyword in them

were also presented to AVRA one at a time. These 50 4800x3600 images were collected

from Google Images using the keywords “my pictures” and the photo type filter was set

to “photo”. No FP examples were recorded for AVRA during the experiment, as the

chance that a context and keyword are incorrectly selected by AVRA at the same time

is very small.

The confusion matrix for the recorded observations is presented in Table 3.4. To

generate an ROC curve for the collected AVRA data, a binary classification measure

was used. Any sample with a TP results was associated to the ground truth state [1, 0],

and any sample with no TP results was associated to the ground truth state [0, 1]. The

classifier guess was set to [1, 0] in cases where TP or FP was observed. Otherwise
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(a) Console occluding Eclipse. CNN out-

put score was: eclipse (51.67%), console

(30.51%), desktop (16.30%). The partially

occluded Eclipse context was recognized.

(b) Eclipse occluding Console. CNN out-

put score was: eclipse (76.85%), console

(13.26%), desktop (4.97%), gene (2.47%).

The partially occluded console context was

recognized.

(c) Console occluding Eclipse. CNN out-

put score was: console (13.63%), desktop

(84.12%). The partially occluded Eclipse

context was missed.

(d) Eclipse occluding Console. CNN out-

put score was: eclipse (53.65%), desktop

(28.68%), console (9.12%), facebook (4.84%),

gene (2.93%). The partially occluded console

context was recognized.

(e) Console occluding Eclipse. CNN out-

put score was: console (6.52%), desktop

(93.21%). The partially occluded Eclipse

context was missed.

(f) Eclipse occluding Console. CNN out-

put score was: eclipse (64.85%), desk-

top (14.19%), console (11.75%), facebook

(4.94%) gene (3.20%). The partially occluded

console context was recognized.

Figure 3.8: AVRA recognition of occluded program windows. The context names are further

explained in the next chapter. The CNN used to produce these results was trained to recognize

11 contexts overall.
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Table 3.4: Confusion matrix for assessing AVRA after it was trained on 11 classes.

The testing data had 25 images per class, with 1 class per testing image, one relevant

keyword per image, and classification threshold K=1%. Hyperparameter selection and

the training procedures for the CNN and DNN are explained in later chapters. Samples

either contained context CA and keyword KB, or they did not (¬CA ∨ ¬KB).

Predicted
Recall

CA ∧KB ¬CA ∨ ¬KB

Actual
CA ∧KB 36 14 0.7200

¬CA ∨ ¬KB 0 50

Precision 1.0000

the classifier guess for the sample was set to the state [0, 1]. The ground truth and

classifier guesses were used to create the ROC curve of Figure 3.9, and the Precision-

Recall curve of Figure 3.10. In 5 of the 50 images containing recommendable information,

the recommendation was picked up by the text filter but was eliminated by the RS and

3 or more items the RS could recommend ranked higher than the keyword of interest.

Google Now on Tap

GNoT recognizes multiple items in one image. For example, as shown in Figure 3.11,

GNoT analyzing an image containing both former presidents Barack Obama and George

W. Bush leads to cards for both men being presented. It recognizes both men separately

using the images of Figure 3.12, and also when they are partially occluded as shown in

Figure 3.13. When overlap is high, as in Figure 3.13e, only one of the contexts (Barack

Obama) was recognized. It is interesting to observe the capabilities of GNoT regarding

overlapping images because a program like AVRA must recognize onscreen items such

as program windows that may overlap when observed.

To observe the precision and recall for GNoT, each image from SMALL IMAGES

was presented on the screen of the phone one at a time. Each time a new image was

displayed, GNoT was triggered by holding don the home button. The results were cap-

tured as follows: A result is considered TP if the suggested action recommendation was

related to the image content, FP if the recommendation was unrelated to content, TN

if a recommendation was not expected based upon the image content and no recommen-

dation was provided, and FN if a recommendation was expected based upon the image

content but did not appear. Table 3.5 shows where the labels belong in the confusion
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Figure 3.9: ROC curve for AVRA binary classification experiment

matrix, and Table 3.6 presents the observed results collected during the experiment.

In the confusion matrix of Table 3.6, predicted classes are shown in columns, and

the actual classes presented to the classifier are rows. Unlike a typical confusion table,

the number of tests for any class is not the sum of the integers in a given row. The

sum for each row is the number of predictions made by the GNoT for the test images it

processed. One test image can result in multiple cards being shown to the user. Also,

a Google Now card offering to search for an image of the screen is ignored. An image

containing no text was considered a true negative unless a relevant recommendation was

produced based upon the image alone, making it a true positive. Or, if an image with

no text produced an unrelated recommendation it was considered a false positive. Note

that the false negative rate is quite low as only one true positive per test is required in

order to not count false negatives for that test.

To generate an ROC curve for the collected GNoT data, a binary classification mea-

sure was used. Any sample with one or more TP results was associated to the ground
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Figure 3.10: Precision-Recall curve for AVRA binary classification experiment

truth state [1, 0], and any sample with no TP results was associated to the ground truth

state [0, 1]. The classifier guess was set to [1, 0] in cases where TP or FP were greater

than 0. Otherwise the classifier guess for the sample was set to the state [0, 1]. These

50 samples of ground truth and classifier guesses were used to create the ROC curve of

Figure 3.14, and the Precision-Recall curve of Figure 3.15.

3.7.3 Comparing Approaches with MOE and MOP

In comparing GNoT with AVRA, it is important to first lay out the differences between

these two tools. First, GNoT runs on a RISC processor in a smartphone, while AVRA

runs on a very powerful personal computer with 2 GPUs. Another difference is the input

image size. AVRA processes 4800x3600 images (over 17 million pixels) while GNoT

processes 1080x1920 pixel images (over 2 million pixels). Another important difference

is that GNoT is triggered by user action, and so it stalls the user with animations while
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(a) Image of former U.S. presidents Barack

Obama and George W. Bush analyzed by

Google Now on Tap

(b) Cards displayed by Google Now on Tap

after processing image of former presidents

Figure 3.11: Google Now on Tap identifying multiple items in one image

Table 3.5: Illustration of category labels for confusion matrix

Predicted
Recall

Related Unrelated

Actual
Related TP FN

Unrelated FP TN

Precision
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(a) Original image of former U.S. president

Barack Obama

(b) Original image of former U.S. president

George W. Bush

Figure 3.12: Original images of former U.S. presidents

Table 3.6: Confusion matrix for a Google Now on Tap experiment

Predicted
Recall

Related Unrelated

Actual
Related 66 7 0.9041

Unrelated 6 15

Precision 0.9167
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(a) Partially occluded image of former U.S.

president George W. Bush.

(b) Google Now on Tap produces a card for

George W. Bush during partial occlusion.

(c) Partially occluded image of former U.S.

president Barack Obama.

(d) Google Now on Tap produces a card for

Barack Obama during partial occlusion.

(e) 50% occluded image of former U.S. presi-

dents Barack Obama and George W. Bush.

(f) Google Now on Tap produces a card for

Barack Obama but not for George W. Bush

during 50% occlusion of both images.

Figure 3.13: Google Now on Tap recognition of occluded former U.S. presidents
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Figure 3.14: ROC curve for Google Now on Tap binary classification experiment

processing. AVRA instead runs constantly in the background, and so processing delays

are somewhat hidden from the user experience. Another point to consider is that the goal

for AVRA is to reduce cognitive pressure on the user by exposing suggestions in the form

of action recommendations, while GNoT is an on-demand search tool that is meant to

intervene only when prompted by the user. Another important difference is that AVRA

is a specialized tool, while GNoT is a general purpose tool. That is to say, AVRA watches

the user and offers to replay the exact actions it observed, and so it has a narrow skill

set focused on onscreen words. GNoT has a competing vision for helping the user, where

general purpose information such as location-based assistance (e.g. nearby restaurant)

and timely information (e.g. local sports event) are combined with image recognition

capabilities (e.g. label an image of a celebrity that contains no text). In stark contrast,

AVRA does not understand location, world events, or acting on images alone (unless

programmed to do so as in the case of the desktop triggering offers to launch frequently

visited websites). Finally, GNoT was tested against a wide variety of images containing
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Figure 3.15: Precision-Recall curve for Google Now on Tap binary classification experi-

ment

contexts from many topics. In contrast, AVRA was tested only against a narrow set

of contexts. This difference in the difficulty of the testing should be considered when

comparing these two tools. AVRA is at this stage a research tool, and is not ready to

classify any and all text and image input, whereas GNoT is trained on a large number

of topics, and so it is easier to test with. Finally, GNoT runs on the Android operating

system, which does not show side by side windows, and therefore GNoT need not detect

the graphical features and text contents of multiple application windows. AVRA faces a

more complicated situation where multiple applications can appear onscreen together.

For this thesis, the utility of comparing AVRA and GNoT is captured by the MOE

and MOP. Indicators for each MOE and MOP are color coded as red, yellow, or green in

Table 3.7. Red indicates non-compliance, yellow indicates non-compliance that may be

overcome with further effort, and green indicates compliance between the requirement

and measurement.
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Starting with MOE1 at the first row of Table 3.7, and assessing the ROC area under

the curve with qualitative labels as described in [22], GNoT performance was excel-

lent (Figure 3.14), and AVRA’s performance was good (Figure 3.9). MOE1 stated that

recommendations related to onscreen messages are produced when expected with a clas-

sification quality that is “good” or “excellent”. Comparing the precision-recall curves of

AVRA and GNoT, both curves had high precision and recall, other than the point where

AVRA began to lose precision when recall was set above 90%. As described in Chapter

5, AVRA’s CNN was designed to focus on maximizing recall rather than precision.

MOE2 stated that adding/learning new recommendations should not require new

software integrations to be programmed. For MOE2, AVRA did not require integra-

tion into many programs, and new contexts trained into the system did not require new

programming integration. Instead AVRA is trained (supervised or unsupervised) with

training data. GNoT is closed source, and was likely developed using Google’s Ten-

sorFlow which can run directly on the phone’s hardware. According to GNoT product

manager Aneto Okonkwo, new features were added in 2016 to enhance the user experi-

ence including selecting specific words to pass to the analysis engine, improved search by

image, and searching by image using the camera [18]. GNoT likely learns to recognize

text and images using labeled data with supervised learning, using the same Google code

base as the Google Vision API and Photo OCR [77] [33].

MOE3 stated that for large images, recommendations should be provided within a

reasonable response time. For MOE3, the latency of AVRA was found to be 2.5x longer

for larger images than smaller ones. Assuming the same ratio for GNoT, one can estimate

an execution time for fullscreen desktop images would take 7 seconds (2.5 ∗ 2.8 = 7.0).

This latency can be reduced with further effort, simply by using a newer generation GPU,

and so both for AVRA and for GNoT the indicator is set to yellow. Adding some detail,

the VOLTA GPU architecture performs deep learning computations dramatically faster

than the older GeForce GTX 770 GPUs that were used in this work [168]. Similarly

the Tensor Processing Unit (TPU) 2.0 is also expected to provide massive performance

improvements over the results recorded here [72].

MOE4 stated that the user should be able to view and act on recommendations with

a single mouse click. For MOE4, AVRA executes action recommendations with one click,

whereas GNoT requires the user to first initiate it and then with one click (and perhaps

a swipe to see additional cards) a suggestion can be opened.

MOE5 states that recommendations should be personalized to the user. For MOE5,

AVRA provides personalization of recommendations based upon the user’s interaction
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with AVRA recommendations, while GNoT performs personalization using location and

user profile information.

MOE6 stated that supervised learning should be able to train new recommendations

into the system. Supervised learning is a standard approach to training image classifiers

at Google, and so one can comfortably assess that GNoT meets MOE6. As described in

Chapter 9.2 AVRA too can be trained using supervised learning.

MOE7 stated that unsupervised learning should be able to train new recommen-

dations into the system. It is unclear whether GNoT contains unsupervised learning

capabilities.

MOP1 stated that the response time with many contexts and keywords trained into

the system should remain reasonable. For MOP1, GNoT has already been trained on

many topics, and continues to deliver results quickly. It therefore passes the scalability

test. AVRA’s CNN latency was relatively small at 3.97± 0.10 for 400 contexts, and the

CNN latency when adding additional contexts was observed to be decreasing.

For MOP2, both AVRA and GNoT could recognize when multiple items onscreen

could lead to different recommendations, and provide several of them. AVRA can provide

up to 3 recommendations, while GNoT can provide many recommendations as an ordered

list or Google Now cards. One downside of AVRA’s limited number of outputs is that

when many recommendations are possible, only 3 are presented to the user, and the rest

cannot be seen by the user.

MOP3 stated that multiple onscreen recommendation opportunities should be de-

tected and recommended when their features overlap on the screen. Both AVRA and

GNoT were observed to have the ability to sometimes detect overlapping onscreen items.

The outcome of the comparison between AVRA and GNoT is that both systems are

in line with the thesis statement, other than MOE7 regarding unsupervised learning.

With additional effort, both systems could be accelerated to have a latency less that 3

seconds (MOE3 and MOP1), and GNoT could be set to act passively instead of being

triggered by a button, resolving MOE4.

3.8 Chapter Summary

This chapter presented the overall design of AVRA, a virtual assistant for personal com-

puter users. Measures of performance and measures of effectiveness were defined, and the

design of AVRA’s Mixed Initiative qualities was discussed. The performance of AVRA

and a similar closed source commercial tool were recorded, and these two tools were com-
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Table 3.7: Comparing approaches with MOE and MOP

Note AVRA Indicator Google Now on Tap Indicator

MOE1 Quality ≥ good Good Excellent

MOE2 Set #Integrations Success Assumed True

MOE3 Latency < 3 s 3.52± 1.51 s for small image 2.80± 0.47 s for small image

8.5± 1.4 s for large image Estimated 7.0 s for large image

MOE4 1 click actions Success 2 clicks

MOE5 Personalized Based on GUI clicks and evicts Location and events

MOE6 Supervised Success Assumed True

learning

MOE7 Unsupervised Success Unknown

learning

MOP1 Latency < 3 s 3.97± 0.10 s CNN latency, 3.52± 1.51 s for small image

at scale 400 contexts & large image Estimated 7.0 s for large image

MOP2 Multiple context Success Success

recommendation

MOP3 Detect overlapping Success Success

features
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pared in the context of the aforementioned requirements. The thesis statement claimed

that a deep learning artificial intelligence can provide action recommendations related to

onscreen messages. This chapter explained at a high level how action recommendations

can be provided within a reasonable response time, and how these recommendations can

be acted upon with a single mouse click.

Thus far the outlines of this system have been described, but many details are yet to be

elaborated. The CNN for pattern recognition within images, accelerating text processing,

and the DNN for text recognition are described in the following chapters. The details

behind recommendation personalization and unsupervised learning will also be covered

in subsequent chapters. The next chapter takes a step back from the implementation

details and provides the reader with a series of examples where AVRA can be applied.



Chapter 4

Supervised Learning Use Cases

In this chapter, several use cases are presented which motivate this work by demonstrat-

ing applications of AVRA after application-specific supervised learning. These use cases

intentionally span very unrelated topics in order to demonstrate the versatility of an

“seeing” desktop assistant. The first use case involves recognizing onscreen references to

decisions by the Supreme Court of Canada (Section 4.1) in order to recommend further

detail to the reader. The second use case involves recognizing onscreen references to gene

family names (Section 4.2), with the goal to provide further detail to the user regarding

the mentioned gene family. A third use case involves recognizing error messages in the

Eclipse IDE (Section 4.3) in order to assist a programmer to explore solutions to these

onscreen errors. The fourth use case involves detecting the presence of the computer’s

desktop (Section 4.4) in order to recommend programs or websites that the user may

want to visit. The fifth use case involves detecting the presence of a terminal window in

order to recommend additional information on command usage (Section 4.5). The final

use case involves detecting that the user is browsing social media, and offering to the

user to compose an email to any of her friends when the name of that friend is seen on

the computer screen (Section 4.6).

In describing each of the use cases mentioned above, the description begins with an

overview of the use case including a specific example, and then proceeds to list the name

used as a context identifier (e.g. “legal”). Next, the image data used to train AVRA is

discussed, followed by a discussion of the keyword information and recommendation data

used to train the use-case specific neural networks. Each use case description concludes

with a report on some of the problems encountered during development, and the data

sources used to build up the use case.

82
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It is important to note here that these use cases are all active in the same system

(AVRA) at the same time. As discussed in previous chapters, it is the onscreen content

that drives AVRA to differentiate between contexts, and recommend context-relevant

recommendations.

The CNN for the use cases below was trained on 9654 images in total, covering 11

different contexts.

The two overall challenges in developing these use cases were poor classification of

keywords with very short length (e.g. the terminal command “ls”), and sometimes

low context detection confidence (e.g. 2% confidence in the correct class). These cases

were rare but noticeable. Perhaps the short keyword recognition could be resolved by

modifying the DNN input filter hyperparameters. The low confidence context detection

cases may be mitigated by collecting additional image data for context training. One

final problem was making the distinction between similar contexts. AVRA had trouble

differentiating between legal documents and research papers, as they look similar from a

distance.

4.1 Supreme Court of Canada

The goal in this use case is to assist the user to find the full text of a particular judgment

by the Supreme Court of Canada (SCC) when it is cited in another case. This action

should only take place when AVRA detects a context related to reading legal articles.

Tools exist to insert hyperlinks of cited cases into websites [39]. However, these tools do

not recognize in within a reasonable response time, as AVRA does, when a document

that could be annotated with a link appears onscreen.

The first step in the use case is to run AVRA’s desktop software as shown in Figure

4.1a. Next, the user opens a PDF document containing a decision from the SCC which

cites another SCC decision as shown in Figure 4.1b. In the next step, AVRA detects

the reference and recommends to the user in an AVRA button to explore the references

case further as shown in Figure 4.1c. Finally, clicking on this button launches a browser

window containing the full text of the cited case and links to other useful information

Figure 4.1d.

Context name: legal

CNN training data: 56 decisions by the SCC chosen at random from the corpus

of all SCC decisions. The PDF files for all of the selected decisions were merged into one

PDF file with 2946 pages. This file was then converted into 2946 images for processing
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(a) Launching AVRA (b) Context and keyword detection [226]

(c) Action recommendation (d) Recommended action launched [40]

Figure 4.1: Use case illustration: AVRA assisting with legal document reading
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by the CNN.

DNN keywords: Specific case names in the format “Roe v. Wade”. A text process-

ing algorithm was used to obtain keywords used to construct the DNN input text.

Recommendation when DNN keyword recognized: Open a website in a browser

where the content is the full text of the cited decision and additional helpful tools and

links. A text processing algorithm was used to obtain the hyperlinks required to construct

the action recommendations.

Problems encountered: An initial idea was to encode docket numbers (e.g. 31459)

as the DNN keywords because docket numbers were easy to extract and encode. How-

ever, it emerged in further investigation of the legal literature that the docket number

for SCC cases are not commonly referenced in the legal literature in a way that is useful

to the reader. A more useful approach was to look for onscreen citations by name (e.g.

Roe v. Wade). This caused a problem where multiple cases have the same citation,

and so the RS opens to the case search page rather than a particular case. Case name

split across multiple lines confuses the text processing algorithm, and therefore it misses

the keyword. Only implemented for a small number of keywords as data extraction is

tedious and should be further automated with CANLII OpenSearch API functionality

[40]. Another problem was that the CNN recognition of SCC document images had low

confidence scores. Perhaps this was because the page format of SCC documents is not

consistent through time. It has changed over time as, for example, an 1877 SCC decision

has single column format while other decisions from the 1980s and 1990s have orienting

marks along the middle of the page, and documents from the 2000s have numbering

along left and right outside margins of the text. Fonts have also changed over time, and

image resolutions is lower for older scanned files than it is for modern digital files.

Datasource: [40]

4.2 Genetic Research

In this use case the user is reading research material related to genetic research, and

AVRA assists the user by offering the user to explore the relationship between a gene

name recognized on the computer screen, its function, and related genes. Specifically,

the cystic fibrosis gene CFTR is used in this example.

The first step in the use case is to run AVRA’s desktop software as shown in Figure

4.2a. Next, the user opens a PDF document containing the genetic research material as

shown in Figure 4.2b. In the research material the CFTR gene is mentioned. AVRA
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(a) Launching AVRA (b) Context and keyword detection [249]

(c) Action recommendation (d) Recommended action launched [80]

Figure 4.2: Use case illustration: AVRA assisting with genetics research

then detects the reference to the CFTR gene family and recommends to the user in an

AVRA button to explore the references gene family as shown in Figure 4.2c. Finally,

clicking on this button launches a browser window containing a detailed review of the

Cystic Fibrosis Transmembrane conductance Regulator (CFTR) and links to other useful

information as shown in Figure 4.2d.

Context name: gene

CNN training data: The CNN was trained on images of research papers related to

the gene families in question. This was accomplished by following links constructed using

the gene family names and the keyword “gene” to find PDF files from Google Scholar

[76] where the top results with an available PDF file in a relevant field (genetics, cell

biology, cancer research, etc.) was downloaded. In all, 87 research papers were collected,
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and then merged into a single 980 page PDF file. This file was then converted into 980

images for training the CNN. Note that the genetic research content may be viewed in a

variety of programs and browsers as AVRA has been trained on images of the research

data rather than images of the PDF reader program.

DNN keywords: 93 gene family names (e.g. ZCCHC) and their approved names

(e.g. lysocardiolipin acyltransferases). 1365 keywords in total.

Recommendation when DNN keyword recognized: When a gene family name

or specific gene name is recognized, AVRA can offer to open a browser window to a

website describing the related gene family.

Problems encountered: Keywords that span across more than one line in the text

of an onscreen research paper were often not recognized by the DNN. Also, some gene

family names such as “MARCH” and “XP” were too generic to find meaningful results

when searching for research publications in an automated search process. In collecting

examples for CNN training, these cases were resolved by simple passing over those gene

names that did not result in easily accessible relevant research publications. Another

problem encountered was the limit on the number of recommendations. AVRA can only

recommend 3 actions to the user, and often this means that many opportunities to ex-

plore are not exposed to the user. Specifically, in the case where the AVRA identifies

multiple gene names on the screen, the RS narrows down which keywords should lead

to recommended actions (based upon the confidence in the keyword detection, the confi-

dence that the gene context is on the screen, and the past history of the user’s interaction

with AVRA).

Datasource: [80], [76]

4.3 Eclipse IDE

In this use case, AVRA assists the user as she investigates solutions to error messages

appearing in the Eclipse console during a programming session.

The first step in the use case is to run AVRA’s desktop software as shown in Figure

4.3a. Next, the user opens the Eclipse IDE and begins writing a program. During the

iterative programming, compiling, and debugging of the programming task, the console

outputs an error message as shown in Figure 4.3b. AVRA then detects the error message

StringIndexOutOfBoundsException and recommends to the user in an AVRA button

to explore solutions to this error as show in Figure 4.3c. Finally, clicking on this button

launches a browser window containing information relevant to the detected error message
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(a) Launching AVRA (b) Context and keyword detection

(c) Action recommendation (d) Recommended action launched [223]

Figure 4.3: Use case illustration: AVRA assisting with a programming task

and links to other useful information as show in Figure 4.3d.

Context name: eclipse

CNN training data: 190 images of eclipse programming.

DNN keywords: 299 common Java and Python error messages

Recommendation when DNN keyword recognized: stackoverflow.com search

results for the detected keyword + language e.g. “Python Exception”

Problems encountered: Short error messages confuse the pre-DNN filtering algo-

rithm. Also, the exception exception is a substring of most other exceptions such as

baseexception, and so it shows up when it should not. Not resolved in this work but

using ontologies in the RS should resolve this later on.

Datasources: [222], [223], [81]
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(a) Launching AVRA (b) Context detection

(c) Action recommendation (d) Recommended action launched

Figure 4.4: Use case illustration: AVRA assisting the user to start a new task

4.4 Computer Desktop

In this use case, AVRA assists the user as she decides to start a new task. The first step

in the use case is to run AVRA’s desktop software as shown in Figure 4.4a. Next, the

shows the desktop and waits for AVRA to detect that the desktop is presented as shown

in Figure 4.4b. Having detected the desktop context, AVRA proceeds to recommend to

the user in an AVRA button to launch websites she frequently visits as shown in Figure

4.4c. Finally, clicking on one of the three AVRA GUI buttons launches a browser window

containing the website of the clicked recommendation 4.4d.

