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Abstract

Studying natural language, and especially how

people describe the world around them can

help us better understand the visual world. In

turn, it can also help us in the quest to generate

natural language that describes this world in a

human manner. We present a simple yet effec-

tive approach to automatically compose im-

age descriptions given computer vision based

inputs and using web-scale n-grams. Unlike

most previous work that summarizes or re-

trieves pre-existing text relevant to an image,

our method composes sentences entirely from

scratch. Experimental results indicate that it is

viable to generate simple textual descriptions

that are pertinent to the specific content of an

image, while permitting creativity in the de-

scription – making for more human-like anno-

tations than previous approaches.

1 Introduction

Gaining a better understanding of natural language,

and especially natural language associated with im-

ages helps drive research in both computer vision

and natural language processing (e.g., Barnard et

al. (2003), Pastra et al. (2003), Feng and Lapata

(2010b)). In this paper, we look at how to exploit

the enormous amount of textual data electronically

available today, web-scale n-gram data in particular,

in a simple yet highly effective approach to com-

pose image descriptions in natural language. Auto-

matic generation of image descriptions differs from

automatic image tagging (e.g., Leong et al. (2010))

in that we aim to generate complex phrases or sen-

tences describing images rather than predicting in-

dividual words. These natural language descriptions

can be useful for a variety of applications, includ-

ing image retrieval, automatic video surveillance,

and providing image interpretations for visually im-

paired people.

Our work contrasts to most previous approaches

in four key aspects: first, we compose fresh sen-

tences from scratch, instead of retrieving (Farhadi et

al. (2010)), or summarizing existing text fragments

associated with an image (e.g., Aker and Gaizauskas

(2010), Feng and Lapata (2010a)). Second, we aim

to generate textual descriptions that are truthful to

the specific content of the image, whereas related

(but subtly different) work in automatic caption gen-

eration creates news-worthy text (Feng and Lapata

(2010a)) or encyclopedic text (Aker and Gaizauskas

(2010)) that is contextually relevant to the image, but

not closely pertinent to the specific content of the

image. Third, we aim to build a general image de-

scription method as compared to work that requires

domain specific hand-written grammar rules (Yao et

al. (2010)). Last, we allow for some creativity in

the generation process which produces more human-

like descriptions than a closely related, very recent

approach that drives annotation more directly from

computer vision inputs (Kulkarni et al., 2011).

In this work, we propose a novel surface realiza-

tion technique based on web-scale n-gram data. Our

approach consists of two steps: (n-gram) phrase se-

lection and (n-gram) phrase fusion. The first step

– phrase selection – collects candidate phrases that

may be potentially useful for generating the descrip-

tion of a given image. This step naturally accom-

modates uncertainty in image recognition inputs as



Hairy goat under a tree 

Fluffy posturing sheep under a tree 

<furry;gray;brown,sheep>,by;near,<rusty;gray;green,tree> 

furry 

gray 

brown 

rusty 

gray 

green 

by 

near 

Figure 1: The big picture of our task to automatically

generate image description.

well as synonymous words and word re-ordering to

improve fluency. The second step – phrase fusion

– finds the optimal compatible set of phrases us-

ing dynamic programming to compose a new (and

more complex) phrase that describes the image. We

compare the performance of our proposed approach

to three baselines based on conventional techniques:

language models, parsers, and templates.

Despite its simplicity, our approach is highly ef-

fective for composing image descriptions: it gen-

erates mostly appealing and presentable language,

while permitting creative writing at times (see Fig-

ure 5 for example results). We conclude from our

exploration that (1) it is viable to generate simple

textual descriptions that are germane to the specific

image content, and that (2) world knowledge implic-

itly encoded in natural language (e.g., web-scale n-

gram data) can help enhance image content recogni-

tion.

2 Image Recognition

Figure 1 depicts our system flow: a) an image is in-

put into our system, b) image recognition techniques

are used to extract visual content information, c) vi-

sual content is encoded as a set of triples, d) natural

language descriptions are generated.

In this section, we briefly describe the image

recognition system that extracts visual information

and encodes it as a set of triples. For a given image,

the image recognizer extracts objects, attributes and

spatial relationships among objects as follows:

1. Objects: including things (e.g., bird, bus, car)

and stuff (e.g., grass, water, sky, road) are de-

tected.

