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ABSTRACT

The composite (superposed epoch) analysis technique has been frequently employed to examine a hypothesized link between solar
activity and the Earth’s atmosphere, often through an investigation of Forbush decrease (Fd) events (sudden high-magnitude de-
creases in the flux cosmic rays impinging on the upper-atmosphere lasting up to several days). This technique is useful for isolating
low-amplitude signals within data where background variability would otherwise obscure detection. The application of composite
analyses to investigate the possible impacts of Fd events involves a statistical examination of time-dependent atmospheric re-
sponses to Fds often from aerosol and/or cloud datasets. Despite the publication of numerous results within this field, clear con-
clusions have yet to be drawn and much ambiguity and disagreement still remain. In this paper, we argue that the conflicting
findings of composite studies within this field relate to methodological differences in the manner in which the composites have
been constructed and analyzed. Working from an example, we show how a composite may be objectively constructed to maximize
signal detection, robustly identify statistical significance, and quantify the lower-limit uncertainty related to hypothesis testing.
Additionally, we also demonstrate how a seemingly significant false positive may be obtained from non-significant data by minor
alterations to methodological approaches.
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1. Introduction

The composite analysis technique, also referred to as a super-
posed epoch analysis, and conditional sampling, is used in
numerous fields including geostatistics, fluid dynamics, and
plasma physics. It has been frequently employed to examine
a hypothesized link between atmospheric properties and sudden
decreases in cosmic ray intensity over daily timescales (Forbush
decreases). The composite technique is useful for isolating low-
amplitude signals within data where background variability
would otherwise obscure detection (Chree 1913, 1914). Com-
posite analyses rely on selecting subsets of data, wherein key
points in time can be identified based on some criteria, e.g.,
the occurrence of unusual or extreme events in one or more
datasets (Chree 1913, 1914; Forbush et al. 1983). Through
the accumulation and averaging of successive key events, the
stochastic background variability may be reduced to a point
where low-amplitude signals become identifiable.

To exemplify the composite methodology and how it may
be applied to isolate low-amplitude signals, we present the fol-
lowing example. Imagine a regularly sampled time series, Xi,
where i = 400 time units (for ease we shall refer to the these
time units as days). As with real-world data, this time series
may contain a stochastic (noise) component (Ni), and a dynam-
ically determined component (Di). Figure 1a shows such a time
series, where Di is represented by the addition of two oscilla-
tions of differing periods, and Ni is represented by Gaussian
(white) noise; the values of both Ni and Di range from 0 to 1.
To Xi, we have also added a small signal component, Si, a

regular 5-day deviation of 0.3 units amplitude, repeating at time
intervals of 40 days throughout the 400 day time period, so that
Xi = Ni + Di + Si.

Through the successive averaging of events in the compos-
ite methodology we may isolate a low-amplitude signal compo-
nent from the time series. Before doing this, it is beneficial to
attempt to remove variations in Xi that are unconnected to the
Si component and may reduce our signal-to-noise ratio
(SNR). In reality we may have limited knowledge of the prop-
erties of a potential signal component within a dataset. If we
suppose the signal we are testing for has an upper-limit length
shorter than 7 days, we may set a filter length of three times our
maximum expected signal length (e.g., 21 days) to use as a
high-pass filter. This may eliminate some noise concerns while
leaving our signal unaffected (potential loss of signal from fil-
tering, and noise reduction in composites is discussed in later
sections). We then calculate Fi, a smooth (running mean) of
our dataset with a width set by our expected signal (in our
example it is 21-days). The values of Fi (thick line) are shown
with Xi in Figure 1b.

By subtracting Fi from Xi we obtain Ai, a high-pass filtered
dataset, which we shall refer to throughout this work as an
anomaly. With prior knowledge of the occurrence times of
the signal we may construct a composite matrix, Mjt, where
j = 1, . . . , n enumerates the n composite events (matrix rows),
and t is the time dimension (matrix columns). We present the
composite matrix of Ai in Figure 1c, over a t = ±20 period.
In any one of the 10 events in the composite matrix it would
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be highly difficult to objectively determine the presence of a
signal at t0. However, by averaging the 10 events of the matrix
together to create a composite mean,

Ct ¼
1

n

X

n

j¼0

M jt; ð1Þ

the noise is reduced by the square root of the number of
events,

�Ct ¼
r

ffiffiffi

n
p ; ð2Þ

where DCt indicates the standard error of the mean (SEM) at t
and r is the sample standard deviation of Ct. As the noise
diminishes the signal has an increased chance of being iden-
tified. For each time step t, the mean and SEM of the matrix
may be calculated using Equations 1 and 2 respectively; these
data are presented in Figure 1d, and indeed show the success-
ful isolation of a signal of approximately 0.3 amplitude cen-
tered on t0. This example and all those presented in this
manuscript relate only to one particular statistic, the sample
mean, however, any other statistic may also be used. While
the composite approach appears straightforward, inconsisten-
cies in the design, creation, and evaluation of composites can
strongly affect the conclusions of composites studies and are
the focus of this paper.

Numerous composite studies have been published within
the field of solar-terrestrial physics, relating to a hypothesized
connection between small changes in solar activity and the
Earth’s atmosphere (e.g., Tinsley et al. 1989; Tinsley & Deen
1991; Pudovkin & Veretenenko 1995; Stozhkov et al. 1995;
Egorova et al. 2000; Fedulina & Laštovička 2001;

