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Abstract: The purpose of this paper is three-fold. First, based on the asymp-

totic presentation of initial estimators, and model-independent parameters either

hidden in the model or combined with the initial estimators, a pro forma lin-

ear regression between the initial estimators and the parameters is defined in an

asymptotic sense. Then a weighted least squares estimation is constructed with-

in this framework. Second, systematic studies are conducted to examine when

both variance and bias reductions can be achieved simultaneously and when only

variance can be reduced. Third, a generic rule of constructing composite estima-

tion and unified theoretical properties are introduced. Some important examples

such as quantile regression, nonparametric kernel estimation, blockwise empirical

likelihood estimation are investigated in detail to explain the methodology and

theory. Simulations are conducted to examine its performance in finite sample

situations and a real dataset is analysed for illustration. The comparison with

existing competitors is also made.

Key words and phrases: Asymptotic representation, model-independent parame-

ter, weighted least squares, composite quantile regression, nonparametric regres-

sion.
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1. Introduction

1.1 Motivation and existing methodologies

In the area of point estimation, how to promote estimation efficien-

cy in various models remains an important issue. Recently, composition

methodologies have received much attention in the literature. The main

goal of these methodologies focuses on estimation variance reduction. Zou

and Yuan (2008) proposed a composite quantile linear regression to reduce

asymptotic variance. Kai, Li and Zou (2010) extended it to construct a

variance-reduced nonparametric regression estimation. For further devel-

opments of this methodology in semiparametric settings, see Kai, Li and

Zou (2011). To achieve variance-reduction as well as robustness, Bradic,

Fan and Wang (2011) introduced a penalized composite quasi-likelihood

for ultrahigh dimensional variable selection by combining several convex

loss functions, together with a weighted L1-penalty. As a common purpose

of these methodologies is to reduce estimation variance, we call them the

variance-reduction methodologies.

Two common approaches to construct composite estimator can be re-

viewed as follows. One is to directly define a weighted sum of initial esti-

mators as a composite estimator:

θ̃ =
m
∑

k=1

wkθ̂k, (1.1)

if a set of initial estimators θ̂k of the parameter of interest θ can be defined.

We call the estimation method of (1.1) the direct composition. The esti-

mation efficiency could be achieved by properly selecting weights under a

criterion such as minimization of the estimation variance, see, e.g. Koenker
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(1984) and Kai, Li and Zou (2010). More generally, minimizing user-chosen

risk such as mean squared error can be adopted for this purpose, see, e.g.

Lavancier and Rochet (2016) and the references therein. Another similar

methodology, called the aggregation estimation, mimics estimation weight-

ed averaging. The resulting composite estimator is approximately at least

as good as the best linear or convex combination of initial estimators, see

for instance Juditsky and Nemirovski (2000) and Rigollet and Tsybakov

(2007), and the references therein.

Note that when the risk is chosen to be mean squared error, the cor-

responding methodology could reduce either estimation bias or estimation

variance or both in a balanced manner. But when the biases of initial esti-

mators are of the same magnitude, this methodology often fails to reduce

bias unless the weights are chosen to be negative (see Rigollet and Tsy-

babov 2007) or some strong constraints are assumed on initial estimators

(see Sun, Gai and Lin, 2013).

The second method defines a composite estimator via minimizing a

weighted sum of objective functions, namely, the estimator can be expressed

as

θ̃ = argmin
θ∈Θ

m
∑

k=1

wkgk(Z, θ), (1.2)

provided that the predetermined objective functions gk(Z, θ), k = 1, · · · ,m,

contain the same parameter θ. We call it the objective function composi-

tion. For example, Zou and Yuan (2008) suggested this method for linear

quantile regression. In their method, different objective functions gk are

related to different quantiles τk, but the parameter θ of interest is free of τk.

Compared with the estimator of θ obtained via a single quantile τ , the com-
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posite estimator can reduce the estimation variance when the weights wk

are properly selected. However, this method cannot be extended to handle

many other problems. As an example, for nonparametric quantile regres-

sion, we have no chance to get a weighted sum of the objective functions in

(1.2) so that the parameter of interest is free of the quantiles τ . Actually,

for different αk (the 100τk% quantile of the model error), the parameters

in the objective functions gk(Z, θk) are θk = r(x) + αk. Although the non-

parametric regression function r(x) is what we want to estimate, it is not

easy to separate r(x) and αk (see Kai, Li and Zou, 2010). Sun, Gai and Lin

(2013) showed that the weights in the above composition asymptotically

play no role in estimation efficiency enhancement, and the bias cannot be

reduced to have a faster convergence rate to zero.