2. Visual attributes (e.g., feathered, black) are pre-

dicted for each object.

3. Spatial relationships (e.g., on, near, under) be-

tween objects are estimated.

In particular, object detectors are trained using state

of the art mixtures of multi-scale deformable parts

models (Felzenszwalb et al., 2010). Our set of

objects encompasses the 20 PASCAL 2010 object

challenge 1 categories as well as 4 additional cate-

gories for flower, laptop, tiger, and window trained

on images with associated bounding boxes from

Imagenet (Deng et al., 2009). Stuff detectors are

trained to detect regions corresponding to non-part

based object categories (sky, road, building, tree,

water, and grass) using linear SVMs trained on

the low level region features of (Farhadi et al.,

2009). These are also trained on images with la-

beled bounding boxes from ImageNet and evaluated

at test time on a coarsely sampled grid of overlap-

ping square regions over whole images. Pixels in

any region with a classification probability above a

fixed threshold are treated as detections.

We select visual attribute characteristics that are

relevant to our object and stuff categories. Our at-

tribute terms include 21 visual modifiers – adjec-

tives – related to color (e.g. blue, gray), texture

(e.g. striped, furry), material (e.g. wooden, feath-

ered), general appearance (e.g. rusty, dirty, shiny),

and shape (e.g. rectangular) characteristics. The at-

tribute classifiers are trained on the low level fea-

tures of (Farhadi et al., 2009) using RBF kernel

SVMs. Preposition functions encoding spatial rela-

tionships between objects are hand designed to eval-

uate the spatial relationships between pairs of re-

gions in an image and provide a score for 16 prepo-

sitions (e.g., above, under, against, in etc).

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/



From these three types of visual output, we con-

struct a meaning representation of an image as a

set of triples (one triple for every pair of detected

objects). Each triple encodes a spatial relation be-

tween two objects in the following format: <<adj1,

obj1>, prep, <adj2, obj2>>. The generation pro-

cedure is elaborated in the following two sections.

3 Baseline Approaches to Surface

Realization

This section explores three baseline surface realiza-

tion approaches: language models (§3.1), random-

ized local search (§3.2), and template-based (§3.3).

Our best approach, phrase fusion using web-scale n-

grams follows in §4.

3.1 Language Model Based Approach

For each triple, as described in §2, we construct a

sentence. For instance, given the triple <<white,

cloud>, in, <blue, sky>>, we might generate

“There is a white cloud in the blue sky”.

We begin with a simple decoding scheme based

on language models. Let t be a triple, and let V t

be the set of words in t. We perform surface real-

ization by adding function words in-between words

in V t. As a concrete example, suppose we want to

determine whether to insert a function word x be-

tween a pair of words α ∈ V t and β ∈ V t. Then,

we need to compare the length-normalized probabil-

ity p̂(αxβ) with p̂(αβ), where p̂ takes the n’th root

of the probability p for n-word sequences. We in-

sert the new function word x if p̂(αxβ) ≥ p̂(αβ)
using the n-gram models, where the probability of

any given sequence w1, ..., wm is approximated by

p(w1, ..., wm) =
m∏

i=1

p(wi|wi−(n−1), ..., wi−1)

Note that if we wish to reorder words in V t based on

n-gram based language models, then the decoding

problem becomes an instance of asymmetric trav-

eler’s salesman problem (NP-hard). For brevity, we

retain the original order of words in the given triple.

We later lift this restriction using the web-scale n-

gram based phrase fusion method introduced in §4.

3.2 Randomized Local Search Approach

A much needed extension to the language model

based surface realization is incorporating parsers to

Begin Loop (until T iterations or convergence)

Choose a position i to revise at random

Choose an edit operation at random

If the edit yields a better score by LM and PCFG

Commit the edit

End Loop

Table 1: Pseudo code for a randomized local search ap-

proach. A possible edit operation includes insertion,

deletion, and replacement. The score of the current sen-

tence is determined by the multiplication LM-based prob-

ability and PCFG-based probability.

enforce long distance regularities for more gram-

matically correct generation. However, optimiz-

ing both language-model-based probabilities and

parser-based probabilities is intractable. Therefore,

we explore a randomized local search approach that

makes greedy revisions using both language models

and parsers. Randomized local search has been suc-

cessfully applied to intractable optimization prob-

lems in AI (e.g., Chisholm and Tadepalli (2002)) and

NLP (e.g., White and Cardie (2002)).