Todd & Kniveton 2001, 2004; Kniveton 2004; Harrison &
Stephenson 2006; Bondur et al. 2008; Kristjánsson et al.
2008; Sloan & Wolfendale 2008; Troshichev et al. 2008;
Svensmark et al. 2009; Dragić et al. 2011; Harrison et al.
2011; Laken & Čalogović 2011; Okike & Collier 2011; Laken
et al. 2012a; Mironova et al. 2012; Svensmark et al. 2012;
Artamonova & Veretenenko 2011; Dragić et al. 2013). How-
ever, despite extensive research in this area, clear conclusions
regarding the validity of a solar-climate link from composite
studies have yet to be drawn. Instead, the numerous composite
analyses have produced widely conflicting results: some stud-
ies have shown positive statistical associations between the
CR flux and cloud properties (e.g., Tinsley & Deen 1991;
Pudovkin & Veretenenko 1995; Todd & Kniveton 2001,
2004; Kniveton 2004; Harrison & Stephenson 2006;
Svensmark et al. 2009, 2012; Dragić et al. 2011, 2013;
Harrison et al. 2011; Okike & Collier 2011), while others find
no clearly significant relationships (e.g., Lam & Rodger 2002;
Kristjánsson et al. 2008; Sloan & Wolfendale 2008; Laken
et al. 2009; Laken & Čalogović 2011; Laken et al. 2011;
Laken et al. 2012a; Čalogović et al. 2010), or even identify
significant correlations of a negative sign (e.g., Wang et al.
2006; Troshichev et al. 2008). We suggest that these ambigu-
ities may result from seemingly minor methodological differ-
ences between the composites (e.g., relating to the filtering or
normalization of data), which are capable of producing widely
divergent results. When the dataset is not suited to a particular
method of statistical analysis, incorrect conclusions regarding
the significance (i.e., the probability p-value associated with
composite means at given times) of the composites may be
reached, which is part of the reason why these aforementioned
studies have presented conflicting results.
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Fig. 1. (a) Fictional time series Xi, comprised of deterministic (Di), stochastic (Ni), and a low-amplitude repeating signal (Si) components. Di and
Ni range from 0.0 to 1.0, while Si has an amplitude of 0.3. (b) Fi, a 21-point smooth (box-car running mean) of Xi. By subtracting Fi from Xi a
high-pass filtered dataset Ai is produced. (c) A composite matrix of events from Ai, where rows = n, the number of repeating signals in Si (a
composite event), and columns = t, the number of days since the composite event. (d) Ct, the composite means of Ai, the SEM.
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In this paper, we aim to highlight the methodologies that
may produce such conflicts. We provide details on how to prop-
erly perform composite analyses of geophysical datasets, and
suggest a robust method for estimating the statistical signifi-
cance of variations over the composite period. Although meth-
ods to assess the significance of variations over composites that
account for non-random variations have been previously dem-
onstrated (Forbush et al. 1982, 1983; Singh 2006), the incorrect
application of statistical tests remains a common feature among
composite analyses. Consequently, in this work we also present
a further method of assessing statistical significance, which
draws from randomized samples of the datasets themselves
using a Monte Carlo (MC) methodology and, as a result, makes
no assumptions regarding the properties of the data. With this
paper, we have also included the discussed datasets and IDL
software to reproduce the methods shown here, so that our
work may be readily reproduced and adapted (avaiable at
www.benlaken.com/Laken_Calogovic_2013).

2. Working from the example of the hypothesized

cosmic ray – cloud link

Throughout this work we will continue to use the example of
testing the hypothesized CR flux/cloud connection to provide
examples of various issues that may arise during composite
analyses (albeit using real-world data rather than the idealized,
fictitious data of Fig. 1). A link between the CR flux and cloud
was initially suggested by Ney (1959), who theorized that the
weather might be influenced by variations in the CR flux.
Dickinson (1975) later proposed that such associations may
result from an influence of atmospheric ionization produced
by the CR flux on the microphysics of aerosols and clouds.
Some of the first reports of positive correlations between clouds
and cosmic radiation came from the composite studies (e.g.,
Tinsley et al. 1989; Pudovkin & Veretenenko 1995; Pudovkin
et al. 1997). These and subsequent studies selected time periods
based on the occurrence of sudden, high-magnitude reductions
in the CR flux impinging on the Earth’s atmosphere, termed
Forbush decrease (Fd) events (Forbush 1938), generated by
solar disturbances such as coronal mass ejections (Lockwood
1971; Cane 2000).

As an example, we will work from a composite of 44 Fd
events identified from the Mt. Washington Observatory from
1984 to 1995, located at 44.30�N, 288.70�E, 1,900 m above
mean sea level, at a cut-off rigidity of 1.24 GV (the list of Fd
events were obtained from http://www.ngdc.noaa.gov/stp/
solar/cosmic.html). The Fd events were adjusted so that the
maximum CR flux deviation associated with each Fd is aligned
with the key composite date (i.e., t0 of the composite x-axis);
without adjustment, the key date would instead be aligned to
the date of Fd onset, which may differ from a period of
hours-to-days from the maximal reduction in the CR flux (for
further details see Laken et al. 2011). Fd events coincident
within a ±7 day period of strong (>500 MeV) Solar Proton
Events (SPEs) were excluded from the analysis; as such events
may produce the opposite ionization effects to those we wish to
isolate. Our CR flux data is the same as that of Laken et al.
(2012a), being a combination of daily averaged Climax Colo-
rado and Moscow neutron monitor data centered on zero
(Fig. 2a). In addition, we have also used global daily averaged
International Satellite Cloud Climatology Project (ISCCP) D1
total cloud fraction (1000–50 mb) from IR-cloudy pixels
(Fig. 2b) which covers the period from 01/07/1983 to 31/12/

2009. Throughout this work we will frequently use the cloud
data as an anomaly equivalent to Ai described in Section 1, with
units of %. We again note that the analysis presented here is not
meant as a serious test for the hypothesized CRcloud link, for
which other similar studies exist (e.g., Laken & Čalogović
2011), but rather is presented for demonstration purposes.

3. Constructing a composite

3.1. Using composites to test a hypothesis

After successfully constructing a suitable composite for analy-
sis, anomalies should be objectively examined for evidence
of a CR flux-cloud connection via statistical methods. However,
it is important to remember that statistics cannot prove any
hypothesis; it can only provide a probability that a given
hypothesis is or is not correct. Therefore, to test the existence
of a hypothesized CR flux-cloud connection, we must construct
a null hypothesis that may be tested and possibly rejected. In
this instance, the null hypothesis (H0) is that fluctuations
observed over a composite of Fd events are indistinguishable
from natural variability, while H1, the alternate hypothesis, is
that cloud variations distinguishable from normal (random) var-
iability may be detected in association with the occurrence of
Fd events. We must then select a confidence level at which to
test our hypothesis: in this instance, we will present statistics
for the commonly used 0.05 and 0.01 probability (p) value at
the two-tailed confidence intervals (hereafter written as
p = 0.05 and p = 0.01).

Detailed procedures relating to the statistical analysis of
geophysical data in composite analyses have been published
by Forbush et al. (1982, 1983) and Singh (2006), which dem-
onstrate how to assess the significance of non-random (autocor-
related) data. Statistical significance has often been assessed in
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Fig. 2. (a) Daily averaged normalized cosmic ray flux (%)
calculated from Climax Colorado and Moscow neutron monitors
from Laken et al. 2012a, and (b) global, daily averaged, IR-detected
cloud fractions (%) from the ISCCP D1 data.
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solar-terrestrial composite analyses by comparing composite
means obtained at different times over a composite period,
commonly periods prior to and following the occurrence of
Fd events are utilized (e.g., Pudovkin & Veretenenko 1995;
Pudovkin et al. 1997; Todd & Kniveton 2001, 2004; Svens-
mark et al. 2009; Dragić et al. 2011; Okike & Collier 2011).
In relation to this, we importantly note that although composites
of geophysical data focusing on Fd events may be considered to
be independent in the n-dimension (events), they are often
highly autocorrelated (dependent) in the t-dimension (time).
Thus, an analysis that seeks to compare composite means
across t (e.g., in the manner previously described) must account
for autocorrelation effects.