Context name: desktop

CNN training data: 300 images of Microsoft Windows Desktop (various back-
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grounds, icons, OS versions)

DNN keywords: None. This is a use case where AVRA can proceed directly to the

recommendation without looking for keywords.

Recommendation when context recognized: Top 3 most frequently visited web-

sites

Problems encountered: The recommendations are currently based upon parsing

the chrome browser history. This is a violation of the shallow integration approach that

should be avoided in future versions of AVRA. In an ideal scenario, AVRA would keep

track of the user’s browser history through a less invasive interaction such as keystroke

logging and/or parsing URL text.

Datasource: [141]

4.5 Console Programming

In this use case presence of a command in a terminal window triggers AVRA to recom-

mend additional information on the usage of that command.

The first step in the use case is to run AVRA’s desktop software as shown in Figure

4.5a. Next, the user opens a terminal window, logs into a server, and types a command

with incorrect parameters (ls -lj). An error message is printed to the terminal as

a result of this incorrect command as shown in Figure 4.5b. AVRA then detects the

error message and recommends to the user in an AVRA button to explore solutions to

this error by learning more about the specific command as shown in Figure 4.5c. Finally,

clicking on this button launches a browser window containing information relevant to the

command that triggered the detected error message and links to other useful information

as shown in Figure 4.5d.

Context name: console

CNN training data: 656 images of command line interfaces

DNN keywords: 258 commom bash terminal commands

Recommendation when DNN keyword recognized: Launch browser window

containing recipe for how to use that command, and an explanation of what the command

does (e.g. MAN pages)

Problems encountered: Consoles configured with white backgrounds or dramatic

color schemes reduces the confidence of the CNN. Ignored these cases. The DNN does

not understand that lower lines in a console are more important than higher lines. Not

addressed in this work.
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(a) Launching AVRA (b) Context and keyword detection

(c) Action recommendation (d) Recommended action launched

Figure 4.5: Use case illustration: AVRA assisting the user with console commands
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Datasource: [5]

4.6 Browsing Social Media

In this social media use case the user is browsing social media website Facebook. AVRA

assists the user by offering to the user to compose an email to any of her friends when

the name of that friend is seen on the computer screen.

The first step in the use case is to run AVRA’s desktop software as shown in Figure

4.6a. Next, the user opens a browser window to facebook.com and logs into her account.

The user’s facebook friend Liora appears in an item in the user’s facebook feed as shown

in Figure 4.6b. AVRA then detects the presence of this friend’s name and recommends

to the user in an AVRA button to compose an email draft to Liora as shown in Figure

4.6c. Finally, clicking on this button launches a browser window containing a draft email

to Liora in her native email client which the user can then customize and send as shown

in Figure 4.6d.

Context name: facebook

CNN training data: 885 images of facebook pages and profiles

DNN keywords: 366 names of facebook friends

Recommendation when DNN keyword recognized: Compose and email to the

detected friend (e.g. Email friend.name@mail.com). Each friend name (DNN keyword)

was matched with the email address of that contact to create the action recommendations.

Problems encountered: For CNN training, filtered out images of login page, mobile

views of facebook pages and profiles. Even though many of the training images were

annotated with handwritten text, arrows, and circles, the CNN classifier had no trouble

learning what facebook looks like.

Datasources: [60], [141]

4.7 Chapter Summary

This chapter presented several examples where AVRA can be applied.

Some use cases were more useful than others, and several use cases exposed technical

challenges such as text printed across more than one line. These examples for how

the AVRA can benefit the user were limited in utility. They were a demonstration

of what AVRA can do, rather than what it should do. For example, names appearing
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(a) Launching AVRA

(b) Context and keyword detection. Names

of all contacts but one have been redacted to

protect privacy.

(c) Action recommendation (d) Recommended action launched

Figure 4.6: Use case illustration: AVRA assisting the user when browsing social media
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onscreen should not pester the user with suggestions to compose an email to each of them.

Similarly, gene names appearing onscreen should only appear when the user wants to

look them up. The examples in this chapter support the thesis statement that a deep

learning artificial intelligence can provide action recommendations related to onscreen

messages.



Chapter 5

Context Recognition with a

Convolutional Neural Network

This chapter describes the CNN used to process fullscreen images of the computer screen

into one or more image classes called contexts. Recognition of the onscreen contexts

enables AVRA to reason about the meaning of onscreen text when it looks for actions

to recommend to the user. Each context detected by the CNN with a high enough

confidence triggers the activation of a context-specific process to analyze the onscreen

text. Issues surrounding the design of the CNN are discussed, including execution time,

recall, precision, and supervised learning.

In AVRA, context is obtained using a trained CNN classifier to extract features from

a screen capture and then classifying these features onto a set of stereotypes at the

softmax output of the CNN. For example, the trained CNN may see a screen print of

the Eclipse Java IDE as 80.95% eclipse-like and 18.79% desktop-like. These two contexts

result from the CNN identifying features in the image that look like the desktop of

a computer including the task bar, clock, and start button. Similarly, the look and

feel of the Eclipse IDE for Java Developers may result in the CNN identifying image

features implying the presence of that context as well. AVRA can interpret one image

in more than one context. This is important for the very common use case where the

user places two application windows side by side on the computer screen. Any context

that is detected by the CNN with a confidence higher than a predefined threshold K

(e.g. K=10%) will signal to the keyword recognition DNN for that context that it

should process the onscreen text in search of keywords that the RS has been taught to

associate with action recommendations. The CNN uses the predicted relevant contexts

95
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to steer the OCR text through a filtering stage described in Section 6 and then on to the

corresponding DNNs, restricting the search space for action recommendations. Limiting

the RS processing to specific contexts reduces the execution time of the RS. Continuing

with the Eclipse IDE example, the “eclipse” DNN activated by the CNN detection of the

IDE programming context will proceed to recognize Java error messages on the screen

as described in Section 7.

Diving deeper into the features a CNN observes in a computer screen image, the

pre-trained Inception CNN [7] [230] was used explore the features common in computer

screen images. The CNN was used to classify 10 images of the eclipse IDE and 10

images of console windows. Examples of these images are presented in Figure 5.1. For

each image, the 10 most activated features in the classifier output were recorded, and

Inception’s label related to each of these features was also recorded. For each image type

(eclipse and console) the activation level for each feature for all ten images was summed.

This result, presented in Table 5.1, gives a good overall description of which features

in Inception are activated in a given image type. The 32 features listed in the table

were responsible for 81.6% of the activations for images of console, and 90.7% of the

activations for images of the Eclipse IDE. The feature “web site, website, internet site,

site” was responsible for most of the activation related to both images. Clearly, there

are fewer features strongly activated by images of the Eclipse IDE. This result indicates

that perhaps a classifier can be trained to discriminate between these images based upon

the features of these different image classes (i.e. CNN context).

Figure 5.1: Examples of console and Eclipse IDE screenshots

Each CNN context represents a knowledge domain of related keywords and actions

learned by one of AVRA’s DNNs. The deep learning CNN in AVRA is used to interpret

onscreen graphical hints to predict the contexts that are relevant to the current screen

image. This approach of isolating knowledge into contexts is a way of isolating specialized
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Table 5.1: CNN features activated by console and/or Eclipse IDE screenshots

Feature name from Inception Eclipse IDE Console

analog clock 0 0.00921

binder, ring-binder 0.00257 0.10522

book jacket, dust cover, dust jacket, dust wrapper 0 0.24755

brass, memorial tablet, plaque 0 0.00641

chain mail, ring mail, mail, chain armor, 0 0.00837

chain armour, ring armor, ring armour

cloak 0 0.00811

comic book 0 0.00377

computer keyboard, keypad 0.01275 0

desk 0.00809 0

desktop computer 0.08155 0.1177

digital clock 0 0.01278

envelope 0.00263 0.06244

hand-held computer, hand-held microcomputer 0.00071 0

laptop, laptop computer 0.0853 0.02972

loudspeaker, speaker, speaker unit, 0 0.16193

loudspeaker system, speaker system

menu 0.00661 0.00845

modem 0 0.00681

monitor 0.73201 0.51427

mouse, computer mouse 0.00673 0

notebook, notebook computer 0.1118 0.07426

oscilloscope, scope, cathode-ray oscilloscope, CRO 0.01249 0.01372

packet 0 0.00119

perfume, essence 0 0.00738

pole 0 0.00658

radiator 0 0.00725

radio, wireless 0 0.04437

screen, CRT screen 0.17703 0.44099

spotlight, spot 0 0.01351

syringe 0 0.00671

television, television system 0.00162 0.09622

web site, website, internet site, site 7.83109 5.95115

window screen 0 0.19693

SUM 9.07298 8.163

% of activation related to the features above 90.7 % 81.6 %
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sets of information so that they can be more easily curated by AVRA’s developers.

AVRA contexts need not be programs on the computer. They can just as easily be the

contents of those programs. For example, a CNN trained to recognize the Eclipse IDE

may recognize Java error messages and stack traces as distinct features in the training

set. The trained CNN classifier will detect the stacktrace regardless of the program

presenting it on the computer screen (e.g. putty, Eclipse, Notepad, Stack Overflow, and

others). Another interesting point is that these CNN-derived contexts are time-invariant,

and therefore easy to test with. With LSTM and RNN approaches, context is built up

based upon past states as with a state machine, whereas with the approach in this work,

the CNN processes a still image to generate a context without considering the past.

Making the Markovian assumption here is important, because computer users tend to

change contexts very quickly, for example with the “ALT+TAB” keyboard shortcut, and

so assuming that a causal relationship exists between frames displayed to the computer

screen dramatically complicates the model required to interpret the data.

Some further examples help to illustrate AVRA’s image processing capabilities. Con-

sider a computer screen image containing a view of the Eclipse IDE, and the features

observed in a similar image of the NetBeans IDE. The CNN sees different features in

these two IDEs as their texture, color, fonts, and other low level features are not simi-

lar to each other. It is the human mind that associates these two relatively equivalent

tools because of their similar function, rather than their visual similarities. From the

perspective of AVRA’s CNN, these two programs would look entirely different. Consider

another example where an options window inside the Eclipse IDE is contrasted with a

view of the IDE that does not have this options window open. These screenshots may

have different features, but the image dataset used to train the CNN contains images of

open options windows and the IDE without open options windows. The result is that

both images activate the same context. The CNN training dataset is therefore key in

setting the boundary between context domains within the supervised learning realm. It

is therefore interesting to ask what features of the input image are observed by the CNN.

Our understanding of how the neural codes inside a deep neural network represent

information about the world around us is still developing. For example, what does a

CNN really think a computer screen looks like? One way to interpret neural network

models is by finding inputs that force one or a set of neurons to strongly activate, or by

observing the activation of one or more neurons for some training data [109]. Starting

with a randomly initialized image (noise), and iteratively maximizing the activation only

the neurons that are related to a specified image type by adjusting the image through
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backpropagation. Eventually we obtain a different image representing how our network

visualizes the specified image type. The resulting images for each type of computer

screen image represent the features of that type of image. In this work, to visualize the

CNN model, style transfer was used to expose the features of images instead [205]. Style

transfer is the process of applying the style of one image to the content of another [67].

Style transfer of layer 4 was implemented using the vgg16 CNN [214] and [94]. Style

transfer from a desktop image to a photo of the author, and Eclipse IDE to a photo of the

author are present in Figures 5.2a and 5.2b. It is clear from the style transfer that the

features encoded into the neural network are sometimes useful (e.g., Figure 5.2a shows

an image of the author decorated with desktop icons, revealing that the CNN likes to

see desktop icons for the desktop context), and sometimes arbitrary (e.g. the author’s

image in Figure 5.2a is tinted blue as the style of the desktop image was arbitrarily a

blue color). Mixing the style and content of images within the same class reveals the

commonality between them. For example, in Figure 5.2d the file menu features and code

features in the mixed image are apparent, whereas they were not revealed in the mixed

image of Figure 5.2b which did not involve style transfer on images of the same class.

The CNN in AVRA was implemented using tensorflow [6] and inception v3 [230]. The

training of the CNN is described in Section 5.1.

5.1 Supervised Context Learning

Consider first the training of a CNN to recognize the context from a computer screen

image. Transfer learning is the process of training a neural network for one application,

and using the final weights from that network after training as the starting point for a dif-

ferent but related application [263]. In AVRA, transfer learning is used to improve CNN

training time and classification accuracy [263]. The transfer learning was implemented

using the inception v3 CNN [230], taking advantage of feature detection capabilities of

image recognition software trained on large sets of images. The more classes included in

a classification problem, the more complex the model must be to differentiate between

classes. This leads to a requirement for more training data. One advantage of transfer

learning is that only the final layers become more complex in this case, and these final

layers are only a small portion of the overall CNN model parameters which must be

learned. This explains the relative insensitivity of the CNN to the number of classes

added to AVRA.

One problem with training a new class into the CNN is insufficient high-quality
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(a) Example style transfer between image of the desktop and image of the author

(b) Example style transfer between image of the Eclipse IDE and image of the author

(c) Example style transfer between two images of the desktop

(d) Example style transfer between two images of the Eclipse IDE

Figure 5.2: CNN style transfer examples
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testing and training image data available on hand. These image datasets are required in

order to teach the CNN through supervised learning in a general enough way that the

CNN will recognize testing data that was not part of the training set with reasonable

accuracy. Typically several hundred images of a class are required in order to effectively

train a CNN. The CNN has many output classes into which it can classify an image. For

supervised context learning in AVRA we use the same dataset for testing and training,

and rely on cross-validation to measure the model fitness. The challenge is acquiring

images that look like a particular domain, for example the Eclipse IDE.

One solution to this lack of readily available training data was to extract representa-

tive images from the Internet to form datasets. To train AVRA, this data scraping activ-

ity was performed for several contexts including desktop screen captures of Windows, and

the Eclipse IDE for Java Developers. To collect the images, a nodejs program relying on

the images-scraper library [179] cycled through a hand-crafted list of keywords relating to

the desired context e.g. “eclipse IDE java programming” and submitted these keywords

to various search engines. The search engine submissions return lists of URLs for images

and additional information about these images such as image type and size. The image

search was narrowed to include only JPEG formatted images with a minimum with of

1024 pixels. The next step involved manual data validation where non-representative

images were deleted. A further step of duplicate image deletion was accomplished with

an automated tool. Further information on how the collected images were applied is

provided in Chapter 4.

A second solution to the lack of readily available training data was to generate the

training images locally. For example, image captures from a local machine that are

representative of the problem were collected. The image capture program was executed

for several days to generate sufficient data to browse and extract relevant images.

5.2 Precision and Recall of Context Recognition with

CNN

Four examples of training images are presented in Figure 5.3. The training images

were segmented into 11 classes. The number of training images per class was as fol-

lows: A(2946), B(980), C(190), D(300), E(656), F(884), G(800), H(634), I(899), J(700),

K(642). After training, the CNN’s performance was measured in terms of the precision

and recall and sample ROC curves were examined. The testing images (5 images per
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class for 11 classes) were not included in the training dataset. The results are presented

in a confusion table as Table 5.3.

A graph of the training and cross-validation accuracy at each epoch during the CNN

training is presented in Figure 5.4, produced with inception’s retraining code [230]. The

retraining configuration included 4000 training steps. Figure 5.4 shows that validation

accuracy lags training accuracy, as expected. The shape of the learning graph is also as

expected, with an initial high rate of learning followed by slower incremental improve-

ments in accuracy.

For the CNN characterization, let TN be the number of true negative classifications.

These are instances where an image was classified correctly as not being in a certain

class. Let TP be the number of true positive classifications. These are instances where

an image was classified correctly as being in a certain class. Let FN be the number of false

negative classifications. These are instances where an image was classified incorrectly as

not being in a certain class. Let FP be the number of false positive classifications. These

are instances where an image was classified incorrectly as being in the wrong class.

In AVRA, the classifier can make more than one prediction per image. Multiple

different contexts can be present on the computer screen at the same time, and therefore

consider that one image of the computer screen containing side-by-side windows of the

Eclipse IDE and a console window could trigger two predictions which may both be

accurate. For simplicity, the testing dataset used to produce the confusion matrix of

Table 5.3 only contained images with one “actual” class per image. The threshold K

for the CNN making a class prediction (one of many AVRA hyperparameters) is a key

parameter in tuning AVRA to be more conservative (higher threshold) or more open to

evaluating hypotheses (lower threshold). In the confusion matrix of Table 5.3, predicted

classes are columns, and actual classes are rows. Cells are counts of classifications or

misclassifications. On the diagonal where a column intersects a row with the same label

(e.g. column “A” and row “A”) is the count of true positive results. Integers in all other

cells represent classification errors. Unlike a typical confusion table, the number of tests

for any class is not the sum of the integers in a given row. The sum for each row is the

number of predictions made by the CNN for the 5 test images it processed. To calculate

precision for a column, the number of true positive classifications TP (where row and

column label match) is divided by the sum of the integers in the column (representing

all TP and FP ). Recall is calculated as TP divided by the sum of the integers in the

row (corresponding to all TP and FP ). For example, the first results row (“A”) of

Table 5.3 was generated by processing 5 images containing only context “A” through
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(a) Example scientific research article view

[211] (b) Example legal document view [226]

(c) Example desktop view (d) Example console programming view

Figure 5.3: CNN example training images
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Figure 5.4: Training and validation classification accuracy during the 4000 epochs of the

CNN training process. The final test accuracy was 92.20%



Table 5.2: Interpretation of the CNN’s ROC area under the curve with qualitative labels

Fig. Curve # Area Quality Label Fig. Curve # Area Quality Label

5.3 1 0.18 worse than chance 5.4 1 0.14 worse than chance

5.3 2 0.12 worse than chance 5.4 2 0.2 worse than chance

5.3 3 0.26 worse than chance 5.4 3 0.15 worse than chance

5.3 4 0.28 worse than chance 5.4 4 0.3 worse than chance

5.3 5 0.46 worse than chance 5.4 5 0.43 worse than chance

5.3 6 0.56 fail 5.4 6 0.51 fail

5.3 7 0.63 poor 5.4 7 0.65 poor

5.3 8 0.73 fair 5.4 8 0.71 fair

5.3 9 0.82 good 5.4 9 0.83 good

5.3 10 0.76 fair 5.4 10 0.76 fair

5.3 macro-average 0.53 fail 5.4 macro-average 0.5 fail

Fig. Curve # Area Quality Label Fig. Curve # Area Quality Label

5.5 1 0.14 worse than chance 5.6 1 0.08 worse than chance

5.5 2 0.18 worse than chance 5.6 2 0.16 worse than chance

5.5 3 0.25 worse than chance 5.6 3 0.3 worse than chance

5.5 4 0.31 worse than chance 5.6 4 0.39 worse than chance

5.5 5 0.41 worse than chance 5.6 5 0.43 worse than chance

5.5 6 0.47 worse than chance 5.6 6 0.57 fail

5.5 7 0.58 fail 5.6 7 0.69 poor

5.5 8 0.64 poor 5.6 8 0.81 good

5.5 9 0.77 fair 5.6 9 0.85 good

5.5 10 1 excellent 5.6 10 1 excellent

5.5 macro-average 0.5 fail 5.6 macro-average 0.56 fail
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the CNN. During each classification, the CNN predicted the correct class “A” as well

as some other classes (“B” and “C” every time, and “E” and “F” four out of 5 times).

The recall for this situation is 1.0, because the presence of an image containing context

“A” always resulted in the activation of context “A”. However, the precision (bottom of

column “A”) which asks how often context “A” is activated by information other than

the presence of context “A” is also relatively high at 0.71. Only the presence of context

“B” caused the CNN to include “A” in its context guesses.

The recall observed in Table 5.3 is high at the expense of precision. The process

followed to identify a suitable value for K was to try various values until the recall

was maximized at 100%. There is a fundamental trade-off between recall and precision

determined by the threshold K. This is demonstrated with the confusion table in Table

5.4, where K=95%. With such a high requirement for certainty that a context has been

detected, there is a higher precision, but only when the context is detected. The cost

of increasing K is missing the context completely, costing the algorithm on both the

precision and the recall metrics. False positive context detection wastes CPU time but

does not lower the recognition rate, whereas false negative context detection causes a

decrease in recall. Therefore, AVRA is configured with a low K threshold as in Table

5.3, rather than a high value as in Table 5.4. It is worth emphasizing that false positive

context detection is a small price to pay for high true positive detection. When the

recommendations are ranked by subsequesnt modules in AVRA, a false context detection,

even if falsely detected with high confidence, will be ranked lower if the keywords related

to that context are not detected from within the onscreen image. It is therefore acceptable

to maximize recall at the expense of precision.

Delving deeper into the trade-off between the true positive and false positive rates,

four example ROC curves are presented in Figures 5.5, 5.6, 5.7, and 5.8. Converting these

results into tabular form using the scoring method described in [22] produces Table 5.2.

The qualitative results of Table 5.2 seem at first to contradict the excellent recall and

average precision results of Table 5.3, and the real world experience that AVRA does

“work” with K=1%. What the ROC curves are in fact revealing is that specific contexts

require a high false positive rate in order to be detected frequently. The number of classes

trained into the CNN did not seem to be the key variable. Training 5 classes instead

of 11 yielded a similar overall ROC curve. Rather than the number of classes being the

problem, it is the amount of data per class. There is not enough training data available to

the model to demand better than chance prediction of the onscreen contexts without also

making mistakes. One solution to lower the false positive rate is to increase the amount
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of data collected per context. Contexts with a low area under the curve corresponded to

smaller numbers of training images. However, the downside of requiring many hundreds

of images per context is that AVRA then becomes difficult to train because the required

training data is difficult to obtain without significant human intervention or waiting a

long time for the algorithm to gain enough data to learn a new context. These problems

of insufficient data and extracting data for training is discussed further in Chapter 9 on

unsupervised learning. What was identified thus far in this chapter is that the CNN can

detect a number of contexts, but only under the condition that it will also make many

false-positive guesses.

Figure 5.5: The first of 4 ROC curve examples. The CNN was trained on 10 classes of

images resulting in a macro-average ROC curve with area under the curve of 0.53 and

the class with the lowest area under the curve had area 0.12
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Figure 5.6: The second of 4 ROC curve examples. The CNN was trained on 10 classes

of images resulting in a macro-average ROC curve with area under the curve of 0.51 and

the class with the lowest area under the curve had area 0.14
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Figure 5.7: The third of 4 ROC curve examples. The CNN was trained on 10 classes of

images resulting in a macro-average ROC curve with area under the curve of 0.50 and

the class with the lowest area under the curve had area 0.14
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Figure 5.8: The fourth of 4 ROC curve examples. The CNN was trained on 10 classes of

images resulting in a macro-average ROC curve with area under the curve of 0.56 and

the class with the lowest area under the curve had area 0.08



Table 5.3: Confusion matrix for assessing AVRA’s CNN after it was trained on 11 classes. The testing data had 5

images per class, with 1 class per image, and classification threshold K=1%.

Predicted Recall

Actual

A B C D E F G H I J K

A 5 5 5 0 4 4 0 0 0 0 0 1

B 2 5 5 2 5 5 0 0 0 0 0 1

C 0 3 5 0 5 5 0 0 0 0 0 1

D 0 0 0 5 2 0 1 0 1 0 1 1

E 0 4 1 2 5 0 0 0 0 0 0 1

F 0 0 5 5 5 5 0 0 0 0 0 1

G 0 0 0 0 0 0 5 0 0 0 4 1

H 0 0 0 0 0 0 0 5 0 1 0 1

I 0 0 0 0 0 0 3 1 5 4 0 1

J 0 0 0 0 0 0 2 3 2 5 0 1

K 0 0 0 0 0 0 3 0 0 0 5 1

Precision 0.71 0.29 0.24 0.36 0.19 0.26 0.36 0.56 0.63 0.50 0.50
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Table 5.4: Confusion matrix for assessing AVRA’s CNN after it was trained on 11 classes. The testing data had 5

images per class, with 1 class per image, and classification threshold K=95%.

