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Abstract—When solving constrained optimization problems by
evolutionary algorithms, the search algorithm plays a crucial
role. In general, we expect that the search algorithm has the
capability to balance not only diversity and convergence but also
constraints and objective function during the evolution. For this
purpose, this paper proposes a composite differential evolution
for constrained optimization, which includes three different trial
vector generation strategies with distinct advantages. In order
to strike a balance between diversity and convergence, one of
these three trial vector generation strategies is able to increase
diversity, and the other two exhibit the property of convergence.
In addition, to accomplish the tradeoff between constraints and
objective function, one of the two trial vector generation strategies
for convergence is guided by the individual with the least degree
of constraint violation in the population, and the other is guided
by the individual with the best objective function value in the
population. After producing offspring by the proposed composite
differential evolution, the feasibility rule and the ε constrained
method are combined elaborately for selection in this paper.
Moreover, a restart scheme is proposed to help the population
jump out of a local optimum in the infeasible region for
some extremely complicated constrained optimization problems.
By assembling the above techniques together, a constrained
composite differential evolution is proposed. The experiments on
two sets of benchmark test functions with various features, i.e., 24
test functions from IEEE CEC2006 and 18 test functions with
10 dimensions and 30 dimensions from IEEE CEC2010, have
demonstrated that the proposed method shows better or at least
competitive performance against other state-of-the-art methods.

Index Terms—constrained optimization, evolutionary algorith-
m, composite differential evolution, constraint-handling tech-
nique

I. INTRODUCTION

This work was supported in part by a General Research Fund (GRF) project
from Research Grant Council (RGC) of Hong Kong SAR (CityU: 11205615),
in part by the Project from the City University of Hong Kong under Grant
7004666, in part by the Innovation-Driven Plan in Central South University
under Grant 2018CX010, in part by the National Natural Science Foundation
of China under Grant 61673397, and in part by the Hunan Provincial Natural
Science Fund for Distinguished Young Scholars (Grant No. 2016JJ1018).
(Corresponding author: Yong Wang).

B.-C. Wang is with the Department of Systems Engineering and
Engineering Management, City University of Hong Kong, Hong Kong. (e-
mail: bingcwang3-c@my.cityu.edu.hk).

H.-X. Li is with the Department of Systems Engineering and Engineering
Management, City University of Hong Kong, Hong Kong, and also with the
State Key Laboratory of High Performance Complex Manufacturing, Central
South University, Changsha 410083, China. (e-mail: mehxli@cityu.edu.hk).

J.-P. Li is with the School of Information Science and Engineering, Central
South University, Changsha 410083, China. (e-mail: ljpcsu@csu.edu.cn).

Y. Wang is with the School of Information Science and Engineering,
Central South University, Changsha 410083, China, and also with the School
of Computer Science and Electronic Engineering, University of Essex,
Colchester CO4 3SQ, UK. (Email: ywang@csu.edu.cn).

C
ONSTRAINTS are everywhere. Many practical opti-

mization problems, such as vehicle configuration de-

sign [1], scheduling [2], [3], digital circuit structure design [4],

mixed-model two-sided assembly line [5], and antenna de-

sign [6], can be formulated as constrained optimization prob-

lems (COPs). Hence, how to solve COPs is of great practical

significance.

As a kind of population-based heuristic optimization al-

gorithms, evolutionary algorithms (EAs) [7] have attracted

increasing interest in solving COPs. As a result, a variety

of constrained EAs has been proposed [8], [9], [10]. A

constrained EA includes two main components: 1) search

algorithm and 2) constraint-handling technique. Search algo-

rithm plays the role of generating new candidate solutions,

and thus has a significant impact on the performance of

constrained EAs. During the past two decades, differential

evolution (DE) [11] has become one of the most popular

EA paradigms. DE has numerous attractive advantages. First

of all, its structure is simple and it can be implemented

easily in any programming language. In addition, it includes

few control parameters. Moreover, it has already achieved

top ranks in a lot of competitions at IEEE Congress on

Evolutionary Computation (IEEE CEC). Note that no other

single algorithm can accomplish this [12]. More importantly,

its search ability has been demonstrated in many real-world

applications [13], [14], [15].

Due to the above advantages, DE has been frequently

applied to solve COPs. Two primary ways of utilizing DE for

constrained optimization can be summarized as: 1) designing

a new DE, or 2) extending an existing DE originally designed

for global optimization to deal with constrained optimization.

In terms of case 2), many DE variants for global optimization

have been tailored to tackle COPs [16], [17], [18], [19].

As an outstanding global optimizer, composite differential

evolution (CoDE) [20] exhibits a few strengths, including

ease of implementation, powerful search ability, integrating

the strengths of different trial vector generation strategies, etc.

However, few current studies investigate CoDE for constrained

optimization.

Motivated by the above consideration, this paper seeks to

make use of the idea of CoDE to solve COPs. The underlying

idea behind CoDE is the utilization of three different trial

vector generation strategies of DE with a variety of character-

istics to address the key issue of global optimization, i.e., the

tradeoff between diversity and convergence. In order to extend

CoDE to tackle COPs, the tradeoff between constraints and

objective function should also be taken into account. To this

end, this paper proposes a constrained composite differential
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evolution, called C2oDE, to address these two issues.

Similar to CoDE, C2oDE also contains three different trial

vector generation strategies with distinct advantages. Specifi-

cally, one trial vector generation strategy for diversity and two

trial vector generation strategies for convergence are employed

to balance diversity and convergence. In addition, one of the

two trial vector generation strategies for convergence is guided

by the individual with the least degree of constraint violation

while the other is guided by the individual with the best

objective function value, with the aim of balancing constraints

and objective function. During the evolution, these three trial

vector generation strategies are used to generate three offspring

for each target vector. Afterward, a new comparison rule,

which combines the feasibility rule with the ε constrained

method, is proposed. Herein, the feasibility rule is applied

to preselect the best one from the three offspring as the

trial vector. Due to the fact that the feasibility rule prefers

constraints, the ε constrained method, which can incorporate

the information of objective function to a certain degree,

is used to compare each target vector with its trial vector.

Therefore, the new comparison rule can further promote the

balance between constraints and objective function. Moreover,

a restart scheme is designed to help the population jump out

of a local optimum in the infeasible region for some extremely

complex COPs.

By combining the strengthes of the above-mentioned tech-

niques, C2oDE achieves a reasonable tradeoff between diver-

sity and convergence as well as between constraints and objec-

tive function. The contributions of this paper are summarized

as follows:

• The principle of CoDE is successfully applied to design

a search algorithm for constrained optimization.

• The feasibility rule and the ε constrained method are inte-

grated in an effective way to select promising individuals

for the next population.

• A restart scheme is proposed to cope with COPs with

extremely complicated constraints.

• Systematic experiments have demonstrated that C2oDE

provides state-of-the-art performance on two benchmark

test suites.

The rest of this paper is organized as follows. Section II

introduces the preliminary knowledge. The related work on

constrained DE is reviewed in Section III. Section IV illus-

trates the proposed method in detail. Extensive experiments

and discussions are carried out in Section V. Section VI

concludes this paper.

II. PRELIMINARY KNOWLEDGE

A. Constrained Optimization Problems (COPs)

Without loss of generality, a COP [21], [22] can be de-

scribed as follows:

minimize f(~x), ~x = (x1, ..., xD) ∈ S, Li ≤ xi ≤ Ui

subject to : gj(~x) ≤ 0, j = 1, ..., l
hj(~x) = 0, j = l + 1, ...,m

where f(~x) is the objective function, ~x is the decision vector,

xi is the ith dimension of ~x, Li and Ui are the upper and lower

bounds of xi, respectively, D is the number of dimensions,

S =
∏D

i=1[Li, Ui] represents the decision space, gj(~x) is

the jth inequality constraint, l is the number of inequality

constraints, hj(~x) is the (j − l)th equality constraint, and

(m− l) is the number of equality constraints.

For COPs, the degree of constraint violation of the decision

vector ~x can be expressed as follows:

G(~x) =
m
∑

j=1

Gj(~x) (1)

where Gj(~x) is the degree of constraint violation on the jth

constraint and calculated as follows:

Gj(~x) =

{

max(0, gj(~x)), 1 ≤ j ≤ l

max(0, |hj(~x)| − δ) , l + 1 ≤ j ≤ m
(2)

In Equation (2), δ is a positive tolerance value to relax equality

constraints to a certain extent. ~x is called a feasible solution if

G(~x) = 0. The aim of solving COPs is to locate the optimum

in the feasible region.

B. Differential Evolution (DE)

The unique feature of DE is to make use of differential

vectors to generate offspring [12], [23]. In general, DE consists

of four stages, i.e., initialization, mutation, crossover, and

selection.

Firstly, an initial population including NP target vectors

(also called NP individuals) is randomly generated from the

decision space. In the mutation stage, a mutation operator

is implemented to generate a mutant vector for each target

vector ~xt
i (i ∈ {1, . . . , NP}) at generation t. Several mutation

operators have been proposed. As a representative, DE/rand/1

is described as follows:

~vti = ~xt
r1

+ F · (~xt
r2

− ~xt
r3
) (3)

where ~vti is the mutant vector of the ith target vector ~xt
i,

~xt
r1

, ~xt
r2

, and ~xt
r3

are three mutually distinct target vectors

randomly selected from the population, and F is the scaling

factor. Some other popular mutation operators are enumerated

as follows:

• DE/rand/2

~vti = ~xt
r1

+ F · (~xt
r2

− ~xt
r3
) + F · (~xt

r4
− ~xt

r5
) (4)

• DE/rand-to-best/1

~vti = ~xt
r1

+ F · (~xt
best − ~xt

r1
) + F · (~xt

r2
− ~xt

r3
) (5)

• DE/current-to-best/1

~vti = ~xt
i + F · (~xt

best − ~xt
i) + F · (~xt

r1
− ~xt

r2
) (6)

• DE/current-to-rand/1

~vti = ~xt
i + rand · (~xt

r1
− ~xt

i) + F · (~xt
r2

− ~xt
r3
) (7)

where ~xt
r1

, ~xt
r2

, ~xt
r3

, ~xt
r4

, and ~xt
r5

are five mutually distinct

target vectors randomly selected from the population, ~xt
best is

the best target vector in the current population, and rand is a

uniformly distributed random number between 0 and 1.

