
 

Composite density maps for multivarate trajectories

Citation for published version (APA):
Scheepens, R. J., Willems, C. M. E., Wetering, van de, H. M. M., Andrienko, G., Andrienko, N., & Wijk, van, J. J.
(2011). Composite density maps for multivarate trajectories. IEEE Transactions on Visualization and Computer
Graphics, 17(12), 2518-2527. https://doi.org/10.1109/TVCG.2011.181

DOI:
10.1109/TVCG.2011.181

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1109/TVCG.2011.181
https://doi.org/10.1109/TVCG.2011.181
https://research.tue.nl/en/publications/a03fd3b3-db27-41e8-81aa-06058f556056


Composite Density Maps for Multivariate Trajectories

Roeland Scheepens, Niels Willems, Huub van de Wetering,

Gennady Andrienko, Natalia Andrienko, and Jarke J. van Wijk
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Fig. 1. An accident risk map of passenger vessels (turquoise), cargo vessels (orange), and tanker vessels (green) in front of Rotterdam
harbor. The highest density at a location determines the color of the cell. The areas that need extra attention are highlighted in
a separate illuminated height field containing the passenger risk map and contours as ridges. The contours are derived from a
combination of tanker and cargo risks marking where they both have a high risk. The block diagram shows how the map is created.

Abstract—We consider moving objects as multivariate time-series. By visually analyzing the attributes, patterns may appear that
explain why certain movements have occurred. Density maps as proposed by Scheepens et al. [25] are a way to reveal these
patterns by means of aggregations of filtered subsets of trajectories. Since filtering is often not sufficient for analysts to express their
domain knowledge, we propose to use expressions instead. We present a flexible architecture for density maps to enable custom,
versatile exploration using multiple density fields. The flexibility comes from a script, depicted in this paper as a block diagram,
which defines an advanced computation of a density field. We define six different types of blocks to create, compose, and enhance
trajectories or density fields. Blocks are customized by means of expressions that allow the analyst to model domain knowledge.
The versatility of our architecture is demonstrated with several maritime use cases developed with domain experts. Our approach is
expected to be useful for the analysis of objects in other domains.

Index Terms—Trajectories, Kernel Density Estimation, Multivariate Data, Geographical Information Systems, and Raster Maps.

1 INTRODUCTION

Object behavior is examined by analyzing their state as they move dur-
ing a certain period. A state contains sampled sensor input. Addition-
ally, data may be obtained from external data sources or by means of
reasoning with existing knowledge [32]. The fused data sources result
in multivariate trajectories: a time-series with multiple attributes per
object capturing its movement. Visual inspection of attributes along
these trajectories may reveal patterns that, for instance, may explain
why movements have occurred.

Aggregation is a suitable technique for analyzing massive trajectory
data sets [3]. A density map [25] is a visual aggregation method, based
on kernel density estimation [26], that generalizes characteristics of
multivariate trajectories. Many relevant analyses, such as anomaly de-
tection and risk analysis, can be conducted with these density maps,
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but their expressibility is limited. If the proposed fixed architecture
is used, density maps only consist of predefined compositions of den-
sity fields generated from a subset of the trajectory data. For realistic
analyses often more powerful expressions are needed.

We distinguish two user roles: analyst and operator. An analyst is a
domain expert who defines, possibly complex, parameterized compu-
tations of density maps in order to find certain features. An operator,
e.g., a coast guard surveillance operator, visually inspects a computed
density map for occurrences of the features and interactively changes
the parameters of its computation to facilitate the inspection.

To allow the analysts to express their interest in terms of density
fields, the density contribution requires a more complex definition.
First of all, attributes values could be taken into account, for instance
as a weight for the contributions. Secondly, additional aggregations
may be required, such as an average attribute value. Finally, local
structures may need to be emphasized, for instance by highlighting
areas where movements are vivid, such as meeting areas.

To increase the expressibility, we propose to extend the density field
computation with a kernel with varying radius, in a similar fashion as
Brunsdon [6], and a user-definable expression for the density contri-
bution that may take other density fields into account. Furthermore,
the analyst can combine multiple density field computations to com-
pute a complex density field. With such density fields we can perform
more analyses: First of all, we can compute non-spatial deviations
from normal behavior, such as finding relatively slow objects moving
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against the main traffic flow. In fact, this is a contextual computation,
where the environment is given by the data. Furthermore, we can show
attribute variations in the density by relating attributes to the kernel ra-
dius. Finally, by defining the desired result in a composition of simple
computations (e.g., bottom of Fig. 1), the analyst keeps an overview
while building a complex density field. These improvements together
enable the analysts and operators to investigate real-world situations.