1.2 The contributions of the new method

To explore the new methodology, we observe a common feature in sev-

eral cases. That is, a model-independent parameter, say τ , plays a crucial

role in the procedure of constructing a set of initial estimators. This pa-

rameter is not of interest for us to estimate, whereas with different values

τk of the parameter τ , several initial estimators θ̂τk for the parameter θ of

interest can be defined. Then, the first question we need to answer is how

to find a model-independent parameter for this purpose. In some scenarios,

it is hidden in the model such as the quantile in quantile regression. But

in some other scenarios, particularly in semiparametric and nonparametric

setups, such a parameter does not exist in the model. But we will find

it from estimation procedure. We now list a few examples: the quantile

in the parametric and nonparametric quantile regression estimators (Zou
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and Yuan, 2008; Kai, Li and Zou, 2010); the bandwidth in the Nadaraya-

Watson kernel estimator (N-W estimator) and the local linear estimator

for nonparametric regression (Fan and Gijbels , 1996); the size of block in

the blockwise likelihood (Kitamura, 1997; Lin and Zhang, 2001). For more

details see the examples given in Section 3.

In this paper, we establish a unified relationship between the estima-

tion and the model-independent parameter under a generic framework. The

basic idea for establishing the relationship is to use the asymptotic repre-

sentation of the initial estimator. Specifically, we use (or define) the model-

independent parameter and the corresponding initial estimators to build a

pro forma linear regression model.

Then we construct a composite estimator that is a weighted least squares

estimator through the linear regression model. We call the method the

asymptotically weighted least squares (AWLS) and the resultant estimation

the AWLS estimation. The details will be presented in Sections 2 and 3.

From the above description, We will see in the later development that

this method has some desirable features.

1. (Generality) The AWLS can be constructed as long as an estimator

has an asymptotically linear representation with a known function of

model-independent parameter.

2. (Variance reduction) By selecting proper weights, the AWLS estima-

tion could be asymptotically more efficient than those obtained by

existing composite methods such as the composite maximum likeli-

hood and the composite least squares.

3. (Bias reduction) The AWLS can, in some cases, reduce estimation
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bias to accelerate the convergence rate. Nonparametric estimation is

an example.

4. (Generic rule) More importantly, the results explain how the compo-

sition depends on the structure of asymptotic representation. This

has never been explored in the literature before. From the construc-

tion, we can know in which cases the AWLS can achieve both bias and

variance reduction and in which cases, it can only reduce variance.

The remainder of this paper is organized as follows. In Section 2, a uni-

fied framework of the AWLS is introduced, and a generic rule of the AWLS

and its theoretical property are investigated. In Section 3, two typical mod-

els, the linear quantile regression and nonparametric regression, are used

as examples to illustrate the study described in the previous section, and

blockwise empirical likelihood is also briefly discussed. Numerical studies

including simulation study and real data analysis are given in Section 4 and

the proofs of the theorems are postponed to the Supplement.

2. A generic framework for AWLS

In this section, we first introduce a generic framework for the construction

of the AWLS estimation and then investigate its theoretical properties in

different scenarios. The verifiable examples will be given in the next section.

2.1 Models and estimations

Suppose that for givenm values τk, k = 1, · · · ,m, of a model-independent

parameter τ , m initial estimators θ̂τk of the parameter θ of interest depend

on τk respectively, and have the following asymptotic representation:

θ̂τk = θ + bnξn(τk) + ǫn(τk), k = 1, · · · ,m. (2.1)
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Here n is the sample size, the random variable ξn(τ) is a known function of

τ satisfying ξn(τ) = Op(1), bn is independent of τ and is an infinitesimal of

lower order than the order of ǫn(τ) in probability. The convergence rate of

θ̂τk − θ is then of the order Op(bn) for all k = 1, · · · ,m. The framework in

(2.1) sets a pro forma linear model with response variables θ̂τk , covariates τk

(or ξn(τk)), intercept θ and model error ǫn(τk). The intercept θ is actually

the parameter of interest.

This formula has four possible combinations: bn is either known or

unknown, and ξn(τ) is either free of θ or dependent on θ. When this artificial

covariate ξn in (2.1) is related to θ, we write it as ξn = ξn(τ, θ) for clarity.

An initial estimator θ̂ is then required to replace θ. In this case, denote

ξ̂n(τ) = ξn(τ, θ̂). We will see that the different combinations will lead to

different asymptotic properties for the corresponding AWLS estimator. In

the following, we will separately consider two different cases when bn is

known or unknown as the corresponding AWLS estimators have different

expressions. But for ξn, we only give the estimators for the case with ξn

depending on θ. When ξn is free of θ, the AWLS estimators have the same

forms if ξ̂n is replaced by ξn.

Case 1. (bn is unknown). An AWLS estimator θ̃ of θ can be constructed

as the first component of the following minimizers:









θ̃

b̃n









= argmin
θ,bn

1

m

m
∑

k=1

wk(θ̂τk − θ − bnξ̂n(τk))
2, (2.2)

where wk, k = 1, · · · ,m, are weights satisfying
∑m

k=1 wk = 1. The estimator

7

Statistica Sinica: Newly accepted Paper 

(accepted version subject to English editing)



has the following closed form:

θ̃ =
m
∑

k=1

wkθ̂τk − b̂n
¯̂
ξn, (2.3)

where
¯̂
ξn =

∑m
k=1 wkξ̂n(τk) and b̂n =

∑m
k=1

wk θ̂τk

(

ξ̂n(τk)− ¯̂
ξn

)

∑m
k=1

wk

(

ξ̂n(τk)− ¯̂
ξn

)

2 .