Predicted Recall

Actual

A B C D E F G H I J K

A 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 3 0 0 0 0 0 0 0 0.6

E 0 0 0 0 1 0 0 0 0 0 0 0.2

F 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 2 0 0 0 0 0.4

H 0 0 0 0 0 0 0 5 0 0 0 1

I 0 0 0 0 0 0 0 0 1 0 0 0.2

J 0 0 0 0 0 0 0 0 0 2 0 0.4

K 0 0 0 0 0 0 0 0 0 0 3 0.6

Precision 0 0 0 1 1 0 1 1 1 1 1
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5.3 Chapter Summary

This chapter described the CNN used recognize contexts in images of the computer

screen, and how to train the CNN with supervised learning. This was essential to the

thesis statement that action recommendations can be provided without integration into

each individual program executing on the computer. Context recognition enables AVRA

to recommend appropriate actions. Context detected by the CNN includes a confidence

score, which enables AVRA weigh action recommendations. Also, the CNN performance

was characterized in this chapter in terms of execution time, recall, and precision.



Chapter 6

Fast Context-specific Text Filtering

Interpreting all of the onscreen text for each context detected in a computer screen

image is unacceptably slow. This Chapter describes a text filtering module (labeled F in

Figure 3.1) which accelerates the text analysis by discarding text that is not similar to the

text trained into AVRA. This filtering task reduces the amount of text to be classified,

thereby reducing the execution time. Several text similarity algorithms were candidates

for implementing this filtering task, and this Chapter describes the observations and

analysis carried out to determine which algorithm should be used to implement the text

filter.

In AVRA, the recognition of onscreen keywords such as computer error messages

is achieved through the extraction and classification of textual information from the

image data in a screen capture. This text is extracted using Optical Character Recogni-

tion (OCR), and then chopped into many small segments using a windowing approach

described below. These text segments are filtered to remove text dissimilar from the

keywords recognized by AVRA for the context in question. The surviving text segments

are classified and ranked as described in Section 7.

Neural networks are not always the best solution when latency minimization is crucial.

The input text filtering algorithm used here is optimized for speed, and relies on loop

optimization, dictionary memorization (called memoization), and binary operations to

compare strings and compute a similarity score between candidate text and the text

known to a particular DNN. Rather than classifying all text into a class, this filter

discards keywords too dissimilar to the text on which a given DNN has been trained.

The filter is not exhaustive in its comparison of candidate text with DNN keywords.

Rather, once candidate text is similar to any keyword in the targeted DNN, the candidate

114
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is considered fit to be classified by the DNN, and the filter moves to evaluate the next

candidate keyword. This filtering algorithm typically discards the vast majority of input

text (e.g. 98% for a screen capture of a program in the eclipse IDE). This is exactly

as expected, and much more efficient than passing many keywords to a DNN which will

clearly return with some nonsensical classification of most candidate keywords along

with a very low confidence score.

The windowing approach used on the OCR text output involves tokenizing the text

with spaces as separators, and then the keyword array is processed one index at a time,

and then two at a time, and then three at a time. For example, if the OCR text is “the

cat is black”, then the resulting four candidate texts in the first step would be (“the”,

“cat”, “is”, “black” ). In the second step, the three candidate texts would be (“the cat”,

“cat is”, “is black”). Finally, in the third step, the two candidate texts would be (“the

cat is”, “cat is black”). This windowing approach allow keywords broken apart by one

or two injected spaces in the OCR process to be joined back together and recognized

during classification. Typically this windowing approach breaks the OCR output text

into thousands of short text snippets of 1 to 3 words.

The windowing approach causes a large increase in the number of candidate texts

to be classified. Very often the vast majority of candidate text is not to be classified as

it is not meaningful to the DNN classifier. Each image of the screen may be processed

into thousands of text snippets ocr for evaluation by multiple DNNs. AVRA therefore

includes an input text filtering algorithm described in Algorithm 2 which narrows down

which text should be evaluated by each DNN.

This work is concerned with dropping text that is too dissimilar from anything trained

into a DNN. The similarity between one text string and many keywords is therefore

at the center of this problem. The algorithm (hereafter “the filter”) which filters the

candidate input text (hereafter ocr) checks that the similarity between ocr and any

keyword (hereafter keyword) is sufficiently high to justify DNN classification. Once the

filter has identified that the ocr is similar to any keyword, it stops analyzing and proceeds

to pass the text to be classified by the DNN. Generally, the vast majority of ocr input

to the filter is dropped.

Tables 6.1 and 6.2 list the filter implementation approaches considered. The ap-

proaches listed in Table 6.1 were implemented in a similar way, shown in Algorithm 1,

which loops through the keywords with each ocr looking for the first exact match (line

4) or sufficiently similar keyword (line 8). The function FUNC configured by hyper-

parameters PARAMS compares keyword and ocr where the result is then compared
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using operation OP in relation to the hyperparameter LIMIT . The LIMIT defines the

similarity threshold past which the filter should let an ocr pass to the DNN.

Consider an example of how Algorithm 1 is used in this work to implement a specific

approach. The package [231] is an implementation of the edit distance algorithm de-

scribed in [96]. Its minimum edit distance function editdistance.eval is used as FUNC

with no additional hyperparameters PARAMS. The resulting minimum edit distance

must be less edits than some constant defined by hyperparameter LIMIT , and therefore

OP is the operation <=.

The text filtering approaches in Table 6.1 contain hyperparameters that can take on

a range of values, each affecting the execution time, specificity, precision, and recall of

the implementation. Table 6.1 lists these hyperparameters and their value ranges for

each algorithm.

ALGORITHM 1: A Generic Filtering Algorithm

Input: keywords, ocrs; Classification threshold LIMIT ; 0 or more additional

hyperparameters PARAMS; Function reference FUNC; Binary

comparison operation in the set {<=, >=} OP ; OCR output text

snippets ocrs

Output: List of text strings to be classified by a neural network DNNinput

1 ed(keywords, ocrs):

2 for each ocr ∈ ocrs do

3 for each keyword ∈ keywords do

4 if keyword == ocr then

5 DNNinput.append(ocr)

6 break

7 end

8 else if OP (FUNC(keyword, ocr, PARAMS), LIMIT ) then

9 DNNinput.append(ocr)

10 break

11 end

12 end

13 end

The L1, L2, and substring approaches were implemented using variations of Algorithm

1. L1 and L2 implementations followed a character embedding approach for encoding
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Table 6.1: Hyperparameter configurations for approaches implemented using Algorithm

1

ID FUNC FUNC PARAMS OP LIMIT

Implementation (range, step size) (range, step size)

1 Edit Distance [231] - ≤ (0-10, 1)

[96]

2 Edit Distance [164] - ≤ (0-100, 1)

[124]

3 Ratio [164] - ≥ (0-1, 0.1)

4 Jaro [164] - ≥ (0-1, 0.1)

5 Jaro [240] - ≥ (0-1, 0.1)

6 Jaro-Winkler [164] prefix weight (0-1, 0.1) ≥ (0-1, 0.1)

7 Jaro-Winkler [240] long tolerance (0-1,1) ≥ (0-1, 0.1)

8 Needleman-Wunsch [90] gap cost (0.5-3,0.5) ≥ (5-15, 1)

11 Cosine [90] - ≥ (0.5-1,0.01)

Table 6.2: Hyperparameter configurations for approaches implemented using variations

of Algorithm 1

ID Name Implementation PARAMS LIMIT

(range, step size) (range, step size)

9 L1 [105] windowSize(1-10,1) (0.0001-0.1,0.01)

10 L2 [105] windowSize(1-10,1) (0.0001-0.1,0.01)

12 Substring - - -

13 LazyJaroWinkler Algorithm 2 swb (0-3,1), wshift(0-4,1), (0-9,1)

minsim(0-0.9,0.1), mindist(0-9,1)

14 SimHash [123] width(1-5,1), k (1-30,1) -
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text into feature vectors [187]. The model for encoding text was designed with a feature

vector of length 100, and trained on the sequence of characters in each of the keywords.

Word vectors were composed of the sum of the character vectors, divided by the number

of characters in the word. The keyword vectors were stored in a dictionary for fast

retrieval during string comparison.

The substring approach checks if any keyword is a substring of the input text ocr.

The advantage of this approach is high speed and the ability to identify keywords in an

ocr with characters added to the start or end of the keyword, while the disadvantage

is a an inability to spot ocr with containing keyword text with one or more spelling

errors. While Algorithm 1 requires at least one hyperparameter LIMIT , this substring

approach contains no hyperparameters.

An LSH SimHash implementation that varies the length of the hash string is described

in [123]. Conveniently, the comparison function compares one input text string (ocr) with

all of the encoded text (keywords) with one function call to an index (get near dups()).

6.1 LazyJaroWinkler: A Fast Text Filter

LazyJaroWinkler (Algorithm 2) is an extension of Jaro-Winkler. LazyJaroWinkler was

optimized for speed using loop optimization, memoization, and low latency binary opera-

tions to compare strings and compute a similarity score between ocr and keywords. The

filter should improve execution time when an exact match is very unlikely. Therefore,

checking for an exact match in Algorithm 2 is deeper into the loop structure. Under

the most common condition when ocr is not similar to any keyword, the match failure

should occur quickly in a low latency outer loop, rather than computing a more expensive

metric such as edit distance during every iteration through the keywords. Dictionaries

can be employed to store the results of common operations using memoization, further

accelerating the most common case where ocr and keyword are not similar.

In Algorithm 2, for each candidate ocr, if it is an exact match for a keyword recognized

by the DNN (keyword), then the candidate ocr is allowed to pass the filter and the loop

skips to evaluate the next candidate ocr (lines 12 to 15). The loop optimization on lines

1 to 4 memorizes a binary-based frequency representation binFreq() of each keyword

known to the DNN and the number of high bits in that binary representation. These

values are then available in all of the following loops without incurring a computation

penalty. Loop optimization by precomputation is performed on lines 6, 7, 9, and 10.

After removing non-alphanumeric characters, if the candidate ocr is more than swb
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characters shorter than a given keyword, or if it is 2wshift times longer, then it likely

will not match. Shorter texts are penalized much more heavily because information in

the candidate ocr was lost in the OCR process, whereas longer strings can result from

the merging of several words, which happens on occasion and does not imply a loss of

information. The similarity between the candidate ocr and keyword is computed at line

16 using Algorithm 4. Algorithm 4 computes the number of bits in common between

the binFreq() representations of keyword and the candidate ocr, and then divides this

by the number of high bits in the keyword. If the two are sufficiently similar, a second

check measures how different the candidate ocr and keyword are at line 17. At this point

in Algorithm 2 on line 18, the filtering algorithm has established that the candidate ocr

is similar enough to keyword that it is worth spending the time on a relatively slow and

more accurate comparison. A candidate text string ocr passes the filter if the minimum

edit distance is less than LIMIT (line 19).

binFreq() (Algorithm 3) creates an integer for a word containing one 3-bit frequency

bin for each of the 26 letters in the alphabet. Each bin inside the integer saturates after

3 occurrences of the corresponding letter within the word. For example, the binFreq()

binary representation of “a” is 001 while “aa” 011, and abab is 011 011. A word with

many of the same letter quickly saturates the corresponding bin. For example, “baaaaab”

becomes 011 111, the same as “baaaab” and “baaab”. The number of bits in the XOR

of two binFreq() results gives a rough score for the distance between words (Algorithm

2 line 17). Also, the number of bits in the AND of two binFreq() results gives a rough

score for the similarity as it keeps only the bits in common (Algorithm 4 line 6). One

drawback of this approach is that numbers and other characters are not represented

in the letter frequency analysis, and so numerical strings are not seen as similar. For

example, binFreq(′a123456′) AND binFreq(′b123456′) becomes 000 001 AND 001 000,

which resolves to 0. One would expect these 2 similar strings to have a higher similarity

score than 0. Testing with realistic data, increasing the number of bins per character to

more than 3 did not significantly improve accuracy but did increase the execution time.

Less than 3 bins decreased accuracy. Similarly representing all characters with their own

bin had a negative impact on execution time while not significantly improving accuracy.

Regarding the design of Algorithm 2, it is important to consider the 5 hyperparam-

eters that affect execution time as well as the specificity, precision and recall of the

filter. The hyperparameters for Algorithm 2 are minsim (line 16), mindist (line 18),

swb (set on line 7 and applied on line 12 to skip over ocr too short in length compared

to the DNN keyword), wshift (line 10 to skip over ocr too long in comparison to the
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DNN keyword), and LIMIT . LIMIT performs the same threshold role as it does for

Jaro-Winkler (IDs 6 and 7). A Jaro-Winkler score of 0 means that the 2 values are not

similar, while larger values imply increased similarity. Therefore, a lower LIMIT causes

the algorithm to allow more results to pass the filter, possibly increasing recall, but likely

decreasing precision. As more results pass the filter and are processed by the DNN, ex-

ecution time increases. minsim filters out ocr which have a large edit distance from the

DNN keywords. It is compared against an approximation of the percentage of bits in

common between two binary letter frequency encoded words. Increasing the similarity

threshold causes the execution time of Algorithm 2 to decrease and the number of ocr

allowed to pass the filter decreases. Also, increasing the similarity threshold generally

tends to decrease recall while increasing precision. mindist is used to skip ocr that con-

tain too many differences from the keyword in question. It is compared to a count of

the number of bits that are different between the binary letter frequency encoded ocr

and keyword. Increasing mindist causes the execution time to increase and the number

of ocr allowed to pass the filter increases. Also, increasing mindist generally increases

recall while decreasing the precision. Increasing swb allows ocr much shorter that the

keyword and causes the execution time to increase while the number of ocr allowed to

pass the filter increases. This is particularly problematic when ocr is much shorter than

keyword, indicating that ocr is likely irrelevant text, and so increasing swb generally

increases recall while decreasing precision. wshift filters out ocr with a length much

longer than the length of the keyword in question. Increasing wshift allows longer and

longer ocr to pass the filter, causing the execution time to increase. Also, increasing

wshift generally increases recall while decreasing the precision.

6.2 Trade-Off Between Filter Recall and Execution

Time

In this section, design space exploration for the filter implementation is documented.

The objective is to discover which algorithms and hyperparameter configurations result

in low latency, pass simple tests, and result in high recall, precision and specificity. Four

datasets were constructed that correspond to interesting extreme cases within the space

of all possible inputs to the filter from the OCR software. These corner cases are sanity

checks to make sure that the algorithm for each approach handles an easy to verify

task correctly and in reasonable time. A fifth dataset containing real world data was
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created to model realistic conditions. These 5 datasets were used to evaluate the many

hyperparameter settings for each of the approaches to implementing the filter. Dataset

1 contained 300 keyword and 3,000 ocr, with 0 ocr similar to any keyword. In this

case the filter should reject all 3,000 ocr. Dataset 2 contained 300 keyword and 3,000

ocr, with each ocr randomly assigned a keyword. In this case the filter should accept

all 3,000 ocr. Dataset 3 contained 300 keyword and 3,000 ocr, where all ocr randomly

assigned a keyword with one added spelling error (e.g. ‘NullPointerException’ became

‘NullPointerExc3ption’). In this case, the filter should accept all 3,000 ocr. Datasets

1, 2, and 3 were constructed such that keyword terms and ocr candidate text strings

were 15 characters in length (lowercase letters or numbers), with the goal of avoiding

the problem with editdistance mentioned earlier, where the algorithm replaces one string

with the other when comparing two short strings. Allowing the text strings to contain

numbers models realistic data more closely. Dataset 4 contained 300 keyword and 3,000

ocr, where all ocr and keyword were composed of 5 randomly selected lowercase letters.

In this case the filter should reject all 3,000 ocr. Finally, Dataset 5 contained 299 keyword

and 3,000 ocr, with 496 of the ocr similar to any keyword.

Each dataset was processed 10 times using each filter implementation in each of the

hyperparameter configurations listed in Tables 6.1 and 6.2. However, NeedlemanWunsch

(ID 8) is not listed, as high execution times such as 634 seconds per iteration rendered the

algorithm too slow to be useful as a filter. Across the 5 datasets ≈1 million observations

were recorded for LazyJaroWinkler.

Tables 6.3 and 6.4 present the hyperparameter configurations for each filter imple-

mentation, selecting the observations where the number of results was closest to 3,000

for datasets 1 and 2, and the number of results was closest to zero for datasets 3 and 4.

These top results were then sorted by execution time, and the lowest execution time ob-

servation for dataset 5 was selected. Each observation involved executing the algorithm

ten times for each scenario (Datasets 1, 2, 3, 4, and 5). Table 6.5 contains the analysis

of the observations, reporting the specificity, precision and recall for each dataset. Pre-

cision and recall were not calculated for datasets 3 and 4, as they cannot result correct

matches (TP + FP = 0, and TP + FN = 0) and so the equations for these metrics

result in a denominator of 0. The observations were collected on 10 Virtual Machines

(VMs) within a cloud computing infrastructure and using task to VM assignment based

on the identifier of the VM. Each VM was configured with SSD storage, 512MB RAM,

and a 2GHz 64-bit XeonR© CPU. Results were stored by the worker thread on each VM

into a centralized database which could then be analyzed further using SQL commands.
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The complete dataset characterizing the solution space including the views extracting

the best hyperparameter configurations is available for further study at [207].

Two broad groups emerge from the data: the first group with IDs {1, 2, 9, 10, 11, 12,

14} generated lower quality results, while the second group with IDs {3, 4, 5, 6, 7, 13}

generated more promising results. In the first group, serious deficiencies in execution

time, specificity, and/or recall are immediately apparent. Specifically, for IDs 9, 10,

11, and 14 the average execution times for Dataset 5 were above 5 seconds (See Table

6.3). Word embedding was slow due to ad-hoc model generation each time a string list

arrives from the OCR. Also, the word embedding approach does not tolerate one-off

spelling mistakes and so required a large corpus that well-characterizes the words to be

compared. For IDs 1 and 2 the specificity for Dataset 4 was lower as a result of the

weakness of the edit distance approach discussed in the prior art regarding short length

strings (See Table 6.4). For ID 12 the recall on Dataset 2 was 0 as even small spelling

errors were missed by the substring matching approach (See Table 6.5).

The second group scored well on execution time, specificity, and accuracy for Datasets

1 to 4, and so they should be compared based upon their execution time, specificity, and

recall for the realistic Dataset 5. ID 13 (LazyJaroWinler) had the best execution time

in the second group, while ID 7 (Jaro-Winkler) had the highest recall in the second

group. LazyJaroWinler’s aggressive approach in the outer loops resulted in the false

rejection of a small amount of data from Dataset 2. Jaro-Winkler provided the highest

recall (≈65%) with a low execution time (≈1.35s), while LazyJaroWinkler provided half

the execution time (≈0.67s) at the expense of five sixths the recall (≈11%). By simply

discarding randomly half of the input data, Jaro-Winkler can achieve a similar execution

time to LazyJaroWinkler with a recall of 0% for the discarded half of the data and ≈65%

for the second half, averaging to ≈33% recall. The advantage of LazyJaroWinkler over

discarding data is that all data is processed and therefore the closest matches to the

known classes of data are returned, whereas discarding data may miss strong matches.

Randomly discarding samples from the input data mitigates this problem somewhat, as

the classification task executes every second.

LazyJaroWinkler is a new approach that breaks from loops as soon as a similarity

match is identified. Memoization limits the overall execution time, and when there is no

match, most computation involves low level binary operations on integers. Memoization

limits the overall execution time of Algorithms 2, 3, and 4. The takeaway advice to the

designer of a filter for a text classifier is to first select an algorithm having high recall

and specificity for extreme cases, and then to consider the trade-off between recall and
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execution time when selecting a particular algorithm.
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ALGORITHM 2: LazyJaroWinkler

Input: LIMIT ; swb; wshift; minsim; mindist; Keywords that neural network

was trained to classify are stored in keywords.values(), while the indexes

of these entries are stored in keywords.keys(); OCR output text ocrs

Output: List of text strings to be classified by a neural network DNNinput

1 for each keyword ∈ keywords.values() do

2 binDict[keyword]← binFreq(keyword)

3 freqDict[keyword]← bin(binDict[keyword]).count(1)

4 end

5 for each ocr ∈ ocrs do

6 sw ← ocr.keepOnlyLetters()

7 swLen← swb+ Legth(sw)

8 for each keyword ∈ keywords.values() do

9 kLen← Legth(keyword)

10 kLenS ← kLen << wshift

11 if NOT (kLen > swLen OR kLenS < swLen) then

12 if keyword == ocr then

13 DNNinput.append(ocr)

14 break

15 end

16 if similarity(keyword, ocr) > minsim then

17 distance← binary(binDict[keyword]⊕ binFreq(ocr)).count(1)

18 if distance <= mindist then

19 if jaro winkler(keyword, ocr) >= LIMIT then

20 DNNinput.append(ocr)

21 break

22 end

23 end

24 end

25 end

26 end

27 end
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ALGORITHM 3: Binary Letter Frequency Encoding. 0b111, 0b011, and 0b001

are binary bit masks.

Input: Any text string for which a similarity will later be computed: word

Output: Integer representation of a binary field representing the frequency of

each letter in word: intermediate

1 binFreq(word):

2 if word ∈ binDict.keys() then

3 return binDict[word]

4 end

5 letters = { a, b, ..., z }

6 intermediate← 0, iteration← 0, bits← 3

7 for each letter ∈ letters do

8 count← word.count(letter)

9 if count >= 3 then

10 intermediate← intermediate|(0b111 << (iteration ∗ bits))

11 else if count == 2 then

12 intermediate← intermediate|(0b011 << (iteration ∗ bits))

13 else if count == 1 then

14 intermediate← intermediate|(0b001 << (iteration ∗ bits))

15 iteration← iteration + 1

16 end

17 binDict[word]← intermediate

18 return intermediate
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ALGORITHM 4: Similarity. Computes the bit-level similarity between input

text and a word from a neural network’s lexicon.
Input: A word in a neural network’s lexicon: keyword; A substring from the

OCR text ocr

Output: Similarity score between 0 and 1

1 similarity(keyword, ocr):

2 if ocr ∈ binDict.keys() then

3 freqOCR← binDict[ocr]

4 else

5 freqOCR← binFreq(ocr)

6 same← (binDict[keyword] & freqOCR)

7 if same ∈ cntDict.keys() then

8 sameCount← cntDict[same]

9 else

10 sameCount← binary(same).count(1)

11 cntDict[same]← sameCount

12 return sameCount/freqDict[keyword]
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Table 6.3: Mean (x̄) and standard deviation (σ) of 10 execution time samples for each filter’s most effective hyperpa-

rameter configuration.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

(Exact (One letter (No matches) (No matches (Screen

matches) changed) & short strings) capture)

Exec. Time (s) Exec. Time (s) Exec. Time (s) Exec. Time (s) Exec. Time (s)

ID Hyperparameters x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

1 LIMIT=2 2.37 0.17 2.08 0.22 4.18 0.28 1.47 0.12 3.71 0.35

2 LIMIT=2 0.67 0.07 0.61 0.07 1.10 0.12 0.41 0.04 1.62 0.12

9 LIMIT=0.049; 0.05 0.01 9.87 1.45 11.83 1.67 13.08 3.03 11.71 1.11

windowSize=1

10 LIMIT=0.007; 0.04 0.00 14.74 1.32 19.39 1.41 20.77 1.62 18.97 1.46

windowSize=1

11 LIMIT=0.84 4.20 0.22 3.99 0.20 8.12 0.84 5.99 0.21 7.59 0.44

12 - 0.13 0.01 0.07 0.01 0.12 0.02 0.10 0.02 0.11 0.02

14 width=3; k=17 19.81 2.02 21.49 1.44 25.21 2.33 24.04 2.10 24.14 2.30

3 LIMIT=0.6 0.61 0.06 0.54 0.03 1.06 0.10 0.49 0.03 1.29 0.13

4 LIMIT=0.8 0.47 0.05 0.39 0.03 0.85 0.19 0.46 0.04 0.82 0.09

5 LIMIT=0.8 0.73 0.06 0.66 0.05 1.32 0.22 0.63 0.06 1.47 0.16

6 LIMIT=1; 0.47 0.05 0.46 0.15 0.83 0.12 0.48 0.04 0.81 0.09

prefix weight=0.2

7 LIMIT=0.8; 0.75 0.06 0.72 0.21 1.32 0.27 0.65 0.06 1.35 0.09

long tolerance=0

13 LIMIT=9; 0.79 0.09 0.70 0.06 1.55 0.26 1.27 0.12 0.67 0.14

swb=1; wshift=1;

minsim=0.7; mindist=6
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Table 6.4: Mean (x̄) and standard deviation (σ) for 10 samles counting the number of

ocr that pass the filter for each filter’s most effective hyperparameter configuration. The

the same hyperparameter settings were used in Table 6.3.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

(Exact (One letter (No matches) (No matches (Screen

matches) changed) & short strings) capture)

ID x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

1 3000.00 0.00 3000.00 0.00 0.00 0.00 465.90 21.47 65.00 0.00

2 3000.00 0.00 3000.00 0.00 0.00 0.00 465.90 21.47 65.00 0.00

9 3000.00 0.00 1551.50 326.21 490.80 98.62 27.30 7.32 331.20 68.05

10 3000.00 0.00 1661.70 348.77 390.50 44.12 13.90 8.56 329.60 11.82

11 3000.00 0.00 2997.00 6.75 2.40 1.65 154.20 11.68 237.00 0.00

12 3000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 805.00 0.00

14 3000.00 0.00 2086.60 84.23 104.00 9.31 122.20 11.04 534.00 0.00

3 3000.00 0.00 3000.00 0.00 0.00 0.00 44.10 5.22 359.00 0.00

4 3000.00 0.00 3000.00 0.00 0.00 0.00 43.80 4.59 238.00 0.00

5 3000.00 0.00 3000.00 0.00 0.00 0.00 43.40 5.17 251.00 0.00

6 3000.00 0.00 3000.00 0.00 0.00 0.00 0.00 0.00 232.00 0.00

7 3000.00 0.00 3000.00 0.00 0.00 0.00 105.20 7.81 378.00 0.00

13 3000.00 0.00 2995.00 12.69 0.00 0.00 0.00 0.00 62.00 0.00
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Table 6.5: Analysis of observations: The average specificity, precision and recall were calculated and are presented here.