Table 1 shows the skeleton of the algorithm in our

study. Iterating through a loop, it chooses an edit

location and an edit operation (insert, delete, or re-

place) at random. If the edit yields a better score,

then we commit the edit, otherwise we jump to the

next iteration of the loop. We define the score as

score(X) = p̂LM (X)p̂PCFG(X)

where X is a given sentence (image description),

p̂LM (X) is the length normalized probability of X

based on the language model, and p̂PCFG(X) is the

length normalized probability of X based on the

probabilistic context free grammar (PCFG) model.

The loop is repeated until convergence or a fixed

number of iterations is reached. Note that this ap-

proach can be extended to simulated annealing to al-

low temporary downward steps to escape from local

maxima. We use the PCFG implementation of Klein

and Manning (2003).

3.3 Template Based Approach

The third approach is a template-based approach

with linguistic constraints, a technique that has of-

ten been used for various practical applications such

as summarization (Zhou and Hovy, 2004) and dia-



blue, bike  [2669] 

blue, bicycle  [1365] 

bike, blue  [1184] 

blue, cycle  [324] 

cycle, of, the, blue  [172] 

cycle, blue  [158] 

bicycle, blue  [154] 

bike, in, blue  [98] 

cycle, of, blue  [64] 

bike, with, blue  [43] 

< < blue , bicycle >, near, < shiny , person > > 

bright, boy  [8092] 

bright, child  [7840] 

bright, girl  [6191] 

bright, kid  [5873] 

bright, person  [5461] 

bright, man  [4936] 

bright, woman  [2726] 

bright, women  [1684] 

lady, bright  [1360] 

bright, men  [1050] 

person, operating, a, bicycle  [3409] 

man, on, a, bicycle  [2842] 

cycle, of, child  [2507] 

bike, for, men  [2485] 

person, riding, a, bicycle  [2118] 

cycle, in, women  [1853] 

bike, for, women  [1442] 

boy, on, a, bicycle  [1378] 

cycle, of, women  [1288] 

man, on, a, bike  [1283] 

bright person operating a blue bicycle [25411589385] 

bright man on a blue bicycle [19148372880] 

bright man on a blue bike [16902478072] 

bright person riding a blue bicycle [15788133270] 

bright boy on a blue bicycle [15220809240] 

blue bike for bright men [6964088250] 

blue bike for bright women [6481207432] 

blue cycle of bright child [6368181120] 

blue cycle in bright women [1011026448] 

Figure 2: Illustration of phrase fusion composition al-

gorithm using web-scale n-grams. Numbers in square

brackets are n-gram frequencies.

logue systems (Channarukul et al., 2003). Because

the meaning representation produced by the image

recognition system has a fixed pattern of <<adj1,

obj1>, prep, <adj2, obj2>>, it can be templated as

“There is a [adj1] [obj1] [prep] the [adj2] [obj2].”

We also include templates that encode basic dis-

course constraints. For instance, the template that

generated the first sentences in Figure 3 and 4 is:

[PREFIX] [#(x1)] [x1], [#(x2)] [x2], ... and [#(xk)]

[xk], where xi is the name of an object (e.g. “cow”),

#(xi) is the number of instances of xi (e.g. “one”),

and PREFIX ∈ {”This picture shows”, ”This is a pic-

ture of”, etc}.

Although this approach can produce good looking

sentences in a limited domain, there are many limita-

tions. First, a template-based approach does not al-

low creative writing and produces somewhat stilted

prose. In particular, it cannot add interesting new

words, or replace existing content words with better

ones. In addition, such an approach does not allow

any reordering of words which might be necessary to

create a fluent sentence. Finally, hand-written rules

are domain-specific, and do not generalize well to

new domains.

4 Surface Realization by Phrase Fusion

using Web-scale N-gram

We now introduce an entirely different approach

that addresses the limitations of the conventional ap-

proaches discussed in §3. This approach is based

on web-scale n-gram, also known as Google Web

1T data, which provides the frequency count of each

possible n-gram sequence for 1 ≤ n ≤ 5.