Case 2 (bn is known). By the weighted least squares, the AWLS esti-

mator can be simply expressed as

θ̃ =
m
∑

k=1

wk

(

θ̂τk − bnξ̂n(τk)
)

, (2.4)

where wk, k = 1, · · · ,m, are weights satisfying
∑m

k=1 wk = 1.

2.2 Properties

We now investigate the asymptotic properties of the AWLS estimators

defined in (2.3) and (2.4).

2.2.1 Convergence rate

First, consider the case where ξn(τ) is free of θ. We define regenerated

weights as

w̃k = wk − ξ̄n
wk(ξn(τk)− ξ̄n)

∑m
k=1 wk(ξn(τk)− ξ̄n)2

, k = 1, · · · ,m. (2.5)

They are free of the initial estimators and still satisfy
∑m

k=1 w̃k = 1, but

not necessary to be positive. We have the following theorem.

Theorem 2.1. When ξn(τ) is free of θ, the AWLS estimators θ̃ defined in

(2.3) and (2.4) satisfy

θ̃ − θ =
m
∑

k=1

w̃kǫn(τk),

where ǫn(τk) are the error terms in the asymptotic representation defined

in (2.1).
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Remark 2.1. The theorem gives an important conclusion: when ξn is free

of the parameter of interest, the convergence rate of the AWLS estimator

can be accelerated. More precisely, θ̃ − θ has the same convergence rate as

that of the error term ǫn(τ).

Now consider the case where ξn(τ) depends on θ. We need the following

condition:

(C1) There are constants c1 > 0 and c2 > 0, such that when n is large

enough, c1 ≤ |bnξ′n(τ, θ)| ≤ c2 and |bnξ′′n(τ, θ)| ≤ c2 in probability,

where ξ′n(τ, θ) and ξ′′n(τ, θ) are respectively the first- and second-order

partial derivatives of ξn(τ, θ) with respect to θ.

Condition (C1) is usually mild. For example, when the asymptotic repre-

sentation (2.1) is obtained by Bahadur representation or asymptotic linear

estimation (van der Vaart (1998) and Bickel (1998)), this condition holds

under some regularity conditions.

Theorem 2.2. When ξn(τ) depends on θ, and condition (C1) holds, then,

both the AWLS estimators θ̃ in (2.3) and (2.4) have the same convergence

rate in probability as that of the initial estimator θ̂τ .

Remark 2.2. Theorem 2.1, Theorem 2.2 and Theorem 2.3 given below

show that the asymptotic representation can determine whether an AWLS

estimator would have both bias and variance reduction. We may choose

the one with ξn being free of the parameter of interest if possible.

2.2.2 Variance reduction

Now we consider the variance reduction issue. When ξn(τ) is free of θ,

Theorem 2.1 shows that the AWLS estimator has a faster convergence rate
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than the initial estimator and thus is of course variance reduced, asymptot-

ically. Consider the case when ξn(τ) depends on θ. The following condition

is assumed:

(C2) There is a function g(τ) such that g(τ) 6= 0 and bnξ
′
n(τ) = g(τ) +

Op(bn).

From model (2.1) we can see that this condition is mild as well. Under

parametric situation, for instance, bn = 1/
√
n and g(τ) is the expectation

of bnξ
′
n(τ).

Let wg = (w1g(τ1), · · · , wmg(τm))
T and 1 be an m-dimensional column

vector with all components 1. We have the following theorem.

Theorem 2.3. If ξn(τ) depends on θ, and (C1) and (C2) hold, then, the

AWLS estimators θ̃ defined in (2.3) and (2.4) satisfy

θ̃ = −
m
∑

k=1

wkg(τk)(θ̂τk − θ) + bnOp(θ̂τk − θ) + op(θ̂τk − θ) + ǫn(τk),

where bnOp(θ̂τk − θ)+ op(θ̂τk − θ)+ ǫn(τk) is an infinitesimal of higher order

than the first term. Particularly, if θ is a scale parameter of interest, the

asymptotic variance of
√
n θ̃ defined in (2.3) and (2.4) can be expressed as

lim
n→∞

nV ar(θ̃) = wT
g limΣ

θ̂
wg,

where limΣ
θ̂
is the asymptotic covariance matrix of

√
n(θ̂τ1 , · · · , θ̂τm)T .

Moreover, the optimal weight vector (written as w∗) has the form: w∗ =

(1T (limΣ
θ̂
)−11)−1(limΣ

θ̂
)−11, and then, lim

n→∞
V ar(θ̃) ≤ lim

n→∞
V ar(θ̂τk) for

k = 1, · · · ,m.