Specificity, precision and recall was 100% for all filter implementations for Dataset 1 and so those results are omitted.

Dataset 2 Dataset 3 Dataset 4 Dataset 5

ID Spec. Prec. Rec. Spec. Prec. Rec. Spec. Prec. Rec. Spec. Prec. Rec.

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 100.00% 100.00% 100.00% 100.00% N/A N/A 84.47% N/A N/A 98.56% 40.00% 8.75%

2 100.00% 100.00% 100.00% 100.00% N/A N/A 84.47% N/A N/A 98.56% 40.00% 8.75%

9 100.00% 100.00% 51.72% 83.64% N/A N/A 99.09% N/A N/A 93.45% 48.55% 56.23%

10 100.00% 100.00% 55.39% 86.98% N/A N/A 99.54% N/A N/A 94.34% 50.32% 52.19%

11 100.00% 100.00% 99.90% 99.92% N/A N/A 94.86% N/A N/A 95.56% 49.37% 39.39%

12 0.00% 0.00% 0.00% 100.00% N/A N/A 100.00% N/A N/A 94.52% 66.59% 99.33%

14 100.00% 100.00% 69.55% 96.53% N/A N/A 95.93% N/A N/A 89.49% 46.82% 84.18%

3 100.00% 100.00% 100.00% 100.00% N/A N/A 98.53% N/A N/A 92.75% 47.45% 59.60%

4 100.00% 100.00% 100.00% 100.00% N/A N/A 98.54% N/A N/A 96.00% 54.62% 43.77%

5 100.00% 100.00% 100.00% 100.00% N/A N/A 98.55% N/A N/A 95.78% 54.03% 45.12%

6 100.00% 100.00% 100.00% 100.00% N/A N/A 100.00% N/A N/A 97.30% 68.53% 53.54%

7 100.00% 100.00% 100.00% 100.00% N/A N/A 96.49% N/A N/A 94.15% 57.64% 72.39%

13 100.00% 100.00% 99.83% 100.00% N/A N/A 100.00% N/A N/A 99.37% 72.58% 15.15%
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Filtering out text that is dissimilar to the detected contexts is essential to lowering

the execution time of AVRA, specifically the time between a client’s request to process

an image, and the response from the server. In this section the execution time of the

filtering algorithm is considered in comparison to a state of the art approximate edit

distance algorithm programmed to perform the same text filtering task.

In one example with only 8 true positive keywords, LazyJaroWinkler executing on

a corei7 assessed 2957 candidate text snippets in 0.47 seconds and kept 8 matches in

total, or %0.3 of the input text. The algorithm compared each candidate with up to

299 DNN keywords. As shown in Table 6.6, an implementation of the edit distance

algorithm described in [96] was used for comparison to the state of the art in edit distance

calculation [231]. Comparing each of the 2957 candidate text snippets to find at least one

close similarity to one of the 299 DNN keywords completed executing in 4.4 seconds. The

incremental improvement in execution time seen in Table 6.6 indicates that the speedup

achieved by LazyJaroWinkler is not a result of only one algorithm modification from

Jaro-Winkler. Rather, several unrelated optimization techniques combined resulted in

the observed speedup of almost 10 times compared to the implementation using state of

the art techniques. LazyJaroWinkler’s low latency is a product of the fact that the vast

majority of the computation when there is no match involves memorized results from

dictionaries, and low level binary operations on integers. These low level operations such

as AND, OR, SHIFT, and XOR are executed extremely quickly. The algorithm requires

no sorting and breaks from loops as soon as a similarity match is identified. Memoization

for partial results with dictionaries reduced the execution time of LazyJaroWinkler and

its subcomponents Algorithm 3 and Algorithm 4.

6.2.1 Filter Sensitivity to Hyperparameter Changes

It is interesting to consider how sensitive the text filtering algorithms are to the hyper-

parameter settings. For example, how important is it that LazyJaroWinkler have a min-

imum similarity setting of 0.7 rather than 0.8 or 0.6? For algorithms with one hyperpa-

rameter such as Jaro (ID 5), an objective function can be defined Obj = a+b+6000−c−d,

where a is the number of results that pass the filter for Dataset 1, b is the number of

results that pass the filter for Dataset 2, c is the number of results that pass the filter

for Dataset 3, and d is the number of results that pass the filter for Dataset 4. A score

of 12,000 for the objective function indicates that the filter accepted all of the exact or

near matches in Datasets 1 and 2, while rejecting Datasets 3 and 4 where there are no



Table 6.6: Comparing the binary operation focused text filtering from Chapter 6 with [231], an implementation of the

edit distance algorithm described in [96]. These data were collected using 2,957 candidate text snippets filtered based

upon 299 DNN keywords.

Match Match Correct AVRA filter Speedup

(%) (#) match execution Most recent optimization relative to

(#) time (s) editdistance (4.4 s)

1.3% 40 8 28.83 Added dictionary binDict 0.15

1.3% 40 8 15.43 Dictionary improvement (binary operations) 0.29

1.3% 40 8 9.50 Penalize candidate text if too short 0.46

1.3% 40 8 9.35 Loop optimization 0.47

1.3% 40 8 1.79 2nd dictionary memorizes binFreq inputs 2.46

1.3% 40 8 1.02 Increase penalty for text if too short 4.31

1.3% 40 8 0.88 Penalize candidate text if too long 5.00

1.3% 40 8 0.78 Further optimize similarity function vars 5.64

0.3% 8 8 0.46 Filter if longest common substring too small 9.57

131
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matches. The relationship for Jaro between LIMIT and the objective function is show

in Figure 6.1. The fitness of the filter is easy to see because of the two dimensional nature

of the data. There is clearly a maximum point at 0.8 where Jaro is configured best. The

execution time impact of the hyperparameter on Jaro is observed in Figure 6.2.
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Figure 6.1: Jaro hyperparameter impact: Objective vs. LIMIT

The trade-off between execution time and filter quality can be decided using the

data in Figures 6.1 and 6.2 for Jaro, but can this approach extend to LazyJaroWinkler

which contains many hyperparameters? Imagine that for each hyperparameter a graph

is plotted to visualize the relationship of the hyperparameter with the execution time

and the overall filter quality. These parameters affect each other, and so the trend

for one hyperparameter indicates only general first order trends, and does not capture

multivariable relationships. A correlation matrix is a better measure of the strength of

the observed correlations. The heat map of Figure 6.3 presents the Pearson correlation

coefficient for the recorded LazyJaroWinkler data.

LazyJaroWinkler contains hyperparameters LIMIT, swb, wshift, minsim, and mindist.

The bottom right quadrant of the heat map reveals that the hyperparameters do not

strongly affect each other. As expected, the top left quadrant reveals that the data-

source (which dataset is processed by the filter) is correlated with the number of results
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Figure 6.2: Jaro hyperparameter impact: Execution Time vs. LIMIT

and the execution time. The bottom left quadrant reveals that wshift and minSim have

a strong impact on execution time. It also shows that swb, wshift, and minDist have the

strongest impact on the number of results of the 5 hyperparameters. It is interesting to

note that the least sensitive hyperparameter is LIMIT. Perhaps because it is only used

in the innermost loop of the filter it has less impact on the execution time.

To get a sense for how the points in the LazyJaroWinkler design space cluster, t-SNE

2D dimensionality reduction ([202] [130]) was applied to a 1% random sample of the

collected data for 100,000 iterations with a perplexity of 30. 10% of the data were used

as a testing dataset with the remaining 90% used as the training dataset. As shown in

Figure 6.4, 10 classes were learned from the data, and clusters appeared to form.
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6.3 Chapter Summary

This chapter described a text filtering approach to accelerate text classification. This

acceleration was achieved by discarding text that was not similar to a set of known

keywords. Several implementation options were modeled in order to identify a filter that

understands short strings, small spelling errors, matches and mismatches, and has low

latency with high specificity. This push for low latency arises from the thesis statement

which claims that action recommendations can be provided within a reasonable response

time.
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Figure 6.3: Heat map of the Prearson coefficient correlation matrix for LazyJaroWinkler
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Figure 6.4: Clusters in a t-SNE 2D dimensionality reduction of the LazyJaroWinkler

design space



Chapter 7

Classification of OCR Output

This Chapter describes the recognition of keywords in noisy text. OCR introduces

spelling errors into the onscreen text analyzed by AVRA, and so a classifier is trained

to recognize mistakes made by the OCR software for the keywords it is meant to detect.

This chapter compares several options for implementing an OCR output classification

system, and settles upon a particular DNN implementation. Using the recognition of

error messages within a set of generated images as an example, a baseline measure-

ment of OCR output recognition accuracy is presented in Section 7.1.1, where an exact

match between the OCR input and output text is counted as a success and any other

text produced is a failure. Dictionary and spell-check-based approaches achieved up to

88% classification accuracy (Sections 7.1.2, 7.1.3 and 7.1.4), while various deep learning

approaches achieved up to 96% accuracy, and a combination of deep learning with a dic-

tionary achieved 97% accuracy (Section 7.1.5). The chapter concludes with a description

of the supervised learning process for the DNN (Section 7.2).

Recognizing variants of terms (for example using stemming and/or lemmatization

[199]) can reduce the number of exactly equivalent keywords learned by AVRA. Al-

though this is a useful idea, it was not implemented for this work. Other standard NLP

approaches used to facilitate word embedding such as removing common words from

the text (removing stop words [199]) do not address this particular recognition prob-

lem as the noise in the text is at the character level rather than the word level, and

understanding the sequence of tokens as an intent is not the goal here. The text for

two adjacent windows can appear jumbled together into a mixed up paragraph including

artifacts from the image converted into text that is not really there. What emerges from

the OCR is a long string of text that may contain specific keywords. Rather than maxi-

137
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mizing the accuracy of OCR output recognition for all onscreen text, or understanding

what the text means, the goal here is to maximize the accuracy for specific keywords.

OCR misspellings are obtained by generating many images containing a given keyword

(e.g. nullpointerexception), extracting text from the generated images using OCR,

and then comparing the extracted text with the original error message text to learn the

misspellings one might expect to see in the OCR output. Normalization of keywords

using equivalence classes requires explicit knowledge of the related terms [199], which

are misspelled versions of the correctly spelled keyword. In this work a neural network

is used so that it can intuit spelling corrections from data outside of the training data,

whereas normalization can only associate terms it knows about.

7.1 Supervised Keyword Learning

An error message is “text that is displayed to describe a problem that has occurred that

is preventing the user or the system from completing a task.” [143]. A simple approach

to detecting onscreen error messages is extracting text from a screen capture using OCR,

and then parsing the OCR output text to detect error message text. This approach

works in principle, but does not work well in practice with error messages because the

OCR conversion from image to text often includes misspellings. Unfortunately, OCR

processing of error message text is more prone to these translation errors than standard

English text. It is demonstrated here that OCR accuracy on error messages is lower than

general English text, and it is shown that even in a state of the art OCR system this

misspelling of error message terms takes place.

For example, OCR of natural language text shown in Figure 7.1 (A) resulted in the

output text of Figure 7.1 (B). Clearly the onscreen text was captured correctly. However,

consider the OCR of error message text from a terminal window shown in Figure 7.2 (A)

resulting in the output text of Figure 7.2 (B). The OCR system extracted the error

message text. However, the OCR text contains a spelling error in the most important

keyword nullpointer3xception used by the virtual agent to detect the presence of the

specific error message. This seems at first glance like a small problem, but in fact this

misspelling of nullpointerexception causes the virtual agent to miss that there is an

onscreen error.

The goal in this work is to learn a mapping from incorrect OCR output words (e.g.

nullpointer3xception) back to the correct words (e.g. nullpointerexception) that

was present on the computer screen, thereby improving error message recognition. Es-
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(a) A cropped image of a webpage containing natural language [257]

(b) OCR output

Figure 7.1: Example of OCR correctly processing natural language

sentially, this system must learn to detect and correct mistakes in OCR output. This is

accomplished by comparing OCR input and output for specific keywords (in this case

error message text) to characterize many of the possible misspellings that may be com-

monly produced by OCR for the keyword in question. This information can then be

used as a basis for correcting OCR output.

(a) Error message sent to OCR system

(b) OCR output

Figure 7.2: Example of OCR incorrectly processing an error message
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Figure 7.3: System for recording and correcting OCR mistakes.

Recording OCR Mistakes

Consider the block diagram in Figure 7.3 for recording OCR mistakes. An image genera-

tor (B) generates many images of various font settings (C) for one specific term (A). The

system then submits the images for OCR processing (D), optionally performs correc-

tive operations on the OCR output (E), and then compares the accuracy of the output

with the original text input (F). OCR at (D) uses the pytesseract wrapper [91] for the

tesseract-OCR engine [216] [111] to convert the image back into a string of text (E). In

this system the OCR is treated as a black box (D), and the behavior of this black box is

characterized through the recording of its input (A) and output (E).

The image generation subroutine depicted in Figure 7.3 (B) takes in text

(e.g. AbstractMethodError) and outputs a grayscale PNG image containing that text.

The system selects a random vertical and random horizontal position on the screen to

display the text, ensuring that it is visible and therefore not cut off. The image size

is always 1024 x 786 pixels with a white background and black text. The word style

is selected randomly as either bold, italic, or plain. The font size is selected randomly

as a value between 10pt and 40pt. The font is selected randomly from the following

set of fonts: Arial, Verdana, Arial Narrow, Century, Courier, Courier New, Dialog, Di-

alogInput, Futura, Garamond, Helvetica, Impact, Lucida Sans, SansSerif, Serif, Tahoma,

Times, and Times New Roman.

OCR Accuracy Decreases for Error Message Text

The system of Figure 7.3 was used to compare tesseract-OCR accuracy recovering nat-

ural English language words within images compared to processing error message text

[216]. Two sets of words were created to represent the two domains to be evaluated:
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Charter Word List (CWL) representing natural English text, and Java Error List (JEL)

representing error messages. CWL contains the set of each word in the Canadian Charter

of Rights and Freedoms [9] cast to lowercase and excluding numbering, indices, braces,

and special characters. CWL contains 541 natural English language words such as “im-

prisonment”. JEL contains a set of error messages produced by the Java Virtual Machine

(JVM). JEL contains 248 terms cast to lowercase such as “indexoutofboundsexception”.

The average word length in CWL (representing common English words) is 7.27 char-

acters, while the average word length in JEL (representing specialist terms) is 21.02

characters.

10 images were generated for each term in CWL and JEL using the image generation

subroutine described above. Multiple images were generated for each term in order to

sample the OCR output under various conditions (font, font size, etc.), resulting in a

variety of OCR output texts. pytesseract was used to convert each image back into text

using OCR. Processing of JEL resulted in 1,485 exact matches out of 2,480 tests, while

processing CWL resulted in 4,567 exact matches out of 5,410 tests. These tests reveal

that OCR processing of error message text (JEL) had lower accuracy (59.9%) than OCR

processing of natural text (CWL) which had higher accuracy (84.4%).

Testing and Training Datasets

Using the term list JEL described above, testing and training datasets were created using

the image generation subroutine. The training dataset TRAINING contained 100 images

per JEL term, for a total of 24,800 images and corresponding error message terms. The

dataset TESTING contained 10 images per JEL term, for a total of 2,480 images and

corresponding terms. Each dataset contained the original text that each picture was

based upon, as well as the text produced by the OCR process.

Regarding the dataset content, TRAINING contained 5,269 distinct OCR results

associated to the 248 distinct terms in JEL. There were therefore, on average, 21.2

variants of each term produced by the OCR output. Some common substrings in JEL

were “illegal” (10 terms), “error” (23 terms) and “exception” (189 terms). Note that 14

data points (0.56%) in TESTING had blank OCR text as a result of the OCR software

detecting no text in the image. The theoretical maximum possible classification accuracy

is therefore 99.44%. When the deep learning system described in Section 7.1.5 was trained

and tested using the TESTING dataset, the classification accuracy was in fact 99.35%.

One factor impacting the time required to extract text from an image is the amount

of text in the image. The more text an image contains, the longer the OCR module
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will require to process the image. However, there appears to be additional information

contained within the execution time of the OCR module. When processing TRAINING

images, the average time required to process an image was 0.34 seconds. Incorrect OCR

output required on average 0.39 seconds to execute, while correct output from the OCR

required only 0.31 seconds to execute. One can therefore conclude that when text length

is taken into account, the OCR output accuracy is likely higher if the OCR processing

time was shorter than the running mean of the OCR processing time, and likely lower if

it is less than the mean processing time.

7.1.1 Baseline Keyword Recognition

A baseline for OCR accuracy on the detection of error message words is to measure exact

matches between OCR input and output text, and to calculate the resulting accuracy.

As recorded in Table 7.1, the default OCR configuration had 61% accuracy processing

the TESTING dataset. This result is close to the observation for JEL, where processing

2,400 error message images resulted in a 59.9% accuracy.

The tesseract-OCR software configuration can be tuned in various ways to improve

OCR accuracy on non-dictionary terms. This approach is recommended in the OCR doc-

umentation [156]. Accuracy when disabling the dictionaries by setting the load system dawg

and load freq dawg variables to false is reported in Table 7.1 as “Disable Dict”. Disabling

the dictionaries did not improve the OCR accuracy. In another attempt, additional dic-

tionaries were disabled (load punc dawg, load number dawg, load unambig dawg,

load bigram dawg, load fixed length dawgs) with results reported in Table 7.1 as “Dis-

able All Dict”. Disabling the OCR dictionaries was not an effective strategy for improving

OCR accuracy when processing error message text from TESTING. These results leave

significant room for other approaches to provide improvements in accuracy.

7.1.2 Supervised Keyword Learning with Memoization

Memoization can be applied to improve error message recognition in the OCR output.

The memoization dictionary first records a set of OCR output correction rules based upon

OCR of a dataset of terms, and then it is tested against a second dataset to measure

the effectiveness of the approach. This approach learns which spelling mistakes the OCR

module is prone to make, and stores them in relation to the correct spelling for use after

the training phase.
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Table 7.1: Classification accuracy for the baseline OCR system on the TESTING dataset.

CONFIGURATION FAIL PASS TOTAL

Exact match Default 965 1,515 2,480

Exact match % Default 39% 61% 61%

Exact match Disable Dict 996 1,484 2,480

Exact match % Disable Dict 40% 60% 60%

Exact match Disable All Dict 1,000 1,480 2,480

Exact match % Disable All Dict 40% 60% 60%

Using the TRAINING dataset, a dictionary D was trained to store outputs from the

OCR process as keys, and text inputs to the image generation process as values. These

key/value pairs map incorrect OCR outputs back to the correct output word. The benefit

of this approach is that the learning algorithm executes very quickly (seconds) compared

to neural network training (hours or days), whereas the drawback of this approach is

that it cannot generalize to identify new misspellings that were not observed during the

training phase.

To test the accuracy of this dictionary-based approach the dataset TESTING was sent

into the OCR tool and the dictionary trained on the TRAINING dataset corrected the

output of the OCR tool in cases where the OCR output matched a key in the dictionary.

When there was a key match, the corresponding dictionary value was substituted for the

OCR output.

The results of this test are presented in Table 7.3. The 88% accuracy is a good

improvement over the 61% baseline established in Section 7.1.1. This high accuracy

makes it clear that most OCR output errors are repeatable as a given term is most likely

to be misinterpreted in a particular way. Furthermore it is clear that more than 1 in

10 results from the OCR module is generated by rare or unpredictable circumstances

that a dictionary-based approach cannot hope to solve. This type of OCR error can be

generated when the text is touching the edge of the frame, is distorted, is in an unusual

font, or a variety of other situations.

Another interesting result from this test was the presence of dictionary key collisions.

Even with TESTING’s small 248 term lexicon of values, there were several cases where

two input terms resulted in the same OCR results in the training dataset, causing a key

conflict between two terms. Both terms expect to use the same key, but keys cannot be

shared between terms. Specific examples of these collisions are presented in Table 7.2.
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Table 7.2: Examples of collisions in the dictionary keyspace resulting from OCR produc-

ing the same output for two or more different terms.

OCR Output Text Generated by Term Also Generated by Term

nexceptiun unsupportedoperationexception indirectionexception

texceededexception sizelimitexceededexception limitexceededexception

mum awterror security violation

Table 7.3: Classification accuracy for the dictionary-based approach to correcting OCR

output text. The dictionary was trained on the TRAINING dataset and tested on the

TESTING dataset.

FAIL PASS TOTAL

exact or regex match 296 2,184 2,480

exact or regex match % 12% 88% 88%

Key collisions were not important to the accuracy on the TESTING dataset, as only one

key collision was present among the 2,480 terms.

7.1.3 First Spell-check Approach

An OCR output correction system was developed in this work based upon the ideas in

[26] to correct OCR output text using the Google search engine’s built-in spell-check

correction. The OCR output text was submitted to Google’s search engine, and if the

‘Showing results for’ field appeared in the results page, the term Google expected replaced

the OCR output text. This system correctly output 1,721 terms out of 2,480 (69.40%

accuracy) when processing the TESTING dataset.

7.1.4 Second Spell-check Approach

A second OCR output correction system was implemented to further evaluate the ef-

fectiveness of correcting spelling mistakes in OCR output text. The spell-check module

[138] was employed to select the best candidate correction from a variety of ranked op-

tions including known misspellings of words, dictionaries of words, word lists generated

by parsing natural language documents, and word snippets. The ranking was based upon

word use frequency in the reference document, preferring more common terms over less
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common ones.

Without modification, this autocorrect implementation works well on correcting mis-

spelled English words. For example, ’Exc6ption’ is corrected by autocorrect to ’excep-

tion’, and ’speling’ is corrected to ’spelling’. However, error message text is not corrected,

as it is not included in the built-in library of words and texts. For example, ’NullPoint-

erExc6ption’ is returned unmodified as ’NullPointerExc6ption’ rather than the correct

answer ’NullPointerException’. The system could not correct any malformed OCR out-

put from the 24,800 examples in the TRAINING dataset, performing equally in terms

of accuracy as the baseline case from Section 7.1.1. To improve these results, the au-

tocorrect dictionary was updated to include the corpus of terms from TRAINING into

its database. After this upgrade the system correctly output 1,993 terms out of 2,480

(80.36% accuracy) when processing the TESTING dataset.