Different mutation operators have distinct characteristics.

DE/rand/1 is the most commonly used mutation operator in the
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Fig. 1. Framework of CoDE.

DE community [20], in which all individuals are selected in a

random manner for mutation. Due to the fact that an additional

differential vector is utilized, DE/rand/2/ can provide a better

perturbation than DE/rand/1. By making use of the information

of the best individual, both DE/rand-to-best/1 and DE/current-

to-best/1 can speed up the convergence. In DE/current-to-

rand/1, each target vector learns from a randomly selected

individual, thus promoting the diversity.

In the crossover stage, a crossover operator is conducted

on each pair of ~xt
i and ~vti to produce a trial vector ~ut

i. The

frequently used binomial crossover is introduced below:

ut
i,j =

{

vti,j , if randj < CR or j = jrand
xt
i,j , otherwise

(8)

where ut
i,j , xt

i,j , and vti,j are the jth dimension of ~ut
i, ~xt

i,

and ~vti , respectively, randj is a random number uniformly

generated between 0 and 1, CR is the crossover control

parameter, and jrand is a random integer uniformly generated

between 1 and D.

Finally, a selection operator is performed on ~xt
i and ~ut

i, and

the better one is selected as the target vector of the (t+ 1)th
generation.

~xt+1
i =

{

~ut
i, if f(~ut

i) ≤ f(~xt
i)

~xt
i, otherwise

(9)

In DE, a combination of a mutation operator and a crossover

operator is called a trial vector generation strategy.

Currently, DE has been successfully applied to solve opti-

mization problems in a considerable number of fields, such as

electrical and power systems [24], [25], manufacturing science

and operational research [26], [27], automotive design [28],

and controller design [13], [14], [15].

C. CoDE

CoDE is one of the top DE variants proposed by Wang et

al. [20] for global optimization. The main idea of CoDE is

to combine several effective trial vector generation strategies

with several appropriate DE parameter settings, which show

complementary characteristics, to improve DE’s performance.

In CoDE, a strategy pool comprised of three well-

studied trial vector generation strategies, i.e., DE/rand/1/bin,

DE/rand/2/bin, and DE/current-to-rand/1, is constructed in

advance. On the other hand, a parameter pool involving

three pairs of F and CR is constructed beforehand: [F=0.8;

CR=0.2], [F=1.0; CR=0.1], and [F=1.0; CR=0.9]. As depicted

in Fig. 1, three offspring, i.e., ~ut
i1

, ~ut
i2

, and ~ut
i3

, are generated

for each target vector ~xt
i via implementing the three trial

vector generation strategies in the strategy pool one by one.

Moreover, each trial vector generation strategy is associated

with a pair of F and CR randomly chosen from the parameter

pool. Subsequently, the best one among the three offspring

is preselected as the trial vector ~ut
i. Finally, the better one

between ~xt
i and ~ut

i is selected as the potential individual for

the next generation.

By utilizing distinct advantages of different trial vector gen-

eration strategies and parameter settings, CoDE accomplishes

outstanding performance. Owing to its simple structure, ease

of implementation, and effectiveness, CoDE is fully investi-

gated for constrained optimization in this paper.

D. Feasibility Rule

The feasibility rule proposed by Deb [29] is a well-

known constraint-handling technique. It compares pairwise

individuals as follows:

1) Between two infeasible individuals, the one with less

degree of constraint violation is preferred.

2) If one individual is feasible and the other is infeasible,

the feasible one is preferred.

3) Between two feasible individuals, the one with a smaller

objective function value is preferred.

E. ε Constrained Method

The ε constrained method proposed by Takahama and

Sakai [30], [31] is another representative constraint-handling

technique. When comparing two individuals, say ~xt
i and ~xt

j ,

~xt
i is better than ~xt

j if and only if the following conditions are

satisfied:






f(~xi) < f(~xj), if G(~xi) ≤ ε ∧G(~xj) ≤ ε

f(~xi) < f(~xj), if G(~xi) = G(~xj)
G(~xi) < G(~xj), otherwise

(10)

In Equation (10), ε declines as the generation increases:

ε =

{

ε0(1−
t
T
)cp, if t

T
≤ p

0, otherwise
(11)

cp = −
logε0 + λ

log(1− p)
(12)

where ε0 is the initial threshold and set to be the maximum

degree of constraint violation of the initial population, T is the

maximum generation number, λ is set to 6 in this paper, and p

controls the degree that the information of objective function

is exploited.

III. RELATED WORK

DE has become a very popular search engine for constrained

optimization and this paper focuses mainly on constrained DE

(CDE). In this section, we survey the development of CDE

primarily during the last five years and classify CDE into three

classes: 1) single-strategy CDE, 2) multi-strategy CDE, and 3)

CDE coupled with other operators. For a more comprehensive

review, the interested reader can refer to [32].
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A. Single-Strategy CDE

As suggested by the name, single-strategy CDE signifies

that CDE just includes one trial vector generation strategy.

For example, De Melo and Carosio [33] conducted an

empirical analysis on five classical trial vector generation

strategies which are separatively integrated with a simple

penalty function. According to the experimental results, they

claimed that classical DE with a simple penalty function is

still very competitive.

In [19], the famous global optimizer JADE [34] is combined

with an archiving-based adaptive tradeoff model [35] for

constrained optimization.

Gao et al. [36] suggested a dual population scheme in which

one population is responsible for tackling constraints and the

other for optimizing objective function. Moreover, a modified

DE/rand/1/bin is designed to share the information between

two populations.

Takahama and Sakaia [37] presented an efficient CDE.

Through utilizing kernel regression, this method has the

capability to find approximately optimal solutions with a

very small number of function evaluations. In addition, the ε

constrained method serves as the constraint-handling technique

and DE/rand/1 with exponential crossover operator serves as

the search algorithm. Yi et al. [38] presented an ε constrained

DE with pre-estimated comparison based on gradient-based

approximation for solving COPs.

Wang and Cai [39] proposed a dynamic hybrid framework

referred as DyHF for constrained optimization. In DyHF,

the global and local search models are dynamically imple-

mented according to the feasibility proportion of the current

population. In the same year, Wang and Cai [40] combined

multiobjective optimization with DE and proposed CMODE.

In CMODE, an infeasible solution replacement mechanism

based on multiobjective optimization is devised to guide the

population toward promising solutions and the feasible region

simultaneously. Note that both DyHF and CMODE exploit

Pareto dominance [41] to compare individuals.

Hamza et al. [42] integrated a DE with multi-constraint

consensus. In this method, the constraint consensus [43] aims

at moving the infeasible solutions along the parallel direction

to the violated constraint, thus making them feasible quickly.

The constraint consensus has also been used in [44].

In the self-adaptive interior penalty based DE [45], the

scaling factor F and crossover control parameter CR of

DE/rand/1/bin are adjusted according to the success rate. Fan

and Yan [46] also developed a self-adaptive penalty based DE.

However, the two DE control parameters, i.e., F and CR,

together with the penalty factor, are adapted in the manner of

coevolution by the alopex algorithm [47]. In [48], a fuzzy

rule based penalty function approach is designed. Li and

Zhang [49] showed that a modified penalty method, called

minimum penalty method, is effective to handle constraints.

It is necessary to emphasize that for [38], [39], [40], [42],

[45], [46], [48], and [49], DE/rand/1/bin is directly employed

as the search algorithm.

B. Multi-Strategy CDE

In contrast to the first class, a number of CDE involves

multiple trial vector generation strategies as pinpointed by the

name.

For instance, Dong et al. [17] combined CoDE [20] with

oracle penalty function to solve COPs. Herein, CoDE is treated

as the search algorithm in a straightforward way.

Long et al. [50] integrated three trial vector generation

strategies, i.e., DE/rand/1/bin, DE/best/1/bin, and DE/current-

to-rand/1 to evolve the population. In this method, the initial

population is divided into three sub-populations with equal

size, and then each sub-population is assigned with a trial

vector generation strategy to update the individuals.

De Melo and Carosio [51] provided a systematic way

to ensemble five trial vector generation strategies, in which

each trial vector generation strategy is applied to generate

a corresponding solution and winner-take-all paradigm is

utilized to select the best one as the trial vector.

By taking advantage of the concept of multi-population

evolution, a cultural DE is developed in [52], in which each

population is managed by its private cultural DE.

In [53], DE/rand/1/bin is employed in the early stage

for exploration while DE/rand/1 with exponential crossover

operator is adopted in the later stage for exploitation.

Jia et al. [35] divided the evolutionary process into three

situations, i.e., the infeasible situation, the semi-feasible situa-

tion, and the feasible situation. In different situations, different

constraint-handling techniques are developed: multiobjective

optimization for the infeasible situation and adaptive penalty

function for the semi-feasible situation.

In [8], Wang et al. made use of DE/rand-to-best/1/bin to in-

troduce information of objective function into the population.

Meanwhile, DE/current-to-rand/1 is used to cope with rotated

optimization problems.

Ghasemishabankareh et al. [54] exploited a popular DE

variant (i.e., SaDE [55]) in a coevolution fashion and an

improved augmented Lagrangian to deal with constraints.

Adaptive mechanisms are also used in multi-strategy

CDE [56], where each trial vector generation strategy is

adaptively selected according to its performance.

C. CDE Coupled with Other Operators

Recently, CDE coupled with other operators has also at-

tracted much attention.

Dong and Wang [57] proposed a memetic DE for con-

strained optimization, in which DE/rand/1/bin serves as the

global search operator while the simplex crossover [58] plays

the role of local search. To handle constraints, a weight sum

method which somehow likes penalty method is designed.

In [59], the mixed-integer hybridizing DE is combined with

the Nelder-Mead simplex method [60] to solve mixed-integer

constrained optimization. Additionally, the Lagrange method

and self-adaptive penalty function are incorporated to deal with

constraints.

Zhao et al. [61] integrated three algorithms, in which DE

is responsible for accelerating the convergence at the later

iteration process of the backtracking search algorithm [62],
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Fig. 2. Principle of the designed search algorithm.

the mutation operator of the breeder genetic algorithm [63]

is employed to improve the population diversity, and the

parameter-free penalty method is used to handle constraints.