For this theorem, we have the following remark.
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Remark 2.3. (a) Optimal weights. In Theorem 2.3, the optimal weight vec-

tor w∗ = (w∗
1, · · · , w∗

m)
T = (1T (limΣ

θ̂
)−11)−1(limΣ

θ̂
)−11 is related to the

unknown covariance matrix limΣ
θ̂
and vectorwg = (w1g(τ1), · · · , wmg(τm))

T .

They can be consistently estimated by classical methods such as jackknife

(see, e.g., Shao and Wu (1989)).

(b) Weight selection under multivariate θ case. For scalar θ, a closed

representation for the optimal weight vector w∗ has been derived in Theo-

rem 2.3. When θ is a vector, we can see that

lim
n→∞

Cov(θ̃) =
m
∑

j=1

m
∑

k=1

wjg(τj)wkg(τk) lim
n→∞

Cov(θ̂τj , θ̂τk).

In general, a closed solution for the optimal weight may not be attained, un-

less numerical approximation is adopted. However, if the initial estimators

satisfy

HCov(θ̂τk , θ̂τj)H → akjD, (2.6)

where H = diag(nδ1 , · · · , nδp) with 0 < δj ≤ 1/4, ajk are constants and D

is a positive definite matrix, and both are given or estimable, we can get

a closed solution. For example, the asymptotic covariances of the quantile

regression estimators satisfy this, see the results in Section 3. Under this

situation, by the same argument as used above, the closed representation

for the optimal weight vector is w∗ =
(

1TD−11
)−1

D−11. When (2.6) does

not hold, the following suboptimal weights can be considered. Note that

lim
n→∞

tr(Cov(θ̃)) =
m
∑

j=1

m
∑

k=1

wjg(τj)wkg(τk) lim
n→∞

tr(Cov(θ̂τj , θ̂τk)). A subopti-

mal weight vector can be obtained as w∗
S =

(

1TA−1
S 1

)−1
A−1

S 1, where

AS =
(

lim
n→∞

tr(Cov(θ̂τj , θ̂τk))
)p

j,k=1
.

2.3 Choices of m and values of τ
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For practical use, we must choose the number m of initial estimators

to be combined and the values of model-independent parameter τ . m can

be regarded as a tuning parameter, as its choice influences the performance

of the AWLS estimator. It seems challenging to have a criterion to select

an optimal m and values of τ , as they appear model-dependent. Thus, the

choices in the present paper are empirical. As was shown by Zou and Yuan

(2008), for the composite quantile regression, a number around 19 of m

would be practically useful. Thus, the equally spaced quantiles τk = k/(m+

1) amounts to using the 5%, 10%, · · · , 95% quantiles. In the simulations,

we see that the AWLS estimator for the composite quantile regression is

not sensitive to the choice of m and τk. If τ is the bandwidth h in the

kernel estimation we will discuss in the next section or the number of knots

in the B-spline estimation, the AWLS estimator is reasonably affected by

the choice of h because the bandwidth often affects the performance of

nonparametric estimation. However, we show that the AWLS is not very

sensitive to the number m when hk’s are around the optimal bandwidth. In

practical use, we may determine a data-driven bandwidth first and then take

values τk so that hk’s are around it. In the simulation studies in Section 4,

we will discuss this issue in more detail.

On the other hand, although we have a generic framework for the use

of composition, the model-independent parameter selection is in general a

challenge because it relies on the asymptotic presentation of initial estimator

and the relationship between such a parameter and initial estimators. It

deserves a further study to see whether there is a general way to select this

parameter even when the user has little knowledge about the asymptotics.
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3. Some examples

In this section, we use the linear quantile, nonparametric regressions and

blockwise empirical likelihood as examples to verify the methods and the-

ory proposed in the previous section. Some conclusions given below can

be thought of as direct corollaries of those proposed in Section 2. But

for validation and further discussion, we still give the detailed conclusions

and proofs. Moreover, for these specific models, some special results are

obtained.

3.1 AWLS for linear quantile regression

Consider the following linear regression model:

Y = βTX + e.

Suppose that the conditional 100τ% quantile of Y |X can be expressed as

the following linear regression form: βTX + ατ , where ατ is the 100τ%

quantile of Y − βTX. See Koenker (2005) for the details. The quantile

regression estimator of (ατ , β
T )T can be obtained as









α̂τ

β̂τ









= argmin
ατ ,β

n
∑

i=1

ρτ (Yi − ατ − βTXi),

where ρτ (t) = τt+ + (1 − τ)t− is the so-called check function with + and

− standing for positive and negative parts, respectively. Denote Fi(y) =

F (y|Xi) = P (Yi < y|Xi) and suppose that Fi(y), i = 1, · · · , n, are i.i.d.

with a common density function f(y) > 0 for all y. Under some regularity

conditions (see, e.g., Bahadur 1966; Kiefer 1967; Koenker 2005), for different

quantile positions τ = τk, k = 1, · · · ,m, we have the following Bahadur
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representation:

β̂τk = β +
1

fe(ατk)n
D−1

n

n
∑

i=1

Xi(τk − I(Yi ≤ ατk + βTXi)) + ǫn(τk)

=: β + bnξn(τk) + ǫn(τk), k = 1, · · · ,m, (3.1)

where Dn = 1
n

n
∑

i=1

XiX
T
i , fe(·) is the density function of error e = Y −βTX,

ǫn(τk), k = 1, · · · ,m, are of order Op(n
−3/4), and bn and ξn(τk) are defined

respectively as bn = 1/
√
n and

ξn(τk) =
1

fe(ατk)
√
n
D−1

n

n
∑

i=1

Xi(τk − I(Yi ≤ ατk + βTXi)).