In Section 2 we describe related approaches in literature. In Sec-
tion 3 we define the basic models for trajectories and densities. Sec-
tion 4 explains our approach to compute composite density maps, and
in Section 5 we elaborate on the implementation. In Section 6 we ap-
ply our method to real-world use cases and in the final section we draw
conclusions and suggest some future work.

2 RELATED WORK

Our contribution touches the literature in different ways. This includes
visualizations of moving objects, and more specific, trajectory aggre-
gation in the first two sections. User-defined expressions for building
information visualizations are discussed in Section 2.3. In the last sec-
tion we mention connections with geographical information systems.

2.1 Moving Object Visualizations

In the analysis of moving objects, we search for patterns that explain
why a movement has occurred. Visualization is one of the methods
that may reveal these patterns. Slingsby et al. [27] define a hierarchy
based on attributes of trajectories and use tree maps to show the result-
ing distribution. We limit ourselves to spatial distributions given by
the attributes. Trajectories of eye movements can be analyzed using a
gaze plot, or a space-time cube as shown by Li et al. [22], who adapted
the latter with the TimeWave principle, where a clock is traced along a
time line. TimeWave enables to find and compare repetitive patterns,
patterns that are hard to tackle with our approach. Eccles et al. [14]
use a space-time cube to order and annotate events in time, allowing
the user to tell the story encapsulated in the data. Another approach
for event data is shown by Andrienko et al. [4] where events of pub-
lic interest are found. Both works on events are too coarsely sampled
in time to get useful interpolation between data points, as assumed in
our method. The relative motion between objects is emphasized in the
visualizations proposed by Crnovrsanin et al. [10] where abstract rep-
resentations may solve possible confusions when movements are only
displayed spatially. We try to solve this confusion by only showing the
movement feature of interest as given by the user-defined expressions.
Guo et al. [15] propose a visual analytics tool with multiple linked
views to investigate a road crossing. Visual analytics tools as proposed
by Andrienko et al. [2] and Liao et al. [23] allow visual exploration
supported by machine learning techniques that are, unlike our method,
limited in the use of domain knowledge. All these approaches have
in common that they have a fixed architecture; for allowing the user
to find new types of movement features the tool needs to be adapted,
while we only define a new computation.

2.2 Trajectory Aggregation

Aggregation methods can be used to analyze large numbers of trajec-
tories. A common approach to aggregate trajectories is with a grid
structure. Andrienko et al. [1] show the aggregated cells with glyphs
on top of a map. Density approaches show a smoothed view on the
data, and despite the computational complexity, they can be generated
fast using graphics hardware. Hurter et al. [17] splat smoothed points
on a map, while Lampe et al. [21] convolve trajectory segments with a
constant speed. A constant acceleration along a trajectory segment is
assumed by Scheepens et al. [25], who also take other attributes into
account in the visualization. Downs [13] proposes a density for tra-
jectories by splatting a kernel adapted to the length of a segment and
assumes a constant velocity. By convolving the path in a space-time
cube and display the result with volume rendering techniques, tempo-
ral information can be revealed, as proposed by Demšar et al. [11].
Trajectories may also be aggregated by means of other structures than
a grid. For instance, Andrienko et al. [5] extract a graph from trajec-
tories and aggregate them along the graph to construct a flow map. In

our approach we also aggregate trajectories, but we use user-definable
expressions that relate attributes in the data to the density contribution.

2.3 Expressions for Defining Visualizations

The user is allowed to influence the visualization of the density field
with expressions; this is known as a software pattern for information
visualization [16]. We found three types of expressions occurring
in visualizations. Firstly, there are expressions for filtering, such as
queries. These expressions occur as a filter expression in our method.
Secondly, expressions occur to compute derived data. For instance,
Dinkla et al. [12] propose to let the domain experts define expressions
that tune the output of analysis algorithms as used in their visualiza-
tion. In our case such expressions are used for smoothing, the kernel
size, composition, and aggregation. Finally, expressions occur to de-
fine how complete renderings are related as they occur in computer
graphics as Constructive Solid Geometry (CSG) or in visual spread-
sheets as proposed by Chi et al. [9]. One could argue that our scripts
are examples of such expressions.

