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Abstract

In this paper, we study the task of image retrieval, where

the input query is specified in the form of an image plus

some text that describes desired modifications to the input

image. For example, we may present an image of the Eiffel

tower, and ask the system to find images which are visually

similar, but are modified in small ways, such as being taken

at nighttime instead of during the day. To tackle this task,

we embed the query (reference image plus modification text)

and the target (images). The encoding function of the image

text query learns a representation, such that the similarity

with the target image representation is high iff it is a “pos-

itive match”. We propose a new way to combine image and

text through residual connection, that is designed for this re-

trieval task. We show this outperforms existing approaches

on 3 different datasets, namely Fashion-200k, MIT-States

and a new synthetic dataset we create based on CLEVR.

We also show that our approach can be used to perform im-

age classification with compositionally novel labels, and we

outperform previous methods on MIT-States on this task.

1. Introduction

A core problem in image retrieval is that the user has

a “concept” in mind, which they want to find images of,

but they need to somehow convey that concept to the sys-

tem. There are several ways of formulating the concept as a

search query, such as a text string, a similar image, or even a

sketch, or some combination of the above. In this work, we

consider the case where queries are formulated as an input

image plus a text string that describes some desired modi-

fication to the image. This represents a typical scenario in

session search: users can use an already found image as a

reference, and then express the difference in text, with the

aim of retrieving a relevant image. This problem is closely

related to attribute-based product retrieval (see e.g., [12]),

but differs in that the text can be multi-word, rather than a

single attribute.

∗Work done during an internship at Google AI.

Figure 1. Example of image retrieval using text and image query.

The text states the desired modification to the image and is expres-

sive in conveying the information need to the system.

We can use standard deep metric learning methods such

as triplet loss (e.g., [15]) for computing similarity between

a search query and candidate images. The main research

question we study is how to represent the query when we

have two different input modalities, namely the input image

and the text. In other words, how to learn a meaningful

cross-modal feature composition for the query in order to

find the target image.

Feature composition between text and image has been

extensively studied in the field of vision and language, es-

pecially in Visual Question Answering (VQA) [2]. After

encoding an image (e.g., using a convolutional neural net-

work, or CNN) and the text (e.g., using a recurrent neu-

ral network, or RNN), various methods for feature com-

position have been used. These range from simple tech-

niques (e.g., concatenation or shallow feed-forward net-

works) to advanced mechanisms (e.g., relation [43], or pa-

rameter hashing [35]). These approaches have also been

successfully used in related problems such as query clas-

sification, compositional learning, etc. (See Section 2 for

more discussion of related work.)

The question of which image/text feature composition

to use for image retrieval has not been studied, to the best

of our knowledge. In this paper, we compare several ex-

isting methods, and propose a new one, which often gives
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improved results. The key idea behind the new method is

that the text should modify the features of the query image,

but we want the resulting feature vector to still ”live in” the

same space as the target image. We achieve this goal by

having the text modify the image feature via a gated resid-

ual connection. We call this ”Text Image Residual Gating ”

(or TIRG for short). We give the details in Section 3.

We empirically compare these methods on three bench-

marks: Fashion-200k dataset from [12], MIT-States

dataset [17], and a new synthetic dataset for image retrieval,

which we call “CSS” (color, shape and size), based on the

CLEVR framework [20]. We show that our proposed fea-

ture combination method outperforms existing methods in

all three cases. In particular, significant improvement is

made on Fashion-200k compared to [12] whose approach is

not ideal for this image retrieval task. Besides, our method

works reasonably well on a recent task of learning feature

composition for image classification [31, 33], and achieves

the state-of-the-art result on the task on the MIT-States

dataset [17].

To summarize, our contribution is threefold:

• We systematically study feature composition for image

retrieval, and propose a new method.

• We create a new dataset, CSS, which we will release,

which enables controlled experiments of image retrieval

using text and image queries.

• We improve previous state of the art results for image

retrieval and compositional image classification on two

public benchmarks, Fashion-200K and MIT-States.