Parouha and Das [64] hybridized DE with particle swarm

optimization for constrained optimization. In this method, the

optimized population is divided into three parts. Afterward, DE

is used to evolve two of them and particle swarm optimization

is used for the remaining one.

In [65], DE is combined with an improved teaching-

learning-based optimization algorithm to solve constrained

engineering design problems.

Tran et al. [66] hybridized DE with artificial bee colony for

solving resource-constrained project scheduling problems.

Our work in this paper falls in the second class, i.e.,

attempting to design a search algorithm with multiple trial

vector generation strategies to solve COPs.

IV. PROPOSED METHOD

A. Motivation

When applying EAs to solve COPs, two issues deserve

much attention in order to obtain outstanding performance:

1) the tradeoff between diversity and convergence, and 2)

the tradeoff between constraints and objective function. At

present, more and more DE variants originally proposed for

global optimization have been extended to search for the

optimal solutions of COPs, due to their excellent search

ability. Note, however, that in global optimization the essential

purpose of the search algorithm is to balance diversity and

convergence. As a consequence, the performance of most

current CDE is limited due to the fact that the tradeoff

between constraints and objective function has been neglected

unreasonably in the search algorithm.

In view of the above drawback, this paper aims to make

use of the idea of CoDE [20], a state-of-the-art DE variant,

to design a search algorithm for constrained optimization. As

pointed out previously, the search algorithm and constraint-

handling technique are two important aspects of a constrained

EA. Therefore, we also present a constraint-handling technique

to suit the characteristics of CoDE. Additionally, a restart

scheme is designed to tackle COPs with extremely complicat-

ed constraints. By assembling the above techniques together,

an alternative CDE, i.e., C2oDE, is proposed in this paper.

Next, the search algorithm, constraint-handling technique,

restart scheme, and framework of C2oDE are introduced one

by one.

Algorithm 1: Search Algorithm

1 /*DE/current-to-rand/1*/

2 Select ~xt
r1

, ~xt
r2

, and ~xt
r3

from the population;

3 Randomly choose a F value from Fpool;

4 ~vt
i1 = ~xt

i + rand · (~xt
r1

− ~xt
i) + F · (~xt

r2
− ~xt

r3
);

5 ~ut
i1 = ~vt

i1;

6 /*Modified DE/rand-to-best/1/bin*/

7 Select ~xt
Gbest (i.e., the individual with the least degree of constraint violation),

~xt
r1

, ~xt
r2

, ~xt
r3

, and ~xt
r4

from the population;

8 Randomly choose a F value from Fpool and a CR value from CRpool;

9 ~vt
i2 = ~xt

r1
+ F · (~xt

Gbest − ~xt
r2

) + F · (~xt
r3

− ~xt
r4

);

10 Generate ~ut
i2 by applying the binomial crossover on ~vt

i2 and ~xt
i ;

11 /*DE/current-to-best/1/bin*/

12 Select ~xt
fbest (i.e., the individual with the best objective function value), ~xt

r1
,

and ~xt
r2

from the population ;

13 Randomly choose a F value from Fpool and a CR value from CRpool;

14 ~vt
i3 = ~xt

i + F · (~xt
fbest − ~xt

i) + F · (~xt
r1

− ~xt
r2

);

15 Generate ~ut
i3 by applying the binomial crossover on ~vt

i3 and ~xt
i ;

B. Search Algorithm

An ideal search algorithm for constrained optimization

should not only reach a balance between diversity and con-

vergence, but also between constraints and objective function.

For this purpose, similar to CoDE, the designed search

algorithm depicted in Fig. 2 involves three different trial

vector generation strategies with distinct advantages. They

are DE/current-to-rand/1, modified DE/rand-to-best/1/bin, and

DE/current-to-best/1/bin.

As mentioned before, with respect to DE/current-to-rand/1

shown in Equation (7), each target vector ~xt
i learns the infor-

mation from a randomly selected individual ~xt
r1

; therefore,

this trial vector generation strategy is able to promote the

diversity of the population. In principle, DE/current-to-rand/1

can be decomposed into two steps: 1) implementing DE/rand/1

to generate the mutant vector ~vti for ~xt
i, and 2) applying the

arithmetic crossover on ~xt
i and ~vti as follows:

~ut
i = ~xt

i + rand · (~vti − ~xt
i) (13)

where rand is a uniformly distributed random number on

the interval [0,1]. As introduced in [20], [55], and [67], both

DE/rand/1 and the arithmetic crossover are independent on the

coordinate system and thus are rotation-invariant processes. As

a result, DE/current-to-rand/1 is also beneficial to solve rotated

optimization problems.

In terms of both the modified DE/rand-to-best/1/bin and

DE/current-to-best/1/bin, the information of the “best” indi-

vidual in the population is utilized to guide the search, thus

accelerating the convergence. As shown in Equation (14), the

modified DE/rand-to-best/1/bin is derived by replacing the

second ~xt
r1

in Equation (5) with a randomly selected individual

~xt
r2

from the population:

~vti = ~xt
r1

+ F · (~xt
best − ~xt

r2
) + F · (~xt

r3
− ~xt

r4
) (14)

The reason for this modification is explained as follows.

There are two trial vector generation strategies for conver-

gence and one trial vector generation strategy for diversity

in the search algorithm, which might result in more biases

toward convergence than diversity. By this modification, the

modified DE/rand-to-best/1/bin has the potential to produce

more disturbances than the original one. Thus, the tradeoff
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between diversity and convergence can be achieved in the

search algorithm.

In addition, the “best” individual in the modified DE/rand-

to-best/1/bin is chosen as the individual with the least de-

gree of constraint violation while the “best” individual in

DE/current-to-best/1/bin is selected as the individual with

the best objective function value, with the aim of balancing

constraints and objective function. Needless to say, the above

balance is very important. It is because if the search is biased

only toward constraints, the population might enter the feasible

region with a very fast speed but subsequently converge to

a local optimum in the feasible region due to the lack of

diversity. On the other hand, the search biased only toward

objective function would be very likely to get stuck in the

infeasible region and could not find any feasible solution in

the end. It should be noted that if multiple solutions have

the same least degree of constraint violation or the same best

objective function value, a random one is selected from them.

Overall, the proposed search algorithm provides an effective

way to achieve the two desired tradeoffs in constrained

optimization, the details of which are given in Algorithm 1.

As shown in Algorithm 1, three offspring will be generated

for each target vector. Moreover, similar to [8], we establish

two parameter pools Fpool and CRpool for the scaling factor

F and the crossover control parameter CR, respectively.

C. Constraint-Handling Technique

In constrained evolutionary optimization, the constraint-

handling technique is in charge of how to compare individuals.

According to the characteristics of CoDE, the constraint-

handling technique should include two phases as shown in

Fig. 1: 1) how to preselect the best one from the three

offspring as the trial vector, and 2) how to compare the target

vector with its trial vector. According to the no free lunch

theorem [68], [69] and [70], it is better to employ two different

constraint-handling techniques rather than just one in the above

two phases.

The feasibility rule is selected as one candidate owing to

its attractive advantages, i.e., no additional parameters and

the ability to rapidly motivate the population toward the

feasible region. However, it is necessary to note that the

feasibility rule prefers constraints to objective function and

is a relatively greedy constrain-handling technique. Thus, we

introduce the ε constrained method as the other candidate.

From Equation (10), it can be seen that the ε constrained

method also considers the information of objective function

when comparing two individuals.

Obviously, there are two options to arrange these two

constraint-handling techniques: 1) the ε constrained method

in the first phase and the feasibility rule in the second phase,

or 2) the feasibility rule in the first phase and the ε constrained

method in the second phase. As shown in Fig. 1, the constraint-

handling technique in the second phase determines which

solution will survive into the next generation. In the case

of option 1), the feasibility rule in the second phase might

discard an individual with promising objective function value

selected by the ε constrained method in the first phase. That is,
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Fig. 3. Framework of C2oDE.

option 1) would make the population bias toward constraints

ultimately. In the case of option 2), although some biases are

introduced by the feasibility rule in the first phase due to

its preference to constraints, the ε constrained method in the

second phase attempts to balance such biases by exploiting

the information of objective function. Moreover, the degree

that the information of objective function is exploited can be

controlled by the parameter p in Equation (12). In summary,

option 2) is adopted in this paper.

D. Restart Scheme

For some COPs with extremely complicated constraints,

the infeasible region is highly nonlinear and always exhibits

multimodal property. Under this condition, the population is

very easy to stagnate in the infeasible region. To address this

issue, a restart scheme is proposed in this paper.

Prior to applying the restart scheme, we need to judge

whether the population has already been trapped into a local

optimum in the infeasible region. It is intuitive that if the

population clusters in a very small search range of the

infeasible region, which means the difference/similarity among

infeasible individuals is very tiny/high, then we can claim

that premature convergence occurs in the infeasible region.

However, how to measure the similarity among infeasible

individuals should be studied in depth.

A possible way is to compute the average Euclidean distance

among all the individuals or the average standard deviation

of all the dimensions of the population. If such indicator is

less than a specified threshold, then one can conclude that the

similarity among all the individuals is very high. Nevertheless,

it is not trivial to set an appropriate threshold since different

problems possess different dimensions and search spaces.

Considering this, we use a unitary indicator, i.e., the degree

of constraint violation or objective function value, to measure

the similarity of the population. It is believed that this unitary

indicator is less sensitive to different problems.

Consequently, if the standard deviation of the degree of

constraint violation or the standard deviation of objective

function values of the population is less than a predefined

threshold µ and if the population is infeasible, the restart

scheme is triggered – all the individuals in the population

are regenerated from the decision space randomly without any

special skills.
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Algorithm 2: C2oDE

Input: NP : the population size

MaxFEs: the maximum number of function evaluations

Fpool: the pool of the scaling factor F
CRpool: the pool of the crossover control parameter CR

1 t=1; /*t denotes the generation number*/

2 Randomly generate an initial population Pt={~xt
1, ..., x

t
NP } from the decision

space S;

3 Evaluate the objective function values and the degree of constraint violation of

Pt;

4 FEs = NP ; /*FEs denotes the number of fitness evaluations*/

5 Tune the ε value of the ε constrained method according to Equation (11);

6 Pt+1 = ∅;

7 for i = 1 : NP do

8 Implement the search algorithm (Algorithm 1) to generate three offspring

~ut
i1, ~ut

i2, and ~ut
i3 for the target vector ~xt

i ;

9 Evaluate the objective function values and the degree of constraint violation

of ~ut
i1, ~ut

i2, and ~ut
i3;

10 Apply the feasibility rule to select the best one among ~ut
i1, ~ut

i2, and ~ut
i3 as

the trial vector ~ut
i for ~xt

i ;

11 Apply the ε constrained method to compare ~xt
i and ~ut

i , and store the better

one into Pt+1;

12 FEs = FEs + 3;

13 Implement the restart scheme;

14 t = t + 1;

15 Stopping Criterion: If FEs ≥ MaxFEs, then stop and output the best

individual in P
t, otherwise go to Step 5.