2.4 Geographical Information Systems

A density field may be represented as a basic raster map in a Geo-
graphical Information System (GIS) [7]. To conduct spatial analysis,
raster maps can be composed using mathematical expressions in map
algebra as proposed by Tomlin et al. [28]. We can use similar expres-
sions in the composition of density fields, with cell-wise expressions.
The main difference with Tomlin’s approach is that we can create new
density fields based on other data than field data. Even though first
steps have been done by Câmara et al. [8] to incorporate non-field
data in map algebra, it has not been done for trajectories with multiple
attributes. Nevertheless, the final result, a composite density map, can
be shown in a GIS as a raster map as well.

To create maps for a GIS there is often a notion of architecture; the
composition of processes that together create the end-result. There are
various levels of integration within these architectures. For instance
in a mashup as proposed by Wood et al. [34] we see that completely
different tools perform each a part of the computation of the final map.
Since GIS is known for a large number of compatible data formats it
is relatively easy to incorporate new tools or tools made by others in
the tool chain. From an information visualization perspective this is a
suboptimal solution, since the user cannot easily change the parame-
ters for the visualization. For this reason we chose to have a flexible
architecture within our own tool that allows the analyst to define ma-
nipulable parameters resulting in an interactive visualization system
for the operator.

3 DATA MODELS

This section describes data models for trajectories with multiple at-
tributes, density field computations, and density maps.

3.1 Multivariate Trajectories and Density Fields

The state αααo(t) of the movement of an object o is given by various
attributes, such as a timestamp t, with t ∈ [0,T ], a position p(t), a
velocity v(t), and other attributes such as object type or orientation.
The continuous trajectory αααo, or ααα for a single object, is captured in a
time-series ααα0 . . .αααN , where between consecutive tuples in time a tra-
jectory can be reconstructed. For two states ααα0 and ααα1, Willems et al.
[30] model the reconstruction of a continuous path p, for timestamps
ti, positions pi, velocities vi, and assuming a constant acceleration. To
obtain a continuous density field Co for an object o, we convolve p in
point q with a radially symmetric kernel kr, i.e.,

Co(q) =
1

T

∫ T

0
kr(q−p(t))dt, (1)

where r is the kernel radius. This density field is normalized with the
time to allow comparison of fields with different durations. A density
field C of all trajectories is defined by summing the individual densities
Co per point. A discrete density field D, with a value D(Q) in cell Q,
is obtained by sampling C in the center of each cell.
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3.2 Density Maps

Multiple density fields can be composed into a single image, called a
density map [25]. After composing various density fields for subsets
of trajectories chosen with a multivariate filter, relations between at-
tributes may be revealed in the density map. Figure 2 shows a fixed
architecture used to create a density map from trajectories [25]: First,
the trajectories are divided into subsets using filters, where in the den-
sity model for each subset a density field is computed with a given
kernel radius ri and scaled with weight wi. From here we can either
compose the density fields with density aggregation, where the scalars
are combined in a new density field, or the density fields are rendered
with a color map ci and their images are composed. The density map
is a result of the rendering of the aggregated density or the composed
images together with a density field displayed as an illuminated height
field similar to enridged contour maps [?] by van Wijk and Telea. It
turns out from a user study by Willems et al. [31] that density maps
are as effective as animation and the space-time cube in a controlled
environment.
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Fig. 2. The fixed architecture for density maps by Scheepens et al. [25].

4 COMPOSITE DENSITY MAPS

As an alternative for the above fixed architecture for density maps, we
propose a flexible architecture for the density model part as shown in
Figure 3. The new density model allows an analyst to define a compu-
tation for a set of density fields with a set of composable blocks. By
including parameters the computation is usable for an operator.

Each individual block creates a new density field and may take den-
sity fields generated by other blocks as input. Some blocks also have
trajectories as input, which may be filtered with a user-definable ex-
pression Fααα , expressed in the attributes of the trajectory ααα . The filter
Fααα results in a filter attribute f (t), which is 1 for states ααα(t) that satisfy

Fααα and 0 otherwise. We define six types of building blocks: convo-
lution, composition, counter, enhancement, enrichment, and iteration,
which are discussed in the following sections.