It can be seen that ξn(τk) = Op(1), and bn is of order n−1/2, an infinitesimal

of lower order than that of ǫn(τk). We first suppose fe(·) is a given function.

Then, the asymptotical representation (3.1) can be included into the frame-

work of (2.1). When ατk and β in ξn(τk) are replaced by their consistent

estimators α̂τk and β̂τk respectively, from (2.4), the AWLS estimator of β

has the following form:

β̃ =
m
∑

k=1

wk

{

β̂τk −
1

fe(α̂τk)n
D−1

n

n
∑

i=1

Xi(τk − I(Yi ≤ α̂τk + β̂T
τk
Xi))

}

. (3.2)

By comparing the above with the Bahadur representation (3.1), we see that

besides the initial estimators β̂τk , the main term bnξn(τk) plays a key role

in constructing the AWLS estimator in (3.2). This term is mainly related

to the directional derivative of the objective function. This method can

be extended to the case when the density function fe(·) is unknown, but

can be consistently estimated. For ease of exposition, we only present the

result with a given fe(·) because by the Slutsky theorem, the asymptotic

distribution of β̃ is changeless when a consistent estimator of fe(·) is used.
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We now investigate the properties of the above AWLS estimator. To this

end, we assume the following conditions:

(C3) max
1≤i≤n

‖Xi‖ ≤ cnν for some constants c > 0 and 0 ≤ ν < 1/2, where

‖ · ‖ is Euclidean norm, and there exists a positive definite matrix D

such that D = lim
n→∞

Dn.

(C4) The density function fe(·) of the error e is continuously differentiable

and positive at ατk for k = 1, · · · ,m.

The following theorem states the asymptotic properties of the AWLS

estimator.

Theorem 3.1. Under the conditions (C3) and (C4), the AWLS estimator

(3.2) has the following asymptotic representation:

β̃ − β = D−1 1

n

n
∑

i=1

Xi

m
∑

k=1

wk

fe(ατk)
(τk − I(Yi ≤ ατk + βTXi)) +Op(n

−3/4).

Consequently,
√
n(β̃ − β)

D−→ N
(

0,wTA0wD−1
)

,

where w = (w1, · · · , wm)
T and A0 =

(

min(τk,τj)(1−max(τk,τj))

fe(ατk
)fe(ατj

)

)m

k,j=1
.

Actually, this theorem can be thought of as a corollary of Theorem

2.3 and Remark 2.3(b) because the initial estimator β̂τ satisfies (2.6) (see

Koenker, 2005). Moreover, from the theorem, we have the following find-

ings:

Remark 3.1. (1) When wk are particularly chosen as wk =
fe(ατk

)
∑m

k=1
fe(ατk

)
, the

limiting variance of the AWLS estimator (2.2) is identical to that in Zou

and Yuan (2008). In other words, we can have smaller limiting variance by
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choosing proper weights. The optimal weight vector is w∗ = min
1Tw=1

wTA0w.

Lagrange multipliers lead to the optimal weight vector and the optimal

limiting variance respectively in the following closed forms:

w∗ =
(

1TA−1
0 1

)−1
A−1

0 1, w∗TA0w
∗D−1 =

(

1TA−1
0 1

)−1
D−1.

This is the same as the optimal weight in Remark 2.3 (b). For univariate

linear regression, Koenker (1984) obtained the above estimation efficiency

by the direct composition. However, in their method, the computation

is not easy to implement as the optimal weights are the solutions of m

nonlinear equations.

(2) When the density function fe is unknown, the matrix A0 can be

estimated using a plug-in estimator f̂e of fe. For example, as shown by Sun

and Lin (2013), fe(·) can be consistently estimated by the kernel estimator

as f̂e(t) =
1
n

∑n
i=1 Kh(êi − t), where êi = Yi − β̂TXi with β̂ being a root-n

consistent estimator, Kh(t) =
1
h
K(t/h), K(·) is a kernel function and h is

a bandwidth. With the plug-in estimator f̂e, the property of weight vector

w∗ is not discussed here.

3.2 AWLS estimation for nonparametric regression

Consider the following nonparametric regression:

Y = r(X) + e,

where r(x) is a smooth nonparametric regression function for x ∈ [0, 1],

and the error term satisfies E(e|X) = 0 and V ar(e|X) = σ2. We now

consider the AWLS kernel estimator of r(x) for x ∈ (0, 1). As is known,

x ∈ (0, 1) is not a necessary constraint; that is, we use it only for simplicity

of presentation. In this section, we give two types of composite estimators
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such that we can explore how the estimation efficiency depends on the

structure of asymptotical representation.