2. Related work

Image retrieval and product search: Image retrieval

is an important vision problem and significant progress has

been made thanks to deep learning [5, 51, 10, 38]; it has nu-

merous applications such as product search [28], face recog-

nition [44, 36] or image geolocalization [13]. Cross-modal

image retrieval allows using other types of query, examples

include text to image retrieval [52], sketch to image retrieval

[42] or cross view image retrieval [26], and event detection

[19]. We consider our set up an image to image retrieval

task, but the image query is augmented with an additional

modification text input.

A lot of research has been done to improve product re-

trieval performance by incorporating user’s feedback to the

search query in the form of relevance [40, 18], relative [23]

or absolute attribute [56, 12, 1]. Tackling the problem of

image based fashion search, Zhao et al. [56] proposed a

memory-augmented deep learning system that can perform

attribute manipulation. In [12], spatially-aware attributes

are automatically learned from product description labels

and used to facilitate attribute-feedback product retrieval

application. We are approaching the same image search

task, but incorporating text into the query instead, which

can be potentially more flexible than using a predefined set

of attribute values. Besides, unlike previous work which

seldom shows its effectiveness beyond image retrieval, we

show our method also work reasonably well for a classifi-

cation task on compositional learning.

Parallel to our work is dialog-based interactive image re-

trieval [11], where Guo et al. showed promising result on

simulated user and real world user study. Though the task is

similar, their study focuses on modeling the interaction be-

tween user and the agent; meanwhile we study and bench-

mark different image text composition mechanisms.

Vision question answering: The task of Visual Ques-

tion Answering (VQA) has achieved much attention (see

e.g., [2, 20]). Many techniques have been proposed to com-

bine the text and image inputs effectively [7, 34, 22, 35,

37, 43, 27, 48, 25]. Fukui et al [7] proposed Multimodal

Compact Bilinear Pooling as a feature fusion mechanism to

combine image and text. In [35], the text feature is incor-

porated by mapping into parameters of a fully connected

layer within the image CNN. Another important tool that’s

proved effective for VQA task is attention [34, 48, 27].

In [22, 37], residual connections are used to combine im-

age and text. Specifically, [22] proposed method outputs

the text feature plus a residual mapping obtained by joint

element-wise multiplication of image and text. [37] intro-

duced FiLM layer as a way to inject text features into an

image CNN, notably by residual connections. While us-

ing similar technical components, we actually try to keep

and “modify” the input image feature, instead of “fusing” it

with text creating a “brand new” feature.

Vision and Language: beside VQA, there’s other tasks

that also learn to make prediction from image and text input.

Chen et al [4] proposed a recurrent attentive model to edit

and colorize images given text descriptions. [16, 29, 54, 53]

study the referring expression comprehension task, which

aim to localize the object in the input image given its refer-

ence description.

Compositional Learning: We can think of our query as

a composition of an image and a text. The core of composi-

tional learning is that a complex concept can be developed

by combing multiple simple concepts or attributes [31]. The

idea is reminiscent of earlier work on visual attribute [6, 41]

and also related to zero-shot learning [24, 39, 55]. Among

recent contributions, Misra et al. [31] investigated learn-

ing a composition classifier by combining an existing object

classifier and attribute classifier. Nagarajan et al. [33] pro-

posed an embedding approach to carry out the composition

using the attribute embedding as an operator to change the

object classifier. Kota et al. [21] applied this idea to action

recognition. By contrast, our composition is cross-modal

and only has a single image versus abundant training exam-
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ples to train the classifiers.

3. Method

As explained in the introduction, our goal is to learn an

embedding space for the text+image query and for target

images, such that matching (query, image) pairs are close

(see Fig. 2).