In autocorrelated data the value at any given point in time is
affected by preceding values. As a result, sequential data points
are no longer independent, and so there is less sample variation
within the dataset than there would otherwise be if the points
were independent. If the variance and the standard deviation
(r) are calculated using the usual formulas, they will be smaller
than the true values. Instead, the number of independent data
points (effective sample size) must be used to scale the sample
variance (Wilks 1997). This adjustment will produce confi-
dence intervals that are larger than when autocorrelations are
ignored, making it less likely that a fluctuation in the data will
be interpreted as statistically significant at any given p-value. In
composite analyses, the number of independent data points (i.e.,
the effective length of the composite sequences) is equivalent to
the effective sample size (Forbush et al. 1983): effective sample
sizes may be calculated by the methods detailed in Ripley
(2009) and Neal (1993). Despite the well-established nature
of methods they are not widely applied within the solar-terres-
trial community, with numerous studies implementing signifi-
cance testing that simplistically assumes that the data are
independent in the t-dimension.

In Section 3.4 we present an additional method of signifi-
cance testing for composite studies based on Monte Carlo anal-
ysis approaches that is highly robust. This method does not rely
on comparing composite means at given times over the com-
posite to evaluate significance, but instead evaluates the p-value
of each t-point individually, using probability density functions
(PDFs) constructed from large numbers of randomly generated
samples (with a unique PDF at each t-point).

3.2. Generating anomalies: the importance of static means

in composite analyses

To effectively evaluate changes in daily timescale data, varia-
tions at timescales beyond the scope of the hypothesis testing
should be removed from the dataset. Forbush et al. (1982,
1983) showed that bias can be introduced into traditional statis-
tical tests if fluctuations at longer timescales are not removed.
The removal of annual variations alone (which normally dom-
inate geophysical data) will not remove fluctuations that cannot
be eliminated by linear de-trending, such as those relating to the
effects of planetary-to-synoptic scale systems. Such systems
may extend over thousands of kilometers in area, and their
influence on atmospheric variability may last from periods of
days to several weeks; the random inclusion of their effects
in composites may produce fluctuations at timescales shorter
than seasonal considerations, yet greater than those concerning
our hypothesis testing (so-called intermediate timescales) which
may not be removed by linear de-trending. Consequently, when
intermediate timescale fluctuations are not accounted for prior
to an analysis, it may result in periods of shifted mean values

and high autocorrelation being inadvertently included into com-
posites. Suitable filters should be applied to the data to remove
longer timescale variability, but to retain variations at timescales
that concern the hypothesis testing. In the case of a CR flux-
cloud hypothesis, a 21-day running mean (high-pass filter)
may be suitable, as the microphysical effects of ionization on
aerosol/cloud microphysics are expected to occur at timescales
of <1 week (Arnold 2006).

Although filtering data has the benefit of potentially reduc-
ing noise, it should be applied with caution, as it may also intro-
duce artifacts, and reduce or even destroy potential signals
altogether. Figure 3a–c shows the influence of a 21-day smooth
filter on three idealized symmetrical disturbances of differing
length. These disturbances are centered on t0, each has an
amplitude of 100 units in the y-axis dimension and span time
periods of (a) 3-days, (b) 7-days, and (c) 11-days. To each time
series, a smooth filter of 21-days (i.e., a box-car running mean)
has been subtracted from the disturbance (the filters are shown
as black lines). The resulting anomalies are shown as the red
lines of each figure. As the duration of the idealized disturbance
increases, so too does the appearance of overshoot artifacts.
From Figure 3a–c, the original (peak-to-trough) signal of 0 to
�100 has been shifted by overshoot effects by: (a) +9.6,
(b) +19.0, and (c) +27.8. For a and b, the amplitude of the ori-
ginal disturbance is fully preserved, however, as the timescales
of the disturbance increase further, the amplitude is reduced.
E.g. for the 11-day disturbance the amplitude is diminished
by 0.8% compared to the unfiltered signal, while for a 15-day
disturbance (not shown) the amplitude decreases by 9%. The
amount of signal attenuation will increase as the deviations
approach the width of the smooth filter. For deviations at
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timescales of approximately 1/3rd the width of the smooth filter,
the attenuation is negligible. Given this, filters should be applied
with care to minimize noise while preserving potential signals.
Following the application of the filter in this work we have con-
strained the reliability of our analysis to time periods of <7 days.

Figure 3d shows a composite of n = 44 events, centered on
the CR flux minimum of Fd events. CR flux data (blue line) are
from the combined daily mean counts of the neutron monitors
(NM) of Moscow and Climax, normalized by subtracting the
mean of the 1950–2010 period (as in Fig. 2a). A 21-day smooth
of these data are shown (black line). The normalized data show
a peak-to-trough reduction between t�3 and t0 of 4.17% and a
21-day smooth (high-pass filter) of these data are also shown
(black line). Following the removal of a 21-day high-pass filter
from the normalized data, the resulting anomaly (red line)
shows a slightly smaller peak-to-trough change over the same
period of 4.05%. This indicates that 97.1% of the signal has
been preserved following the application of the 21-day (high-
pass) smooth filter. Overshoot distortion effects are also obser-
vable in the CR flux anomaly, and notably this produced an
artificial enhancement of the increase in the CR flux prior to
and following the Fd events.

Despite the limitations associated with data filtering, the
noise reduction which may be gained by minimizing the influ-
ence of autocorrelated structures within data may be non-
negligible. To exemplify the potential impacts of intermediate
timescale structures on composites and the benefit of removing
them, we have generated a random composite of cloud cover
data with n = 20 events, over an analysis period of t±40 days.
The n = 20 events upon which the composite was based were
selected using a random number generator, ensuring that the
chances of any one date (event) being selected for the compos-
ite were equal, and that once selected, a date could not re-occur
in the composite. All of the random composites used through-
out this work were created in this manner. The composite is pre-
sented in Figure 4a, with the cloud anomalies calculated by two
methods. Firstly, through a simple removal of a linear trend
from the cloud data (black line); this approach will remove