E. C2oDE

By integrating three important components, i.e., the search

algorithm, constraint-handling technique, and restart scheme,

C2oDE is obtained. The framework of C2oDE is given in

Fig. 3. C2oDE maintains a population consisting of NP target

vectors: Pt={~x
t
1, ~x

t
2, ..., ~x

t
NP }, their objective function val-

ues: f(~xt
1), f(~x

t
2), ..., f(~x

t
NP ), and their degree of constraint

violation: G(~xt
1), G(~xt

2), ..., G(~xt
NP ). As shown in Fig. 3,

at generation t, three trial vector generation strategies are

employed to generate three offspring (~ut
i1, ~ut

i2, and ~ut
i3) for

each target vector ~xt
i. Afterward, the feasibility rule is used to

preselect the best offspring as the trial vector ~ut
i. And then,

the ε constrained method is utilized to compare ~xt
i and ~ut

i.

Finally, the restart scheme is executed. The above procedure

is repeated until the maximum number of fitness evaluations

(MaxFES) is reached. The details of C2oDE are presented

in Algorithm 2. From Fig. 3 and Algorithm 2, it can be seen

that the implementation of C2oDE is simple.

Remark 1: Compared with other existing multi-strategy

CDE, the advantages of C2oDE are summarized from the

following three aspects:

• The search algorithm of C2oDE takes both the tradeoff

between constraints and objective function and the trade-

off between diversity and convergence into account.

• Two well-known constraint-handling techniques with

complementary properties are combined in an effective

way for selection.

• Its computational time complexity is the same with the

classical DE without any additional computation burden.

V. EXPERIMENTAL STUDY

A. Benchmark Test Functions and Parameter Settings

Two sets of benchmark test functions were selected to

assess the performance of C2oDE. The first set contains 24

test functions at IEEE CEC2006 [21], and the second set

TABLE I
MAXIMUM NUMBER OF FUNCTION EVALUATIONS MaxFEs AND

POPULATION SIZE NP

Test Functions MaxFEs NP

24 test functions from IEEE CEC2006 2.4E+05 50

18 test functions with 10D from IEEE CEC2010 2.0E+05 35

18 test functions with 30D from IEEE CEC2010 6.0E+05 60

contains 18 test functions with 10 dimensions (10D) and

30 dimensions (30D) at IEEE CEC2010 [22]. These 60 test

functions can systematically investigate the performance of a

constrained EA since they exhibit a variety of characteristics

such as different dimensions of decision space, different

types of objective function (i.e., linear, nonlinear, quadratic,

polynomial, and cubic), and different kinds of constraints

(i.e., linear/nonlinear and equality/inequality). All these test

functions are minimization problems and their details can be

found in [21] and [22].

For the experiments in this paper, the settings of MaxFEs

and the population size NP are given in Table I. Note that

a proper setting of NP is related to the benchmark test suite

as well as the dimension of a test function. In addition, 25

independent runs were performed for each test function and

the tolerance value δ for equality constraints was set to 10−4.

As the same with [8], Fpool = [0.6, 0.8, 1.0] and CRpool =

[0.1, 0.2, 1.0]. Meanwhile, p in the ε constrained method and

µ in the restart scheme were set to 0.5 and 10−8, respectively.

B. Experiments on IEEE CEC2006 Test Suite

Firstly, C2oDE was applied to solve 24 test functions from

IEEE CEC2006. The performance of C2oDE was compared

with that of four state-of-the-art CDE (i.e., CMODE [40],

FROFI [8], NDE [71], and DW [72]). From [21], we know that

it is extremely difficult to find a feasible solution for g22 and

there are no feasible solutions for g20. Thus, we excluded

these two functions and focused on the remaining 22 test

functions. The experimental results are given in Table II, where

“Mean OFV” and “Std Dev” denote the average and standard

deviation of the objective function values obtained over 25

independent runs, respectively. For each test function, a run

is successful if the following success condition is satisfied:

f(~xbest)-f(~x
∗) ≤ 0.0001, where ~x∗ is the best-known solution

and ~xbest is the best feasible solution provided by a method.

In Table II, “*” means that a method can satisfy the success

condition in all 25 runs for a test function.

As shown in Table II, among the five compared CDE,

CMODE, FROFI, and C2oDE successfully solve all the 22

test functions. NDE fails to consistently find the optimal

solution of g02. DW cannot attain the optimal solution

of g17 consistently. The experimental results demonstrate

that, overall, C2oDE presents better or similar performance

compared with the four competitors on the 22 test functions

from IEEE CEC2006.

C. Experiments on IEEE CEC2010 Test Suite

In this subsection, the performance of C2oDE was further

tested by making use of other 36 test functions from IEEE



8

TABLE II
EXPERIMENTAL RESULTS OF C2ODE AND OTHER FOUR SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 22 TEST FUNCTIONS FROM IEEE

CEC2006

IEEE CEC2006
CMODE

Mean OFV±Std Dev
FROFI

Mean OFV±Std Dev
NDE

Mean OFV±Std Dev
DW

Mean OFV±Std Dev
C2oDE

Mean OFV±Std Dev

g01 -1.5000E+01±7.62E-12* -1.5000E+01±0.00E+00* -1.50000E+01±0.00E+00* -1.5000E+01±5.02E-14* -1.5000E+01±0.00E+00*

g02 -8.0362E-01±2.28E-07* -8.0362E-01±1.02E-05* -8.01809E-01±5.10E-04 -8.0362E-01±9.99E-08* -8.0362E-01±3.82E-07*

g03 -1.0005E+00±9.78E-09* -1.0005E+00±1.25E-12* -1.0005E+00±0.00E+00* -1.0005E+00±4.27E-12* -1.0005E+00±4.67E-16*

g04 -3.0666E+04±2.34E-26* -3.066553E+04±3.71E-12* -3.066553E+04±0.00E+00* -3.066553E+04±0.00E+00* -3.066553E+04±3.71E-12*

g05 5.1265E+03±1.36E-26* 5.1264967E+03±5.68E-11* 5.1264967E+03±0.00E+00* 5.1264967E+03±4.22E-10* 5.1265E+03±2.78E-12*

g06 -6.9618E+03±1.32E-26* -6.961813E+03±1.37E-25* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00* -6.961813E+03±0.00E+00*

g07 2.4306E+01±6.41E-09* 2.430621E+01±5.32E-14* 2.430621E+01±1.35E-14* 2.430621E+01±5.28E-10* 2.4306E+01±5.01E-13*

g08 -9.5825E-02±1.32E-14* -9.5825E-02±3.58E-15* -9.5825E-02±0.00E+00* -9.5825E+02±2.78E-18* -9.5825E-02±1.42E-17*

g09 6.8063E+02±9.85E-14* 6.8063006E+02±2.73E-11* 6.8063006E+02±0.00E+00* 6.8063006E+02±2.23E-11* 6.8063006E+02±3.20E-13*

g10 7.0492480E+03±3.15E-09* 7.0492480E+03±8.32E-11* 7.0492480E+03±3.41E-09* 7.0492480E+03±3.26E-12* 7.0492480E+03±7.33E-09*

g11 7.499E-01±0.00E+00* 7.499E-01±8.54E-15* 7.499E-01±0.00E+00* 7.499E-01±1.13E-16* 7.499E-01±1.13E-16*

g12 -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00*

g13 5.3942E-02±1.25E-17* 5.3942E-02±2.68E-15* 5.3942E-02±0.00E+00* 5.3942E-02±6.03E-14* 5.3942E-02±1.69E-17*

g14 -4.776489E+01±3.79E-11* -4.776489E+01±5.12E-12* -4.776489E+01±5.14E-15* -4.776489E+01±3.47E-10* -4.776489E+01±2.24E-14*

g15 9.617150E+02±0.00E+00* 9.617150E+02±5.03E-10* 9.617150E+02±0.00E+00* 9.617150E+02±4.47E-13* 9.617150E+02±5.80E-13*

g16 -1.90516E+00±2.48E-16* -1.90516E+00±9.33E-15* -1.90510E+00±0.00E+00* -1.90516E+00±0.00E+00* -1.90516E+00±4.53E-16*

g17 8.853533E+03±2.06E-06* 8.853533E+03±4.32E-15* 8.853533E+03±0.00E+00* 8.880233E+03±3.63E+01 8.853533E+03±8.92E-06*

g18 -8.66025E-01±3.45E-11* -8.66025E-01±2.43E-08* -8.66025E-01±0.00E+00* -8.66025E-01±3.30E-07* -8.66025E-01±1.66E-07 *

g19 3.265559E+01±7.79E-06* 3.265559E+01±1.19E-09* 3.265559E+01±3.73E-05* 3.265559E+01±3.37E-07* 3.265559E+01±1.01E-06*

g21 1.937245E+02±8.32E-05* 1.937245E+02±3.86E-09* 1.937245E+02±6.26E-11* 1.937245E+02±3.66E-09* 1.937245E+02±2.87E-10*

g23 -4.000551E+02±1.10E-05* -4.000551E+02±1.61E-09* -4.000551E+02±3.45E-09* -4.000551E+02±6.49E-06* -4.000551E+02±5.24E-08*

g24 -5.50801E+00±1.23E-25* -5.50801E+00±1.36E-13* -5.50801E+00±0.00E+00* -5.50801E+00±0.00E+00* -5.50801E+00±1.35E-16*

* 22 22 21 21 22

TABLE III
EXPERIMENTAL RESULTS OF C2ODE AND OTHER FIVE SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D FROM

IEEE CEC2010

IEEE CEC2010 with 10D
CMODE

Mean OFV±Std Dev

FROFI

Mean OFV±Std Dev

ECHT-DE

Mean OFV±Std Dev

AIS-IRP

Mean OFV±Std Dev

Co-CLPSO

Mean OFV±Std Dev
C2oDE

Mean OFV±Std Dev

C01 -7.47E-01±2.35E-13 + -7.47E-01±1.35E-03 + -7.47E-01±1.40E-03+ -7.47E-01±1.30E-03+ -7.34E-01±1.78E-02− -7.44E-01±7.39E-03