First, we encode the query (or reference) image x using a

ResNet-17 CNN to get a 2d spatial feature vector fimg(x) =
φx ∈ R

W×H×C , where W is the width, H is the height,

and C = 512 is the number of feature channels. Next we

encode the query text t using a standard LSTM. We define

ftext(t) = φt ∈ R
d to be the hidden state at the final time

step whose size d is 512. We want to keep the text encoder

as simple as possible. Encoding texts by other encoders,

e.g. bi-LSTM or LSTM attention, is definitely feasible but

beyond the scope of our paper. Finally, we combine the

two features to compute φxt = fcombine(φx, φt). Below we

discuss various ways to perform this combination.

3.1. Summary of existing combination methods

In this paper, we study the following approaches for fea-

ture composition. For a fair comparison, we train all meth-

ods including ours using the same pipeline, with the only

difference being in the composition module.

• Image Only: we set φxt = φx.

• Text Only: we set φxt = φt.

• Concatenate computes φxt = fMLP([φx, φt]). This sim-

ple has proven effective in a variety of applications [2,

11, 56, 31]. In particular, we use two layers of MLP with

RELU, the batch-norm and the dropout rate of 0.1.

• Show and Tell [49]. In this approach, we train an LSTM

to encode both image and text by inputting the image fea-

ture first, following by words in the text; the final state of

this LSTM is used as representation φxt.

• Attribute as Operator [33] embeds each text as a transfor-

mation matrix, Tt, and applies Tt to φx to create φxt.

• Parameter hashing [35] is a technique used for the VQA

task. In our implementation, the encoded text feature φt
is hashed into a transformation matrix Tt, which can be

applied to image feature; it is used to replace a fc layer in

the image CNN, which now outputs a representation φxt
that takes into account both image and text feature.

• Relationship [43] is a method to capture relational rea-

soning in the VQA task. It first uses CNN to extract a 2D

feature map from image, then create a set of relationship

features, each is a concatenation of the text feature φt and

2 local features in the 2D feature map; this set of features

is passed through an MLP and the result is summed to

get a single feature. Another MLP is applied to obtain

the output φxt.

• Multimodal Residual Networks (MRN) [22] is a VQA

method that uses element-wise multiplication for the

joint residual mappings. Here starting with φ0xt = φt,

each of its block layer is defined as φixt = φi−1
xt +

fc(tanh(φi−1
xt ))·fc(tanh(fc(tanh(φx)))). The last fea-

ture is linearly transformed to obtain the image text com-

position output.

• FiLM [37] is another VQA method where the text fea-

ture is also injected into the image CNN. In more de-

tail, the text feature φt is used to predict modulation fea-

tures: γi, βi ∈ R
C , where i indexes the layer and C is

the number of feature or feature map. Then it performs a

feature-wise affine transformation of the image features,

φixt = γi · φix + βi. As stated in [37], a FiLM layer

only handles a simple operation like scaling, negating or

thresholding the feature. To perform complex operations,

it has to be used in every layer of the CNN. By contrast,

we only modify one layer of the image feature map, and

we do this using a gated residual connection, described

in 3.2.

3.2. Proposed approach: TIRG

Inspired by [47, 14, 30], we propose to combine image

and text features using the following approach which we

call Text Image Residual Gating (or TIRG for short).

φ
rg
xt = wgfgate(φx, φt) + wrfres(φx, φt), (1)

where fgate, fres ∈ R
W×H×C are the gating and the resid-

ual features shown in Fig. (2). wg, wr are learnable weights

to balance them. The gating connection is computed by:

fgate(φx, φt)=σ(Wg2∗RELU(Wg1∗[φx,φt])⊙ φx (2)

where σ is the sigmoid function, ⊙ is element wise prod-

uct, ∗ represents 2d convolution with batch normalization,

and Wg1 and Wg2 are 3x3 convolution filters. Note that we

broadcast φt along the height and width dimension so that

its shape is compatible to the image feature map φx. The

residual connection is computed by:

fres(φx, φt) =Wr2 ∗ RELU(Wr1 ∗ ([φx, φt])), (3)

The intuition is that we want to “modify” the query im-

age feature instead of traditional “feature fusion” that cre-

ates a new feature from existing ones. This is facilitated

by the ResBlock design: the gated identity establishes the

input image feature as a reference to the output composi-

tion feature, as if they were in the same meaningful image

feature space; then the added residual connection represents

the modification or “walk” in this feature space.