linear bias from the composite resulting from seasonality. Sec-
ondly, we have also created an anomaly by subtracting a 21-day
running mean (high-pass filter) from cloud cover (blue line). In
this latter method, all variations (linear and non-linear) at time-
scales greater than 21-days are accounted for, including both
seasonality and influences from intermediate timescale fluctua-
tions. A period of 21-days was selected as this is three times
greater than the upper limit response time predicted for a CR
flux cloud relationship (Arnold, 2006), and so subtracting a run-
ning mean of this length from the data should not diminish the
amplitude of any potential signals, yet it may still be useful in
minimizing influences from longer term variations which are
not the subject of the hypothesis testing. A comparison of these
two approaches (Fig. 4a) gives an example of how the failure to
remove non-linear intermediate timescale variations influences
the composite, with noticeable deviations between the two
methods. However, it is difficult to objectively assess the bias
expressed as the difference between these two methods with
only one random example. With this in mind histogram
Figure 4b is presented, displaying the results of 100,000 ran-
domly generated composites, showing the difference between
the linear fit removed data and the 21-day smooth cloud anomaly
at t0. The histogram shows that the 1r difference between these
anomalies (i.e., the impact of not accounting for intermediate
timescale variations) is approximately 0.1%. We note this value
will vary depending on the size of n and the length of the running
mean applied, and some differences between the two filtering
methods may also be attributed to overshoot errors. As we shall
demonstrate in later sections, unaccounted-for biases of such
amplitudes may have a non-negligible impact on the estimated
statistical significance of composited anomalies.

3.3. Using signal-to-noise-ratio as a constraint when designing

a composite

The data we have presented in Figure 2b are global in extent
and utilize all pressure levels of the ISCCP dataset (1000–
50 mb). However, composite studies often use subsets of data
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for analysis, with varying spatio-temporal restrictions: e.g.,
focusing on stratospheric layers over Antarctica (Todd &
Kniveton 2001, 2004; Laken & Kniveton 2011); areas over iso-
lated Southern Hemisphere oceanic environments at various
tropospheric levels (Kristjánsson et al. 2008); low clouds over
subtropicaltropical oceans (Svensmark et al. 2009); indicators
of the relative intensity of pressure systems (vorticty area index)
over regions of the Northern Hemisphere Mid-latitude zone,
during differing seasons (Tinsley et al. 1989; Tinsley & Deen
1991); total ozone at latitudes between 40�N and 50�N, during
periods of high solar activity and eastern phases of the quasi-
biennial oscillation (Fedulina & Laštovička 2001); variations
in atmospheric pressure and formation of cyclones/anticyclones
over the North Atlantic (Artamonova & Veretenenko 2011);
and diurnal temperature ranges over areas of Europe (Dragić
et al. 2011; Dragić et al. 2013; Laken et al. 2012a). In addition
to spatial/seasonal restrictions, it has been frequently proposed
that perhaps a CR-cloud effect is only readily detectable during
the strongest Fd events (e.g., Harrison & Stephenson 2006;
Svensmark et al. 2009, 2012; Dragić et al. 2011). Although
such propositions are rational, high-magnitude Fd events are
quite rare. For example, of the 55 original Fd events between
1984 and 1995 listed in the NOAA resource (discussed in
Sect. 2), the Fd intensity (IFd, the daily absolute percentage
change of background cosmic ray intensity as observed by
the Mt. Washington neutron monitor) is as follows: 28 weak
events (IFd < 5%), 21 moderate events (5% � IFd <10%),
and 6 strong events (IFd � 10%). Consequently, composites
focusing only on intense Fd events are invariably small in size,
and therefore highly restricted by noise (Laken et al. 2009;
Čalogović et al. 2010; Harrison & Ambaum 2010).

While there is often a good theoretical basis for restricting
the sampling area, such constraints considerably alter the poten-
tial detectability of a signal. Restricting either the spatial area
(hereafter a) of the sampling region or the number of sample
events (composite size, hereafter n) will increase the back-
ground variability (noise) in composites. This relationship is
quantitatively demonstrated in Figure 5, which shows how
noise levels in random composites constructed from cloud

cover anomalies (21-day running mean subtracted) vary for dif-
fering area a and composite size n. Using MC simulations this
is calculated for composites varying over an a of 0.1–100% of
the global surface, and n of 10–1,000. For each combination of
variables a and n a probability density function (PDF) of
10,000 randomly generated composite means at t0 are generated
and the 97.5th percentile of the distribution is then presented in
Figure 5. For each corresponding a and n, any potential CR
flux-induced cloud variations (which we shall refer to as a sig-
nal) must overcome the values shown in Figure 5 in order to be
reliably detected; so these values represent the upper confidence
level. A nearly symmetrical 2.5 percentile lower confidence
level (not shown) is also calculated for every a and n combina-
tion, and together these upper and lower confidence intervals
constitute the p = 0.05 significance threshold.

The noise associated with composites of differing a and n
sizes defines the lower-limit relationship which can be detected
at a specified confidence level. Thus, for a specific magnitude
of CR flux reduction, the minimum necessary efficiency at
which a CR-cloud relationship must operate in order to be
detected at a specified p-value can be calculated. For example,
if composites were constructed with n = 10 samples from data
with an area of only 1% of the Earth’s surface, then a change in
cloud cover would have to exceed approximately ±6.3% in
order to be classified as statistically significant at the
p = 0.05 two-tailed level.

Based on such calculations, composites can be constructed
from which a response can realistically be identified. For exam-
ple, the most favorable study of a CR-cloud link by Svensmark
et al. (2009) finds using a sample of n = 5 Fd events that fol-
lowing an 18% reduction in the CR flux a 1.7% decrease in
cloud cover occurs. Regardless of the criticisms of this study
(given in Laken et al. 2009 and Čalogović et al. 2010), we
use this observation to calculate the most favorable upper limit
(UL) sensitivity of cloud cover changes to the CR flux (1.7/18
giving a factor of 0.094). From a consideration of this UL sen-
sitivity and the relationship between composite noise to area a
and composite size n in Figure 5, we may then surmise that a
CR flux-induced change in cloud cover (a signal), could almost
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certainly never be distinguishable from background variability
(noise) at the p = 0.05 level, from a composite of 10 Fd events
with an average CR flux reduction of 3% (the value of 3% is
typically used to define a Fd event, Pudovkin & Veretenenko
1995; Todd & Kniveton 2001). This is because the UL sensitiv-
ity suggests that the CR flux would at most produce a cloud sig-
nal of 0.28% (0.094 · 3) assuming a linear CR-cloud
relationship. Even if 100% of the globe were considered in
the analysis the sample noise would still be too great (by a fac-
tor of 2) to detect the signal. For composite size of n = 10 Fd
events we see the upper p = 0.05 confidence interval never
drops below 0.6% due to the high noise levels of the data
(Fig. 5). To significantly identify a signal with an amplitude
of 0.28% in the presented cloud cover data above the
p = 0.05 level, considering 100% of the globe, would require
a composite size of at least n = 50.