Some examples of successful autocorrect modifications of the OCR output were:

• userexceplion contains one letter substitution mistake and was corrected to

userexception

• i/legalsta teexception contains two mistakes (one letter substitution and one

added space) and was corrected to illegalstateexception

• abstractmethodenor contains a mistake where two characters were subsumed into

one incorrect character, and was corrected to abstractmethoderror

The downside of this spell-check approach using autocorrect is the time required to

correct words is very long. Correcting each of the examples in the TESTING dataset

required 0.79 seconds per spelling correction. For just five onscreen keywords the latency

would no longer provide a reasonable response time.

7.1.5 Supervised Keyword Learning with Deep Learning

This section continues with a brief discussion on the DNN classifier developed for this

work, followed by an explanation of the input and output vector encoding, and the

classification accuracy results for each encoding scheme. Several possible input vector

encoding schemes considered.

The string output from the OCR system must be converted into a representation that

is well suited to classification by a deep learning neural network. Identifying good features

involved the development of incremental improvements sometimes referred to as “feature
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engineering”. Specifically, binary ASCII and letter frequency encoding was investigated

as well as Morse encoding and memoization. These features, when combined, are quite

powerful at correcting OCR output errors. With further augmentation by a dictionary,

the classifier detected the vast majority of onscreen error messages, failing only in cases

where the message information was lost during the image to text conversion process.

The DNN is trained by processing an image of the keyword text through OCR soft-

ware (generated using a text-to-image generator), and then encoding the results into

vectors that include letter frequency information. This approach of keyword recognition

with DNNs robustly detects keywords even in the presence of OCR output spelling errors

and frame-shifts in the text.

The deep learning software package used in this work is called theano [31] [27]. The

specific deep learning algorithm used in this work is a customized branch of image pro-

cessing code [183], originally designed to recognize handwritten characters in the MNSIT

dataset [122]. This algorithm included numerically stable softmax for the output layer,

gradient scaling, improved training with dropout, improved training with noise injection,

and more.

In this work a 3 layer deep learning neural network was implemented in theano to

improve the classification of text produced by an OCR tool [183]. The original image

processing deep learning system was modified for this work to increase the number of

input neurons, and to accept text rather than image data. The output layer contains

5000 neurons. Each output neuron encodes for a specific term or is unused. Output

vectors in TESTING and TRAINING are one-hot vectors. This gives the network the

ability to map many millions of possible input vectors (representing OCR text) onto up

to 5000 specific terms. These terms can be added dynamically as the system learns new

terms. The input layer contains 784 neurons, and the hidden layer contains 625 neurons.

The number of inputs, 784, is an arbitrary number left over from the original purpose

of the code, which was processing image data (28 pixels by 28 pixels). Training of the

network is accomplished over 150 epochs. Many experiments in this work were performed

at three different levels of TRAINING dataset uniform random sampling: either 10%,

20%, or 100%. Using less of the dataset in training helps the model to complete the

training phase faster at the cost of predictive performance after the training. Using too

much training causes the model overfit to the training data and then underperform when

classifying the TESTING dataset.

The input vector encoding for a deep learning system is crucial to the predictive

success of the network. In this Section input vector encoding is discussed. Characters
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in the output of the OCR system are encoded into an array representing the characters

of the OCR output as inputs to the deep learning neural network. The neural network

is trained in a similar way to the dictionary discussed in Section 7.1.2. Namely, the

independently generated datasets TRAINING and TESTING are used to train and then

test the system.

Each distinct term in the datasets (TRAINING, TESTING) was encoded as a 1-

hot vector unique to that keyword. These 1-hot vectors are the classes that the neural

network is trained to recognize. The images based upon these terms are the inputs to the

OCR, and the outputs of the deep learning system are the 1-hot output vectors. Because

of the sparse nature of 1-hot vectors, they are stored as integers signifying the integer

index into the 1-hot vector where the only ’1’ in the vector is located. Input vectors in

TRAINING are created using the encoding of the OCR output. During each epoch, the

system is trained on TRAINING and then tested against TESTING.

Each element in both datasets contains vector representations of terms using 1-hot

output vectors, and encoded OCR text as input vectors. These mappings between input

vectors and output vectors translate from the plaintext of OCR to a representation that

the neural network is trained to understand.

Input Vector Encoding

Deep learning input vectors can be encoded as pixels in a grayscale image. Data in the

array representation of a term is left-aligned onto the input vector. At this stage various

alignment schemes for the input vectors were attempted with poor results, including

random alignment and random amounts of 0-padding both sides of any term less than

784 elements long. The initial approach of left alignment of the data produced better

results and so it was retained. If the data is less than 784 character long, then it is

right-padded with 0s to become length 784. If the data is longer than 784 characters

then the data is truncated to fit into the array.

Deep learning input vectors can be encoded to increase the number of array ele-

ments/cells/pixels encoded by a character (increased number of neurons activated) and

to increase the contrast of the input vectors during training (array pixel elements contain

only the values 0 or 255).

The input vector representations considered here are: Naive ASCII encoding (Ascii),

Binary ASCII encoding (BinAscii), Morse encoding (Morse), Morse with letter frequency

encoding (MorseFreq described in Section 7.1.5), and Binary ASCII with letter frequency

encoding (BinAsciiFreq). Finally, the dictionary approach from Section 7.1.2 was com-
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bined with the vector encoding from BinAsciiFreq with results reported as BinAsciiFre-

qDict.

Naive ASCII encoding (Ascii)

This encoding involves assigning each pixel in an array of length 784 and height 1 with

the ASCII value for a character. The encoding at each element maps the ASCII number

of the corresponding character to the cell in the array at the same index. Figure 7.4

shows an example of this encoding scheme. The following is an example of an ASCII

input vector for the term “socketexception”. The text string is broken down into a vector

containing the characters [’s’, ’o’, ’c’, ’k’, ’e’, ’t’, ’e’, ’x’, ’c’, ’e’, ’p’, ’t’, ’i’, ’o’, ’n’]: [115,

111, 99, 107, 101, 116, 101, 120, 99, 101, 112, 116, 105, 111, 110, 0, 0, 0, 0, ..., 0]

Ascii

Figure 7.4: Conversion from text into input vectors using naive ASCII encoding.

As reported in Table 7.4 the naive ASCII encoding scheme was formatted in a way

that the deep learning neural network was not able to learn well. The input vectors

of the training data were difficult for the system to differentiate. The TRAINING and

TESTING datasets included 248 classes, and so a complete failure to learn to differentiate

between classes would register as (1/248), or 0.4% accuracy. A random output from the

5000 output neural network would result in a 1/5000 chance of correctly identifying a

particular class. The results for the naive ASCII encoding were poor (14%) and not

usable as a real-world classifier, but clearly some learning did take place.

Binary ASCII encoding (BinAscii):

To improve the perceptron processing of the information contained in the ASCII input

to the neural network, the data in each ASCII character was converted into binary and

then into pixels. Figure 7.5 shows an example of this encoding scheme. For example,

the letter ’a’ has ASCII code 55, which is ’110111’ in binary. This binary string is then

converted into the following pixel string: “255, 255, 0, 255, 255, 255”. These pixel strings
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were then concatenated into a vector representing the original text coming from the OCR

module. The following is an example of a Binary ASCII input vector representing the

term “socketexception”: [255, 255, 255, 0, 0, 255, 255, 255, 255, 0, 255, 255, 255, 255,

255, 255, 0, 0, 0, 255, 255, 255, 255, 0, 255, 0, 255, 255, 255, 255, 0, 0, 255, 0, 255, 255,

255, 255, 0, 255, 0, 0, 255, 255, 0, 0, 255, 0, 255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0,

0, 0, 255, 255, 255, 255, 0, 0, 255, 0, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 0, 255,

0, 0, 255, 255, 0, 255, 0, 0, 255, 255, 255, 0, 255, 255, 255, 255, 255, 255, 0, 255, 255,

255, 0, 0, 0, 0, ..., 0, 0, 0]

This binary data format is easier for the neurons to learn because each letter that

reaches the neural network input is encoded as a series of ON/OFF signals, rather than

discrete or continuous normalized signals containing level information. Neural networks

are well suited to transform binary input data into binary output data, as the activation

function outputs a binary signal at the output of any neuron. The DNN should learn to

recognize letters with a multi-neuron pattern at the input to the DNN. When training

a DNN, each level of the neural network is tasked with encoding features based upon

the previous layer’s feature representations. Because crisp inputs in the training data

(ON or OFF) are easier to learn features from in the earliest training layer (the input

layer), binary input data trains the DNN better than continuous inputs. Similarly during

backpropagation, it is easier to converge to crisp ON/OFF signals at the input than to

learn to reconstruct the inputs at some specific level for each neuron. The information

density of the binary representation is lower, but the signal is much clearer to learn from.

◆�✁✁ ◆ � ✁ ✁

255 0 0 255 255 255 0 255 0 255 0 255 0 255BinAscii

1001110 1010101 1001100 1001100

Figure 7.5: Conversion from text into input vectors using binary ASCII encoding.

The classification accuracy of binary ASCII encoding is reported in Table 7.5 and

Figure 7.7 under the labels BinAscii10, BinAscii20, and BinAscii100. The binary ASCII

encoding scheme was very good at training the deep learning neural network to classify

OCR output text. The maximum classification accuracy achieved with binary ASCII

encoding was 92%.
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Morse encoding (Morse):

The 784 element Morse input vectors are populated by converting characters from letters

and numbers in the OCR input/output into the dots and dashes of the International

Morse Code (Morse) [4]. Although Morse standards require special characters to be

mapped to specific patterns, that component of the standard was not followed for this

work [4]. In Morse, a dot is occupied by one element with value 255 followed by a one

element with the value 0, a dash occupies three elements with value 255 followed by one

element with the value 0, the space between letters occupies 3 elements with value 0,

and the space character is represented by 7 consecutive elements with value 0. The dot

and dash representation of each letter and number is specified in the Morse system, and

this work maps special characters to existing Morse codes to retain the information they

contain. For example, the double quote is treated as a U character, and the comma is

treated as the number 4.

The following is an example of a Morse input vector representing the term “socketex-

ception”: [255, 0, 255, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 255, 255, 0, 255, 255, 255, 0,

0, 0, 255, 255, 255, 0, 255, 0, 255, 255, 255, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255,

255, 255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0,

255, 0, 255, 255, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 255, 255, 0, 255, 0, 0, 0, 255,

0, 0, 0, 255, 0, 255, 255, 255, 0, ..., 0, 0, 0]

NULL N U L L

255 255 255 0 255 0 0 0 255 0 255 0 255 255 255Morse

Figure 7.6: Conversion from text into input vectors using Morse encoding.

The classification accuracy of Morse encoding is reported in Table 7.5 and Figure

7.7 under the labels Morse10, Morse20, and Morse100. The Morse encoding scheme was

very good at training the deep learning neural network to classify OCR output text. The

maximum classification accuracy achieved with Morse encoding was 91%.
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Morse with letter frequency encoding (MorseFreq):

Morse encoding of input vectors resulted in 91% classification accuracy. The 9% of

TESTING that was incorrectly classified was analyzed to uncover the possible reasons

for learning failures. It became clear from looking through the data that one major

problem is frame shifts. Frame shifting in the OCR output text (e.g. the ’M’ character

interpreted as two consecutive lowercase ’l’ characters) throws off the neural network by

shifting all subsequent letters from their usual position. These shifts can occur multiple

times in the same text. Two such shifts confuses the network too much to be resolved

correctly. One solution is to encode letter frequency into the final elements of the input

vector to preserve the information contained in a term when characters are added and the

information in the term is shifted. This encoding region gives the network hints about

the term in a frame shift invariant way using letter frequency encoding. As shown in

Algorithm 5, 52 elements are used in a 2 bin letter frequency vector. Only the letters ’a’

through ’z’ (26 characters) are represented in the encoding, and each letter is represented

by 2 elements in the vector. The encoding is simple: for each letter, one input represents

the presence of a character (e.g. ’a’ in the word ’apple’ is present and therefore ’255’),

while the adjacent input represents the detection of more than one of a letter being

detected. And so, the two elements encoding the frequency of ’a’ in ’apple’ will contain

’255’,’0’, while the elements for ’p’ contain ’255’,’255’, and the elements for the letter ’z’

will contain ’0’,’0’.

Adding a letter frequency feature to the input vector creates a second avenue for the

DNN to learn what each keyword looks like. With this second set of features, the DNN

can guess at the meaning of a misspelled or shifted word by weighing the strength of the

letter and letter frequency features.

The classification accuracy of Morse with 2-bin frequency encoding is reported in Ta-

ble 7.5 and Figure 7.7 under the labels Morse2Freq10, Morse2Freq20, and Morse2Freq100.

The maximum classification accuracy achieved with Morse with 2-bin frequency encoding

was 96%.

Binary ASCII with letter frequency encoding (BinAsciiFreq):

Binary ASCII character encoding of BinAscii was combined with letter frequency encod-

ing of MorseFreq to produce another input vector encoding scheme.

The classification accuracy of binary ASCII with 2-bin frequency encoding is reported

in Table 7.5 and Figure 7.7 under the labels BinAscii2Freq10, BinAscii2Freq20, and
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ALGORITHM 5: Encoding letter frequency of OCR text output into a vector

Input: Array of 26 letters [a-z]: letter; text output from OCR module: ocrText;

generator of 0-filled array: zeroes(length); extractor of occurrences of

letter in text: count(letter, text); Number of elements used to represent

the frequency of each letter: numBuckets

Output: Array representation of letter frequency frequencyArr

frequencyArr = zeroes(26 ∗ numBuckets)

for i in range(0, 26) do
occurrences = count(letter[i],ocrText)

for j in range(0, numBuckets) do

if occurrences > j then
frequencyArr[numBuckets ∗ i+ j] = 255

end

end

end

BinAscii2Freq100. The maximum classification accuracy achieved with binary ASCII

with 2-bin frequency encoding was 96%. Results for binary ASCII with 10-bin frequency

encoding are reported as BinAscii10Freq20, where the highest classification accuracy was

also 96%.

Binary ASCII with letter frequency encoding and dictionary-based output

correction (BinAsciiFreqDict):

To further increase the classification accuracy, the dictionary approach from Section 7.1.2

was combined with the input vector encoding from BinAscii10Freq20 of Section 7.1.5.

The dictionary was programmed to replace the output from the neural network when it

identified an exact match, and otherwise to defer to the result from the neural network.

As depicted in Figure 7.8, if the memoization dictionary does not contain the spelling

correction (or exact match) for the input, the DNN input vector is composed with one

section encoding ASCII letters in binary, and the other encoding the frequency of each

character. An entry recognized by the DNN results in exactly one neuron in the output

being activated, as the DNN output employs one-hot encoding. The activated neuron

corresponds to a particular globally unique ID (the index), and this ID can be used to

look up in a dictionary the keyword corresponding to the activated neuron’s index. This
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Table 7.4: Classification accuracy for deep learning neural network using ASCII encoding

of input vectors when classifying the TESTING dataset.

Training Effort Classification Accuracy

Training on 10% sample of TRAINING 13.72%

approach (BinAscii10Freq20Dict) resulted in 97% as the highest classification accuracy.

More detailed results are presented in Figure 7.7 and Table 7.5.

This approach resulted in accurate identification of 2403 out of 2480 images in TEST-

ING. The remaining 77 images from TESTING that failed to be correctly classified were:

13 images where the OCR output was blank, 48 images where key collisions occurred

such that the OCR result was text contained in TRAINING but for which TRAINING

contained a different answer than the one contained in TESTING, and the remaining

16 images contained OCR output that TRAINING did not contain. One example of

these rare OCR output mistakes is the OCR output for an image containing the term

cannotundoexception where the OCR output was mammogram.

7.2 Supervised Keyword Learning Accuracy

The approaches evaluated in this work to improve error message detection accuracy by

correcting the OCR output are dictionary (Section 7.1.2), spell-check (Sections 7.1.4 and

7.1.3), and deep learning (Section 7.1.5). The overall results for classification accuracy

are discussed in Section 7.2.1.

7.2.1 Supervised Keyword Learning Results

Results for OCR output classification approaches described in this work are presented in

Table 7.5, and Figure 7.7, and the full set of results is summarized in Table 7.6 and 7.9.

The deep learning system appears to have generalized more than the fixed dictionary

map discussed in Section 7.1.2. OCR tuning, dictionary-based classification, and spell-

check were outperformed by a deep learning system. Deep learning has a long initial

training phase which becomes a problem only when retraining the whole network to

remove (unlearn) a term. 5000 terms in the 1-hot output vector are initially available to

be added to the network’s lexicon without incurring a heavy training penalty. However,

removing terms required the network to be completely retrained. In the dictionary
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Table 7.5: Classification accuracy for deep learning neural network using various input

vector encoding schemes and classifying the TESTING dataset.

Training Effort Classification Learning Graph Label

Accuracy in Figure 7.7

None 61.09% Baseline (not in Fig 7.7)

Training on 10% sample of TRAINING 88.26% Morse10

Training on 20% sample of TRAINING 90.84% Morse20

Training on 100% of TRAINING 88.91% Morse100

Training on 10% sample of TRAINING 90.28% BinAscii10

Training on 20% sample of TRAINING 92.01% BinAscii20

Training on 100% of TRAINING 89.43% BinAscii100

Training on 10% sample of TRAINING 95.97% Morse2Freq10

Training on 20% sample of TRAINING 95.85% Morse2Freq20

Training on 100% of TRAINING 94.03% Morse2Freq100

Training on 10% sample of TRAINING 96.09% BinAscii2Freq10

Training on 20% sample of TRAINING 95.97% BinAscii2Freq20

Training on 100% of TRAINING 94.03% BinAscii2Freq100

Training on 20% sample of TRAINING 96.29% BinAscii10Freq20

Training on 20% sample of TRAINING 96.97% BinAscii10Freq20Dict
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Figure 7.7: Classification accuracy (%) for various deep learning input vector encoding

schemes at each training iteration (epoch) during the training phase.



Figure 7.8: Graphical overview of AVRA’s DNN (BinAscii10Freq20Dict) implementation encoding text into vectors of

binary ASCII and letter frequency information.
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Figure 7.9: Classification accuracy on TESTING dataset for OCR approaches.

approach, adding and removing terms is comparatively very cheap, computationally.

Using a 20% sample of the Morse data trained a better classifier than using 100%. The

model is likely overfitting to the training data and then getting stuck on the testing data.

This is a common problem with deep learning systems that is mostly solved by dropout,

which was used in this work [221]. Specifically, during training there is a 20% chance

of dropping out any given input and a 50% chance of dropping hidden layer outputs.

Dropout forces the DNN to learn from incomplete data so that when incomplete data

arrives at the input, such as misspelled text, it can still recognize the text.

A gradual increase in accuracy from 88% to 97% can be observed in Figure 7.7 as

the input vector encoding scheme was tuned with feature engineering to maximize the

performance of the neural network.

Comparing ASCII and Morse input vector encoding schemes, the binary encoding of

ASCII characters performed equally or slightly better than Morse encoding, even though

the length of the data in Morse vectors is typically longer than ASCII vectors. Perhaps

these two encoding schemes express equivalent amounts of pattern information for the

neural network to learn from.

Dictionary and spell-check-based approaches achieved less than 90% accuracy, while

deep learning achieved 96% accuracy, and a combination of deep learning with the dic-

tionary approach achieved 97% accuracy. The accuracy of OCR output is lower when

processing onscreen error messages and other domain-specific terminology relative to

standard English text. The accuracy of fullscreen image processing using OCR was im-

proved in this work. The systems discussed in this work learned to detect and correct

mistakes in OCR output.



Table 7.6: Classification accuracy on TESTING dataset for OCR approaches.

Approach Classification Accuracy Comment

Deep learning (Ascii) 14% Encoding not crisp enough for training

Baseline 61% Low performance on error message text

Spell-check 69% Surprisingly close to baseline

(Google ‘Showing results for’)

Spell-check (autocorrect) 80% Excels at single letter substitutions

and/or added spaces

Dictionary 88% Cannot generalize beyond training observations

Deep Learning (Morse) 91% Difficulty with frame shifts within text

Deep Learning 92% Difficulty with frame shifts within text

(BinAscii)

Deep Learning 96% Letter frequency encoding resolves classification

(MorseFreq) after frame shifts in text

Deep Learning 96% Letter encoding schemes BinAscii and Morse

(BinAsciiFreq) produced similar results

Deep Learning with Dictionary 97% Slight increase in performance combining a deep

(BinAsciiFreqDict) learning algorithm with memorization of a dictionary

158
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AVRA is initialized with a set of contexts and related keywords using supervised

learning, and each context is initialized with a dedicated DNN text classifier. Each

DNN was implemented in theano [27] with 5000 outputs, meaning that up to 5000

keyword classes can be trained into each context. It was important to configure the

DNNs such that each DNN has output vectors with distinct IDs. This is critical to the

merging of the results from multiple DNNs in the recommendation filtering stage. In

a given DNN, the keywords trained into it are perhaps a few hundred strings of text

to begin with. For example, for Java programming, 248 terms cast to lowercase such

as “indexoutofboundsexception” were trained into the DNN. The remaining outputs of

the DNN are available for AVRA to fill with learned information over time. Further

discussion on unsupervised learning is presented in Chapter 9.

7.3 Chapter Summary

This Chapter described a method for recognizing onscreen keywords with a DNN, in

the presence of spelling mistakes from an OCR conversion of images to text. A DNN

supervised learning process was described for recognizing mistakes made by the OCR

software when processing specific keywords. The ability to recognize onscreen text is

essential to the thesis statement that AVRA can provide action recommendations without

integration into each individual program executing on the computer. At this point in

the thesis, the recognition of onscreen information has been fully elaborated, and the

decision of what actions to recommend is presented in the following chapter.



Chapter 8

Ranking Recommendations

The task for AVRA’s RS is to rank the possible recommendations according to recogni-

tion confidence score (the combined classification confidence scores from the DNN and

CNN) and the confidence score for the user preferences (based upon past user behavior

selecting recommendations from particular contexts and individual recommendations).

When many recommendations are possible, the highest ranked recommendations should

be presented to the user. This chapter presents the RS as a hybrid recommendation

filtering algorithm performing content-based, context-aware ranking of predictions. If

the user behavior changes over time, the recommendation rankings can be automatically

adjusted to recommend new actions.

The number of possible recommendations resulting from the context-aware parsing

of the text on the screen is usually much higher than the 3 recommendations AVRA can

present to the user in the GUI. Consider that each DNN has up to 5000 outputs, and

there may be several hundreds or even thousands of DNNs feeding the RS, leading to an

action recommendation search space of millions of possibilities. AVRA therefore includes

a recommendation filtering algorithm described in Algorithm 6.

The recommendation filtering algorithm used is a hybrid filtering approach incorpo-

rating a content-based, context-aware ranking of predictions modified by user history-

based and probabilistic approaches. The filtering algorithm is content-based as it ranks

recommendations according to attributes of the content, specifically based upon text

detected in image data. The filtering algorithm is context-aware as it weighs the user

affinity for each context in its objective function when ranking candidate action recom-

mendations. For example, when processing an image that contains a Java error message

keyword, the algorithm may rank the corresponding action recommendation lower as a

160
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result of the user having a history of ignoring Java-related action recommendations. The

filtering algorithm is user-history-based as its recommendations are modified based upon

the user’s responses to past recommendations. The filtering algorithm is probabilistic as

it weighs several probabilities: the probability that a recognized context is in fact present,

the probability that a recognized keyword is in fact on the screen, the probability that a

user will select a recommendation given the past history of that user in terms of contexts

and specific recommendations.