When training, it essentially starts off as a working im-

age to image retrieval system, then gradually learn mean-

ingful modification. Differently, other methods would start

off with random retrieval result at the beginning.
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Figure 2. The system pipeline for training. We show a 2d feature space for visual simplicity.

Fig. 2 shows modification applied to the convolutional

layer of the CNN. However, we can alternatively apply

modification to the fully-connected layer (whereW = H =
1) to alter the non-spatial properties of the representation.

In our experiments, we modify the last fc layer for Fash-

ion200k and MIT-States, since the modification is more

global and abstract. For CSS, we modify the last 2D feature

map before pooling (last conv layer) to capture the low-level

and spatial changes inside the image. The choice of which

layer to modify is a hyperparameter of the method and can

be chosen based on a validation set.

3.3. Deep Metric Learning

Our training objective is to push closer the features of

the “modified” and target image, while pulling apart the fea-

tures of non-similar images. We employ a classification loss

for this task. More precisely, suppose we have a training

minibatch of B queries, where ψi = fcombine(x
query
i , ti) is

the final modified representation (from the last layer) of the

image text query, and φ+i = fimg(x
target
i ) is the represen-

tation of the target image of that query. We create a set Ni

consisting of one positive example φ+i and K − 1 negative

examples φ−1 , . . . , φ
−
K−1 (by sampling from the minibatch

φ+j where j is not i). We repeat this M times, denoted as

Nm
i , to evaluate every possible set. (The maximum value of

M is
(

B
K

)

, but we often use a smaller value for tractability.)

We then use the following softmax cross-entropy loss:

L =
−1

MB

B
∑

i=1

M
∑

m=1

log{
exp{κ(ψi, φ

+
i )}

∑

φj∈Nm
i
exp{κ(ψi, φj)}

}, (4)

where κ is a similarity kernel and is implemented as the

dot product or the negative l2 distance in our experiments.

When we use the smallest value of K = 2, Eq. (4) can be

easily rewritten as:

L=
1

MB

B
∑

i=1

M
∑

m=1

log{1+exp{κ(ψi,φ
−
i,m)−κ(ψi,φ

+
i )}},

(5)

since each set Nm
i contains a single negative example. This

is equivalent to the the soft triplet based loss used in [50,

15]. When we use K = 2, we choose M = B − 1, so we

pair each example i with all possible negatives.

If we use larger K, each example is contrasted with a

set of other negatives; this loss resembles the classification

based loss used in [9, 46, 32, 45, 8]. With the largest value

K = B, we have M = 1, so the function is simplified as:

L =
1

B

B
∑

i=1

− log{
exp{κ(ψi, φ

+
i )}

∑B

j=1 exp{κ(ψi, φ
+
j )}

}, (6)

In our experience, this case is more discriminative and fits

faster, but can be more vulnerable to overfitting. As a result,

we set K = B for Fashion200k since it is more difficult to

converge and K = 2 for other datasets. Ablation studies on

K are shown in Table 5.

4. Experiments

We perform our empirical study on three datasets: Fash-

ion200k [12], MIT-States [17], and a new synthetic dataset

we created called CSS (see Section 4.3). Our main metric

for retrieval is recall at rank k (R@K), computed as the per-

centage of test queries where (at least 1) target or correct
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labeled image is within the top K retrieved images. Each

experiment is repeated 5 times to obtain a stable retrieval

performance, and both mean and standard deviation are re-

ported. In the case of MIT-States, we also report classifica-

tion results.

We use PyTorch in our experiments. We use ResNet-17

(output feature size = 512) pretrained on ImageNet as our

image encoder and the LSTM (hidden size is 512) of ran-

dom initial weights as our text encoder. By default, training

is run for 150k iterations with a start learning rate 0.01. We

will release the code and CSS dataset to the public. Using

the same training pipeline, we implement and compare var-

ious methods for combining image and text, described in

section 3.1, with our feature modification via residual val-

ues, described in section 3.2, denoted as TIRG.