In the visualization part of the architecture, density fields are either
connected to the color map or the illumination component, both of
which result in images to be composed into a density map. In the
former component a color map is applied to one or more density fields,
while in the latter a single density field is illuminated as a height field.
In the color mapping, a single density field is drawn with a multi-hue
color map, such as yellow-to-red. We use a logarithmic scale to display
different orders of magnitude. With multiple density fields, each field
gets a single hue color map with varying saturation, such as red-to-
white. The hue values are given by sampling a perceptually balanced
rainbow color map generated with PaletteView [29].

4.1 Convolution Block

A convolution block has density fields Di and trajectories as input,
and is parameterized by expressions for the filter Fααα , for smoothing
Sααα , and for the kernel radius rααα . The density fields Di are used as
additional attributes Di(t) in state ααα(t). A density attribute Di(t) is
obtained by bilinearly sampling the density field Di at position p(t).
With these new concepts, the contribution Co to the density given in
Equation (1) is generalized as follows

Co(q) =
1

T

∫ T

0
f (t) ·Sααα (krααα (t)(q−p(t)), t)dt, (2)

with f (t) the filter attribute and p(t) the position in state ααα(t). The
user defines Sααα (ρ , t) based on the density contribution ρ given by the
kernel k and the attributes in ααα(t), including the density attributes.
Similarly, the user defines an expression rααα (t) for the kernel radius.

We illustrate the convolution block with a time-based semantic
depth of field [20], where recent movements of tankers are considered
more of interest than older movements. We can compute such a field
allowing only tankers in the filter Fααα and vary both the smoothing Sααα

and the kernel radius rααα along the trajectory with these expressions:

Sααα (ρ , t) = ρ (t/T )2, (3)

rααα (t) = 3−2.9t/T. (4)

The non-linear decay of the density and the decreasing kernel radius
rααα in time emphasize the recent movements with a sharp and small
kernel as shown in Figure 4b. Compared with a normal density map
in Figure 4a, we can now for instance see the order in which anchor
zones are occupied based on the size of the dot.
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Fig. 4. Composite density maps of vessels during a week, using (a) a normal density map, (b) a varying kernel radius emphasizing new movements
with a small kernel using Equation (3), and (c) a varying kernel weight emphasizing sea lanes using Equation (5).

4.2 Composition Block

The composition block takes one or more density fields as input and
produces a single density field as output. The output is generated based
on a user-definable expression ⊙ that composes the input density fields
per cell. Examples of ⊙ are the density aggregation operators of [25]:
weighted addition and difference.

4.3 Counter Block

The counter block returns the number of occurrences of objects that
have been active within a given distance from a cell. This building
block is useful to quantitatively segment busy areas. For instance, with
a count field Dc generated by a counter block, a density field enhancing
traffic lanes can be constructed using a convolution block. If we define
traffic lanes as areas with more than 8 moving ships, we can use a
constant kernel radius r and a smoothing expression Sααα defined by

Sααα (ρ , t) =

{

ρ v(t) if Dc(t)> 8;
ρ otherwise,

(5)

where Dc(t) and v(t) are attribute values along trajectory ααα . Figure 4c
shows enhanced traffic lanes while busy anchorage areas are reduced.

4.4 Enhancement Block

The enhancement block encapsulates a set of basic image processing
operations, such as Gaussian blur, discretization, and edge detection as
shown in Figure 5. For these operations, density fields are interpreted
as a gray-scale image. Gaussian blur is used to remove distracting
noise patterns in density fields. Discretization is used to segment the
density field in areas with similar values using a step function. For
example, by setting the number of steps to 2, a density field can be
thresholded, and turns into a binary density field that can be used as a
mask. Edge detection is implemented with a Sobel filter and is used to
create contours in combination with the discretization.

a b

c d

Fig. 5. Enhancements applied to a density field: (a) a normal density
field, (b) the density field discretized using two steps, (c) contours gen-
erated from the discretization, and (d) the contours after Gaussian blur.

4.5 Enrichment Block

The enrichment block adds new attributes to trajectories. The state ααα
is extended with attributes containing aggregations of existing attribute
values, defined by an aggregation expression Aααα , such as minimum,
maximum, or average. The input of the block is a set of trajectories and
the output is the same set of trajectories with the additional attribute.

4.6 Iteration Block

An iteration block is parameterized with an attribute A, an attribute
value range [0,K], and a number of steps N. The block computes a
density model N times for consecutive intervals of length K/N. Fig-
ure 6 shows that the output density field is incrementally built by
adding a density field for each interval. With an iteration block it is
possible to force an order in which computations are performed. This
order is required for instance to compute interactions (see Section 6.6).

a

b

Fig. 6. Intermediate density fields for 1, 2, and 3 consecutive iterations
over (a) time intervals and (b) individual objects.