Type-1: Expectation-based estimator. It is well known that under cer-

tain regularity conditions such as the second-order continuous and bounded

derivatives, a commonly used kernel estimator r̂τ (x) (e.g., N-W estimator)

of the regression function r(x) has the mean value:

E(r̂τ (x)) = r(x) +
1

2

[

r′′(x) + 2
r′(x)f ′

X(x)

fX(x)

]

µ2(K)h2 + o(h2), x ∈ (0, 1),(3.3)

where fX(x) is the density function of X, µ2(K) =
∫

u2K(u)du, K(x) is a

kernel function and h is a bandwidth satisfying h = τn−η for constants τ > 0

and 0 < η < 1. Then, for different values of τ = τk, k = 1, · · · ,m, we have

the following asymptotic representation: for x ∈ (0, 1) and k = 1, · · · ,m,

r̂τk(x) = r(x) +

[

1

2

{

r′′(x) + 2
r′(x)f ′

X(x)

fX(x)

}

µ2(K)n−2η

]

τ 2k + ǫn(τk)

=: r(x) + bnξn(τk) + ǫn(τk), (3.4)

where bn = 1
2

{

r′′(x) + 2
r′(x)f ′

X
(x)

fX(x)

}

µ2(K)n−2η and ξn(τk) = τ 2k . Under the

regularity condition in (C5) specified later, ǫn = r̂τ (x)−E(r̂τ (x))+o(n−2η).

It has a mean of order o(n−2η) and a variance of order O(n−(1−η)) and

thus is of order op(n
−2η), provided that 0 < η < 1/5. The asymptotic

representation (3.4) has the same framework as in (2.1). From (2.3), the

resulting AWLS estimator of a = r(x) is

r̃1(x) =
m
∑

k=1

wkr̂τk(x)− b̃n(x)τ 2, (3.5)

where τk are chosen for forming bandwidths hk = τkn
−η, k = 1, · · · ,m,

b̃n(x) =

m
∑

k=1

wk r̂τk (x)(τ
2

k
−τ2)

m
∑

k=1

wk(τ
2

k
−τ2)2

and τ 2 =
m
∑

k=1

wkτ
2
k . Unlike the quantile linear re-
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gression, we use the expectation representation (3.4) to construct the AWL-

S estimator (3.5) for nonparametric regression function. The construction

procedure is relatively simple.

Type-2: Bahadur representation-based estimator. We can also use the

Bahadur representation (see, e.g., Bhattacharya and Gangopadhyay 1990;

Chaudhuri 1991; Hong 2003) to construct a composite estimator. Under

certain regularity conditions, for different values of τ = τk, k = 1, · · · ,m,

the N-W estimators r̂τk(x) have the following Bahadur representation:

r̂τk(x) = r(x) +
1

vτk(x)n

n
∑

i=1

Kτk(Xi − x)(Yi − r(x)) + ǫn(τ)

=: r(x) + bnξn(τk) + ǫn(τk), x ∈ (0, 1), (3.6)

where bn = 1/
√
n, and ξn(τk) = 1

vτk (x)
√
n

∑n
i=1 Kτk(Xi − x)(Yi − r(x)),

vτ (x) =
∫

Kτ (u)fX(x + hu)du with Kτ (x) = h−1K(x/h) and h = τn−η.

In this presentation, bn is a constant and the covariates ξn(τk) are related

to the function of interest r(x), and again ǫn(τ) is of order Op(n
−3(1−η)/4).

Then, the asymptotic representation (3.6) has the same framework as in

(2.1). If the density fX(·) is known to lead to a given vτ , according to

the corresponding estimator (2.4), the resulting AWLS estimator can be

expressed as

r̃2(x) =
m
∑

k=1

wk

(

r̂τk(x)−
1

vτk(x)n

n
∑

i=1

Kτk(Xi − x)(Yi − r̂τk(x))
)

, x ∈ (0, 1).

(3.7)

If fX(·) is unknown, we can use its estimator instead and then get an

estimator of vτ .

We now investigate the asymptotic properties of the estimators in (3.5)

and (3.7). Consider respectively the following two regularity conditions:
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(C5) Kernel functionK(u) is symmetric with respect to u = 0, and satisfies
∫

K(u)du = 1,
∫

u2K(u)du < ∞ and
∫

u2K2(u)du < ∞. Regression

function r(x) defined above and density function fX(x) of X have the

second-order continuous and bounded derivatives and fX(x) > 0 for

all x.

(C6) Kernel functionK(u) is symmetric with respect to u = 0, and satisfies
∫

K(u)du = 1,
∫

u4K(u)du < ∞ and
∫

u2K2(u)du < ∞. Functions

r(x) and fX(x) have the fourth-order continuous and bounded deriva-

tives and fX(x) > 0 for all x.