4.1. Fashion200k

Fashion200k [12] is a challenging dataset consisting of

∼200k images of fashion products. Each image comes with

a compact attribute-like product description (such as black

biker jacket or wide leg culottes trouser). Following [12],

queries are created as following: pairs of products that have

one word difference in their descriptions are selected as the

query images and target images; and the modification text

is that one different word. We used the same training split

(around 172k images) and generate queries on the fly for

training. To compare with [12], we randomly sample 10

validation sets of 3,167 test queries (hence in total 31,670

test queries) and report the mean.1.

Table 1 shows the results, where the recall of the first row

is from [12] and the others are from our framework. We see

that our pipeline even with different kind of composition

mechanisms outperforms their approach. We believe this is

because they perform image text joint embedding training,

instead of attribute-feedback or text-modification image re-

trieval training. In terms of the different ways of computing

φxt, we see that our approach performs the best. Some qual-

itative retrieval examples are shown in Fig. 3.

4.2. MIT­States

MIT-States [17] has ∼60k images, each comes with an

object/noun label and a state/adjective label (such as “red

tomato” or “new camera”). There are 245 nouns and 115

adjectives, on average each noun is only modified by ∼9

adjectives it affords. We use it to evaluate both image re-

trieval and image classification, as we explain below.

1 We contacted the authors of [12] for the original 3,167 test queries,

but got only the product descriptions. We attempted to recover the set from

the description. However, on average, there are about 3 product images for

each unique product description.

Method R@1 R@10 R@50

Han et al. [12] 6.3 19.9 38.3

Image only 3.5 22.7 43.7

Text only 1.0 12.3 21.8

Concatenation 11.9±1.0 39.7±1.0 62.6±0.7

Show and Tell 12.3±1.1 40.2±1.7 61.8±0.9

Param Hashing 12.2±1.1 40.0±1.1 61.7±0.8

Relationship 13.0±0.6 40.5±0.7 62.4±0.6

MRN 13.4±0.4 40.0±0.8 61.9±0.6

FiLM 12.9±0.7 39.5±2.1 61.9±1.9

TIRG 14.1±0.6 42.5±0.7 63.8±0.8

Table 1. Retrieval performance on Fashion200k. The best number

is in bold and the second best is underlined.

Method R@1 R@5 R@10

Image only 3.3±0.1 12.8±0.2 20.9±0.1

Text only 7.4±0.4 21.5±0.9 32.7±0.8

Concatenation 11.8±0.2 30.8±0.2 42.1±0.3

Show and Tell 11.9±0.1 31.0±0.5 42.0±0.8

Att. as Operator 8.8±0.1 27.3±0.3 39.1±0.3

Relationship 12.3±0.5 31.9±0.7 42.9±0.9

MRN 11.9±0.6 30.5±0.3 41.0±0.2

FiLM 10.1±0.3 27.7±0.7 38.3±0.7

TIRG 12.2±0.4 31.9±0.3 43.1±0.3

Table 2. Retrieval performance on MIT-States.

4.2.1 Image retrieval

We use this dataset for image retrieval as follows: pairs of

images with the same object labels and different state la-

beled are sampled. They are using as query image and target

image respectably. The modification text will be the state of

the target image. Hence the system is supposed to retrieve

images of the same object as the query image, but with the

new state described by text. We use 49 of the nouns for

testing, and the rest is for training. This allows the model to

learn about state/adjective (modification text) during train-

ing and has to deal with unseen objects presented in the test

query.

Some qualitative results are shown in Fig. 4 and the

R@K performance is shown in Table 2. Note that similar

types of objects with different states can look drastically dif-

ferent, making the the role of modification text more impor-

tant. Hence on this dataset, the [Text Only] baseline outper-

forms [Image Only]. Nevertheless, combining them gives

better results. The difference between composition meth-

ods is not too significant here. Still TIRG is comparable to

Relationship while outperforming others.