C02 -1.48E+00±4.88E-01∇− -2.02E+00±1.41E-01 − -2.27E+00±6.70E-03 ≈ -2.27E+00±2.00E-03≈ -2.27E+00±1.46E-02≈ -2.26E+00±4.64E-02

C03 2.84E+00±4.23E+00 − 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 3.75E-09±4.81E-04− 3.55E-01±1.78E+00− 0.00E+00±0.00E+00

C04 -9.99E-04±2.90E-08 − -1.00E-05±0.00E+00 ≈ -1.00E-05±0.00E+00≈ -9.97E-06±4.28E-03− 9.34E-06±1.07E-06− -1.00E-05±0.00E+00

C05 -4.50E+02±1.61E+02∇− -4.84E+02±8.09E-07≈ -4.11E+02±7.63E+01− -4.80E+02±6.30E+00− -4.84E+02±1.98E-02≈ -4.84E+02±3.48E-13

C06 -5.78E+02±1.60E-02 − -5.79E+02±5.04E-04 ≈ -5.62E+02±4.51E+01− -5.80E+02±7.30E-08+ -5.79E+02±5.73E-04≈ -5.79E+02±6.17E-02

C07 6.69E-15±8.95E-15 − 0.00E+00±0.00E+00≈ 1.33E-01±7.28E-01− 1.17E-08±2.70E+00− 7.97E-01±1.63E+00− 0.00E+00±0.00E+00

C08 8.94E+00±3.98E+00 − 7.11E+00±4.79E+00≈ 6.16E+00±6.45E+00+ 4.09E+00±1.46E+00+ 6.09E-01±1.43E+00+ 7.30E+00±5.18E+00

C09 2.13E+06±1.04E+07∇− 2.50E+01±3.92E+01− 1.47E-01±8.05E-01+ 2.70E+01±7.50E+01− 1.99E+10±9.97E+10− 5.17E+00±5.19E+01

C10 1.35E+05±1.61E+06∇− 4.17E+01±8.69E-06− 1.71E+00±7.66E+00+ 1.62E+03±5.00E+02− 4.97E+10±2.49E+11− 3.67E+01±1.38E+01

C11 -7.7E-02±2.85E-02∇− -1.52E-03±5.63E-14≈ -4.40E-03±1.57E-02∇− -9.20E-04±8.23E-04− -1.61E-01±6.60E-01∇− -1.52E-03±4.89E-13

C12 -6.14E+02±2.74E+02∇− -3.84E+02±2.17E+02+ -1.72E+02±2.21E+02∇− -4.36E+02±6.02E+01+ -2.34E+00±2.43E+01− -7.63E+01±1.22E+02

C13 -5.79E+01±4.09E+00 − -6.84E+01±2.52E-09≈ -6.51E+01±2.38E+00− -6.79E+01±3.11E-01− -6.53E+01±2.58E+00− -6.84E+01±2.77E-14

C14 8.18E-09±1.64E-08 − 0.00E+00±0.00E+00≈ 7.02E+05±3.19E+06− 1.22E-04±2.90E-08− 3.19E-01±1.10E+00− 0.00E+00±0.00E+00

C15 1.20E+02±3.48E+02 − 3.09E+00±1.37E+00 + 2.34E+13±5.30E+13− 5.19E-09±1.10E-08+ 2.99E+00±3.31E+00+ 3.71E+00±1.65E-01

C16 6.82E-05±1.49E-04 − 1.19E-02±2.07E-02 − 3.93E-02±4.28E-02− 9.96E-18±6.27E-15− 5.99E-03±1.33E-02− 0.00E+00±0.00E+00

C17 4.37E-02±1.12E-01 − 7.83E-02±2.25E-01 − 1.12E-01±3.32E-01− 2.93E+00±2.29E+00− 3.80E-01±4.53E-01− 1.61E-02±8.04E-02

C18 5.75E+00±2.64E+02 − 5.23E-26±1.71E-25 − 0.00E+00±0.00E+00≈ 1.66E+00±1.27E+00− 2.32E-01±9.96E-01− 0.00E+00±0.00E+00

− 17 6 10 12 13 /

+ 1 3 4 5 2 /

≈ 0 9 4 1 3 /

TABLE IV
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR C2ODE
AND OTHER FIVE SELECTED METHODS ON 18 TEST FUNCTIONS WITH

10D FROM IEEE CEC2010

C2oDE VS R+ R− p-value α=0.1 α=0.05

CMODE 158.5 12.5 3.3000E-05 Yes Yes

FROFI 98.0 55.0 2.5616E-01 No No

ECHT-DE 123.5 29.5 5.5410E-03 Yes Yes

AIS-IRP 111.0 42.0 1.1649E-02 Yes Yes

Co-CLPSO 139.0 14.0 3.6000E-04 Yes Yes

CEC2010 (18 test functions with 10D and 18 test functions

with 30D), which are more complicated than the 24 test func-

tions from IEEE CEC2006. For the purpose of comparison,

five competitive methods were selected. Among them, three

are CDE (i.e., CMODE [40], FROFI [8], and ECHT-DE [73]),

and two are other constrained EAs (i.e., AIS-IRP [74] and Co-

CLPSO [75]).

Due to the fact that the optimal solutions of this test suite

cannot be known a priori, the average and standard deviation

of the objective function values derived from a method over

TABLE V
RANKING OF C2ODE AND OTHER FIVE SELECTED METHODS BY THE

FRIEDMAN’S TEST ON 18 TEST FUNCTIONS WITH 10D FROM IEEE
CEC2010

Algorithm Ranking

C2oDE 2.2778

FROFI 2.7222

AIS-IRP 3.2222

ECHT-DE 3.8889

Co-CLPSO 4.25

CMODE 4.6389

25 independent runs were recorded. Afterward, statistical tests

were implemented to compare C2oDE with each competitor.

Specifically, we applied the Wilcoxon’s rank sum test at a 0.05

significance level to compare C2oDE with each of CMODE

and FROFI. It is because the objective function values of

CMODE and FROFI in 25 runs can be available from our

previous study. In addition, only the average and standard

deviation of objective function values can be obtained from

the original papers of ECHT-DE, AIS-IRP and Co-CLPSO.
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TABLE VI
EXPERIMENTAL RESULTS OF C2ODE AND OTHER FIVE SELECTED METHODS OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM

IEEE CEC2010

IEEE CEC2010 with 30D
CMODE

Mean OFV±Std Dev

FROFI

Mean OFV±Std Dev

ECHT-DE

Mean OFV±Std Dev

AIS-IRP

Mean OFV±Std Dev

Co-CLPSO

Mean OFV±Std Dev
C2oDE

Mean OFV±Std Dev

C01 -8.21E-01±3.3E-03 ≈ -8.21E-01±2.36E-03≈ -8.00E-01±1.79E-02− -8.20E-01±3.25E-04≈ -7.16E-01±5.03E-02− -8.20E-01±2.52E-03

C02 9.75E-01±6.25E+01− -2.00E+00±4.35E-02− -1.99E+00±2.10E-01− -2.21E+00±2.84E-03≈ -2.20E+00±1.93E-01≈ -2.22E+00±5.20E-02

C03 2.18E+01±1.25E+01 ≈ 2.87E+01±6.24E-08≈ 9.89E+01±6.26E+01− 6.68E+01±4.26E+02− 3.51E+01±3.31E+01∇− 3.06E+01±2.12E+01

C04 6.72E-04±4.24E-04 − -3.33E-06±4.13E-10+ -1.03E-06±9.01E-03+ 1.98E-03±1.61E-03− 1.13E-01±5.63E-01∇− 5.46E-06±2.75E-05

C05 2.77E+02±2.03E+02∇− -4.81E+02±2.84E+00≈ -1.06E+02±1.67E+02− -4.36E+02±2.51E+01− -3.12E+02±8.83E+01− -4.82E+02±7.02E-01

C06 -4.96E+02±2.15E+02 ∇− -5.29E+02±5.71E-01− -1.38E+02±9.89E+01− -4.54E+02±4.79E+01− -2.45E+02±3.95E+01− -5.31E+02±8.97E-02

C07 5.24E-05±5.89E-05 − 0.00E+00±0.00E+00≈ 1.33E-01±7.28E-01− 1.07E+00±1.61E+00− 1.12E+00±1.83E+00− 0.00E+00±0.00E+00

C08 3.68E-01±2.62E-01 − 0.00E+00±0.00E+00≈ 3.36E+01±1.11E+02− 1.65E+00±6.41E-01− 4.75E+01±1.13E+02− 0.00E+00±0.00E+00

C09 1.72E+13±1.07E+13∇− 4.30E+01±3.27E+01− 4.24E+01±1.38E+02− 1.57E+00±1.96E+00≈ 1.48E+08±2.45E+08− 1.85E+00±4.90E+00

C10 1.60E+13±7.00E+12∇− 3.13E+01±8.22E-02≈ 5.34E+01±8.83E+01≈ 1.78E+01±1.88E+01+ 1.40E+09±5.84E+09− 3.13E+01±5.73E-06

C11 9.5E-03±9.7E-03∇− -3.92E-04±2.64E-06≈ 2.60E-03±6.00E-03∇− -1.58E-04±4.67E-05− 2.82E-02±3.21E-02∇− -3.92E-04±1.60E-06

C12 -3.46E+00±7.35E+02∇− -1.99E-01±1.42E-06≈ 2.51E+01±1.37E+02∇− 4.29E-06±4.52E-04− -1.99E-01±1.18E-04∇− -1.99E-01±3.09E-07

C13 -3.89E+01±2.17E+00 − -6.83E+01±1.95E-01≈ -6.46E+01±1.67E+00− -6.62E+01±2.27E-01− -6.08E+01±1.12E+00− -6.81E+01±6.25E-01