3.4. Estimating the significance of anomalies by Monte Carlo

methods

Evaluating the statistical significance of composited geophysi-
cal data by a comparison to randomly obtained samples is
not a novel idea. One of the first applications of this
method within the field of solar-terrestrial physics appears in
(Schuurmans & Oort 1969) (hereafter SO69), who investigated
the impacts of solar flares on Northern Hemisphere tropo-
spheric pressures over a composite of 81 flare events. They con-
structed their composite over a three-dimensional (longitude,
latitude, height) grid and examined changes over a 48 h period.
They then evaluated the significance of their observed pressure
variations at the p = 0.05 significance level (calculated from
the standard deviation of their data). SO69 noted that due to
autocorrelation in their data, the number of significant grid
points beyond the p = 0.05 level may exceed the false discov-
ery rate without there necessarily being a significant solar-
related signal in their data (a point which we shall discuss fur-
ther later in this work).

To assess the potential impact of autocorrelation on their
data and more accurately gauge how unusual their result was,
SO69 constructed three random composites of equal size to
their original composite (n = 81), and compared the random
results to their original findings. Although SO69 were limited
by the lack of computing power available to them, and conse-
quently their number of random composites was not sufficient
to precisely identify the statistical significance of their flare
composite, our method, which we will shortly describe in
detail, is based upon the same principles as those of SO69. In
essence, we will use populations of randomly generated com-
posites and identify threshold significance values using proba-
bility density functions (PDFs) of these values, from which
we may precisely evaluate the statistical significance of varia-
tions in the composite mean over t.

To achieve this, we can use the MC-based method of esti-
mating noise used to calculate Figure 5 to provide a simple, yet
powerful method of evaluating the statistical significance of
composite means. From MC-generated PDFs we may test
how likely it is that we can randomly obtain composite means
of a given magnitude by chance. Events are selected at random
from the data being scrutinized, and composites of equal sam-
ple sizes to the original composite are constructed. The data of
the MC must be treated in exactly the same manner as that of
the composite being evaluated with respect to the calculation of
anomalies, or application of any normalization procedures
(i.e., if the composite is based on an anomaly calculated from

a 21-day running mean, then the MC-generated composites
must also be based on data with this treatment). Following this,
the composite mean at each t is calculated. If enough available
data exist, this procedure can be repeated many times, making it
possible to build up large PDFs of composite means for each t.
From these, confidence intervals at specific p-values may then
be identified as percentiles of the calculated distributions. We
note that this procedure may fail in cases where insufficient data
exists to build up distributions which are representative of the
parent population from which the samples are drawn.

Geophysical data do not often follow idealized Gaussian
distributions, as a result the two-tailed confidence intervals
should be identified asymmetrically for optimum precision:
i.e., the upper/lower p = 0.05 confidence interval should corre-
spond to the 2.5th and 97.5th percentiles of the cumulative fre-
quency, not simply to the ±1.96r value. This is demonstrated in
Figure 6, which shows a distribution of both the CR flux anom-
aly and cloud anomaly data, comprised of all data points from
1983–2010 (in this instance the data presented are the entire
population of daily values rather than composite values). The
two-tailed p = 0.05 thresholds are calculated from both percen-
tiles (blue lines) and from the ±1.96r level around the mean (red
dashed lines).Under an idealGaussian distribution (displayedon
the black lines) the 2.5/97.5th percentile and ±1.96r values
would be both equivalent and symmetrical around the mean
value. However, due to the departures from the ideal Gaussian
distribution there are differences between these significance
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values: this ismost prominent in the upper confidence interval of
the CR flux data where the deviation between the +1.96r and
97.5th percentile values is 0.16% (Fig. 6a).

Although the deviations between the ±1.96r and 97.5th
percentiles presented here are relatively small, these differences
can become highly exaggerated depending on the distribution
of the data under investigation, and so this should be taken into
proper consideration. We also stress that when using this tech-
nique to determine significance thresholds of composites, the
confidence intervals should be calculated for each time step
(t) in the composite individually. Similar solutions across the
t-dimension will only be produced by MCs if the analyzed data
possess an equal variance and static means.

When using MC methods there is a question as to how
many simulations are sufficient to obtain a reliable result; if
too few are used a reliable solution will not be identified (i.e.,
running the MC numerous times with an identical set-up will
produce a wide range of values). Conversely, setting the num-
ber of simulations too high may be inconvenient as it may
require considerable computation time. As the number of sim-
ulations increases in a MC it becomes increasingly more likely
that by repeating the MC you would arrive at a consistent result
(this is termed convergence). In general, the amount of conver-
gence achieved by the MCs increases exponentially with
increasing number of simulations. To exemplify this, we have
calculated results for 100 different MCs run with identical
inputs for a range of simulation sizes between 5 and 200,000.
Each MC generated random composites of n = 40 events from
cloud anomaly data, and calculated a distribution of the means
at each simulation size. The r of the 100 means for each sim-
ulation size is plotted in Figure 7, and indeed shows an expo-
nential reduction (convergence) with increasing simulation
size. Following the 80:20 rule (also known as the Pareto prin-
ciple), we find that 80% of the convergence in the case of
Figure 7 occurs after only a relatively small number of simula-
tions (only 22); the remaining precision is achieved at an

exponentially decreasing rate. However, we note that as com-
puting these values requires only relatively limited resources
in this instance, it was possible for us to use large (10,000 sim-
ulations) to achieve a near-fully converged result throughout the
remainder of this work.

To re-state and emphasize this procedure, in this work
10,000 MC simulations are used to generate PDFs of composite
means expected at each instance of t, against which the signif-
icance of a composite may be evaluated. In each instance the
mean of the PDFs should be zero as the 21-day filtered data
has a mean close to zero (as indicated in Fig. 7), and the distri-
bution of the PDF around zero will reflect the remaining (short-
term) variability in the data. The PDFs show the variations
expected from composites of a specified n-size in the absence
of deterministic effects (i.e., when there are only random fluc-
tuations occurring), and they therefore provide a basis from
which to accept or reject the H0 and H1 hypothesis.

3.5. Applying the MC significance testing to real data

We present an example of the MC-based significance testing
methodology applied to composites of Fd events for daily mean
anomalies of CR flux (Fig. 8a) and cloud data (Fig. 8b). The
composite of Figure 8 uses n = 44 adjusted Fd events, and is
presented over a period of t±40. Only Fd events not coincident
within a t±7 day period of ground level enhancement (GLE)
events have been included in the composite (as described in
Sect. 2). The mean of these data along with the ±1.96 SEM val-
ues are shown on the solid black and dashed blue lines respec-
tively. To these data, we have applied the previously discussed
MC-based method of calculating confidence intervals as a test
of statistical significance. These confidence intervals are calcu-
lated from PDFs of 10,000 MC simulations at each t-point, and
are plotted for the p = 0.05 and p = 0.01 two-tailed confidence
intervals (dashed and dotted red lines, respectively). The small
variations in the individual confidence intervals of Figure 8
which can be observed across t indicate the amount of conver-
gence remaining to be achieved by the MCs.