4.2.2 Classification with compositionally novel labels

To be able to compare to prior work on this dataset, we also

consider the classification setting proposed in [31, 33]. The

goal is to learn models to recognize unseen combination of
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Figure 3. Retrieval examples on Fashion200k dataset.

Figure 4. Some retrieval examples on MIT-States.

(state, noun) pairs. For example, training on “red wine” and

“old tomato” to recognize “red tomato” where there exist

no “red tomato” images in training.

To tackle this in our framework, we define φx to be the

feature vector derived from the image x (using ResNet-17

as before), and φt to be the feature vector derived from

the text t. The text is composed of two words, a noun n

and an adjective a. We learn an embedding for each of

these words, φn and φa, and then use our TIRG method

to compute the combination φan. Given this, we per-

form image classification using nearest neighbor retrieval,

so t(x) = argmaxt κ(φt, φx), where κ is a similarity ker-

nel applied to the learned embeddings. (In contrast to our

other experiments, here we embed text and image into the

same shared space.)

The results, using the same compositional split as in

[31, 33], are shown in Table 3. Even though this problem

is not the focus of our study, we see that our method out-

performs prior methods on this task. The difference from

the previous best method, [33], is that their composition

feature is represented as a dot product between adjective

transformation matrix and noun feature vector; by contrast,

Method Accuracy

Analogous Attribute [3] 1.4

Red wine [31] 13.1

Attribute as Operator [33] 14.2

VisProd NN [33] 13.9

Label Embedded+ [33] 14.8

TIRG 15.2

Table 3. Comparison to the state-of-the-art on the unseen combi-

nation classification task on MIT-States. All baseline numbers are

from previous works.

we represent both adjective and noun as feature vectors and

combine them using our composition mechanism.

4.3. CSS dataset

Since existing benchmarks for image retrieval do not

contain complex text modifications, we create a new

dataset, as we describe below.
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4.3.1 Dataset Description

We created a new dataset using the CLEVR toolkit [20] for

generating synthesized images in a 3-by-3 grid scene. We

render objects with different Color, Shape and Size (CSS)

occupy. Each image comes in a simple 2D blobs version

and a 3D rendered version. Examples are shown in Fig. 5.

We generate three types of modification texts from tem-

plates: adding, removing or changing object attributes.

The “add object” modification specifies a new object to be

placed in the scene (its color, size, shape, position). If any

of the attribute is not specified, its value will be randomly

chosen. Examples are “add object”, “add red cube”, “add

big red cube to middle-center”. Likewise, the “remove ob-

ject” modification specifies the object to be removed from

the scene. All objects that match the specified attribute val-

ues will be removed, e.g. “remove yellow sphere”, “remove

middle-center object”. Finally, the “change object” modi-

fication specifies the object to be changed and its new at-

tribute value. The new attribute value has to be either color

or size. All objects that match the specified attribute will be

changed, e.g. “make yellow sphere small”, “make middle-

center object red”.

In total, we generate 16K queries for training and 16K

queries for test. Each query is of a reference image (2D or

3D) and a modification, and the target image. To be spe-

cific, we first generate 1K random scenes as the reference.

Then we randomly generate modifications and apply them

to the reference images, resulting in a set of 16K target im-

ages. In this way, one reference image can be transformed to

multiple different target images, and one modification can

be applied to multiple different reference images. We then

repeat the process to generate the test images. We follow

the protocol proposed in [20] in which certain object shape

and color combinations only appear in training, and not in

testing, and vice versa. This provides a stronger test of gen-

eralization.

Although the CSS dataset is simple, it allows us to per-

form controlled experiments, with multi-word text queries,

similar to the CLEVR dataset. In particular, we can cre-

ate queries using a 2d image and text string, to simulate the

case where the user is sketching something, and then wants

to modify it using language. We can also create queries us-

ing slightly more realistic 3d image and text strings.