C14 9.31E+00±2.46E+00 − 9.80E-29±4.90E-28≈ 1.24E+05±6.77E+05− 8.68E-07±3.14E-07− 1.28E+00±1.90E+00− 0.00E+00±0.00E+00

C15 1.51E+13±8.26E+12 − 2.16E+01±8.03E-05≈ 1.94E+11±4.35E+11− 3.41E+01±3.82E+01− 5.11E+01±9.18E+01− 2.16E+01±2.92E-07

C16 6.30E-02±2.72E-02 − 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 8.21E-02±1.12E-01− 5.24E-16±4.67E-16− 0.00E+00±0.00E+00

C17 3.12E+02±2.75E+02 ∇− 1.59E-01±3.82E-01− 2.75E-01±3.78E-01− 3.61E+00±2.54E+00− 1.39E+00±4.26E+00− 6.58E-02±1.46E-01

C18 7.36E+03±3.12E+03 − 4.87E-01±1.25E+00− 0.00E+00±0.00E+00+ 4.02E+01±1.80E+01− 1.09E+01±3.72E+01− 4.47E-20±2.24E-19

− 16 5 14 14 17 /

+ 0 1 2 1 0 /

≈ 2 12 2 3 1 /

TABLE VII
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR C2ODE
AND OTHER FIVE SELECTED METHODS ON 18 TEST FUNCTIONS WITH

30D FROM IEEE CEC2010

C2oDE VS R+ R− p-value α=0.1 α=0.05

CMODE 169.5 1.5 1.91E-05 Yes Yes

FROFI 111.5 41.5 7.77E-02 Yes No

ECHT-DE 166.0 5.0 7.63E-05 Yes Yes

AIS-IRP 148.5 4.5 1.30E-04 Yes Yes

Co-CLPSO 153.0 0.0 1.53E-05 Yes Yes

As a result, the t-test at a 0.05 significance level was used

to compare C2oDE with each of ECHT-DE, AIS-IRP and

Co-CLPSO. When a method obtains the smallest average

objective function value on a test function, the corresponding

experimental results are highlighted in gray. Furthermore, the

multiple-problem Wilcoxon’s test and the Friedman’s test were

implemented via KEEL software [76]. Note that the post-hoc

test of the Friedman’s test is based on the Bonferroni-Dunn

method.

In terms of the 18 test functions with 10D from IEEE

CEC2010, Tables III, IV, and V summarize the average

and standard deviation of objective function values, results

of the multiple-problem Wilcoxon’s test, and results of the

Friedman’s test, respectively. In Table III, “∇” means that

feasible solutions cannot be found by the corresponding

method at the end of some runs. Additionally, “−”, “+” and

“≈” denote that the performance of the corresponding method

is worse than, better than, and similar to that of C2oDE,

respectively, according to the Wilcoxon’s rank sum test/t-

test. From Table III, it can be seen that C2oDE outperforms

CMODE, FROFI, ECHT-DE, AIS-IRP, and Co-CLPSO on 17,

six, 10, 12, and 13 test functions, respectively. In contrast,

CMODE, FROFI, ECHT-DE, AIS-IRP, and Co-CLPSO per-

form better than C2oDE on one, three, four, five, and two

test functions, respectively. According to the multiple-problem

Wilcoxon’s test in Table IV, the R+ values are bigger than the

R− values in all cases. Moreover, the significant differences

can be observed in four cases at α=0.05, i.e., C2oDE versus

CMODE, C2oDE versus ECHT-DE, C2oDE versus AIS-IRP,

TABLE VIII
RANKING OF C2ODE AND OTHER FIVE SELECTED METHODS BY THE

FRIEDMAN’S TEST ON 18 TEST FUNCTIONS WITH 30D FROM IEEE
CEC2010

Algorithm Ranking

C2oDE 1.6944

FROFI 2.1111

AIS-IRP 3.4444

ECHT-DE 4.1111

Co-CLPSO 4.7222

CMODE 4.9167

and C2oDE versus Co-CLPSO. As far as the Friedman’s test is

concerned, C2oDE achieves the first rank followed by FROFI.

Taking all these results into consideration, we can conclude

that C2oDE has an edge over the five competitors on the 18

test functions with 10D from IEEE CEC2010.

In terms of the 18 test functions with 30D from IEEE

CEC2010, Tables VI, VII, and VIII record the average and

standard deviation of objective function values, results of

the multiple-problem Wilcoxon’s test, and results of the

Friedman’s test, respectively. As shown in Table VI, C2oDE

surpasses CMODE, FROFI, ECHT-DE, AIS-ISP, and Co-

CLPSO on 16, five, 14, 14, and 17 test functions, respectively.

However, the performance of FROFI, ECHT-DE, and AIS-ISP

is better than that of C2oDE on only one, two, and one test

function, respectively. In particular, CMODE and Co-CLPSO

cannot beat C2oDE even on one test function. Regarding the

multiple-problem Wilcoxon’s test, C2oDE provides higher R+

values than R− values in all cases. Moreover, the p-values are

less than 0.1 in all cases and less than 0.05 in four cases, i.e.,

C2oDE versus CMODE, C2oDE versus ECHT-DE, C2oDE

versus AIS-IRP, and C2oDE versus Co-CLPSO. With respect

to the Friedman’s test, C2oDE ranks the first followed by

FROFI. In conclusion, C2oDE provides superior results on the

18 test functions with 30D from IEEE CEC2010. Moreover, it

seems that the advantage of C2oDE over the five competitors

increases as the number of dimension increases.

To visualize the experimental results, the convergence

graphs of C2oDE, FROFI, and CMODE were plotted on six
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(a) C02 with 10D (b) C14 with 10D (c) C18 with 10D

(d) C02 with 30D (e) C14 with 30D (f) C18 with 30D

Fig. 4. Convergence graphs of C2oDE, FROFI, and CMODE on six representative test functions from IEEE CEC2010.

TABLE IX
EXPERIMENTAL RESULTS OF C2ODE AND CODE OVER 25 INDEPENDENT

RUNS ON 36 TEST FUNCTIONS FROM IEEE CEC2010

Instance
10D 30D

C2oDE

Mean OFV±Std Dev

(feasible rate)

CoDE

Mean OFV±Std Dev

(feasible rate)

C2oDE

Mean OFV±Std Dev

(feasible rate)

CoDE

Mean OFV±Std Dev

(feasible rate)

C01 -7.44E-01±7.39E-03 -7.47E-01±1.88E-03 ≈ -8.20E-01±2.52E-03 -8.11E-01±1.69E-03 −

C02 -2.26E+00±4.64E-02 -1.34E+00±7.11E-01 − -2.22E+00±5.20E-02 9.21E-01±1.06E+00 −

C03 0.00E+00±0.00E+00 3.55E-01±1.78E+00 − 3.06E+01±2.12E+01 (0%) −

C04 -1.00E-05±0.00E+00 -6.74E-06±2.63E-06 − 5.46E-06±2.75E-05 (0%) −

C05 -4.84E+02±3.48E-13 (36%) − -4.82E+02±7.02E-01 (0%) −

C06 -5.79E+02±6.17E-02 (28%) − -5.31E+02±8.97E-02 (0%) −

C07 0.00E+00±0.00E+00 7.37E-25±2.41E-24 − 0.00E+00±0.00E+00 1.49E+01±2.51E+00 −

C08 7.30E+00±5.18E+00 1.71E+00±3.99E+00 + 0.00E+00±0.00E+00 6.56E+01±4.65E+01 −

C09 5.17E+00±5.19E+01 4.13E-24±5.38E-24 + 1.85E+00±4.90E+00 (24%) −

C10 3.67E+01±1.38E+01 2.17E+01±2.13E+01 + 3.13E+01±5.73E-06 (4%) −

C11 -1.52E-03±4.89E-13 -1.52E-03±1.39E-07 ≈ -3.92E-04±1.60E-06 (0%) −

C12 -7.63E+01±1.22E+02 (84%) − -1.99E-01±3.09E-07 (4%) −

C13 -6.84E+01±2.77E-14 -6.84E+01±1.83E-02≈ -6.81E+01±6.25E-01 -5.92E+01±8.71E-01 −

C14 0.00E+00±0.00E+00 5.09E-25±8.48E-25− 0.00E+00±0.00E+00 2.12E+01±1.93E+00 −

C15 3.71E+00±1.65E-01 2.06E+00±1.86E+00+ 2.16E+01±2.92E-07 4.39E+12±2.64E+12 −

C16 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 3.39E-05±2.09E-05 −

C17 1.61E-02±8.04E-02 1.17E-04±1.86E+00+ 6.58E-02±1.46E-01 (60%) −

C18 0.00E+00±0.00E+00 2.50E+01±1.10E+02− 4.47E-20±2.24E-19 1.19E+04±8.70E+03 −

− / 9 / 18

+ / 5 / 0

≈ / 4 / 0

representative test functions from IEEE CEC2010, i.e., C02

with 10D, C14 with 10D, C18 with 10D, C02 with 30D,

C14 with 30D, and C18 with 30D. Since the source codes

of ECHT-DE, AIS-IRP, and Co-CLPSO cannot be available,

their convergence graphs are not provided. Fig. 4 depicts the

evolution of the mean of the best feasible objective function

value. As shown in Fig. 4, C2oDE converges faster than

CMODE on all these six test functions. In addition, C2oDE

shows faster convergence speed than FROFI on all these six

test functions except for C14 with 30D. In terms of C14 with

30D, C2oDE and FROFI have similar convergence speed.

According to the above comprehensive experiments on

two benchmark test sets, C2oDE exhibits very competitive

performance when tackling COPs.

D. Comparing C2oDE with the Original CoDE for Con-

strained Optimization

The aim of this subsection is to ascertain whether the

original CoDE designed for global optimization can be directly

applied to solve COPs. To this end, the search algorithm of

C2oDE was replaced with the original CoDE. Subsequently,

the 36 test functions from IEEE CEC2010 were used to

produce the experimental results for CoDE. The average and

standard deviation of objective function values over 25 runs are

summarized in Table IX. It is noteworthy that the feasible rate,

i.e., percentage of runs where at least one feasible solution is

found, is recorded if an algorithm fails to consistently provide

feasible solutions over all 25 runs. In addition, the Wilcoxon’s

rank sum test at a 0.05 significance level was executed to

compare C2oDE with CoDE. The cell with the smaller average

objective function value is highlighted in gray.