4.1 [Step I] – Candidate Phrase Selection

We first define three different sets of phrases for each

given triple <<adj1, obj1>, prep, <adj2, obj2>>:

• O1 = {(x, f) | x is an n-gram phrase describ-

ing the first object using the words adj1 and

obj1, and f is the frequency of x}

• O2 = {(x, f) | x is an n-gram phrase describ-

ing the second object using the words adj2 and

obj2, and f is the frequency of x}

• R = {(x, f) | x is an n-gram describing the re-

lation between the two objects using the words

obj1 and obj2, and f is the frequency of x}

We find n-gram phrases for O1, O2, and R from the

Google Web 1T data. The search patterns for O1 is:

• [adj1] [♣]n−2 [obj1]

• [obj1] [♣]n−2 [adj1]

where [♣] is a wildcard word, and [♣]n−2 denotes

a sequence of n-2 number of wildcard words in a n-

gram sequence. For wildcards, we only allow a lim-

ited set of function words, and verbs in the gerund

form2 for reasons that will become clearer in the

next step – phrase fusion in §4.2.

Note that it is the second pattern that allows

interesting re-ordering of words in the final sen-

tence generation. For instance, suppose adj1=green,

obj1=person. Then it is more natural to generate

a phrase using the reverse pattern such as, “person

in green” or “person wearing green” than simply

concatenating adj1 and obj1 to generate “green per-

son”. Similarly, given obj1=bicycle and obj2=man,

generating a phrase using the reverse pattern, e.g.,

“man with a bicycle” would be more natural than

“bicycle with a man”. Our hypothesis is that such

ordering preference is implicitly encoded in the

web-scale n-grams via frequencies.

It is worthwhile to note that our pattern matching

is case sensitive, and we only allow patterns that are

2We treat words with suffix “ing” as gerund for simplicity.



Phrase Fusion 

Black bull eating fluffy grass 

Bright apartment in the blue sky 

Shaggy grass looking at the blue sky 

Local Search 

the black cow or even by the furry 

grass.  the shiny building up by the 

same blue sky. the furry grass be 

below over one  blue sky. 

Template   This picture shows one 

cow, one building, one grass and 

one sky. The black cow is by the 

shiny building, and by the furry 

grass, and by the blue sky. The 

shiny building is by the furry grass, 

and by the blue sky. The furry 

grass is below the blue sky.  

Simple decoding 

the black cow or by the furry grass. the 

shiny building up by the blue sky. the 

furry grass be below one  blue sky.  

Image Recognition Output as Tripes: 

<black;yellow;rusty,cow>,by;near;by,<furry;green;brown,grass>  

<shiny;colorful;yellow,building>,by;near;by,<blue;clear;colorful,sky>  

<furry;green;brown,grass>,below;beneath;by,<blue;clear;colorful,sky> 

Figure 3: Comparison of image descriptions

all lower-case. From our pilot study, we found that

n-grams with upper case characters are likely from

named entities, which distort the n-gram frequency

distribution that we rely on during the phrase fusion

phase. To further reduce noise, we also discard any

n-gram that contains a character that is not an alpha-

bet.

Accommodating Uncertainty We extend candi-

date phrase selection in order to cope with uncer-

tainty from the image recognition. In particular,

for each object detection obji, we include its top 3

predicted modifiers adji1, adji2, adji3 determined

by the attribute classifiers (see §2) to expand the

set O1 and O2 accordingly. For instance, given

adji =(shiny or white) and obji = sheep, we can

consider both <shiny,sheep> and <white,sheep>

pairs to predict more compatible pairs of words.

Accommodating Synonyms Additionally, we

augment each modifier adji and each object name

obji with synonyms to further expand our sets

O1, O2, and R. These expanded sets of phrases

enable resulting generations that are more fluent

and creative.