4.3.2 Results

Table 4 summarizes R@1 retrieval performance on the CSS

dataset. We examine two retrieval settings using 3d query

images (2nd column) and 2d images (3rd column). As we

can see, our TIRG combination outperforms other compo-

sition methods for the retrieval task. In addition, we see

that retrieving a 3D image from a 2D query is much harder,

since the feature spaces are quite different. (In these experi-

Figure 5. Example images in our CSS dataset. The same scene are

rendered in 2D and 3D images.

Method 3D-to-3D 2D-to-3D

Image only 6.3 6.3

Text only 0.1 0.1

Concatenate 60.6±0.8 27.3

Show and Tell 33.0±3.2 6.0

Parameter hashing 60.5±1.9 31.4

Relationship 62.1±1.2 30.6

MRN 60.1±2.7 26.8

FiLM 65.6±0.5 43.7

TIRG 73.7±1.0 46.6

Table 4. Retrieval performance (R@1) on the CSS Dataset using

2D and 3D images as the query.

ments, we use different feature encoders for the 2D and 3D

inputs). Some qualitative results are shown in Fig. 6.

To gain more insight into the nature of the combined fea-

tures, we trained a transposed convolutional network to re-

construct the images from their features and then apply it to

composition feature. Fig. 7 shows the reconstructed images

from the composition features of three methods. Images

generated from our feature representation look visually bet-

ter, and are closer to the top retrieved image. We see that all

the images are blurry as we use the regression loss to train

the network. However, a nicer reconstruction may not mean

better retrieval, as the composition feature is learned to cap-

ture the discriminative information need to find the target

image, and this may be a lossy representation.

4.4. Ablation Studies

Method Fashion MIT-States CSS

Our Full Model 14.1 12.2 73.7

- gated feature only 13.9 07.1 06.5

- residue feature only 12.1 11.9 60.6

- mod. at last fc 14.1 12.2 71.2

- mod. at last conv 12.4 10.3 73.7

DML loss, K = 2 9.5 12.2 73.7

DML loss, K = B 14.1 10.9 69.8

Table 5. Retrieval performance (R@1) of ablation studies.

In this section, we report the results of various ablation

studies, to gain insight into which parts of our approach

matter the most. The results are in Table 5.
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Figure 6. Some retrieval examples on CSS Dataset.

Figure 7. Reconstruction images from the learned composition features.

Efficacy of feature modification: as shown in Fig. 2, our

composition module has two types of connections, namely

residual connection and gated connection. Row 2 and 3

show that removing the residual features or gating features

leads to drops in performance. In these extreme cases, our

model can degenerate to the concatenate fusion baseline.

Spatial versus non-spatial modification: Row 5 and 6

compares the effect of applying our feature modification to

the last fc layer versus the last convolution layer. When

our modification is applied to the last fc layer feature, it

yields competitive performance compared to the baseline

across all datasets. Applying the modification to the last

convolution feature map only improves the performance on

CSS. We believe this is because the modifications in the

CSS dataset is more spatially localized (see Fig. 6) whereas

they are more global on the other two datasets (See Fig. 3

and Fig. 4)

The impact of K in the loss function: The last two rows

compares the loss function of two differentK values in Sec-

tion 3.3. We use K = 2 (soft triplet loss) in most experi-

ments. As Fashion200k is much bigger, we found that the

network underfitted. In this case by using K = B (same

as batch size in our experiment), the network fits well and

produces better results. On the other two datasets, test time

performance is comparable, but training becomes less sta-

ble. Note that the difference here regards our metric learn-

ing loss and does not reflect the difference between the fea-

ture composition methods.

5. Conclusion

In this work, we explored the composition of image and

text in the context of image retrieval. We experimentally

evaluated several existing methods, and proposed a new

one, which gives improved performance on three bench-

mark datasets. In the future, we would like to try to scale

this method up to work on real image retrieval systems ”in

the wild”.
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