AVRA maintains a user profile which includes a history of all actions taken by the

user with respect to the GUI. This user profile improves the chances of recommending an

action that will be selected by the user by observing past successful RS recommendation

predictions. The user provides feedback to the RS filtering algorithm by accepting or

rejecting recommendations. The user-RS interaction forms meta-data which guides the

adjustment of the weights in the RS algorithm. The RS “evicts” a recommendation

when the recommendation is replaced by an update to the GUI to make room for a

recommendation that resulted in a higher ranking. Similarly, when the user accepts a

recommendation by clicking a button in the user interface (or pressing a hotkey), positive

feedback is recorded in the RS database. These eviction and acceptance events are the

mechanism whereby AVRA solicits negative and positive feedback from the user.

By following this recommendation approach, this RS follows the advice: “human rea-

soning is kept within the knowledge discovery loop” [57]. For example, recommendations

clicked by the user leads to those recommendations becoming easier to recommended in

the future. This happens because the systm becomes biased towards the things it recog-

nizes are preferred by this particular user. Similarly, if one recommendation or a set of

recommendations is not interesting to the user, she will opt not to click on these recom-

mendations, leading to increased difficulty for AVRA to recommend the related action

or actions. Again this is manifested as adjustments the the weights in the RS algorithm.

Therefore, the cold start problem has a low effect on AVRA because the recommenda-

tions are strongly driven by onscreen activity (user activity), which leads naturally to an

initial set of recommendations (clicks or recommendation rejections).

Consider in detail the filtering algorithm shown in Algorithm 6 consisting of 3 loops.

The results from Algorithm 2 are inputs to this algorithm which produces recommenda-

tions and then narrows them down to 3 options to present to the user. In the first loop on

lines 1 to 9, each DNN that relates to the current context classifies the related input into

one of the classes on which it was trained with a finite confidence level between 0 and 1.

Upon completion of this classification loop, another loop computes the user preferences
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for each possible recommendation (lines 10 to 21). The user preferences are based upon

their history of clicking on, and therefore accepting, past recommendations, as well as the

count of accepted (clicked) recommendations for each context. This approach increases

the likelihood of a recommendation being proposed when the user tends to accept rec-

ommendations of a given type or in a given context. The converse is also true, where a

recommendation is made less likely if the user tends not to accept a given recommenda-

tion or the recommendations in the context of that specific recommendation. In the third

loop on lines 22 to 26, the recommendation ranking is adjusted to take into account the

computed probabilities from the second loop, and the highest ranked recommendation at

each index is assigned to a new list Pmax. Finally, the 3 highest ranked recommendations

in Pmax are loaded into the GUI buttons. At this point when the buttons are updated,

any evictions of recommendations from the buttons are recorded in the database.

Pmax represents a ranked list of results as the result of the evaluation of several

normalized tensors. Not that Pmax is not normalized so that the contents sum to 1.

Instead the indices for the array elements with the highest 3 values in the Pmax tensor

are selected as the recommendations to offer to the user. As depicted in Figure 8.2,

AVRA’s RS combines five tensors as inputs to make recommendations. In Equation 8.1,

each tensor (curves in Figure 8.2) represents the values of each feature within the related

tensor. The context tensor contains c features and has the shape 1xc. The keyword

tensor has shape cxk associating k keywords to c contexts. Similarly the keywordClicks

and keywordEvicts history tensors are also of dimension cxk. Finally, the contextClicks

tensor is of shape 1xc. The output of AVRA’s RS is a flattened version of Pmax of shape

1x(kc). The argmax operator helps to return the indices of the three highest valued

recommendations to populate the user interface.

Pmax
(k∗c)×1

= f(contextClicks
1×c

, keywordClicks
c×k

, keywordEvicts
c×k

, keywordtensor
c×k

, contexttensor
1×c

)

(8.1)

It is helpful to understand RS Algorithm 6 with a step by step contrived sim-

ple example using Figure 8.1 as input. Imagine that there are 2 contexts learned

into AVRA: console programming (DNNid = 0), and programming in the Eclipse

IDE (DNNid = 1). Within console programming AVRA has learned 2 keywords:

chmod (detectedIndex = 0) and lshw (detectedIndex = 1). Within the Eclipse con-

text AVRA has learned 2 keywords: nullpointerexception (detectedIndex = 2) and

outofmemmoryerror (detectedIndex = 3). In this example, AVRA captures a screen-
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Figure 8.1: A contrived example image for explaining how AVRA’s RS makes recom-

mendations based upon screenshots.

Figure 8.2: A depiction of the information flow through AVRA’s RS.

shot containing two side by side windows: one Eclipse window and one console window.

Showing two onscreen contexts reveals how AVRA can understand multiple onscreen

windows at the same time. With keywords in bold font for clarity, the OCR text for the

screenshot of Figure 8.1 is the following:

root@ubuntu-2gb-torl - PyDev - avraServer/avra/recommender.py le Edit

Source J - Eclipse Refactoring Navigate Search I ?, Java EE $11 Java I=1 %

I yl A 634 (C:\Python34\python.exc 0 Project Pydev Run Window Help sing

username "root". ,uthenticating with public key "rsa-key-20160817" Fast

login: Sun Jan 15 06:04:37 2017 from 108-162-171-196.cable.teksavvy.con

iclot@ubuntu-2gb-tort-01:4 ,00t@ubuntu-2gb-tort-01:-# hmod +x file.txt

hmod: cannot access ’file.txt’: No such file or directory

ioot@dbuntu-2gb-tort-01:-# lshw untu-2gb-tort-01 description: Computer a)
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In this example, AVRA’s CNN detects that the computer screen is showing a console

window (CNN confidence = 50%) and has also detected an Eclipse IDE window (CNN

confidence = 99%). These two activated contexts trigger their respective text filters and

DNN text classifiers. Each DNN (DNNid = {0, 1}) receives from a context-specific

text filter a list of candidate keywords to be classified. The list of candidate keywords

for console programming (DNNid = 0) is {chmod, hmod, lshw}, and the list of candi-

date keywords for Eclipse (DNNid = 1) is {nullpointerexeption, outofmemmoryerror}.

The console programming DNN finds classification results and confidence levels using the

function

argmax(BinAscii10Freq20Dict[DNNid](keyword)), which returns the detected key-

word index and related detection confidence level [DetectedIndex, ClassificationConfidence].

For brevity let b() be a new name for BinAscii10Freq20Dict. The console programming

DNN returns [0, 1.0] for argmax(b[0](′chmod′)). The RS then checks that this result is

the best so far for this keyword in this context and that the confidence is above 50%. This

restriction is satisfied and so PDNN [0][0] ← 1.0. Next the RS observes that the console

programming DNN returns [0, 0.7] for argmax(b[0](′hmod′)). The RS now checks if this

is the strongest detection confidence for ‘hmod’ thus far in this RS iteration. Checking

0.7 > PDNN [0][0] the RS finds that 0.7 ≯ 1, and so the RS moves on to the next keyword.

The RS gets [1, 1.0] for argmax(b[0](′lshw′)). It then checks that 1.0 is the best result

so far for ‘lshw’ in this context and that the confidence is above 50%. Satisfied, the RS

stores PDNN [0][1]← 1.0. Moving on to the next context (DNNid = 1), the RS finds that

the DNN for the Eclipse context returns [0, 1.0] for argmax(b[1](′nullpointerexeption′))

and for argmax(b[1](′outofmemmoryerror′)). Following this procedure has resulted in

the RS focusing in on the strongest signal for each onscreen keyword. These observations

result in the assignments PDNN [1][2]← 1.0 and PDNN [1][3]← 1.0. At this point the RS

has completed the first loop of Algorithm 6 (lines 1 to 9). The RS now has a model of

which keywords have been detected, and with what confidence they have been detected.

The RS now proceeds to summarize the user behaviour so that it can be incorporated

into the recommendation rankings. In this example the user has accepted recommenda-

tions for the Eclipse context 1 time for a nullpointerexeption action recommendation.

For the console context the user has accepted recommendations 100 times, where the
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accepted recommendations were half for lshw and half for chmod. These observations

result in the following assignments:

contextClicks[0]← 100

contextClicks[1]← 1

keywordClicks[0][0]← 50

keywordClicks[0][1]← 50

keywordClicks[1][2]← 1

keywordClicks[1][3]← 0

The RS has recorded recommendation evictions as follows:

keywordEvicts[0][0]← 500

keywordEvicts[0][1]← 500

keywordEvicts[1][2]← 1000

keywordEvicts[1][3]← 1000

The RS then computes the overall number of contexts and clicks, followed by a bias to

adjust the weights for each context according to the user’s click history for that context

(Pcontext):

contextCount← 2

contextClickTotal ← 101

Pcontext[0]← 100/101

Pcontext[1]← 1/101

ForDNNid = 0, the keywordClickTotal is computed as 50+50, whereas keywordEvictTotal

is 500 + 500. For DNNid = 1, the keywordClickTotal is computed as 0 + 1, and

keywordEvictTotal is 1000 + 1000. With the above information the RS can compute

the following keyword-specific probabilities:

Pclick[0][0]← 0.495 = ((100/101) ∗ 50)/100

Pclick[0][1]← 0.495 = ((100/101) ∗ 50)/100

Pclick[1][2]← 0.010 = ((1/101) ∗ 1)/1

Pclick[1][3]← 0.010 = ((1/101) ∗max(1, 0))/1
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Consider at this point the reasoning for the max operations when computing Pclick.

Had the max been omitted for Pclick[1][3] it would be 0 rather than 0.010. In the cal-

culation of Pmax[1][3] below, this would rank the keyword outofmemmoryerror in the

same way as a keyword that did not appear onscreen at all. The purpose of the max is

to slightly improve the odds of first-time recommendations in the RS, especially when

there are not higher ranked context-specific keywords onscreen to trigger action recom-

mendations. An odd consequence of using the max function here is that the probabilities

Pclick add to slightly more than 1.0. This is not a real problem as these numbers are used

for ranking rather than true event prediction. The RS proceeds to calculate the eviction

probabilities used as negative feedback in the ranking of action recommendations:

Pevict[0][0]← 0.495 = ((100/101) ∗ 500)/1000

Pevict[0][1]← 0.495 = ((100/101) ∗ 500)/1000

Pevict[1][2]← 0.005 = ((1/101) ∗ 1000)/2000

Pevict[1][3]← 0.005 = ((1/101) ∗ 1000)/2000

Selecting K1 as 0.999 to highly reward clicks and K2 as 0.001 to slightly punish

evictions, the RS can now calculate which recommendations to display to the user by

computing and ranking Pmax as follows:

Pmax[i][g]← PDNN [i][g] ∗ (1 +K1 ∗ Pclick[i][g]) ∗ (1−K2 ∗ Pevict[i][g])

Pmax[0][0]← 1.494 = 1.0 ∗ (1 + 0.999 ∗ 0.495) ∗ (1− 0.001 ∗ 0.495)

Pmax[0][1]← 1.494 = 1.0 ∗ (1 + 0.999 ∗ 0.495) ∗ (1− 0.001 ∗ 0.495)

Pmax[1][2]← 1.010 = 1.0 ∗ (1 + 0.999 ∗ 0.010) ∗ (1− 0.001 ∗ 0.005)

Pmax[1][3]← 1.010 = 1.0 ∗ (1 + 0.999 ∗ 0.010) ∗ (1− 0.001 ∗ 0.005)

Finally, argmax(Pmax, 3) selects to display to the buttons action recommendations

for either {chmod, lshw, nullpointerexeption} or {chmod, lshw, outofmemmoryerror}.

Recommendation history informs the usefulness of new candidate recommendations.

However, ignored recommendations are much less meaningful than a clicked recommen-

dation. Firstly, the user may not be at the computer screen when the recommendation

was evicted. Secondly, a click indicates a stronger positive conscious remark on a rec-

ommendation than a recommendation eviction indicates negatively on that recommen-
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dation. Thirdly, a recommendation may be evicted as a result of a change in the content

of the screen, triggering a context change, rather than the user’s active decision to ig-

nore the recommendations available in the GUI. Finally, there are many more evictions

than clicked recommendations, and so clicks should be weighted more heavily. For these

reasons the weighting K1 for clicks is much higher than the weighting for evictions K2.

Overspecialization of the filtering algorithm is explored in Section 3.7.

The AVRA database contains the following information: a list of recommendations,

recommendation history including user activity profile, user registration information,

browser history, and the history of processed image text. The provenance of each rec-

ommendation is accessible programmatically, as a SQL history of detected keywords,

recommendations based on recognized keywords, and accepted recommendations.

Relating the RS back to the thesis statement, the RS performs a shallow search with

the CNN context detection, and with OCR and DNNs performs deeper context-driven

analysis.

Regarding the action and state representations discussed in [131], AVRA’s RS model

focuses on state representation. The CNN detects context from the current screen state,

and then relevant DNNs extract information from that state. Another major difference

between AVRA and next-command prediction approached such as [115] is that AVRA

seeks out information from many different programs visible onscreen, while command

prediction only detects the command history within one program.

While utilizing an ontology or taxonomy to model recommendation scores is a pow-

erful approach which encapsulates entity relationships, in this work a context-based

scoring was used. In principle, an ontology-based approach could be incorporated into

AVRA’s RS in addition to the context-based approach. In this work context is ap-

proached from the perspective of [10], where recommendations can be annotated with

additional situation-based information called the context. Rather than interpreting the

computer screen in every possible context, this work is about narrowing down the search

for onscreen meaning to a select few contexts. A drawback of the RS described here is

that it ignores the number of times a keyword appears onscreen.

This chapter presented AVRA’s RS. The RS decides which recommendations to

present to the user taking into account the user behavior, and classification confidence

scores of the DNN and CNN. The RS goes to the heart of the thesis statement that AVRA

can provide action recommendations related to onscreen messages. The RS personalizes

to the user recording the history of user interactions with the GUI buttons. At this point

in the thesis the components of AVRA have been described and the capabilities explained.
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The next challenge is to move beyond supervised learning, at to see how AVRA can act

autonomously to learn new contexts, keywords, and action recommendations.
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ALGORITHM 6: Recommendation Ranking Algorithm: Rank action recommen-

dations by recognition confidence and user history

Input: g index of text G; contextClicks[i]; keywordClicks[i][g];

keywordEvicts[i][g]; Bias variables K1, K2: K1 >> K2, K1 +K2 = 1;

DNN keyword recognition results PDNN ,; Probability distributions

Pregex, Pmax, Ptake = zeroes()

Output: 3 recommended actions in Buttons[0..2]

1 for each i ∈ DNNid.keys() do

2 for each ocrText ∈ DNNinput[i] do

3 [DetectedIndex, ClassificationConfidence] ←

argmax(BinAscii10Freq20Dict[i](ocrText))

4 if ClassificationConfidence > 0.5 AND ClassificationConfidence >

PDNN [i][DetectedIndex] then

5 PDNN [i][DetectedIndex]← ClassificationConfidence

6 end

7 end

8 contextClicks[i] =
∑

clicks(DNNclasses[i].values())

9 end

10 contextCount← Length(DNNid.keys())

11 contextClickTotal ←
∑Length(contextCount)

i=1 contextClicks[i]

12 for each i ∈ DNNid.keys() do

13 Pcontext[i]← contextClicks[i]/contextClickTotal

14 classesCount← Length(DNNclasses[i].keys())

15 keywordClickTotal←
∑classesCount

g=1 keywordClicks[i][g]

16 keywordEvictTotal←
∑classesCount

g=1 keywordEvicts[i][g]

17 for each g ∈ DNNclasses[i].keys() do

18 Pclick[i][g]←

(Pcontext[i] ∗max(1, keywordClicks[i][g]))/max(1, keywordClickTotal)

19 Pevict[i][g]← (Pcontext[i] ∗ keywordEvicts[i][g])/keywordEvictTotal

20 end

21 end

22 for each i ∈ DNNid.keys() do

23 for each g ∈ DNNclasses[i].keys() do

24 Pmax[i][g]← PDNN [i][g] ∗ (1 +K1 ∗ Pclick[i][g]) ∗ (1−K2 ∗ Pevict[i][g])

25 end

26 end

27 Buttons[0..2]← argmax(Pmax, 3)



Chapter 9

Unsupervised Learning

AVRA learns through the inference of operational knowledge from observations of the

computer over time. AVRA monitors the computer screen with regular screen capture

images, and analyzes the content of each image to understand what type of visual infor-

mation is present (the context) and which keywords are on the screen. Each context is

associated with a list of keywords, and at any given time there may be multiple onscreen

contexts and multiple onscreen keywords. Each keyword in each context is associated

with one action. For example, if the Eclipse IDE is present (context=eclipse) and a

compiler error is detected in the onscreen text (keyword=NullPointerException), then

AVRA can recommend to the user to open a web page containing advice on escaping

this error with a try/catch block. In order to offer the most relevant action recommen-

dations, AVRA produces recognition scores for context detection and keyword detection,

and combines these scores with a history of user actions to produce an overall score for

every possible recommendation.

Several definitions are required in order to discuss unsupervised learning in a compact

format. A candidate keyword k is one text snippet within the onscreen text O. The

notation k ∈ O means that the keyword k is in the set O, in this case because it is a

substring of O. An action can be referred to as g ∈ G, where g is a particular action and

G is the set of all actions known to AVRA. Similarly, a particular context c is one element

in a set of contexts learned into AVRA, denoted as c ∈ C. The set of all keywords learned

by AVRA is K, and after discovering k ∈ O, AVRA can integrate k to become k ∈ K.

The challenge discussed in this Chapter of the thesis is to learn new contexts, key-

words, and actions without human intervention. How can AVRA autonomously learn

new visual contexts into C beyond “eclipse”, and new context-specific keywords such

170
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as NullPointerException into K? Even if learning new contexts and keywords were

accomplished, how can AVRA learn which actions G are associated with contexts and

keywords? That is the topic of this chapter. More formally, this unsupervised learning

challenge is to:

(TASK 1) Identify keyword k within onscreen text O leading to action g in context c.

(TASK 2) Recognize context c if it appears again.

(TASK 3) Recognize keyword k if it appears again in onscreen text O when context c is

recognized.

(TASK 4) Enable AVRA to recommend action g when context c and keyword k are recognized

onscreen at the same time.

This Chapter describes a novel approach to unsupervised learning for a computer

assistant. Once AVRA can watch users and draw causal relationships from user actions,

it can learn new information unforeseen by its developers. The first step on the path to

a working solution was to relax the constraints on the problem and solve easier problems

of unsupervised action learning without context learning (Sections 9.1) and supervised

context learning (Section 9.2). The solutions to these simplified problems are then com-

bined and expanded upon in Section 9.3 to answer the larger question of how to learn new

actions, contexts and keywords. Next, performance experiments are detailed in Section

9.4.

9.1 Unsupervised Action Learning Without Context

Consider a relaxed version of (TASK 1), where there is only one context. The objective

is therefore to identify what onscreen text k in the onscreen text O leads to action g. In

this relaxed case, (TASK 2) is not necessary, (TASK 3) simplifies to recognizing when

text k appears within the onscreen text O, and (TASK 4) simplifies to recommending

action g when text k appears onscreen.

Let the input to the unsupervised learning algorithm be the stream of tokenized

timestamped OCR text O(t1) produced when processing each computer screen image.

Each image is associated with a timestamp t1. Next, let the actions g ∈ G be the detected

user interest text (e.g. browser search, clipboard history, keystrokes). Each element g in

G is an action performed by the user which could conceivably be replayed by AVRA on
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behalf of the user. Each observed user action is associated with a timestamp t2, yielding

a stream of timestamped actions G(t2) and corresponding keyword K(t2). A dictionary

F can store the relationship between keywords and actions as F < k, g > allowing AVRA

to identify the desired action g when it detects keyword k.

The learning algorithm can iterate through the OCR text O(t1) and actions K(t2),

and store into F wherever K(t2) came soon after the OCR text O(t1) appeared onscreen,

and the user interest text K(t2) was a substring of the onscreen text O(t1). These

constraints are expressed as [t2 > t1] and [K(t2) in O(t1)] and [t2 − t1 < windowSize].

Following this approach, the algorithm can learn from scenarios where the user copies

onscreen text (a substring of O(t1)) and pastes into a search engine producing the action

text K(t2) for action G(t2). After learning this pattern in F , AVRA can recommend

the relevant action when a keyword appears onscreen, without the user copying and

pasting and searching. Algorithm 7 implements these concepts. It provides a method

for determining what onscreen text O leads to action G in this single context problem.

The approach is to search for an onscreen keyword that the user searched for in the past

(verbatim) after seeing it on the screen.

ALGORITHM 7: Learning Algorithm: What onscreen text O leads to action G

Input: OCR text of computer screen at time t1: O(t1); Detected user interest

text (e.g. browser search, clipboard history, keystrokes) at time t2: G(t2)

Output: Database of problem / solution pairs F < O,G >

for each O(t1) in history do

for each K(t1) in O(t1) do

for each G(t2) in history do

if t2 > t1 and G(t2) in K(t1) and t2− t1 < windowSize then
F.store(K(t1), G(t2))

end

end

end

end
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Figure 9.1: Unsupervised learning with only one context.

Figure 9.1 illustrates how F is assembled as AVRA observes the user in time. At time

t = 0 in the first column, the user and AVRA see an image of a dog and the onscreen

word dog. Next, at time t = 1, some other information is seen on the screen, and finally

at time t = 2, the user searches for the word “dog” and AVRA stores into F the fact that

the recently observed onscreen word “dog” led to the user performing a search action for

that word.

A weaknesses of the unsupervised learning approach in Algorithm 7 is the following.

Due to the strict nature of the learning algorithm, when the unsupervised learning system

observes the user multiplying numbers in a calculator, the exact sequence of operations

(e.g. 25000 ∗ 4) is stored as a pattern to be recommended later on, rather than being

learned symbolically as the multiplication of two numbers.

9.2 Supervised Context Learning

An approach to unsupervised action learning without context learning was discussed in

the previous Section. Before adding unsupervised context learning back into the problem

definition, consider a different relaxed problem related to (TASK 2): supervised context

learning. To learn contexts, a CNN is trained on a set of labeled images. Transfer learning
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with inception v3 [230] and cross-validation training improve the learning process to an

acceptable level of precision and recall. The content of a computer screen is very dynamic

and complex, and so the focus in training the CNN to recognize contexts was on high

recall at the expense of precision. This approach lowered the chance that contexts would

be missed (false negative) when the detection of the context is uncertain.

The challenge in training the CNN with supervised learning is acquiring many images

that look like a particular context, in order to carry out the supervised context learning.

At least 30 images representing the context should be used to train the CNN in order

to avoid total failure of the training. However, 300 to 800 training images is a “good”

image dataset size for each context. Only when a sufficient number of images have been

collected can the images be used to train the new context into the CNN, or reinforce an

existing context with new information. Several image collection approaches are possible:

(METHOD 1) Capture an image representative of the context each time AVRA learns a new

keyword into F .

(METHOD 2) Collect images from image search engines based upon context-specific keywords.

(METHOD 3) Given one or more images representing a context, collect additional images using

reverse image search.

(METHOD 4) Leverage collaborative filtering to collect context-specific images identified by other

AVRA users.

For (METHOD 1), collecting the context training images locally with AVRA was

accomplished by simply retaining the screen captures stored by AVRA during routine

operation. Working backward from the time when K stored a new keyword, the image

captured at time t1 when k appeared onscreen, the image captured at t1 should be a

picture containing the context of interest Ci. The downside of this approach is that it

requires many observations to collect sufficient data to train the CNN. This approach was

further improved by sampling the images just before and after t1 and including them in

the training data if they were similar to the image taken at t1. Similarity was established

with a perceptual hash comparing the image taken when the keyword was onscreen, and

the images taken at nearby timestamps. For example, if the image taken at time t1 is

a picture of the Eclipse IDE showing a stacktrace containing NullPointerException,

then the next image taken is likely also a picture of the Eclipse IDE. If these images are

in fact similar, then the difference in perceptual hash values between the image taken
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at time t1 and the image taken at time image t1+1 would be small. Similarly the image

taken at time t1−1 may be a useful training example if the perceptual hash difference

from the image taken at t1 is small. Image similarity can be controlled by tuning an

image similarity hyperparameter.