Daily mean CR flux anomalies and the ±1.96 SEM values
are presented in Figure 8a: at t0, CR flux anomalies of
�3.01 ± 0.53% are observed, corresponding to deviations of
18.0 ± 3.2r (the associated statistical significance of the mean
and SEM ranges are all p < 0.00). Additionally, highly signif-
icant positive CR flux anomalies occur both before and after
t0, the largest of which being during t�3, where a CR flux
anomaly of 0.89 ± 0.37% was observed (6.3 ± 2.1r, again
with the mean and SEM ranges all significant at p < 0.00).
Increases of CR flux prior to the Fd correspond to the influence
of a shock/sheath structure of coronal mass ejections (CME)
that generate the Fd event, where the CRs are swept up and
deflected by the propagating magnetic disturbance generated
by a CME. Increases of CR flux after Fd events can be con-
nected with overrecovery effects in some cases (Dumbović
et al. 2012). However, in our case, the positive CR deviations
are additionally influenced by the artificial overshoot effects
resulting from the application of the 21-day smooth (high-pass)
filter, as demonstrated in Figure 3d. Significant increases in the
CR flux are also evident at t+10 and t+23 which are due to the
unintentional inclusion of GLEs in the composite (which were
only filtered within a ±7 day period around t0).

Cloud anomalies (Fig. 8b) showed no clear response over
the composite period: the largest negative/positive deviations
occurred prior to the statistically significant CR flux variations,
at t�26 (�0.39 ± 0.38%) and t�18 (0.33 ± 0.32%), corresponding
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to deviations of 2.5 ± 2.4r and 2.1 ± 2.1r respectively. The
p-value associated with these mean anomalies is p = 0.01 (with
upper/lower SEM values of p = 0.91/p < 0.00) and p = 0.04
(p < 0.00/p = 0.96) respectively. All other variations shown
in Figure 8, including those observed following the Fd induced
CR flux reduction, were of a smaller magnitude. The second
largest negative anomaly observed occurred at t+5 and warrants
discussion (for reasons which will become apparent in the next
paragraph): the anomaly possesses a mean of �0.37 ± 0.41%,
corresponding to a deviation of 2.4 ± 2.6r and a significance of
p = 0.02 (with upper/lower SEM values of p = 0.84/p < 0.00).

It should be stressed that by analyzing 81 points (t±40) over
a composite using the p = 0.05 significance level, there will be
a false discovery rate (FDR) of approximately 4 days
(81 · 0.05 = 4.05) and we can expect that the mean anomaly
will exceed the p = 0.05 level by chance on approximately four
occasions over an 81-day period. Indeed, in Figure 8b we
observe mean anomalies of p < 0.05 in six instances over the
composite, in line with the expected FDR. In contrast, the
CR flux is observed to be significant at the p = 0.05 level at
26 days out of 81 as a result of the influence of Fd and GLE
events. We stress that the FDR noted here relates to the fre-
quency with which the mean anomaly will appear as significant
and not the error around the mean anomaly (SEM). These error
intervals of course relate to how accurately the mean value is
known, so in our case we have presented intervals which show
with a ±95% accuracy the range in which the mean value is
likely to occur. Consequently, the SEM ranges are regularly
seen to pass the p = 0.05 threshold. Evaluating the statistical
significance of both the mean and its error range will give a
more robust indication of statistical significance than can be
obtained from the mean value alone. For example, the t�3

and t0 CR flux anomalies are unambiguously statistically signif-
icant (SEM are p < 0.00), however, although the t�26 cloud
anomalies show a mean and lower SEM which are statistically
significant (p < 0.05), almost all of the upper SEM values exist
at p > 0.05, indicating that this is not a robust result, as should
be expected from a data point with its significance attributed to

the FDR. Considered together these results clearly show that
there are no unusual variations during or following statistically
significant variations in the CR flux, and consequently support
the rejection of H1 and the acceptance of H0.

From a combination of the observed reduction in CR flux of
3%, and the observation that no clear cloud changes occurred
above the p = 0.01 significance level which are equivalent to
cloud anomalies of about 0.40% (see Fig. 8b), we may also
conclude that if a CR-cloud relationship exists, then a 1% CR
flux change is, at most, able to alter cloud by �0.13% (0.4%/
3%). If a CR flux-cloud relationship were more efficient than
this limit, we would be able to detect a statistically significant
cloud response over daily timescales. Since we do not, our con-
clusions must be limited by the statistical noise of the depen-
dent (cloud) dataset. However, we note that supporting lines
of evidence suggest at least that the higher range of values asso-
ciated with this upper-limit constraint is likely too large, as it
implies that over a solar cycle decadal oscillations in the CR
flux on the order of 20% may induce cloud changes of
�2.6% (20% · 0.13%, assuming a linear CR-cloud relation-
ship), but no such periodic variations in cloud have been iden-
tified in either ISCCP or MODIS cloud data at any atmospheric
level over the past 26 years of satellite observations
(Kristjánsson et al. 2004; Agee et al. 2012; Laken et al.
2012b, 2012c).

Although the MC methods as shown in the previous exam-
ples have many advantages over classical statistical tests (like
the Student’s t-test), we reiterate that there are situations where
MC methods could yield incorrect or imprecise estimates of
significance levels. Specifically, this may occur in instances
where: (1) there is a limited amount of data to generate unique
random samples. The total number of unique samples which
may be generated can be calculated as

MCsims ¼
m!

n!ðm� nÞ! : ð3Þ

where MCsims is the number of unique simulations, n is the
subsample size (i.e., size of composites), and m is the size
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of the parent population. If the number of unique samples is
smaller than the number of simulations required for the MC to
converge, then the accuracy of the MC-analysis method will
be limited, (2) the number of MC simulations is quite low,
resulting in a higher uncertainty associated with any calcu-
lated confidence intervals as the MCs had not fully converged
(a cause of this may be either from point 1 or by experimental
design); or (3) and the analyzed data contains outliers. This
would be a problem only if point 1 and/or 2 were also occur-
ring, thereby preventing the resulting MC distributions from
becoming accurate representations of their parent population.