Denote sk(w) = 1 − τ2(τ2
k
−τ2)

m
∑

k=1

wk(τ
2

k
−τ2)2

, gk = wk − τ 2
wk(τ

2

k
−τ2)

m
∑

k=1

wk(τ
2

k
−τ2)2

, A1(w) =

(

sk(w)sj(w)

τkτj

∫

K
(

u
τk

)

K
(

u
τj

)

du
)m

k,j=1
, A2 =

(

1
τkτj

∫

K
(

u
τk

)

K
(

u
τj

)

du
)m

k,j=1
.

The following theorem states some interesting results.

Theorem 3.2. Suppose hk = τkn
−η, k = 1, · · · ,m.

(1) Under Condition (C5) or (C6), if 0 < η < 1/5, then, accordingly there

is an cn(x) = o(n−2η) or cn(x) = n−4ηc(x)
m
∑

k=1

gkτ
4
k with c(x) being a known

function, the AWLS estimator r̃1(x) in (3.5) achieves the following asymp-

totic normality:

√
n1−η

(

r̃1(x)− r(x)− cn(x)
)

D−→ N
(

0,wTA1(w)w
σ2

fX(x)

)

, x ∈ (0, 1).

(2) For the AWLS estimator r̃2(x) in (3.7), under Condition (C6), if 1/5 ≤
η < 1, then

√
n1−η

(

r̃2(x)− r(x)− n−2ηd(x)
m
∑

k=1

wkτ
2
k

)

D−→ N
(

0,wTA2w
σ2

fX(x)

)

, x ∈ (0, 1),

where d(x) is a given function.

By the theorem, we present the following conclusions.

19

Statistica Sinica: Newly accepted Paper 

(accepted version subject to English editing)



Remark 3.2. (a) Rate-accelerated convergence. Note that under Condition

(C5) r̃1(x) achieves a rate-accelerated bias o(n−2η) rather than the classical

optimal rate O(n−2η) the N-W estimator achieves. Under Condition (C5),

when the optimal bandwidth h = O(n−1/9) is used, r̃1(x) has the conver-

gence rate of O(n−4/9) without higher-order smoothness conditions on the

regression and density functions, and more importantly, without higher-

order kernel. But the classical N-W estimator requires these to reach the

convergence rate of order O(n−4/9). This illustrates the conclusion about

the convergence rate acceleration in Theorem 2.1. We also show later that

by choosing proper weight, the AWLS estimator r̃1(x) can have smaller

variance as well. In contrast, r̃2(x) cannot have a faster convergence rate

while the estimation variance can be reduced.

(b) Weight selection. Invoking the same argument as in Remark 3.1,

the optimal weight vector for the second estimator r̃2(x) has a closed form:

w∗
2 =

(

1TA−1
2 1

)−1
A−1

2 1.

It is easy to compute when τk and kernel function K(·) are given. However,
the definition right before Theorem 3.2 tells that A1(w) of the expectation-

based estimator r̃1(x) depends on the weight vector w as well. Thus, the

corresponding optimal weight vector for r̃1(x) has no closed form. To handle

the problem, we approximate A1(w) by

A1 =

(

sksj
τkτj

∫

K
( u

τk

)

K
( u

τj

)

du

)m

k,j=1

,

where sk = 1 − τ2(τ2
k
−τ2)

m
∑

k=1

(τ2
k
−τ2)2

is free of the weight vector w. A “suboptimal”

weight vector for r̃1(x) is then

w∗
1 =

(

1TA−1
1 1

)−1
A−1

1 1.
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This “suboptimal weight”, w∗
1, can be easily computed. With the weights

w∗
1 and w∗

2,
√
n1−η r̃1(x) and

√
n1−η r̃2(x) have the limiting variances as

(

1TA−1
1 1

)−1 σ2

fX(x)
and

(

1TA−1
2 1

)−1 σ2

fX(x)
, (3.8)

respectively. The two limiting variances could be smaller than those of the

classical kernel estimators in certain scenarios. For example, when kernel

function is chosen as K(u) = e−
u2

2 /
√
2π, then

A1 =





sksj

(2π)1/2
√

τ 2k + τ 2j





m

k,j=1

, A2 =





1

(2π)1/2
√

τ 2k + τ 2j





m

k,j=1

.

It is known that with this kernel function, the limiting variance of the

N-W estimator is σ2

2
√
πfX(x)

, which is just a special case of the variances

in (3.8) with m = 1 and τ1 = 1. Thus, when min{τk; k = 1, · · · ,m} <

1 < max{τk; k = 1, · · · ,m} and the above weights are used, the limiting

variances of the AWLS estimators are smaller.

(c) Kernel selection. As mentioned above, the AWLS estimators can

have either accelerated convergence rate or smaller limiting variance, or

both. From the technical proof, we see that the estimators still have the

kernel estimation types. A natural concern is whether the classical N-W

estimator, or an adaption of the N-W estimator, could also enjoy this rate-

acceleration property through a delicate selection of kernel function. The

details of the proof tell that this is not possible and there is no such a

kernel function for any single N-W estimator. This is because the AWLS

estimators, particularly the expectation-based estimator r̃1(x) is not simply

a weighted sum of the initial estimator with positive weights summing to

one.