5 IMPLEMENTATION

We use a Graphics Processing Unit (GPU) to compute density fields
fast. A density field is stored in a texture, where each texel represents
a cell, and is computed with shader programs that run on the GPU.

The blocks and their relations are defined in a script language. To
avoid long code listings, these scripts are depicted as block diagrams
in this paper, such as at the bottom of Figure 8. For each block, shader
code is generated on-the-fly by instantiating building block-type spe-
cific templates with expressions defined in the script. The CPU con-
trols the flow of the computations and sends both the intermediate den-
sity fields as textures and the appropriate shader programs to the GPU.
Unbound variables in the script are treated as parameters of the den-
sity model and can be easily adapted and animated with automatically
generated user interface widgets (see Fig. 7) similar to the Manipulate

function in Mathematica [33]. This allows the analyst to include useful
parameters in the computation used by the operator.

minSpeed

Fig. 7. A parameter minSpeed can be varied with a widget.
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5.1 Performance

The performance loss of a single density field computation due to the
generalization is negligible compared to previous implementations.
A single density field is computed in a split second by a machine
equipped with an Intel Core i7 CPU at 2.8 GHz, 6 GB of RAM mem-
ory, and an NVidia GeForce GTX 285 with 1 GB of video memory,
for given data size (400,000 points), resolution (1000x1000 cells), and
kernel radius (2km). But, experienced users may create complex den-
sity fields that may require tens or more intermediate density fields.
These computations in total may result in wall times of several min-
utes. For these complex computations, the memory size of the graphics
hardware limits the usage of different intermediate density fields.

6 MARITIME USE CASES

We have constructed use cases together with two Dutch maritime part-
ners, who analyze vessels captured with the Automatic Identification
System (AIS) [18]. They investigate vessels with different perspec-
tives: One wants to find anomalous behaving ships, while the other
is interested in maritime safety. The presented use cases triggered the
partners to experiment further with the tooling for their own analyses.

Reveiro et al. [24] describe the sense-making process for vessel
tracking systems, rephrased with our definition of analysts and op-
erators, as follows: The analyst first performs a foraging loop where
the data is explored, filtered, and exploited by extracting information
or noticing patterns. Using a visual representation and domain knowl-
edge, the operator then gathers information and develops insight into
the data set by manipulating the visual representation using interaction
and by setting parameters. Finally, the operator may take some action
based on newly developed insight or gathered information. We present
use cases to show how our method can play a role within this process,
whether it is in the process of defining a visualization of normal be-
havior, finding anomalies using a rule-based or a data-based approach,
or providing interaction to drill down.

These use cases are demonstrated with a vessel trajectory data set
in an area of approximately 400 by 400 kilometer of the North Sea off
the Dutch coast. The data set contains 425,591 states covering 2,268
vessels over a period of one week. The trajectories have the following
attributes in state αααo(t): Vessel type s, mass m, course c(t), actual
orientation h(t), velocity v(t), and acceleration a(t). The course and
orientation of a vessel are angles relative to some reference direction.

6.1 Detailed Harbors

A density field may be an aggregation of a large amount of movement
data, and as a result details might be lost, especially around the busier
areas, such as harbors and anchorage areas as shown in Figure 4a. To
emphasize these areas, we could decrease the kernel radius r, but this
also adds more details to areas where we do not require extra detail.
With previous density maps, density fields could only be computed
with a fixed kernel radius or, at best, the trajectories could be divided
into subsets with each assigned a different kernel radius. In this sec-
tion we describe multi-resolution approaches focussing on details in
harbors in a smoothed context.

A composite density map is generated with a convolution block (see
top Fig. 8a) with an adaptive kernel radius that gives us more insight
into what is happening in harbor areas. Since vessels generally sail
slower in harbor areas, we accomplish this by using the velocity v(t) to
vary the kernel radius, i.e., rααα (t) = max(ωv(t),0.1), with ω a scaling
factor. Figure 8a shows that a small kernel enhances movements in
anchor and slow-moving areas while a large kernel blurs fast movers.