3.6. Common causes of false-positives

The data of Figure 8b clearly show no significant cloud
response, and give no cause to support a hypothesized relation-
ship between the CR flux and cloud cover. However, by con-
structing the composite in a subtly altered, yet still seemingly
logical manner, highly different results can be produced. For
example, if we seek to test how cloud cover varies following
Fd events, it is reasonable to propose that we should compare
cloud properties before Fd events to those following the events.
Based on this, we may construct cloud anomalies against a sup-
posedly undisturbed normalization period, prior to the occur-
rence of the Fd events, and then evaluate the significance of

the changes by comparing the post-Fd event values to the val-
ues of the normalization period. While these propositions are
reasonable, and this procedure has appeared in numerous pub-
lications (e.g., Kniveton 2004; Svensmark et al. 2009, 2012;
Dragić et al. 2011, 2013), this approach can have a considerable
impact on the statistical significance of the anomalies, as we
will now demonstrate.

In Figure 9 we present cloud cover anomalies (%) calcu-
lated from the original ISCCP data (not adjusted for seasonality
or mid-to-long-term variations), where the anomalies are
defined in this instance by subtracting from the observed record
the time average of the record over a five-day period starting at
t�10 (hereafter this five-day period is referred to as the normal-
ization period). We note that these anomalies do not include the
use of a 21-day smooth filter as in our previous examples. This
different approach consequently produces values which differ
from those presented in Figure 8b. Confidence intervals calcu-
lated from the normalization period alone and extended over the
entire composite period (as opposed to calculating the confi-
dence intervals at each t point individually) based on 10,000
MC simulations at the p = 0.05 and p = 0.01 two-tailed levels
are also presented in Figure 8 (red dashed and dotted lines
respectively). In this procedure the time average of a five-day
normalization period beginning at t�10 has been subtracted
from the observed record for 10,000 randomly generated com-
posites, and the distribution of values within the normalization
period has been accumulated to produce a PDF from which the
confidence intervals were calculated. Relative to the normaliza-
tion period of undisturbed conditions, we observe a reduction in
cloud cover of �0.42% centered on t+5 (a 3.5r deviation with a
statistical significance of p < 0.01). A traditional statistical test
also indicates that this anomaly is highly significant: when we
compare the cloud anomalies of the normalization period
against the anomalies of t+5 using a Student’s t-test, we obtain
a T-statistic of 2.87, corresponding to a p-value of 0.004.

However, the statistical significance of this result is incor-
rect. A comparison between the Fd composite values over t
and the distribution of MC-generated composites only has
meaning if the same statistic is compared. If the correct statis-
tical methods are applied and confidence intervals are calcu-
lated for each t point (blue dashed and dotted lines in Fig. 9),
the t+5 anomalies are found to have a p-value of 0.06, similar
to the value obtained in Figure 8b. The false positive previously
identified was a consequence of the violated assumption that
variations over the composite are random and non-sequential
(i.e., no autocorrelation). This assumption is generally untrue
of geophysical data, and in the case of Figure 9, this is further
exacerbated by the subtraction of the normalization period from
the observed record.

Due to the temporal development of the weather, it is log-
ical to state that the cloud conditions of today are more likely to
be similar to those of yesterday than they are of last week. Con-
sequently, any statistical tests, which compare the values of a
normalization period against a possible peak (e.g., t+5) or any
subsequent values, are inherently biased and will frequently
produce false-positive results (this is the reason the t-test gave
a false-positive result). In order to correctly assess statistical sig-
nificance over t in a composite where a normalization period
has been subtracted from the data, confidence intervals must
be calculated at each t individually (e.g., the blue lines of
Fig. 9). For each t the confidence intervals are drawn from a
PDF of 10,000 MC simulations, which have been treated in
an identical manner to the Fd composite (i.e., the randomly gen-
erated composites have had a five-day normalization period
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commencing at t�10 subtracted from the observed mean at each
t). From the resulting confidence intervals we clearly demon-
strate that the variations of t+5 are non-significant (p > 0.05).

We note that methodological differences in generating the
anomalies between Figures 8 and 9 (black lines in both figures)
have resulted in the t+5 decrease being exaggerated by 0.05% in
the later figure. Despite this, the anomaly appeared to be weakly
significant (p = 0.02) in Figure 8 but not in Figure 9
(p = 0.06). This is because the autocorrelation effects present
in the analysis of Figure 9 have also resulted in relatively wider
confidence intervals. This effect is also combined with the dif-
ferent calculation of the t+5 anomalies, and as a result we obtain
two differing p-values. So which is correct? This is an inten-
tionally misleading question, as the two results are merely inde-
pendent statements of the probability of obtaining values of an
equal magnitude by chance when the data is treated in a certain
manner, including, excluding, or ignoring various effects. When
this result is interpreted objectively, examining both the mean
and error, longer-term variations, and excluding as many imper-
tinent aspects of the data as is possible (e.g., by restricting influ-
ence from autocorrelations and minimizing noise), we may
readily reach the conclusion that the t+5 anomaly is not unusual
over the composite.

If we were to make the unsupported assumption that there
exists a connection between the t+5 variation in cloud and the
Fd events, then we may interpret the data to suggest that an
approximate change in the CR flux of 1% may lead to global
cloud changes of 0.12% (0.37/3.02, where 0.37 is the absolute
cloud anomaly at t+5 in Fig. 8b). This response is even larger
than our previously discussed upper limit value of 0.09% based
on Svensmark et al. (2009). Objectively considered, there is no
evidence yet presented for accepting that the t+5 anomaly is
more than stochastic variability, or for making the assumption
of a connection between the Fd events and cloud anomalies
at t+5. However, it may always be favorably argued that the
noise levels of the experiment may mask a small CR-cloud sig-
nal overwhelmed by noise. Indeed, experiments of this manner
may only restrict the potential magnitude of such a signal by
increasing experimental precision, but may never disprove it
entirely.

To the previous point regarding autocorrelation in the data
and its influence on the width and development of the confi-
dence intervals over t we add some further remarks. If the com-
posited cloud data of Figure 9 were to be replaced by an
imaginary time series absent of autocorrelation (pure white
noise), and these data were treated in the same manner
(with a normalization period of five days), the resulting MC-
calculated confidence intervals (equivalent to the blue lines of
Fig. 9) would also display some weak non-stationary character-
istics similar to those of Figure 9. The confidence intervals
would be relatively narrow around the normalization period
and expand (to a nearly static value) outside of the normaliza-
tion period. The presence of persistent noise enhances these
characteristics, resulting in narrower confidence intervals during
the normalization period, which then expand with increasing
time from the normalization period. The duration of this expan-
sion and the final width of the confidence intervals are related to
the amount of persistent long-memory noise within the
data.