As shown in Table IX, overall, CoDE performs better than,

similar to, and worse than C2oDE on five, four, and 27

test functions, respectively. More importantly, CoDE cannot

consistently find feasible solutions in 12 cases. Therefore, the

above comparison indicates that the original CoDE without

any modifications is not a good choice as the search algorithm

for constrained optimization, which verifies the motivation of

this paper.

E. Contribution of the Feasibility Rule and the ε Constrained

Method

In this paper, our constraint-handing technique includes two

phases. Moreover, the feasibility rule and the ε constrained

method are used for the first and second phases, respectively.

In order to identify their main contribution, two C2oDE vari-

ants, i.e., C2oDE-FR and C2oDE-ECM, were implemented.

To be specific, in C2oDE-FR, the feasibility rule was utilized

in both phases while in C2oDE-ECM, the ε constrained

method was utilized in both phases. The 18 test functions

with 30D from IEEE CEC2010 were employed to produce

the experimental results.

The average and standard deviation of objective function

values over 25 runs, and the feasible rate are summarized
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TABLE X
EXPERIMENTAL RESULTS OF C2ODE, C2ODE-FR, AND C2ODE-ECM

OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM

IEEE CEC2010

Instance
C2oDE

Mean OFV±Std Dev

(feasible rate)

C2oDE-FR

Mean OFV±Std Dev

(feasible rate)

C2oDE-ECM

Mean OFV±Std Dev

(feasible rate)

C01 -8.20E-01±2.52E-03 -8.16E-01±6.59E-03≈ -8.20E-01±2.14E-03≈

C02 -2.22E+00±5.20E-02 2.70E+00±9.16E-01− -2.23E+00±5.00E-02≈

C03 3.06E+01±2.12E+01 1.74E+13±5.10E+13 − 3.35E+01±2.14E+01≈

C04 5.46E-06±2.75E-05 -3.28E-06±1.57E-07 + 6.23E-06±1.35E-05≈

C05 -4.82E+02±7.02E-01 4.49E+02±1.18E+02− -4.81E+02±5.86E-01≈

C06 -5.31E+02±8.97E-02 4.88E+02±1.14E+02− -5.31E+02±1.02E-01≈

C07 0.00E+00±0.00E+00 5.43E-28±2.72E-27≈ 1.37E-27±6.86E-27≈

C08 0.00E+00±0.00E+00 3.21E-29±1.21E-28 ≈ 5.43E-28±2.72E-27 ≈

C09 1.85E+00±4.90E+00 8.07E+13±1.84E+13− 1.13E+01±2.13E+01 −

C10 3.13E+01±5.73E-06 8.01E+13±2.77E+13− 3.13E+01±3.94E-06≈

C11 -3.92E-04±1.60E-06 -3.92E-04±1.11E-09≈ (92%) −

C12 -1.99E-01±3.09E-07 (88%)− -1.99E-01±8.41E-08≈

C13 -6.81E+01±6.25E-01 -6.80E+01±7.95E-01≈ -6.83E+01±3.59E-01≈

C14 0.00E+00±0.00E+00 1.60E-01±7.97E-01− 0.00E+00±0.00E+00≈

C15 2.16E+01±2.92E-07 3.59E+14±2.01E+14− 2.18E+01±1.14E+00 −

C16 0.00E+00±0.00E+00 1.10E+00±3.83E-02− 0.00E+00±0.00E+00≈

C17 6.58E-02±1.46E-01 2.04E+03±7.35E+02− 2.30E-01±4.35E-01 −

C18 4.47E-20±2.24E-19 4.39E+04±2.07E+04− 5.60E-18±2.16E-17≈

− / 12 4

+ / 1 0

≈ / 5 14

in Table X. Besides, the Wilcoxon’s rank sum test at a 0.05

significance level was applied to compare C2oDE with each

of C2oDE-FR and C2oDE-ECM. If a method obtains the

smallest average objective function value on a test function,

the corresponding experimental results are highlighted in gray.

As shown in Table X, C2oDE outperforms C2oDE-FR and

C2oDE-ECM on 12 and four test functions, respectively. In

contrast, C2oDE-FR and C2oDE-ECM cannot perform better

than C2oDE on more than one test function.

Therefore, the experimental results reveal the contribution

of the feasibility rule and the ε constrained method for the

first and second phases, respectively.

F. Investigation on How to Select the Best Individual

In the search algorithm of C2oDE, the individual with the

least degree of constraint violation is chosen as the “best”

individual in the modified DE/rand-to-best/1/bin while the

individual with the best objective function value is selected as

the “best” individual in DE/current-to-best/1/bin. In this sub-

section, we empirically investigated how to select the “best”

individual. To this end, three C2oDE variants, i.e., C2oDE-

Exc, C2oDE-Obj, and C2oDE-Const, were implemented. In

C2oDE-Exc, the manners of selecting the “best” individu-

al in the modified DE/rand-to-best/1/bin and DE/current-to-

best/1/bin were exchanged. Specifically, the “best” individual

in the modified DE/rand-to-best/1/bin was selected in terms of

the objective function value while the “best” individual in the

DE/current-to-best/1/bin was selected according to the degree

of constraint violation. In C2oDE-Obj, both the modified

DE/rand-to-best/1/bin and DE/current-to-best/1/bin selected

the “best” individual according to the objective function value.

On the contrary, both of them selected the “best” individual in

terms of the degree of constraint violation in C2oDE-Const.

The 18 test functions with 30D from IEEE CEC2010 were

adopted for comparison.

The average and standard deviation of objective function

values over 25 runs, and the feasible rate are summarized

in Table XI. Also, the Wilcoxon’s rank sum test at a 0.05

TABLE XI
EXPERIMENTAL RESULTS OF C2ODE, C2ODE-EXC, C2ODE-OBJ, AND

C2ODE-CONST OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS

WITH 30D FROM IEEE CEC2010

Instance
C2oDE

Mean OFV±Std Dev

(feasible rate)

C2oDE-Exc

Mean OFV±Std Dev

(feasible rate)

C2oDE-Obj

Mean OFV±Std Dev

(feasible rate)

C2oDE-Const

Mean OFV±Std Dev

(feasible rate)

C01 -8.20E-01±2.52E-03 -8.20E-01±2.51E-03≈ -8.18E-01±3.65E-03≈ -8.20E-01±2.67E-03≈

C02 -2.22E+00±5.20E-02 -2.11E+00±8.73E-02≈ -2.20E+00±7.06E-02≈ -2.07E+00±1.07E-01−

C03 3.06E+01±2.12E+01 3.05E+01±6.49E+00 ≈ 3.67E+01±2.63E+01 ≈ 2.87E+01±1.57E-09 ≈

C04 5.46E-06±2.75E-05 2.32E-04±6.13E-04 − 2.89E-05±1.19E-05 − 1.79E-03±1.96E-03 −

C05 -4.82E+02±7.02E-01 -3.77E+02±2.10E+02− -4.82E+02±5.24E-01 ≈ -2.63E+02±2.60E+02 −

C06 -5.31E+02±8.97E-02 -5.30E+02±2.51E-02≈ -5.31E+02±2.50E-02≈ -5.29E+02±1.23E+00≈

C07 0.00E+00±0.00E+00 2.49E-24±3.75E-24− 0.00E+00±0.00E+00 ≈ 25.21E-20±1.85E-19−

C08 0.00E+00±0.00E+00 1.84E-20±5.22E-20 − 5.43E-28±2.72E-27 ≈ 2.46E-16±9.08E-16−

C09 1.85E+00±4.90E+00 1.42E+01±2.37E+01− 7.87E+00±1.88E+01− 2.65E+01±2.95E+01−

C10 3.13E+01±5.73E-06 3.13E+01±2.63E-06≈ 3.13E+01±3.82E-06≈ 3.13E+01±4.70E-06≈

C11 -3.92E-04±1.60E-06 -3.92E-04±1.11E-09≈ (84%) − -3.92E-04±2.35E-09≈

C12 -1.99E-01±3.09E-07 (80%)− -1.99E-01±1.81E-08 ≈ -1.99E-01±4.96E-06 ≈

C13 -6.81E+01±6.25E-01 -6.77E+01±5.30E-01≈ -6.82E+01±5.38E-01≈ -6.69E+01±7.63E-01≈

C14 0.00E+00±0.00E+00 9.74E-22±1.65E-21− 0.00E+00±0.00E+00 ≈ 8.38E-18±1.96E-17−

C15 2.16E+01±2.92E-07 2.16E+01±1.10E-07≈ 2.16E+01±2.79E-07≈ 2.16E+01±1.78E-07≈

C16 0.00E+00±0.00E+00 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈

C17 6.58E-02±1.46E-01 1.90E-01±4.62E-01− 4.62E-01±1.69E+00− (96%) −

C18 4.47E-20±2.24E-19 6.48E-20±2.28E-19≈ 6.72E-04±3.35E-03 − 4.99E-05±2.49E-04 −

− / 8 5 9

+ / 0 0 0

≈ / 10 13 9

TABLE XII
EXPERIMENTAL RESULTS OF C2ODE AND C2ODE-WOR OVER 25

INDEPENDENT RUNS ON THREE TEST FUNCTIONS WITH 10D (C11 WITH

10D, C12 WITH 10D, AND C17 WITH 10D) AND ONE TEST FUNCTION

WITH 30D (C12 WITH 30D) FROM IEEE CEC2010

Instance
C2oDE

Mean OFV±Std Dev
(feasible rate)

C2oDE-WoR
Mean OFV±Std Dev

(feasible rate)

C11 with 10D -1.52E-03±4.89E-13 (4%)

C12 with 10D -7.63E+01±1.22E+02 (0%)

C17 with 10D 1.61E-02±8.04E-02 (76%)

C12 with 30D -1.99E-01±3.09E-07 (92%)

significance level was used to compare C2oDE with each of

C2oDE-Exc, C2oDE-Obj, and C2oDE-Const. The experimen-

tal results with the smallest average objective function value

among the four compared methods are highlighted in gray on

each test function. As shown in Table XI, C2oDE surpasses

C2oDE-Exc, C2oDE-Obj, and C2oDE-Const on eight, five,

and nine test functions, respectively. However, C2oDE-Exc,

C2oDE-Obj, and C2oDE-Const cannot beat C2oDE on any

test function.