One of our partners has expressed interest in a variable kernel based
on traffic density such that movements in traffic lanes and other busy
areas also have more detail through a smaller kernel radius. This is
expressed in a block diagram (see top Fig. 8b), by first generating a
density field B with a constant kernel radius in a convolution block
‘Area usage’ to get an overview of the general area usage. The result
is then fed to a second convolution block ‘Area usage as kernel radius’
with a varying kernel radius based on area usage defined as follows:

rααα (t) = max(R−ω log(1+B(t)),0) (6)

where R is a maximum kernel radius, B(t) the density attribute ‘Area
Usage’, and ω some scaling factor. The second block is connected
to both the color map and illumination component, as shown in Fig-
ure 8b. We are able to infer from the amount of detail where the busier
areas are, but by separating the varying kernel in the illuminated height
field and the area usage in the color map, we obtain a density map that
is more smooth and therefore better legible. Figure 8c shows an ex-
ample where individual vessels stopped in the anchorage areas and the
harbor of Rotterdam. The detailed trajectories reveal the actual struc-
ture of these areas with slow movers.

6.2 Drifters

A dangerous situation may arise when a vessel has an engine failure,
becomes uncontrollable, and starts drifting, which may result in a col-
lision. A vessel is said to be drifting when it is moving slowly (i.e.,
3 ≤ v(t)≤ 5 knot) and its course c(t) and actual orientation h(t) have a
significant difference (i.e., > 30◦). These specific values may be tuned
by domain experts using the widgets in Figure 7.

To visualize these potentially dangerous situations, we create a
block diagram as shown in Figure 9, where a single convolution block
is created with Sααα (ρ , t) = ρ |c(t)− h(t)| and a filter Fααα to select only
slow movers. The resulting density field is connected to the color com-
ponent. For contextual information, we also create a density field for
the entire set of trajectories and connect it to the illumination compo-
nent. This reveals a number of potentially dangerous situations in the
data set. In Figure 9b, we show an overview of the drifters we find
with this block diagram and zoom in on several particular cases.

In Figure 9c we can see a vessel with drifting patterns around its
turns. Closer investigation shows that this is research vessel which is
expected to make sharp turns. In Figure 9d, we see potential drifters
in the areas shown in red. By clicking in this area, we notice that
these trajectories are caused by a single cargo vessel that originated
from the North, loitered in the area for approximately two days and
then proceeded into the harbor of Antwerp. It is possible that the ves-
sel was too early and had to wait two days before it could head to its
destination harbor. This vessel has most likely been drifting on sev-
eral occasions while it was waiting. The vessel appears to alternate
between drifting in a South-West direction and actively moving in a
North-East direction. In Figure 9e cargo vessels move between ocean
platforms, which are visualized as black squares. These vessels are
most likely resupplying ocean platforms and making short stops and
sharp turns. In Figure 9f we see two parallel drifter trajectories. Since
these trajectories occur within a busy area, this may be a potentially
dangerous situation. Closer investigation reveals that these drifter pat-
terns are caused by a research vessel as well.

6.3 Sea Lanes

Traffic Separation Schemes (TSSes) are defined in busy areas to guide
large vessels by means of sea lanes. In the North Sea, several TSSes
are in effect, but they are not mandatory for all vessels. We separate
the sea lanes and other frequently used routes from other movements
to get an overview of normal shipping traffic as shown in Figure 10.

To do this, we partition the data into N (N ≥ 8 to avoid side-effects
in crossings) sectors η , each representing a course range. For each
sector, we compute a density field and sum the resulting fields into the
final field shown in 10b. The partial lanes are masked with a thres-
holded smoothed count field to obtain only busy lanes. We filter out
all movements with a course that differs from the average course by
at least some constant using an average course field. The ‘Average
course’ field is computed using the cell-wise division of two density
fields: a density field ‘Convolved course’ using the smoothing func-
tion Sααα (ρ , t) = ρc(t) and a density field called ‘Convolved duration’
with Sααα (ρ , t) = max(ρ ,ε), for a small ε to avoid divisions by zero.