4.2 [Step II] – Phrase Fusion

Given the expanded sets of phrases O1, O2, and R
described above, we perform phrase fusion to gen-

erate simple image description. In this step, we find

the best combination of three phrases, (x̂1, f̂1) ∈

O1, (x̂2, f̂2) ∈ O2, and (x̂R, f̂R) ∈ R as follows:

(x̂1, x̂2, x̂R) = argmaxx1,x2,xR
score(x1, x2, xR) (1)

score(x1, x2, xR) = φ(x1)× φ(x2)× φ(xR) (2)

s.t. x̂1 and x̂R are compatible

& x̂2 and x̂R are compatible

Two phrases x̂i and x̂R are compatible if they share

the same object noun obji. We define the phrase-

level score function φ(·) as φ(xi) = fi using the

Google n-gram frequencies. The equation (2) can be

maximized using dynamic programming, by align-

ing the decision sequence as x̂1 − x̂R − x̂2.

Once the best combination – (x̂1, x̂2, x̂R) is de-

termined, we fuse the phrases by replacing the word

obj1 in the phrase x̂R with the corresponding phrase

x̂1. Similarly, we replace the word obj2 in the phrase

x̂R with the other corresponding phrase x̂2. Because

the wildcard words – [♣] in §4.1 allow only a lim-

ited set of function words and gerund, the resulting

phrase is highly likely to be grammatically correct.

Computational Efficiency One advantage of our

phrase fusion method is its efficiency. If we were

to attempt to re-order words with language mod-

els in a naive way, we would need to consider all

possible permutations of words – an NP-hard prob-

lem (§3.1). However, our phrase fusion method is

clever in that it probes reordering only on selected

pairs of words, where reordering is likely to be use-

ful. In other words, our approach naturally ignores

most word pairs that do not require reordering and

has a time complexity of only O(K2n), where K is

the maximum number of candidate phrases of any

phrase type, and n is the number of phrase types in

each sentence. K can be kept as a small constant by

selecting K-best candidate phrases of each phrase

type. We set K = 10 in this paper.

5 Experimental Results

To construct the training corpus for language mod-

els, we crawled Wikipedia pages that describe our

object set. For evaluation, we use the UIUC PAS-

CAL sentence dataset3 which contains upto five

human-generated sentences that describing 1000 im-

ages. Note that all of the approaches presented in

3http://vision.cs.uiuc.edu/pascal-sentences/



Phrase fusion 

shiny motorcycle nearby shiny motorcycle.   

black women operating a shiny motorcycle.   

bright boy on a shiny motorcycle.   

girl showing pink on a shiny motorcycle.  

Local search 

the shiny motorbike or 

against the shiny 

motorbike. the shiny 

motorbike or by the black 

person. the shiny motorbike 

or by the shiny person. the 

shiny motorbike or by the 

pink person. 

Simple Decoding 

the shiny motorbike or 

against the shiny 

motorbike. the shiny 

motorbike or by the black 

person. the shinny 

motorbike or by the shiny 

boy. the shiny motorbike or 

by the pink person. 

Template  This is a picture of two motorbikes, three persons, one building and one 

tree. The first shiny motorbike is against the second shiny motorbike, and by the 

first black person. The second shiny motorbike is by the first black person, and by 

the second shiny person, and by the third pink person. 

Image Recognition Output as Triples: 

< < shiny; black; rusty , motorbike >, against; by; in , < shiny; black; rusty , motorbike > > 

< < shiny; black; rusty , motorbike >, by; near; by , < black; shiny; rusty , person > > 

< < shiny; black; rusty , motorbike >, by; near; by , < pink; rusty; striped , person > > 

Figure 4: Comparison of image descriptions

Section 3 and 4 attempt to insert function words for

surface realization. In this work, we limit the choice

of function words to only those words that are likely

to be necessary in the final output.4 For instance, we

disallow function words such as “who” or “or”.

Before presenting evaluation results, we present

some samples of image descriptions generated by 4

different approaches in Figure 3 and 4. Notice that

only the PHRASE FUSION approach is able to in-

clude interesting and adequate verbs, such as “eat-

ing” or “looking” in Figure 3, and “operating” in

Figure 4. Note that the choice of these action verbs

is based only on the co-occurrence statistics encoded

in n-grams, without relying on the vision compo-

nent that specializes in action recognition. These ex-

amples therefore demonstrate that world knowledge

implicitly encoded in natural language can help en-

hance image content recognition.