The above experimental results suggest that the manner of

selecting the “best” individual in C2oDE is reasonable.

G. Effectiveness of the Restart Scheme

In order to analyze the effectiveness of the proposed restart

scheme, a method called C2oDE-WoR was implemented

by removing the restart scheme from C2oDE. The 36 test

functions from IEEE CEC2010 were selected for experiments.

The average and standard deviation of objective function

values resulting from C2oDE-WoR were computed. The exper-

imental results of those test functions, for which C2oDE and

C2oDE-WoR do not have significant performance difference

based on the Wilcoxon’s rank sum test at a 0.05 significance

level, were omitted. As a result, Table XII provides the

experimental results for four test functions. In Table XII, the

feasible rate is also provided if a method cannot attain feasible

solutions consistently.

As shown in Table XII, the restart scheme plays a very

important role in the performance of C11 with 10D, C12 with
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10D, C17 with 10D, and C12 with 30D. Without the restart

scheme, C2oDE-WoR tends to converge to a local optimum in

the infeasible region. Especially, for C11 with 10D, C2oDE-

WoR can just find feasible solutions in one run, and for C12

with 10D, C2oDE-WoR is unable to find any feasible solution.

It is interesting to observe that C2oDE-WoR performs similarly

to C2oDE on C11 with 30D and C17 with 30D. This is not

difficult to understand because the relatively larger MaxFEs

and the population size were specified under this condition.

Therefore, C2oDE gets great benefit from the restart scheme

to jump out the infeasible region once the population searches

to stall.

Remark 2: We also presented the parameter sensitivity

analysis of C2oDE in Section S-I of the supplementary file.

VI. CONCLUSIONS

This paper extended an outstanding global optimizer, i.e.,

CoDE, to tackle COPs. Firstly, the principle of CoDE was

inspired to design a search algorithm, which includes three

complementary trial vector generation strategies. Among them,

one was responsible for diversity and the other two facilitated

convergence, thus achieving a tradeoff between diversity and

convergence. In order to balance constraints and objective

function, one of the two trial vector generation strategies

for convergence was guided by the individual with the least

degree of constraint violation and the other was guided by the

individual with the best objective function value. In addition, a

constraint-handling technique consisting of the feasibility rule

and the ε constrained method was developed. The constraint-

handling technique was coupled with the search algorithm in

a natural way. Furthermore, a restart scheme was designed

to deal with complex constraints. By the above procedure, a

new constrained DE, i.e., C2oDE, was proposed. Systematic

experiments on two benchmark test suites demonstrated that:

1) C2oDE showed better or at least competitive perfor-

mance against other state-of-the-art constrained EAs.

2) C2oDE had a great advantage over the original CoDE

for solving COPs.

3) The restart scheme was able to enhance C2oDE’s ability

to reach feasible solutions on some extremely difficult

COPs.

In the future, it is interesting to generalize C2oDE for

solving constrained multiobjective optimization problems

(CMOPs). When solving a CMOP, a set of solutions, which

is uniformly distributed on the feasible Pareto front, is

desired. Thus, diversity is a critical factor which affects the

performance of an algorithm for CMOPs. C2oDE already

contains a trial vector generation strategy for diversity,

i.e., DE/current-to-rand/1. In order to further enhance the

diversity for solving CMOPs, C2oDE can be improved

from the following two aspects: 1) since C2oDE is an open

framework, it is easy to add more trial vector generation

strategies for diversity to C2oDE, such as DE/rand/2/bin; and

2) the polynomial mutation [29], [77] and the improved BGA

mutation [9], [78], which have been proven to be effective

for promoting the diversity of population, can be incorporated

into C2oDE.

The Matlab source code of C2oDE can

be downloaded from Y. Wang’s homepage:

http://www.escience.cn/people/yongwang1/index.html
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TABLE S-I
EXPERIMENTAL RESULTS OF C2ODE WITH SEVEN VARYING p OVER 25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010

IEEE CEC2010 with 30D

p = 0.0

Mean OFV±Std Dev

(feasible rate)

p = 0.2

Mean OFV±Std Dev

(feasible rate)

p = 0.4

Mean OFV±Std Dev

(feasible rate)

p = 0.6

Mean OFV±Std Dev

(feasible rate)

p = 0.8

Mean OFV±Std Dev

(feasible rate)

p = 1.0

Mean OFV±Std Dev

(feasible rate)

p = 0.5 (C2oDE)

Mean OFV±Std Dev

(feasible rate)

C01 -8.16E-01±6.59E-03≈ -8.18E-01±4.20E-03≈ -8.19E-01±3.50E-03≈ -8.21E-01±2.65E-03≈ -8.12E-01±4.45E-02− -6.28E-01±2.32E-02− -8.20E-01±2.52E-03

C02 2.70E+00±9.16E-01− -1.51E+00±3.94E-01− -2.16E+00±1.30E-01≈ -2.24E+00±5.20E-02≈ -2.24E+00±3.33E-02≈ (40%)− -2.22E+00±5.20E-02

C03 1.74E+13±5.10E+13 − 2.87E+01±2.52E-09≈ 2.87E+01±3.18E-08≈ 3.85E+01±3.33E+01≈ 4.32E+01±5.10E+01≈ (8%) − 3.06E+01±2.12E+01

C04 -3.28E-06±1.57E-07 + -2.82E-06±1.42E-06+ -3.11E-06±4.52E-07+ 2.77E-05±1.16E-04 − 4.77E-04±2.76E-04 − (0%)− 5.46E-06±2.75E-05

C05 4.49E+02±1.18E+02− 1.39E+02±2.89E+02− -4.41E+02±8.62E+01− -4.82E+02±6.24E-01≈ -4.83E+02±3.75E-01≈ (44%)− -4.82E+02±7.02E-01

C06 4.88E+02±1.14E+02− -3.62E+02±2.18E+02− -5.30E+02±1.33E+00≈ -5.31E+02±1.20E-02≈ -5.31E+02±1.47E-02≈ (0%)− -5.31E+02±8.97E-02

C07 5.43E-28±2.72E-27≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 5.43E-28±2.72E-27≈ 0.00E+00±0.00E+00≈ 5.43E-28±2.72E-27≈ 0.00E+00±0.00E+00

C08 3.21E-29±1.21E-28 ≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 5.63E-28±2.81E-27≈ 0.00E+00±0.00E+00≈ 7.79E+01±3.42E+02− 0.00E+00±0.00E+00

C09 8.07E+13±1.84E+13− 1.26E+13±2.46E+13− 1.51E+01±2.32E+01− 3.33E+00±1.39E+01≈ 6.72E+00±1.96E+01≈ 3.00E+00±1.41E+01≈ 1.85E+00±4.90E+00

C10 8.01E+13±2.77E+13− 8.01E+13±1.73E+13− 3.13E+01±1.26E-05≈ 3.13E+01±9.34E-06≈ 3.13E+01±4.17E-05≈ 3.13E+01±4.28E-02≈ 3.13E+01±5.73E-06

C11 -3.92E-04±1.11E-09≈ -3.92E-04±8.82E-10≈ -3.92E-04±9.26E-10≈ -3.92E-04±1.73E-10≈ (0%) − (0%) − -3.92E-04±1.60E-06

C12 (88%)− (76%)− (88%)− (80%)− (92%) − (0%) − -1.99E-01±3.09E-07

C13 -6.80E+01±7.95E-01≈ -6.81E+01±8.66E-01≈ -6.84E+01±2.91E-01≈ -6.83E+01±4.10E-01≈ -6.80E+01±7.08E-01≈ (0%)− -6.81E+01±6.25E-01

C14 1.60E-01±7.97E-01− 3.19E-01±1.10E+00− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

C15 3.59E+14±2.01E+14− 5.86E+10±1.15E+11− 2.16E+01±4.44E-07≈ 2.16E+01±2.10E-07≈ 2.16E+01±3.16E-07≈ 2.16E+01±5.33E-07≈ 2.16E+01±2.92E-07

C16 1.10E+00±3.83E-02− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00

C17 2.04E+03±7.35E+02− 1.14E-01±2.95E-01− 1.38E-01±1.97E-01− 7.80E-02±1.49E-011≈ 5.26E-02±2.04E-01≈ (96%)− 6.58E-02±1.46E-01

C18 4.39E+04±2.07E+04− 2.56E-03±7.97E-03− 2.54E-29±7.97E-28≈ 4.32E-27±1.35E-26≈ 1.146E-24±4.00E-24≈ 1.14E-18±5.70E-18≈ 4.47E-20±2.24E-19

− 12 10 4 2 4 11 /

+ 1 1 1 0 0 0 /

≈ 5 7 13 16 14 7 /

S-I. PARAMETER SENSITIVITY ANALYSIS

The sensitivity of the parameter p of the ε constrained method was investigated in this subsection. As introduced in Section

II-E, p controls the extent that the information of objective function is utilized. Too much information of objective function

will cause slow convergence speed toward the feasible region while the search with too little information of objective function

may run the high risk of getting stuck in a local optimum. Hence, this parameter is vital to the tradeoff between constraints

and objective function.

We ran C2oDE with seven different values of p, i.e., p=0.0, p=0.2, p=0.4, p=0.6, p=0.8, p=1.0, and p=0.5 over 25 independent

runs on the 18 test functions with 30D from IEEE CEC2010. It is noteworthy that in the original C2oDE, p was equal to

0.5. The Wilcoxon’s rank sum test at a 0.05 significance level was utilized to compare p=0.5 with each of p=0.0, p=0.2,

p=0.4, p=0.6, p=0.8, and p=1.0. The average and standard deviation of objective function values are summarized in Table S-I.

Similarly, the feasible rate is given in the case that a method cannot achieve 100% feasible rate for a test function. Besides,

when a method obtains the smallest average objective function value on a test function, the corresponding experimental results

are highlighted in gray.

As shown in the Table S-I, p=0.5 outperforms p=0.0, p=0.2, p=0.4, p=0.6, p=0.8, and p=1.0 on 12, 10, four, two, four,

and 11 test functions, respectively. On the contrary, the six competitors cannot perform better than p=0.5 on more than one

test function. Moreover, they suffer from infeasible convergence in the infeasible region for different number of test functions.

Therefore, p=0.5 is recommended in this paper.
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