The sea lanes appear to disintegrate in the marked areas in Fig-
ure 10b. This happens where vessel directions start diverging or where
there simply is not enough data to extract a reliable route. The latter is
the case within the encircled area for a little used sea lane.
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6.4 Traffic Direction

The TSSes separate vessel traffic heading in opposite directions, but
vessels may ignore these schemes and move in a potentially danger-
ous direction. We use the average course maps generated in the previ-
ous use case to see whether there are vessels moving against the main
traffic flow or whether there are areas containing major traffic flows in
both directions. To do this, another convolution block is added to each
sector; it filters out all movements that have a course difference less
than some threshold compared to the average course. The results of
these blocks are then summed into a single density field that shows the
risk of collision in each area given some threshold. In Figure 11 we
show an example with a minimum deviation of 175◦ (Fig. 11a) and
an example of a minimum deviation of 125◦ (Fig. 11b). The resulting
density map can be interpreted as a risk map that shows the distribution
of possible collisions. From the average course maps of the previous
use case we have only used those with many vessels, since the ones
with a low number show low to no risk of collision.

In the example with a minimum deviation of 175◦, we immediately
see hotspots in and near harbors. Since harbors typically have narrow
access corridors, vessels are likely to move in opposite directions close
to each other, which in turn increases the likelihood of collisions. Note
that the kernel radius defines this ‘closeness’ relation. We can also see
a small green pattern in a busy sea lane to the West, which is not visible
in a standard density map at all. This means a vessel has been moving
in the opposite direction within a sea lane, which is potentially dan-
gerous. Closer investigation reveals that this is a vessel moving back
and forth over a relatively small area to collect hydrographic data. In
the example with a minimum deviation of 125◦, we can see a high risk
of collision in and near harbors and an increased risk in intersections
between sea lanes where the intersecting angle is at least 125◦.

6.5 Risk Analysis

A common task in movement analysis is risk assessment. Each vessel
is assigned a risk, which is defined as the probability of an accident
multiplied by the consequences of the accident, as described by Kol-
denhof et al. [19]. Both the accident probability and consequences are
derived from vessel attributes such as size, age, type, cargo, and envi-
ronmental attributes, e.g., depth or distance to the shore. The risk of
each individual ship is then aggregated into a risk map.

This risk model can be implemented as a block diagram (see bot-
tom Fig. 1). First we enrich the trajectories with the average speed
vavg per vessel, which is used in the filter Fααα to exclude slow movers
from the analysis. We model the risk κ for a single vessel o with the
attribute values in state αααo(t) as κ(t) = ωmv2(t), where ω is a risk
factor based on the vessel type s and the remainder of the risk is the

kinetic energy function Ek =
1
2 mv2, with mass m and velocity v, as a

simplified model for the result of a collision. The risk factor ω is high
for passenger ships due to potential loss of life due to an accident, ω
has a medium value for tanker and cargo vessels carrying potentially
hazardous materials, and ω is low for normal tanker and cargo vessels.

Using this model, we create a density field with Sααα (ρ , t) = ρκ(t)
for each vessel type (passenger, cargo, and tanker) and visualize these
using three distinct color maps (see Fig. 1). The colored density fields
are combined using the maximum operator of [25], showing the color
of the highest density field. The areas with a high risk for both tankers
and cargo vessels are invisible, therefore we create contours around
them. These contours combined with the passenger ship risk map are
connected to the illumination component, which indicates the areas
that need attention due to high risks. They are created by discretizing
the combined cargo and tanker risk map into a binary field using an en-
hancement block. The binary fields is then fed into another enhance-
ment block with a Sobel filter, resulting in crisp edges. We smooth the
contours with a Gaussian using another enhancement block.

Looking at Figure 1, we notice that for instance cargo vessels and
tankers sail in less well-defined routes than passenger ships. Despite
this high spread, the combined high risk is mainly in the same routes
as passenger ships in the sea lanes between West and East, and, in
a sea lane between North and South where they move towards the
mandatory sea lanes for merchant vessels. By comparing the contours

and the illuminated height field of the passenger ships, this density
map allows us to distinguish between areas with a high risk caused by
loss of life or caused by financial or environmental damage.

6.6 Vessel Interactions

Due to the high amount of traffic and the limited manoeuvrability of
vessels, the collision risk is relatively high, not only in the harbor ar-
eas, but also on the open sea. We define that a vessel o′ interacts with
another vessel o at time t if o′ is within interaction distance do(t) of
vessel o as shown in Figure 12a, where these interactions are then con-
volved. We propose a method, using our architecture, to visualize such
interactions with a flexible definition for do(t).

Since both velocity and mass reduce the manoeuvrability of a ves-
sel, we express the interaction distance do(t) in a similar fashion as in

Section 6.5, i.e., do(t) = ωmv2(t), with ω a scaling factor. For kernel
radius rααα (t) = do(t), we obtain a density map as shown in Figure 13a.
We see that the larger and faster a vessel is, the larger its radius is.