Automatic Evaluation: BLEU (Papineni et al.,

2002) is a widely used metric for automatic eval-

uation of machine translation that measures the n-

gram precision of machine generated sentences with

respect to human generated sentences. Because our

task can be viewed as machine translation from im-

ages to text, BLEU (Papineni et al., 2002) may seem

4This limitation does not apply to TEMPLATE.

w/o w/ syn

LANGUAGE MODEL 0.094 0.106

TEMPLATE 0.087 0.096

LOCAL SEARCH 0.100 0.111

PHRASE FUSION (any best) 0.149 0.153

PHRASE FUSION (best w/ gerund) 0.146 0.149

Human 0.500 0.510

Table 2: Automatic Evaluation: BLEU measured at 1

Creativ. Fluency Relevan.

LANGUAGE MODEL 2.12 1.96 2.09

TEMPLATE 2.04 1.7 1.96

LOCAL SEARCH 2.21 1.96 2.04

PHRASE FUSION 1.86 1.97 2.11

Table 3: Human Evaluation: the scores range over 1 to 3,

where 1 is very good, 2 is ok, 3 is bad.

like a reasonable choice. However, there is larger

inherent variability in generating sentences from im-

ages than translating a sentence from one language

to another. In fact two people viewing the same pic-

ture may produce quite different descriptions. This

means BLEU could penalize many correctly gener-

ated sentences, and be poorly correlated with human

judgment of quality. Nevertheless we report BLEU

scores in absence of any other automatic evaluation

method that serves our needs perfectly.

The results are shown in Table 2 – first column

shows BLEU score considering exact matches, sec-

ond column shows BLEU with full credit for syn-

onyms. To give a sense of upper bound and to see

some limitations of the BLEU score, we also com-

pute the BLEU score between human-generated sen-

tences by computing the BLEU score of the first hu-

man sentence with respect to the others.

There is one important factor to consider when in-

terpreting Table 2. The four approaches explored

in this paper are purposefully prolific writers in that

they generate many more sentences than the num-

ber of sentences in the image descriptions written by

humans (available in the UIUC PASCAL dataset).

In this work, we do not perform sentence selection

to reduce the number of sentences in the final out-

put. Rather, we focus on the quality of each gener-

ated sentence. The consequence of producing many



Way rusty the golden cow 

Golden cow in the golden sky 

Tree snowing black train 

Black train under the tree Rusty girl sitting at a white table 

White table in the clear sky 

Rusty girl living in the clear sky 

Blue path up in the clear sky 

Blue path to colored fishing boat 

Blue path up in the clear 

morning sky 

rusty chair for rusty dog.  

rusty dog under the rusty chair.  

rusty dog sitting in a rusty chair. 

Gray cat from a burning gray 

building 

Gray building with a gray cat. 

Gray building in the white sky 

 

Shaggy dog knotting hairy men 

Pink flowering plant the hairy dog 

Pink dog training shaggy dog 

Shaggy dog relaxing on a colored sofa 

 

black women hanging 

from a black tree.  

colored man in the tree. 

1 2 3 4 

5 

6 
7 

8 

Figure 5: Sample image descriptions using PHRASE FUSION: some of the unexpected or poetic descriptions are

highlighted in boldface, and some of the interesting incorrect descriptions are underlined.

more sentences in our output is overall lower BLEU

scores, because BLEU precision penalizes spurious

repetitions of the same word, which necessarily oc-

curs when generating more sentences. This is not an

issue for comparing different approaches however,

as we generate the same number of sentences for

each method.

From Table 2, we find that our final approach —

PHRASE FUSION based on web-scale n-grams per-

forms the best. Notice that there are two different

evaluations for PHRASE FUSION: the first one is

evaluated for the best combination of phrases (Equa-

tion (1)), while the second one is evaluated for the

best combination of phrases that contained at least

one gerund.

Human Evaluation: As mentioned earlier, BLEU

score has some drawbacks including obliviousness

to correctness of grammar and inability to evaluate

the creativity of a composition. To directly quantify

these aspects that could not be addressed by BLEU,

we perform human judgments on 120 instances for

the four proposed methods. Evaluators do not have

any computer vision or natural language generation

background.

We consider the following three aspects to eval-
uate the our image descriptions: creativity, fluency,

and relevance. For simplicity, human evaluators as-
sign one set of scores for each aspect per image. The
scores range from 1 to 3, where 1 is very good, 2 is
ok, and 3 is bad.5 The definition and guideline for
each aspect is:

[Creativity] How creative is the generated sen-

tence?