We again reiterate that traditional statistical tests (such as
the Student’s t-test) may also be used to calculate significance
after an adjustment in the assumed degrees of freedom (Forbush
et al. 1982, 1983), which can be done by calculating the

effective sample size (Neal 1993; Ripley 2009). We note that
the MC-approach of the red lines in Figure 8 and the blue lines
of Figure 9 is identical, and because the confidence intervals are
calculated for each time-point individually, it is able to correctly
account for the effects of restricted sample variability and auto-
correlation present in the data and exacerbated by the normali-
zation procedure.

3.7. A note on adding dimensions

The composites discussed thus far only concern area-averaged
(one-dimensional) data. Such composites are usually from
either point measurements (e.g., Harrison et al. 2011) or area-
averaged variations (e.g., Svensmark et al. 2009) with time as
the considered dimension. A limitation of this approach is that
it does not provide the capacity to differentiate between small
changes over large areas, or large changes over small areas:
i.e., one-dimensional composites of this nature only enable an
evaluation of integrated anomalies.

By considering the data at higher dimensions (i.e., over
both temporal and spatial domains), differentiation between
localized high-magnitude anomalies, and low-magnitude
large-area anomalies is possible. However, the increased com-
plexity also requires increased caution, as a dataset with three
dimensions (e.g., latitude, longitude, and time) is essentially a
series of parallel, independent hypothesis tests (see the descrip-
tion in the auxiliary material of Čalogović et al. 2010). To such
data, the methods of one-dimensional composite analyses previ-
ously described may be applied. Following proper construction
of the composite anomalies, the area over which anomalies are
statistically significant may then be evaluated; this may be done
by identifying a threshold p-value, and assessing the signifi-
cance of the data points independently. Summing the number
of statistically significant data points at each t of the composite
gives a simple integer measure, against which the normality of
the anomalies may be evaluated: this is referred to as the field
significance (for further details, see Storch 1982; Livezey &
Chen 1983; Wilks 2006).

If autocorrelation effects and the presence of factors influ-
encing the data are absent (i.e., for an idealized sequentially
independent random dataset), the percentage of significant pix-
els over the integrated field should only reflect the false discov-
ery rate (FDR) associated with the chosen p-value. However, as
previously noted, autocorrelation effects are normally a com-
mon feature of geophysical data. Cloud data show both spatial
and temporal autocorrelation, and thus the number of significant
data points at any given time is likely to be greater than
expected from calculations of the FDR alone. The field signif-
icance may be effectively assessed via a variety of approaches
such as the Walkers test (Wilks 2006). In addition, MC-
approaches similar to those previously described in this work
could be readily adapted to calculate distributions of randomly
generated field significance against which to calculate a
p-value.

While integrated (one-dimensional) composites are only
able to test the net amplitude of anomalies, multi-dimensional
composites may identify the extent of significant anomalies
by creating a series of independent parallel hypothesis tests.
However, a limiting weakness of such an approach, as previ-
ously noted, is the constraint of small sample areas on the sig-
nal-to-noise ratio (Fig. 5); this makes it less likely that a low-
amplitude signal may be reliably detected over a small area.
Therefore, at least in the context of studies discussed in this
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work, we suggest that multi-dimensional studies should be used
in conjunction with one-dimensional time series analyses; e.g.,
to demonstrate that any statistical significance identified in one-
dimensional tests does not result from localized high-amplitude
noise.

3.8. Estimating statistical significance in subpopulations

The MC-based estimation of statistical significance we have
described in this work has numerous advantages over tradi-
tional significance testing methods. However, it is not without
limitations as previously stated at the end of Section 3.5. To
these limitations we add a further caveat: MC-methods may
provide inaccurate results where composites are constructed
out of subpopulations of an original (parent) dataset. In the
MC experiments presented in this work, we have assumed that
the chances of any data point of a time series being included in
a MC are equal. This is true, as the chance of a Fd event occur-
ring is essentially random with respect to Earths atmosphere
(although to this point we note that Fd occurrence tends to clus-
ter around the period of solar maximum). However, it is not
unusual for composite samples to be further constrained, adding
additional selection criteria to composite events. Consequently,
the resulting composites are created from subpopulations of the
parent dataset, and thus their significance may not effectively be
assessed by drawing random samples from the parent dataset.

In Section 3.3 we describe several studies where composites
were restricted by Fd intensity, a common analysis approach.
To continue with this example, imagine we were to restrict
the n = 55 Fd events described in Section 3.3, to the most
intense (IFd �10%) n = 6 events and we wished to identify
the p-value of the t0 composite mean. To properly account
for the sample restriction using a MC approach would require
the creation of numerous n = 55 samples from the parent data-
set (we shall refer to these samples as parent composites).
Importantly, each of the parent composites needs to have the
correct statistical properties, e.g., in this instance, a mean at t0
comparable to that of the composite prior to restriction (i.e.,
the n = 55 Fd composite at t0). MC populations would then
need to be constructed from n = 6 subsamples, drawn from
the parent composites. We may then use PDFs of the MC
results to identify the p-value of the t0 mean for the IFd � 10%
composite.

This change in methodology is necessary as the hypothesis
test is no longer concerned with determining the chance of
obtaining a t0 mean of n = 6 randomly, but rather, it is now
concerned with determining the chance of obtaining a t0 mean
from n = 6 subpopulation when you begin with a parent com-
posite of n = 55 with a specific mean value at t0. i.e., the ques-
tion becomes, if a group of events of n = 55 has a specific
mean, what are the chances that a subsample of n = 6 of these
events will have another specific mean?

4. Conclusions

Although numerous composite analyses have been performed
to examine the hypothesized link between solar activity and cli-
mate, widely conflicting conclusions have been drawn. In this
paper we have demonstrated that the cause of these conflicts
may relate to differences in the various methodological
approaches employed by these studies and the evaluation of
the statistical significance of their results. We find that numer-
ous issues may affect the analyses, including: (1) issues of

signal-to-noise ratios connected to spatio-temporal restrictions;
(2) interference from variability in data at timescales greater
than those concerning hypothesis testing, which may not neces-
sarily be removed by accounting for linear trends over the com-
posite periods; (3) normalization procedures which affect both
the magnitude of anomalies in composites, and estimations of
their significance; (4) the application of statistical tests unable
to account for autocorrelated data and biases imposed by the
use of improper normalization procedures.

Statistical methods for correctly assessing significance in
composites taking into account effective sample sizes have been
previously established (Forbush et al. 1982, 1983; Singh 2006;
Dunne et al. 2012). To these procedures, we add the composite
construction outlined in this work, and a further robust proce-
dure for the estimation of significance based on a Monte Carlo
approach.
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