(METHOD 2), scraping representative images from the Internet to form training

datasets, was implemented in nodejs. The program cycled through a hand-crafted list of

keywords based upon K relating to the desired context (e.g. “eclipse IDE java program-

ming”) and submitted these keywords to image search engine APIs. The search engine

submissions returned lists of URLs for images and additional information about these

images such as image type and size. The image search was narrowed to include only

large images with specific image formats. The next step involved manual data validation

where non-representative images were deleted by a human operator. A further step of

duplicate image deletion was accomplished with an automated tool.

Whereas (METHOD 2) relied on keyword-based search engines, (METHOD 3) in-

volved querying perceptual hash search engines (e.g. TinEye [235] and Yandex [261]).

To find novel images related to the already collected image(s), the perceptual hash of

the known image can be used to identify similar images. The downside of this approach

was that there may be no such images available, or the identified images may be copies

of the submitted image with tiny modifications (e.g. added or modified text).

For (METHOD 4), the collaborative filtering of user actions in a distributed frame-

work with many clients, requiring several instances of an action to be observed before

learning a pattern is a reasonable expectation. It is the basis of the collaborative filtering

concept that data for one user can be applied to another user.

To learn new contexts in an unsupervised fashion, one or more of these approaches

must be automated, removing all human intervention. For example, with (METHOD 2)

image search keywords are produced manually, and images are validated manually. With

(METHOD 1) the user must perform the same action many times, and the image similar-

ity metric must be flexible enough to allow differences between images but strict enough

to reject irrelevant images from polluting the training data.

9.3 Unsupervised Context Learning

Having outlined solutions to unsupervised action learning and supervised context learn-

ing, enough of the solution is revealed that one can begin to consider the full scope of

the unsupervised learning problem. Consider AVRA’s design shown in Figure 9.2. How
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can AVRA autonomously identify keywords K within onscreen text O leading to action

G in context C?

Figure 9.2: AVRA design overview.

Consider that AVRA has just detected that a keyword k captured at timestamp t1

and recognized in image I(t1) was followed by user action g(t2). AVRA must decide if

this keyword belongs to an existing context or a new one. New challenges emerge when

attacking this broader problem definition. First, the fit between a new image I(t1) and

existing trained CNN context C is required to understand how well the new image fits

into the set of features that define each context. Second, the relative fit between keyword

k and every existing context in C must be quantified in order to decide into which context

new information should be stored. Third, AVRA requires an autonomous method for

extrapolating novel images from the set of acquired images, as described previously in

Section 9.2.

To obtain the image ‘fit’, the CNN can tell the unsupervised learning algorithm how

much a new image ‘looks like’ the contexts it was already trained to recognize simply by

processing the image in the same way as AVRA interprets screenshots. This capability

is exposed by simply processing the image I(t1) through the CNN and observing the

classification confidence score for each context. The output of the CNN indicates how

much the image looks like each context.



Unsupervised Learning 177

A trained word embedding model should contain a representation that encodes the

semantic understanding of words. The vectors for words can be manipulated to compare

ideas, as previously described in the famous king − man + woman = queen example

[148]. To find the fit of a new keyword k with an existing context Ci, one or more

trained word embedding models are interrogated to find out if k and many keywords of

interest K are represented in the model. If so, the cosine similarity between the keywords

K already in the context Ci and the new keyword k is computed. More specifically,

AVRA’s unsupervised learning algorithm relies on the Google News word embedding

model to obtain the conceptual distance between words [147]. If a word is not found in

the word embedding model, then the distance is set to 0. The average similarity between

k and the keywords in context Ci represents the relative fit of keyword k into Ci. If each

context contains n keywords, and there are m contexts trained into AVRA, then keyword

k must be compared to m ∗ n elements.

At this point the ‘fit’ between a new keyword and each context is computed as the

similarity between a keyword and each keyword in each context. Each of the m ∗ n

calculations peers into the Google News word2vec model, requiring several hours to

execute. To accelerate the comparison to several seconds, an average vector for all the

keywords in each context is computed, and then compared with the candidate keyword.

Several approaches are well known for computing a vector to represent a set of words in

a word embedding model, including the average vector approach implemented in AVRA

[117], and k-means clustering [172, page 5]. One major advantage of this new approach

with average vectors is that computing the average vectors is accomplished outside the

word2vec model, and so it executes very quickly. Further complicating matters, some

keywords AVRA learned during supervised learning are not available (not trained into)

in the word2vec model, and so the vector for those keywords in the model does not exist.

Therefore the fit between the candidate keyword and those missing vectors were not

taken into account in creating the average vector. To fix this, the fit between the average

vector and the vector for the new keyword k is multiplied by a ratio of A (the number

of vectors used to make the average vector) and B (the total number of keywords in the

context of interest). And so if all the context keywords are in the model, the ratio is 1.0,

if none are, then the ratio is 0.0, and if half are in the model, then the ratio is 0.5. The

calculation of the mean similarity of therefore the similarity between k and the average

vector, multiplied by the ratio.

Another acceleration technique used was memoization. Any intermediate results (e.g.

distance(‘paris’,‘france’)) is not re-calculated when the result is needed later on.
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As discussed previously, approaches to getting more images representative of a new

CNN context requires fully automating one or more of (METHOD 1) (making multiple

observations of k + Ci → g before learning a new context, and obtaining similar images

nearby in time using perceptual hashing), (METHOD 2) (keyword-based image search

engines), (METHOD 3) (perceptual-hash reverse image search), and (METHOD 4) (col-

laborative filtering). (METHOD 1) was already fully automated, and provides a small

number of useful images as a starting point for the CNN training dataset. To automate

(METHOD 2), images obtained from (METHOD 1) were fed to an image labeling API

(Google Vision API [77]) in order to come up with a set of keywords, and these keywords

were submitted to image search engines to obtain new image examples. The resulting

images were a poor fit for the contexts tested (e.g. console, Eclipse IDE) as a result of

the small number of labels that the image annotation API was able to extract from the

available images. Obtaining keywords from images was possible, and scraping images

based on these keywords was also possible, but the quality of the generated keywords

was too low to be useful for an autonomous use case. For example, the labels added to an

image of a console window were: Text, Font, Brand, Screenshot, Design, Presentation,

Line, and Document. Searching for images using these labels does not return additional

images of console windows. (METHOD 2) automation was therefore not successful. Sur-

prisingly, full automation of (METHOD 3) was similarly disappointing. Reverse image

search did sometimes return novel examples of the submitted context (e.g. image of a

console window returned additional examples of console windows). However, reverse im-

age search tended to return either no results (e.g. a fullscreen image of the Eclipse IDE)

identical copies of the submitted image (e.g. an image of a celebrity) or results focusing

on the “wrong” features of the submitted image (e.g. for a screenshot of a desktop, the

perceptual hash caused the results to be the image shown as the desktop background

with the desktop icons removed, focusing on the irrelevant background image at the ex-

pense of the real goad of finding images of desktop backgrounds). Full automation of

(METHOD 3) was therefore not successful. Collaborative filtering (METHOD 4) was

not implemented as part of this work.

Having described how the text fit and image fit are computed, and how a dataset to

train the CNN can be obtained for new contexts, the unsupervised learning process can

now be discussed in additional detail. For each new keyword k under consideration, if

AVRA has seen enough examples of the keyword (and related images for context training)

triggering an action, then AVRA will begin assessing which context the keyword belongs

in. This may be a new context or an existing context. This keyword may already exist in
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one context and now also belongs in another. Let Iexamples be a list of the images related

to one keyword k. AVRA begins by assessing the keyword in relation to the keywords

already learned for each context Ci. The average fit between the new keyword k and

the existing keywords in Ci is computed using the ratio with average vector comparison

approach described above. Next, the average fit between the images Iexamples and the

context is computed by processing them through the CNN and averaging the classification

confidence for class Ci. If Iexamples does indeed contain similar features to the already

trained CNN class, then a high average fit is expected. To associate the keyword to an

existing class, the average image fit must exceed hyperparameter h1 and the keyword fit

must exceed hyperparameter h2, and the average image fit multiplied by the keyword

fit must exceed any previously encountered “best context fit”. In other words, the class

with the strongest keyword and image similarity is assigned the keyword unless either

the keyword or images are too dissimilar from any existing context. In that case a new

context is learned.

If the keyword is learned into an existing context Ci, then the CNN can be retrained

with images Iexamples, and the keyword identification system for Ci is also updated to

recognize the new keyword. If, however, the keyword is learned into a new context, then

AVRA finds additional distinct images according to (METHOD 1), in an attempt to

increase the number of images available for training. This larger image set is used to

retrain the CNN to identify the new context. The keyword identification system is also

updated to recognize the new keyword.

AVRA’s unsupervised learning algorithm described in this Section is presented in

Algorithm 8. Similar to Algorithm 7, it can learn causal relationships between onscreen

keywords and user actions. However, the added advantage in Algorithm 8 is that it

can also learn features from what the screen looks like when the keyword is present

(image contexts). On the first line of Algorithm 8, the observations made by AVRA are

processed to identify a set of keywords (new keywords) that appeared onscreen prior

to the user performing a related search. This part of the algorithm work as described

in Algorithm 7. For each keyword k in new keywords, a list of images Iexamples[k] is

also collected. Next, for each keyword and corresponding action ([k, g]), if there were

enough causation examples observed, the algorithm checks each context to see which has

the highest context fit (lines 6 to 13). If a best context is found, then the new keyword

k is associated to the action g in the DNN for that context. However, if no suitable

context was identified, a new context is trained. In the event that the DNN is bypassed

as discussed in Chapter 3.7, the keyword k and action g are added to AVRA’s database
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as usual. However, in that case the DNN is not trained on the new keyword.

This method for unsupervised learning can be viewed as partitioning the space of all

images and words into sub-regions by context and keyword. Keyword clustering is one

part of the partitioning, and image clustering is the other. The unsupervised learning

approach in AVRA incrementally clusters sets of keywords and stereotypes of images.

Figure 9.4 shows the block diagram for AVRA’s unsupervised learning approach. A

sufficient number of new keyword identifications (TASK 1) causes a decision engine to

assess a keyword k(t) recognized in image I(t). Next, to accomplish context recognition

(TASK 2), the fit between the existing CNN contexts and the new image is computed

(Context Similarity in Figure 9.4). Further to (TASK 2), the images provided to char-

acterize the potential new context are extended by testing the images taken just before

and after time t with a perceptual hash, and keeping images with a difference less than

h3 from I(t). The resulting set of images is called Iexamples. The context similarity task

returns the list of contexts sufficiently similar to the potentially new context (with a

similarity threshold of h1). DNN training to recognize a new keyword within a context

(TASK 3) is only initiated once a keyword has been assigned a context. To assign a

keyword to a context (new or existing), the keyword fit is first computed (Keyword Clus-

tering in Figure 9.4), and a list of contexts with sufficiently similar keywords is returned.

The text similarity threshold is hyperparameter h2. If no context has a sufficiently high

keyword fit and context fit, n new context is present, and the CNN is retrained to rec-

ognize the new context. However, if there are contexts with sufficiently high keyword

fit and context fit, the context with the highest combination of context and keyword fit

(computed by multiplying them together) is assigned the new keyword k. When the

keyword is assigned a context, in addition to the DNN training being initiated, action g

is associated to the new keyword k in AVRA’s database (TASK 4). To extract user ac-

tions from the computer, a browser history program was developed to read out keyword

search terms and links from the browser along with visit timestamps and page titles.

This information was fed into AVRA’s database to form the user action history (G).

The key overlap between AVRA’s shallow image processing integration and prior

work on fullscreen image processing with a CNN to take decisions ([153]) is the use of a

CNN to process the image of the screen, and then using fully connected layers of a Deep

Neural Network (DNN) to make a decision. In the case of AVRA, the DNN output is a

recommendation to be ranked based upon supervised or unsupervised learning, whereas

in [153] the outputs represent joystick positions learned through reinforcement learning.
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ALGORITHM 8: AVRA’s unsupervised learning algorithm.

Input: Minimum observations of keyword and subsequent action h0 : 1; Minimum

image fit h1 : 0.1; Minimum keyword fit h2 : 0.1; Minimum CNN

recognition confidence to add new image to training data h3 : 0.1;

Maximum perceptual hash difference to add new image to training data

h4 : 35; Detected user search text, URL, and timestamp recorded at time

t2 : G(t2); Snippets of onscreen text observed at time t : ocr(t); Maximum

time from observation of keyword to action by user windowSize : 10 s;

List of CNN contexts contexts

Output: Keyword added to new context or existing context, or nothing learned.

1 [Iexamples, new keywords] = detectNewKeywords(G, ocr, windowSize)

2 for each [k, g] in new keywords do

3 if length(Iexamples[k]) ≥ h0 then

4 best context fit = 0

5 best context = None

6 for each context in contexts do

7 keyword fit = modelTextF it(k, context.keywords())

8 img fit = average(CNN classify(Iexamples[k], context))

9 if img fit > h1 and keyword fit > h2 and img fit ∗ keyword fit >

best context fit then

10 best context = context

11 best context fit = img fit ∗ keyword fit

12 end

13 end

14 if best context then

15 train DNN(best context, k, g)

16 train CNN(best context, Iexamples[k])

17 end

18 else

19 c = newContextID()

20 Iexamples[k] = moreImages(Iexamples[k], k, CNN contexts, h3, h4)

21 train new DNN(c, k, g)

22 train CNN(c, Iexamples[k])

23 end

24 end

25 end



Figure 9.4: Block diagram for AVRA’s unsupervised learning algorithm.
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Figure 9.3: Unsupervised learning with multiple contexts learning a new concept and

adding it to an existing context.
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Figure 9.5: Unsupervised learning with multiple contexts learning a new concept and

adding it to a new context.

Having described above the unsupervised learning algorithm in AVRA, consider two

examples of how it works. Figure 9.3 shows how an existing context can be extended

with a new keyword, while Figure 9.5 shows an example of AVRA learning a new context.

Starting with the second column of Figure 9.3, AVRA sees an image of a dog and

the text dog. The image at timestamp for t = 0 is 0.jpg. At that time AVRA has

already learned through supervised learning two contexts Animals and Colors. Each

context contains two keywords. The Animals context contains keywords cat and mule,

while the Colors context contains the keywords red and green. At timestamp t = 1,

AVRA detects user action g, where the word dog is searched for in a browser. The

image recorded at timestamp t = 1 is 1.jpg. At time t = 3 the unsupervised learning

algorithm makes the connection that the text dog led to the action Search(dog). Moving

to the top right cell in Figure 9.3, the algorithm loads the hyperparaemters h1 and h2

as 0.65. Next, the fit of the text dog is computed in comparison to the average vector
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for the context Animals, with a result of 0.8. The fit of dog with the average vector

for the keywords in context Colors computes to 0.1. 0.jpg is then compared with 1.jpg

using a perceptual hash to detect if the images are close enough together for 1.jpg to

be representative of the potential new context. The image difference is too great, and

so only 0.jpg is used in the next step. The image fit is calculated by passing 0.jpg to

the CNN for classification. It outputs that 0.jpg strongly activates the context Animals

(0.9 - perhaps detecting the eyes and other body features common to all animals), and

also activates the context Colors (0.7 - perhaps picking up on the fact that the image

of the dog is mostly one solid white color). The ratio for both the Animals and Colors

contexts was 1.0, and so the ratio did not modify the decision at the output in this case.

The overall fit of keyword dog into context Animals was 0.72, exceeding the threshold

of 0.65. At 0.07, the overall fit of keyword dog into context Colors did not exceed the

threshold of 0.65, and so it was discarded. With only one context vying to accept the

new keyword dog, it was added to the context Animals.

In the second example of Figure 9.5, AVRA sees an image of a dog and the text dog.

The image at timestamp for t = 0 is 0.jpg. At that time AVRA has already learned

through supervised learning two contexts Shapes and Colors. Each context contains two

keywords. The Shapes context contains keywords round and line, while the Colors

context contains the keywords red and green. At timestamp t = 1, AVRA detects

user action g, where the word dog is searched for in a browser. The image recorded at

timestamp t = 1 is 1.jpg. At time t = 3 the unsupervised learning algorithm makes the

connection that the text dog led to the action Search(dog). Moving to the top right

cell in Figure 9.5, the algorithm loads the hyperparaemters h1 and h2 as 0.65. Next,

the fit of the text dog is computed in comparison to the average vector for the context

Shapes, with a result of 0.0. The fit of dog with the average vector for the keywords in

context Colors computes to 0.1. 0.jpg is then compared with 1.jpg using a perceptual

hash to detect if the images are close enough together for 1.jpg to be representative of

the potential new context. The image difference is too great, and so only 0.jpg is used in

the next step. The image fit is calculated by passing 0.jpg to the CNN for classification.

It outputs that 0.jpg activates the context Shapes (0.6), and also activates the context

Colors (0.7). The ratio for both the Shapes and Colors contexts was 1.0 because all

of the keywords in each context was used to compose their average vector. The overall

fit of keyword dog into context Shapes was 0.0, below the threshold of 0.65. At 0.07,

the overall fit of keyword dog into context Colors also did not exceed the threshold of

0.65. With no remaining context into which the keyword dog can be trained, a new
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context newContext was created and the keyword dog was added to it. The arbitrary

name newContext reflects the fact that AVRA does not know what the overall context

is going to store in the future.

A problem surfaced when assessing AVRA’s ability to learn new keywords into ex-

isting contexts created through supervised learning. The word embedding component of

the unsupervised learning algorithm was mostly unsuccessful adding to the supervised

learning data. It emerged that the problem was the ratio. The ratio is small when many

of the keywords from supervised learning (e.g. nullpointerexception) are not contained

in the word embedding model generated from the Google News dataset [147], or other

general word embedding models. The model in question contains 3 million words, but

this was not sufficient. One approach to force the unsupervised learning model to work

was to ignore the ratio, setting it to 1.0 instead of calculating the correct value. Setting

ratio to 1.0 is of course a sub-optimal solution, but with this approach AVRA was able

to learn new keywords into existing contexts created through supervised learning.

A better approach to learn new keywords into existing contexts created through

supervised learning was to re-purpose (METHOD 2) to collect website contents instead

of images. The idea was to scrape text from search engine results (web pages), where

the search query is built using the keywords AVRA knows about, and the new keyword

AVRA wants to classify into a new or existing context. Using the text from these web

pages as a corpus, one can train a new word embedding model that can relate a high

ratio of the keywords to each other. The drawback of this approach is that scraping the

pages and training the word embedding model is very slow. To build a model relating n

words to each other in pairs requires P n
2 search operations. For groups of three keywords

this becomes P n
3 , and for groups of four keywords P n

4 . The time required to perform

these operations is bounded by O(n!), which grows quickly. It can take days even for

n < 1000 executed on a parallel cloud computing system. Luckily, the unsupervised

learning process can be trained as an offline server-side process without slowing down the

user experience at all, and the search results can be cached and extended over time. To

build the corpus, the first 30 results for each search term was downloaded. Search terms

were composed of distinct sets of 3 or 4 keywords (e.g. horse baseexception chicken).

Stopwords were removed using the NLTK Stopwords corpus by Porter [180] [32, page

47]. Stemming was applied using the PorterStemmer module of the gensim library [187].

Some web pages from the results were skipped because the server refused the connection,

the file on the server was not a web page (e.g. PowerPoint file), or the page contained

no text. Each valid link returned by the search engine was processed into a text string,
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and all of the results were concatenated into a single corpus tokenized by spaces. Next,

a word embedding model was trained on the corpus, exposing the similarity between

words by computing the cosine similarity in the word embedding model between vectors

for words.

At this point in the thesis, it has been described to the reader how AVRA has the

ability to make sense of new words by building its own word embedding models com-

pletely unsupervised. Crucially, supervised and unsupervised learning can be combined

in AVRA, to accomplish transfer learning. AVRA can learn new things autonomously

as long as the related keywords are trained into one of the word embedding models

that informs the textual context relationships between them, or the information relating

these concepts is obtainable by building a word embedding using documents obtained

by searching on the web. Multiple word embedding models could be used by AVRA as

a general knowledge reference.

9.4 Performance Evaluation for Unsupervised Learn-

ing

Learning in AVRA is data driven. In this Section the operation of AVRA’s unsupervised

learning algorithm with real data is explored. A high-level view of a word embedding

model for several contexts is presented to clarify the ability of AVRA to classify new

keywords into existing contexts. Visualization for AVRA’s image recognition system

similarly reveals that AVRA can successfully discriminate between different sets of im-

ages. To collect data quickly, a test automation program was used to model a user using

the computer (a ‘bot’). This bot was used to carry out use cases such as extending an

existing context with new information, and creating a new context in AVRA’s model.

Examples of extending an existing context and creating a new context are provided as

validation of the AVRA prototype’s ability tpo apply unsupervised learning.

Visualizing Unsupervised Keyword Input Vectors and Images

t-SNE was used to get a sense for what the word embedding model represents. As

shown in Figure 9.7, t-SNE clusters into a two dimensional space the 300 dimensional

vectors for four contexts (eclipse, console, gene, and desktop). The average vectors

for these contexts are represented by the locations of the large labels. The separation

of the average vectors confirms that the model can classify a new point based upon the
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cosine distance between the new point and each average vector.

In addition to the contexts discussed in Chapter 4 (eclipse, console, gene, desktop,

and facebook), images for the contexts daisy, dendelion, roses, sunflower, and tulip

from a TensorFlow tutorial were trained into contexts as well[178]. They were trained

into AVRA’s CNN to show how many contexts are recognized in relation to each other.

Figure 9.8 shows a 3D t-SNE plot with 5 images from each context (7 images for console).

Figure 9.7 provides another view of the data in 2 dimensions, revealing that images from

the same context cluster together. This indicates that the classifier can differentiate

between the image classes (onscreen contexts).

Figure 9.6: Example of the bot traversing screens to generate user activity data

Automated Data Generation for Unsupervised Learning

The bot created to carry out use cases was implemented using the pyautogui library

[229]. The bot was configured to traverse screens and click buttons. To generate data,

the bot was programmed to (1) open a web page (e.g. a recipe web page describing how

to bake chocolate cupcakes) and then (2) open a second web page containing a search

engine. Next (3) the bot would fill in the search box, and (4) click the search button



Figure 9.7: t-SNE representation of keywords from 4 contexts in 2D space. Each dot in the figure represents a keyword.

A few dots are labeled to give the reader a sense for what the dots represent. The average vectors for these contexts

are represented by the locations of the large labels. Only keywords with vectors in the Google News word2vec model

were used to train this t-SNE model. The default settings were used for perplexity (30). The model was executed for

1,000 iterations.
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Figure 9.8: t-SNE representation of the feature vectors for images representing 11 con-

texts in 3D space. Each label in the figure represents an image. The text and color

indicate the context the image belongs to. The clustering of the images by context

indicates that the model learned to recognize and differentiate between the contexts.

The default settings were used for perplexity (30). The model was executed for 2,936

iterations.
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Figure 9.9: t-SNE representation of the feature vectors for images representing 11 con-

texts in 2D space. Each label in the figure represents an image. The text and color

indicate the context the image belongs to. The clustering of the images by context

indicates that the model learned to recognize and differentiate between the contexts.

The default settings were used for perplexity (30). The model was executed for 2,936

iterations.
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and observe the results. Each loop of actions (1) through (4) depicted in Figure 9.6,

represents an instance of the user observing onscreen information and then looking it

up on the internet in a browser window. The purpose of the bot was to generate data

while AVRA runs in the background, and then to test if AVRA learned to recommend

the actions it observed when the context and keyword were later present onscreen.

Unsupervised Learning Extending Existing AVRA Context

Table 9.1 presents a real example to show how AVRA extends the Eclipse IDE context

created using supervised learning. For this example, 5 existing contexts were included

in the computations, to give the reader a sense for the computations AVRA performs

without overwhelming the reader with many contexts and keywords. Setting the stage for

this example, the bot moved from the Eclipse IDE where it ran a program and generated

an error, to a browser window where it typed and searched for keywords related to this

error message. All the while, AVRA was running in the background. When AVRA

observed the causal relationship between the onscreen error in the IDE, and the search

action in the browser, it stored the data in the AVRA database. When sufficient copies

of the action were observed, the unsupervised learning algorithm was triggered to try

and learn the new keywords into AVRA’s RS.