1 There is creativity either based on unexpected

words (in particular, verbs), or describing

things in a poetic way.

2 There is minor creativity based on re-ordering

words that appeared in the triple

3 None. Looks like a robot talking.

[Fluency] How grammatically correct is the gener-

ated sentence?

1 Mostly perfect English phrase or sentence.

2 There are some errors, but mostly comprehen-

sible.

3 Terrible.

[Relevance] How relevant is the generated descrip-

tion to the given image?

1 Very relevant.

2 Reasonably relevant.

3 Totally off.

5In our pilot study, human annotations on 160 instances

given by two evaluators were identical on 61% of the instances,

and close (difference ≤ 1) on 92%.



Table 3 shows the human evaluation results. In

terms of creativity, PHRASE FUSION achieves the

best score as expected. In terms of fluency and

relevance however, TEMPLATE achieves the best

scores, while PHRASE FUSION performs the second

best. Remember that TEMPLATE is based on hand-

engineered rules with discourse constraints, which

seems to appeal to evaluators more. It would be

straightforward to combine PHRASE FUSION with

TEMPLATE to improve the output of PHRASE FU-

SION with hand-engineered rules. However, our

goal in this paper is to investigate statistically moti-

vated approaches for generating image descriptions

that can address inherent limitations of hand-written

rules discussed in §3.3.

Notice that the relevance score of TEMPLATE is

better than that of LANGUAGE MODEL, even though

both approaches generate descriptions that consist of

an almost identical set of words. This is presum-

ably because the output from LANGUAGE MODEL

contains grammatically incorrect sentences that are

not comprehendable enough to the evaluators. The

relevance score of PHRASE FUSION is also slightly

worse than that of TEMPLATE, presumably because

PHRASE FUSION often generates poetic or creative

expressions, as shown in Figure 5, which can be con-

sidered a deviation from the image content.

Error Analysis There are different sources of er-

rors. Some errors are due to mistakes in the origi-

nal visual recognition input. For example, in the 3rd

image in Figure 5, the color of sky is predicted to

be “golden”. In the 4th image, the wall behind the

table is recognized as “sky”, and in the 6th image,

the parrots are recognized as “person”.

Other errors are from surface realization. For in-

stance, in the 8th image, PHRASE FUSION selects

the preposition “under”, presumably because dogs

are typically under the chair rather than on the chair

according to Google n-gram statistics. In the 5th

image, an unexpected word “burning” is selected to

make the resulting output idiosyncratic. Word sense

disambiguation sometimes causes a problem in sur-

face realization as well. In the 3rd image, the word

“way” is chosen to represent “path” or “street” by

the image recognizer. However, a different sense of

way – “very” – is being used in the final output.

6 Related Work

There has been relatively limited work on automat-

ically generating natural language image descrip-

tions. Most work related to our study is discussed

in §1, hence we highlight only those that are clos-

est to our work here. Yao et al. (2010) present a

comprehensive system that generates image descrip-

tions using Head-driven phrase structure (HPSG)

grammar, which requires carefully written domain-

specific lexicalized grammar rules, and also de-

mands a very specific and complex meaning rep-

resentation scheme from the image processing. In

contrast, our approach handles images in the open-

domain more naturally using much simpler tech-

niques.

We use similar vision based inputs – object detec-

tors, modifier classifiers, and prepositional functions

– to some very recent work on generating simple de-

scriptions for images (Kulkarni et al., 2011), but fo-

cus on improving the sentence generation method-

ology and produce descriptions that are more true

to human generated descriptions. Note that the

BLEU scores reported in their work of Kulkarni et

al. (2011) are not directly comparable to ours, as the

scale of the scores differs depending on the number

of sentences generated per image.

7 Conclusion

In this paper, we presented a novel surface realiza-

tion technique based on web-scale n-gram data to

automatically generate image description. Despite

its simplicity, our method is highly effective in gen-

erating mostly appealing and presentable language,

while permitting creative writing at times. We con-

clude from our study that it is viable to generate

simple textual descriptions that are germane to the

specific image content while also sometimes pro-

ducing almost poetic natural language. Furthermore,

we demonstrate that world knowledge implicitly en-

coded in natural language can help enhance image

content recognition.
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