Since continuously sampling each point in time is infeasible, we
perform our computations in discrete steps. Therefore, we use the
iteration block to find vessels that are within interaction distance of
another vessel for separate time intervals. In each iteration step, we
use a count block to find overlapping movements. This result is used
as an extra attribute for a convolution block in which only movements
for which the result of the count block is two or more are convolved
as displayed in Figure 12cd. This method, using a two minute time
interval, results in the density map as shown in Figure 13b.

With this method we can see stretched out patterns marked with ar-
rows in sea lanes where vessels overtake each other. Although these
vessels pass each other close by, this is not considered dangerous.
Also, tugs and pilot vessels cause large patterns in and near the harbor
mouths when they are tugging or guiding other vessels. In both cases,
the interacting vessels move in a similar direction. Dangerous inter-
actions are found by subtracting the density fields for these parallel
movements from a density field containing all movements.

The data is partitioned into N sectors η , each representing a range
of γ◦ courses (see Fig. 13). For each sector η , we count the occur-
rences of parallel movements within a sector η widened with β on
both sides, called η+. If an object moves with a direction in sector η ,
then a parallel movement occurs if another object moves with a direc-
tion within η+, and hence deviates less than an angle β with sector η .
If the number of parallel movements is two or more then movements
within η are convolved.

This results in the density map shown in Figure 13c. All areas
shown in color now indicate what we have defined as interactions
without movement in a similar direction. We take a closer look at a
few of them using interactive inspection in our tool. In Figure 13d
we can see a small dot caused by two vessels passing each other at
close range, where the vessel heading in South-Western direction has
to slightly change course to avoid the other vessel. In Figure 13e we
see another small dot caused by a vessel heading in a North-Western
direction having to stop for a vessel heading in a North-Eastern direc-
tion. All visible dots in the density map in Figure 13c are caused by
similar situations, either by vessels passing each other close by with-
out action taken, or by vessels having to perform special manoeuvres
to avoid colliding with other vessels.

In Figure 13f we see a number of small dots near the harbor mouth
of Rotterdam, which is an area with high pilot vessel activity. Pilot
vessels carry trained professionals to guide larger vessels through busy
and/or dangerous areas around and in harbors. The pilot vessel latches
onto a large vessel and the pilot boards the larger vessel to guide it
safely into the harbor. The dots in this area are possibly caused by
these pilot vessels latching onto larger vessels. To investigate whether
this is true, we slightly adapt the method described above. We do
not only filter out movements in areas with less than two overlapping
vessel movements, but also filter out interactions where there are no
pilot vessels involved. We do this by adding another count block that
counts the number of pilot vessels within a time interval and use it
as an attribute for our convolution block. We now get a density map
where the only remaining interactions occur at the harbor mouth.
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7 CONCLUSION AND FUTURE WORK

We have introduced a flexible architecture for composite density maps,
where a density field is computed by means of a composition of sim-
ple density and trajectory computations. The density field computa-
tion itself is extended with a variable kernel radius along a trajectory
and user-definable expressions for filtering, smoothing, and compos-
ing density fields. These expressions enable to apply domain knowl-
edge as demonstrated with maritime use cases showing patterns for
collisions risks, drifters, common routes, and interactions.

To extend this work, we are looking in the following directions.
First of all, we would like to include environmental context given by
raster maps, such as weather or elevation, and use them as input in
the density field computations. To increase the performance of the
density field computation we may use the one as proposed by Lampe
et al. [21], where the trajectories are convolved with a constant veloc-
ity instead of a constant acceleration. However, it is unclear what the
speedup will be when using our multivariate approach. Furthermore,
we would like to extend the set of building blocks and experiment
with encoding attributes in a non-symmetrical kernel. User interaction
needs to be developed further such that, for example, objects partici-
pating in an interesting pattern or anomaly can be easily identified and
traced. Also, cyclical movement patterns and density fields of other
attributes than spatial position are of interest. Lastly, we would like
to collaborate with domain experts from other fields, to check whether
trajectories of other objects can be analyzed using our method as well.
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[8] G. Câmara, D. Palomo, R. Cartaxo, M. Souza, and R. F. D. Oliveira.

Towards a generalized map algebra: principles and data types. In Pro-

ceedings of the Workshop Brasileiro de Geoinformática, 2005.
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