Starting with the first row of Table 9.1, AVRA found that images when thread was

onscreen strongly activated the eclipse context (0.95) and that word thread was seman-

tically similar to the keywords in console (0.28), eclipse (0.15), desktop (0.30), and gene

(0.25). Because only one context demonstrated sufficient image and word similarity, the

new keyword thread was trained into AVRA for the eclipse context. Continuing with the

second row of Table 9.1, AVRA found that images when exception was onscreen strongly

activated the eclipse context (0.94) and that word exception was semantically similar

to the keywords in console (0.16), and eclipse (0.51). Because, once again, only one

context demonstrated sufficient image and word similarity, the new keyword exception

was trained into AVRA for the eclipse context. The unsupervised learning algorithm in

AVRA does make mistakes. For example, in the third row of Table 9.1, AVRA recog-

nized the images of the Eclipse IDE but just missed the hyperparameter cutoff of 0.10

to consider the keyword throwing semantically similar to the eclipse context. Instead

of learning throwing into eclipse, AVRA incorrectly learned the keyword into a new

context.
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Table 9.1: Extending an existing context after observing the user. A bolded result in

the table below indicates a result that exceeded the required threshold.

Event Context Similarity Word Clustering AVRA Decision Correct?

New

keyword

thread

console 0.02 console 0.28

Train

thread into

eclipse

YES

eclipse 0.94 eclipse 0.15

desktop 0.01 desktop 0.30

facebook 0.02 facebook 0.00

gene 0.00 gene 0.25

New

keyword

exception

console 0.02 console 0.16
Train

exception

into

eclipse

YES

eclipse 0.94 eclipse 0.51

desktop 0.01 desktop 0.01

facebook 0.02 facebook 0.00

gene 0.00 gene 0.01

New

keyword

throwing

console 0.02 console 0.14 Image

clustering.

Train new

context for

throwing

NO

eclipse 0.94 eclipse 0.09

desktop 0.01 desktop 0.01

facebook 0.02 facebook 0.00

gene 0.00 gene 0.01
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Unsupervised Learning Creating New AVRA Context

Table 9.2 presents a real example to show how AVRA creates a new context using unsu-

pervised learning. For this example, 5 existing contexts were included in the computa-

tions. Prior to the events listed in Table 9.2, the bot moved from the a browser window

containing a cake recipe to a browser search window where it typed and searched for

keywords related to the recipe (chocolate, cake, and cupcake). All the while, AVRA was

running in the background collecting images and extracting onscreen text. When AVRA

observed the causal relationship between the onscreen recipe text, and the search actions

in the browser, it stored the data in the AVRA database. When sufficient copies of the

action were observed, the unsupervised learning algorithm was triggered to try and learn

the new keywords into AVRA’s RS.

Starting with the first row of Table 9.2, AVRA found that images of a recipe website

taken when the word cupcake was onscreen strongly activated the facebook context

(0.90) and that word cupacke was semantically similar to the keywords in desktop (0.18).

Because no context demonstrated sufficient image and word similarity, a new context

was created in AVRA. Continuing with the second row of Table 9.2, AVRA found that

images captured when the word chocolate was onscreen strongly activated the facebook

context (0.90) as well as the new context newContext (0.70). The word chocolate was

semantically similar to the keywords in desktop (0.12), and newContext (0.55). Because

only one context demonstrated sufficient image and word similarity, the new keyword

chocolate was trained into AVRA for the newContext context. For the third row of

Table 9.2, AVRA recognized the images of the recipe website, and considered the keyword

cupcake semantically similar to the context newContext. AVRA learned the keyword

cake into the correct context. This example shows that when the risk of concept drift

is highest, for a new context with only a few keywords, AVRA does generally manage

to build up the new context. There are cases such as the third row in Table 9.1, where

keyword clustering or image clustering fails to group an action into an existing context

where it belongs, fracturing the context into two (or more) contexts.

Unsupervised Learning Relationships Between Keywords

It is interesting to ask how long it takes to train a new word embedding model for a new

keyword (e.g. “nullpointerexception”) that is not in AVRA’s default model, and how

well that model works, given the fact that the raw data was built through analyzing web

pages returned by a search engine.
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Table 9.2: Creating a new context after observing the user. A bolded result in the table

below indicates a result that exceeded the required threshold.

Event Context Similarity Word Clustering AVRA Decision Correct?

New

keyword

cupcake

console 0.02 console 0.07 Image clus-

tering. Train

cupcake into

new context

newContext

YES

eclipse 0.04 eclipse 0.00

desktop 0.03 desktop 0.18

facebook 0.90 facebook 0.00

gene 0.01 gene 0.05

New

keyword

chocolate

console 0.02 console 0.04

Train

chocolate into

newContext

YES

eclipse 0.04 eclipse 0.00

desktop 0.03 desktop 0.12

facebook 0.90 facebook 0.00

gene 0.01 gene 0.05

newContext 0.70 newContext 0.55

New

keyword

cake

console 0.02 console 0.05

Train cake into

newContext
YES

eclipse 0.04 eclipse 0.00

desktop 0.03 desktop 0.12

facebook 0.90 facebook 0.00

gene 0.01 gene 0.05

newContext 0.70 newContext 0.60
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To evaluate the ability of the generated model to classify new entities, two small sets of

related keywords were created for testing purposes: Animals (horse, dog, cow, pig) and

Java (baseexception, exception, standarderror, importerror), and the similarity (from

the cosine distance) to a new keyword chicken was measured. An effective model should

find that chicken has a lower cosine distance to the average vector for Animals than it

does compared to the average vector for Java keywords.

The 23MB corpus of text was downloaded and trained in approximately 30 minutes

for 9 keywords. 1, 744 of the links produced usable text. In the collected corpus, the fre-

quency of the stemmed keywords was as follows: hors(8, 137), dog(14, 412), cow(4, 914),

pig(9, 933), baseexcept(434), except(9, 109), standarderror(256), importerror(544),

chicken(6, 252). The average sentence length was 110.9 characters, and 47, 566 distinct

keywords were translated into word vectors in the trained model. The model was created

under various hyperparameter configurations (random seed value, training iterations be-

tween 5 and 50, context window size between 10 and 40) and each configuration was

tested 10 times. All of these measurements resulted in assignment of the new keyword

chicken to the context Animals. Generally, there was a negative similarity between

the keyword chicken and the context Java, while there was always a positive similarity

between the keyword chicken and the context Animals. Very surprisingly, the outcome

was positive even when the number of dimensions (also called the number of features)

used to represent word vectors was varied between 10 and 100. Table 9.3 provides a look

at some of the raw data, showing the similarity of chicken to each of the keywords in

AVRA’s model.

9.5 Chapter Summary

This chapter presented AVRA’s unsupervised learning approach and explained with ex-

amples how AVRA combined supervised and unsupervised learning to accomplish trans-

fer learning. These examples support the thesis statement that a deep learning artificial

intelligence can provide action recommendations related to onscreen messages using un-

supervised learning.



Table 9.3: New keyword unsupervised learning from word embedding.

# sim( sim( sim( sim( sim( sim( sim( sim( Average Average Chicken

Features chicken, chicken, chicken, chicken, chicken, chicken, chicken, chicken, * 100 for * 100 for in

horse) dog) cow) pig) baseexception) exception) standarderror) importerror) Animals Java Animals

10 -0.02 0.57 0.83 0.74 0.23 0.45 0.29 -0.06 52.88 22.74 True

10 0.26 0.48 0.83 0.75 -0.19 -0.15 -0.16 0.04 58.03 -11.50 True

10 0.01 0.47 0.87 0.73 -0.38 -0.21 -0.36 0.03 51.84 -22.70 True

10 0.10 0.72 0.78 0.72 0.11 0.20 0.13 0.14 57.76 14.46 True

10 -0.02 0.63 0.80 0.83 -0.05 0.07 0.04 0.13 56.13 4.74 True

20 -0.01 0.39 0.78 0.68 -0.08 0.14 -0.03 0.06 45.75 2.18 True

20 0.12 0.33 0.79 0.62 -0.18 0.04 -0.13 0.04 46.50 -5.71 True

20 -0.01 0.23 0.84 0.58 -0.02 0.13 0.00 0.17 40.84 7.02 True

20 0.08 0.29 0.77 0.65 -0.02 0.12 0.00 0.11 44.86 5.28 True

20 0.07 0.26 0.82 0.64 -0.14 -0.02 -0.13 0.14 44.61 -4.02 True

30 0.04 0.18 0.79 0.59 -0.04 0.22 -0.01 0.09 39.98 6.42 True

30 0.03 0.16 0.79 0.52 -0.08 0.03 -0.07 0.08 37.41 -1.06 True

30 0.08 0.19 0.81 0.57 -0.08 0.08 -0.08 0.08 41.20 -0.17 True

30 0.06 0.18 0.77 0.55 -0.05 0.14 -0.03 0.10 39.12 3.81 True

30 0.03 0.21 0.79 0.52 -0.05 0.11 -0.04 0.09 38.78 2.70 True

40 0.06 0.21 0.77 0.47 -0.10 0.04 -0.11 0.11 37.81 -1.41 True

40 0.08 0.23 0.73 0.49 -0.03 0.16 -0.05 0.06 38.38 3.41 True

40 0.09 0.18 0.81 0.55 -0.07 0.14 -0.08 0.09 40.50 1.90 True

40 0.04 0.21 0.73 0.49 -0.04 0.18 0.01 0.07 36.79 5.22 True

40 0.04 0.25 0.76 0.51 -0.02 0.17 -0.01 0.13 38.89 6.64 True
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Chapter 10

Epilogue

This thesis concludes with a summary of the future work to continue the development

of AVRA, and a reflection on the claims of the thesis statement in light of the previous

chapters.

10.1 Thesis Conclusion

This work presented a new way to create virtual assistants. The following novel methods

were described: an unsupervised learning algorithm, a fast text filtering algorithm, a

deep learning text classifier, and a recommendation filtering algorithm. The develop-

ment of a recommendation system for personalized reasonable response time 1-click task

recommendations was presented. The AVRA system mines information from screen cap-

ture data, rather than interfacing with individual applications. The developed system

supports multiple OSes, application domains, and configurations. Recommendations are

presented to the user in an intuitive 3-button user interface. Various tools related to

the development of AVRA’s design were discussed, and the performance of AVRA was

characterized.

The thesis questions began with the question “Is it possible for a virtual assistant

for personal computer users to interpret images of the computer screen to provide action

recommendations?” Chapter 3 proved that yes, it is feasible to create such a system. The

second thesis question asked “Could such a system learn unsupervised?” The answer is

yes, as described in Chapter 9. Expanding on Chapter 3, Chapters 5, 6, 7, 8, and

9 answered the thesis question “How could one implement a proof of concept for this

system?”
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The hypotheses proposed in the thesis statements have been confirmed in this work.

The first statement of the thesis was that a deep learning artificial intelligence can

provide useful action recommendations related to onscreen messages. In Chapter 3.7

the ability to provide recommendations based upon onscreen keywords was verified and

characterized in terms of accuracy and precision. The utility of the recommendations

was further demonstrated with specific use cases in Chapter 4.

The second statement of the thesis was that the action recommendations can be pro-

vided without integration into each individual program executing on the computer. The

system design described in detail in Chapter 3 provides a detailed explanation for how

action recommendations can be provided to the user without integration into individual

programs running on the computer.

The third statement of the thesis was that the action recommendations can be pro-

vided within a reasonable response time, and can be acted upon with a single mouse

click. Chapter 3.7 provided proof that AVRA can return results to the user in within

a reasonable response time. The neural network training method that enables action

recommendations to be encoded into a form that can be launched with one click was

described in Chapter 7.1. The approach was to map each learned keyword to a specific

action apriori.

Finally, the last statement of the thesis was that the action recommendations can be

personalized to the user by utilizing the user history and unsupervised learning. The

personalization mechanism in the RS was described in Chapter 8 and characterized in

Chapter 3.7.2. The unsupervised learning algorithm was described and characterized in

Chapter 9.

The takeaway message from this work is that without integration into each individual

program executing on the computer, software can provide useful and personalized action

recommendations related to onscreen messages. These action recommendations can be

provided within a reasonable response time, and can be acted upon with a single mouse

click. Unsupervised learning can be used to automate the training of this system.

10.2 Proposed Future Work

Future work beyond the conclusion of the thesis is described in this chapter. Future

work on AVRA will involve speeding up the individual component execution time in

order to reintegrate the DNN, additional supervised learning, modeling capabilities, and

an examination of privacy considerations as described below.
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Text processing with a neural network was implemented for this work but was removed

from AVRA after it became clear that the execution time of the DNNs did not scale with

the number of contexts, and the response time was too slow even for a small number of

contexts. Acceleration of the DNN implementation, perhaps requiring a redesign, would

be the ideal. Replacing the RS and text processing with neural components would result

in an end-to-end neural system. Such a system would be interesting to study, as it could

in principle perceive input from the computer screen, learn from that input without

supervision, and recommend actions. This idea could perhaps be implemented inside

a physical robot body with a camera that looks at the computer screen and perceives

information.

Adding additional domain-specific data to the initial corpus of knowledge AVRA

ships with will improve the user experience and the tool’s overall utility. Specifically,

this involves training additional data into the system by integrating data from [154]

and other similar programming formula providers into the recommendation generating

database of the DNN outputs.

There are several interesting directions in which this research can proceed regarding

increasing AVRA’s modeling capabilities. First and foremost, AVRA should include a

feature for text parsing across lines using bounding boxes. Detecting window shape and

the association of text to the bounding box is solvable with existing deep learning image

processing technology. This would resolve the issues observed in Chapter 4. AVRA’s

screen classifier could then make two predictions when the screen is split between two

applications (e.g. eclipse and chrome), leveraging automated segmentation of the screen

image to associate specific text to each context. Expansion of AVRA’s input processing

to include recognition of symbolic representation of the computer’s state is one such

direction. This idea involves recognizing images in addition to keywords. Regarding this

increased input processing, at this time only textual keywords are detected by AVRA

to produce recommendations. Understanding additional types of keyword information

may involve processing auditory signals (e.g. speech and music) as well as graphical hints

(e.g. an open lock indicating an SSL certificate problem). Regarding processing graphical

keywords, CNNs could be evaluated for the classification of objects within context, and

related recommendations could then be generated. Content-based image recognition and

semantic segmentation of images will be key topics in further investigating the processing

graphical keywords.

Another interesting direction for the research that was touched on briefly in the

thesis is a more sophisticated symbolic representation of the computer’s state, such as
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the application of ontologies and knowledge bases to improve recommendation diversity.

This is useful because a virtual agent that understands the relationship between recom-

mendations can do a better job of proposing 3 different recommendations rather than

3 very similar ones. Perhaps wide and deep learning could replace the RS and DNNs

described in this work. Following such an approach would require a new approach to

forgetting recommendations over time, and would need to balance execution time with

recommendation score.

Adding state information to AVRA’s RS should be investigated and developed fur-

ther in future work. AVRA makes the Markovian assumption about opportunities to

recommend tasks based upon onscreen information. However, this is clearly a simplify-

ing assumption that does not hold in general. For example, interpreting video frames

requires knowledge of current and past states of the computer screen. This is also true

of events observed before and after the user moves a window or changes views with the

ALT+TAB command. Many such examples come to mind. Now, to remove the Marko-

vian assumption would require some sort of memory system such as an LSTM, or a

generative predictive model such as an RNN. Perhaps a deep reinforcement learning sys-

tem could be applied to this problem. The representation of time-domain information,

regardless of the mechanism and algorithms employed to accomplish the task, would

enable the virtual agent to model sequences of events and to make predictions about

actions prior to the triggering information appearing onscreen. Successive snapshots of

the computer screen could be used to generate recommendations based upon sequences

of detected computer screen states rather than the current approach of time-invariant

analysis of the computer screen driving action recommendations. The first steps in that

direction are already in progress as the unsupervised learning algorithm of Chapter 9

requires knowledge of the sequence of events in order to learn. Another advantage that

RNN/LSTM would provide is long-term predictive capability such as recommendations

based on the time of day, and understanding long sequences of actions by the user as

distinct patterns.

Regarding collaborative filtering, the current approach of storing user data in the

cloud makes it possible to implement collaborative filtering of recommendations, which

may be implemented in upcoming versions of AVRA. Perhaps a Bayesian network will

be employed to integrate user recommendations from one user’s RS database into the

RS of other users.

Finally, the privacy considerations required to deploy AVRA should be investigated in

detail, as well as the privacy implications of such systems being adopted. As mentioned
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earlier in this work, AVRA retains images of computer screens which may be compro-

mising to the user if released. It may be insufficient to limit the aggregation of personal

data as images can sometimes contain personal identifying information. Furthermore,

the collaborative recommendation generating system must avoid learning the bad be-

havior of one or more users being recommended to other users. This type of problem

comes up in search engine recommendations as many users search for lewd topics but the

search engine does not want to recommend these searches to other users. These privacy

considerations should be addressed in future work.



Appendix A

Glossary of Terms

Accuracy of Classification The true positive rate divided by the number of samples

(ANN) Artificial Neural Network A computational model of a neuron which com-

bines many individual neurons into a network [198]

(AVRA) Automated Virtual Recommendation Agent AVRA is a recommender

system that assists the user by producing action recommendations regarding on-

screen tasks

(AWS) Amazon Web Services A cloud computing infrastructure service

(BEP) Break Even Point The point where precision is equal to recall [199, page 161]

[23]

(CBF) Content-Based Filtering A recommender systems scoring approach [24] [175].

CBF provides a mechanism to rank recommendations where the recommendation

score is increased if items related to the recommendation in question were rated

positively in the past

(CER) Character Error Rate proportion of characters in a dataset that were incor-

rectly classified during image to text conversion [38, page 51] [61]

(CFTR) Cystic Fibrosis Transmembrane conductance Regulator The CFTR gene

codes for the CFTR protein, which is related to the Cystic Fibrosis disease process

(CNN) Convolutional Neural Network A CNN is a deep learning image classifier

which applies many small filters to an image in order to produce a hierarchical

understanding of the contents of the image [198] [120]
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Context Each visual pattern recognized by the CNN in this work as a distinct class is

called a context. These contexts can be thought of as visual topics. The context

is used to consider what the computer screen looks like when a given keyword of

interest is detected

(CPU) Central Processing Unit

(CWL) Charter Word List A dataset representing natural English text collected from

the set of each word in the Canadian Charter of Rights and Freedoms [9]

(DBN) Deep Belief Network A stack of fully connected RBMs where each layer ac-

cepts pattern representations from the level below it, and learns to encode these

patterns into output classes [198]

(DL) Deep Learning DL is an approach in artificial intelligence using many layers of

neurons in a neural network to implement machine learning. The hallmarks of DL

are the formation of hierarchical representations of data within the layers on the

neural network, and the training of the neural network using a learning algorithm

[70]

(DNN) Deep Neural Network A DNN is a fully connected multi-layer neural net-

work classifier

Dropout Dropout is used to improve neural network training by providing the train-

ing learner with an approximate representation of the ground truth data. With

dropout, the connection from one neuron to the next neuron is dropped, with some

specified probability. The main advantage of this approach is reducing overfitting.

See also, Random noise injection

Epoch One iteration of the optimization process

(GB) GigaByte

(GNoT) Google Now on Tap GNoT is a general purpose on-demand search tool for

mobile phones that is meant to intervene only when prompted by the user mobile

phones. GNoT recognizes multiple items in one image, recommending further

information or actions in the form of onscreen “cards”

(GP-GPU) General Purpose Graphics Processing Unit A hardware accelerator

typically applied to speed up computations as compared to CPU processing of the
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same machine learning task. GPUs contain deep pipelining and parallel processing

of operations

(GUI) Graphical User Interface In AVRA, the GUI consists of a set of 3 buttons

which the user can click on in order to trigger the actions described in the button

(JEL) Java Error List An error message text corpus containing a set of 248 error

messages produced by the JVM.

(JVM) Java Virtual Machine

K-means K-means is one of several non-neural clustering approaches where the cen-

troid for each cluster is adjusted for many iterations until the points nearest to

each centroid are closest to their assigned centroid (and therefore not closer to the

centroid of another cluster) [172, page 5]

Keyword A text string containing one or more words is a keyword. For example, the

error message “Error: NullPointerException” can be one keyword

(LSH) Locality Sensitive Hashing LSH is used for comparing the similarity of text

or images. Strictly speaking, LSH is a one way hash function which quickly reduces

an input string or image to a fixed-length hash with the special property that similar

strings (or images) generate hash outputs with low Hamming distance between

them [99]

(LSTM) Long Short Term Memory A specialized RNN that can retain of forget

information

(MAP) Mean Average Precision A metric used to assess an entire precision-recall

curve, gives more weight to correct results the higher they are ranked

Memoization With the goal of reducing program execution time, memoization stores

the results of function calls for specific input values into memory, returning the

result without computing it if the inputs to the function match an already stored

result

(MI) Mixed-Initiative In MI systems, the breakdown of work between the computer

and the human focuses on the strength of each participant in the iterative problem

solving activity [13]
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(MOE) Measures of Effectiveness MOE define user needs, and are used to evaluate

how an implementation performs in comparison to the stated objectives, regardless

of implementation details [189]

(MOP) Measures of Performance MOP defines the user requirements, and specify

the technical performance characteristics the system must meet. Each MOP should

relate back to one or more MOEs [189]

Morse A text encoding scheme using dots, dashes and spaces [4]

(NLP) Natural Language Processing The study of understanding text or speech

spoken or written by humans in a natural way

(NLU) Natural Language Understanding More narrow than NLP, NLU is the pro-

cess of a system understanding unstructured text or speech input and extracting

intent as well as the related entities

Objective The function that is being maximized or minimized in an optimization pro-

cess

(OCR) Optical Character Recognition Optical Character Recognition software trans-

lates an image containing text into text, sometimes with translation errors

Precision The rate of true negative classification of data is called precision [191, page

780]. See Equation 2.1

(RBM) Restricted Boltzmann Machine A layer in a neural network where the neu-

rons do not connect to each other (the restriction) but rather accept input from a

previous layer (or the input to the overall network), and then feed this information

forward (feed-forward) [218]

Random noise injection Noise injection is used to improve neural network training

by providing the training learner with an approximate representation of the ground

truth data. With random noise injection, the connection from one neuron to the

next neuron is modified by some statistical noise, with some specified probability.

The main advantage of this approach is reducing overfitting. See also, Dropout

Recall The rate of true positive classification of data is called recall [191, page 902]. See

Equation 2.2
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(RNN) Recurrent Neural Network A neural network architecture where the output

is fed back into the input, as opposed to an RBM where information is strictly fed

forward. By feeding information back to the input, the current state can be based

upon past states of the network

(ROC) Receiver Operating Characteristic A graphical method of assessing the trade-

off between the sensitivity and specificity probabilities of a classifier [137]

(RS) Recommender System RS recommend items to a user, often based upon some

data about the user and the items to be recommended

(SCC) Supreme Court of Canada

(SL) Supervised Learning Training a machine learning system classifier using many

labeled examples

Specificity The true negative rate for a classifier is called specificity [191, page 902].

See Equation 2.3

(t-SNE) t-Distributed Stochastic Neighbor Embedding t-SNE is a dimensional-

ity reduction tool [130]

(TC) Text Categorization The assignment of category labels to a document

(TER) Term Error Rate TER measures the error rate for specific terms

(TPU) Tensor Processing Unit A cloud-based hardware accelerator for training and

executing machine learning models.

(UL) Unsupervised Learning learning without labeled examples organized into a

dataset [88]

(VM) Virtual Machine A cloud computing term referring to the configuration set-

tings defining the virtual settings of a computer which is in fact executing on

a shared hardware system in a cloud computing environment. Whereas a virtual

machine can be instantiated and destroyed by software, a real machine is composed

of physical parts

(WER) Word Error Rate The proportion of words in a dataset that were incorrectly

classified during image to text conversion [61]
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Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org.

[7] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

208

http://tkinter.unpythonic.net/wiki/
http://www.image-net.org/
https://github.com/ponty/pyscreenshot
https://github.com/ponty/pyscreenshot
http://ss64.com/bash/


Bibliography 209
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