3.3 AWLS estimation for blockwise empirical likelihood
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The values of the model-independent parameters, quantile τ and band-

width h in the two examples above, can be continuously selected. In

this subsection, we use an example to see that the value of the model-

independent parameter can be discrete.

Blockwise likelihood (see, e.g., Varin, Reid and Firth 2011) is typically

used in models with dependent data. To reduce the data dependency, the

blockwise versions of the data are considered. Let Y1, · · · , Yn be dependent

observations from an unknown d-variate distribution f(y; θ), where the pa-

rameter vector θ ∈ Θ ⊂ Rp. The information about θ and f(y; θ) is available

in the form of an unbiased estimating function u(y; θ), i.e. E(u(Y ; θ0)) = 0,

where θ0 is the true value of θ and u(y; θ) is a given function vector:

Rd × Θ → Rr with r ≥ p. Let τ and l be integers satisfying τ = [n1−c1 ]

and l = [c2n
1−c1 ] for some constants 0 < c1 ≤ 1 and 0 < c2 ≤ 1, where

[x] stands for the integer part of x. Denote Bi = (Y(i−1)l+1, · · · , Y(i−1)l+τ )
T ,

i = 1, · · · , q, where q = [(n− τ)/l] + 1. It can be verified that q = O(nc1).

We can see that Bi are blocks of observations, τ is the window-width, and l

is the separation between the block starting points. The observation blocks

Bi are used to construct the following estimating function:

Ui(θ, τ) =
1

τ

τ
∑

k=1

u(Y(i−1)l+k; θ).

Then, the blockwise empirical Euclidean log-likelihood ratio for dependent

data is defined as

lτ (θ) = sup

{

−1

2

q
∑

i=1

(qpi − 1)2
∣

∣

∣

q
∑

i=1

pi = 1, pi ≥ 0,

q
∑

i=1

piUi(θ, τ) = 0

}

,

and the empirical Euclidean likelihood estimator of θ is defined as

θ̂τ = arg sup
θ∈Θ

lτ (θ).
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Here, we only consider the case of p = r = 1. It follows from the asymptotic

representation given in the proof of Theorem 2 of Lin and Zhang (2001) that

under certain regularity conditions, the following asymptotic representation

holds:

θ̂τk = θ + bnξn(τk) + op

( 1√
n

)

, k = 1, · · · ,m, (3.9)

where bn = 1√
n∆(θ)

, ξn(τk) =
√
n Ū(θ, τk), Ū(θ, τ) = 1

q

∑q
i=1 Ui(θ, τ) and

∆(θ) = E(u′(Y ; θ)) with u′(y; θ) being the derivative of u(y; θ) with respect

to θ. Clearly, the above is also within the framework of (2.1) with the

unknown bn and a parameter-dependent ξn(τk).

In this example, the positive integer τ is the model-independent param-

eter. Such a parameter determines the size of blocks of data points, and has

discrete values. From the asymptotic representation of the empirical likeli-

hood (3.9), we see that the blockwise empirical likelihood AWLS estimator

has the form as in (2.3), i.e.,

θ̃ =
m
∑

k=1

wkθ̂τk − b̂n
¯̂
ξn, (3.10)

where

b̂n =

∑m
k=1 wkθ̂τk

(√
n Ū(θ̂, τk)− ¯̂

ξn

)

∑m
k=1 wk

(√
n Ū(θ̂, τk)− ¯̂

ξn

)2 ,
¯̂
ξn =

m
∑

k=1

wk

√
n Ū(θ̂, τk)

with θ̂ being an initial estimator of θ.

The theoretical property and the optimal choice of weights can be de-

termined by Theorem 2.3 and Remark 2.3. The details are omitted here.

4. Numerical studies

4.1 Simulations
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In this subsection, we examine the finite sample behavior of the newly

proposed estimators using simulation studies. To obtain thorough com-

parisons, we comprehensively compare it with several competitors that

are based on the objective function composition, the direct composition

and the aggregation for some linear and nonparametric models. Mean

squared error (for parametric model) and mean integrated squared error

(for nonparametric model) are used to evaluate the performances of the

involved estimators. We also report the simulation results for estimation

bias. Moreover, we consider the asymptotic relative efficiency (RE) defined

as RE(β̂, β̃) = Var(β̂)/Var(β̃), where β̃ is the proposed AWLS estimator

and β̂ is a competitor. Here RE > 1 indicates better performance of the

AWLS estimator.

Experiment 1. Consider the linear regression of the form

Y = XTβ + ǫ,

where β = (3, 2,−1,−2)T , the covariate vector X = (X1, X2, X3, X4)
T

follows a multivariate normal distribution N(0,Σ) with Σij = 0.7|i−j| for

1 ≤ i, j ≤ 4, and the error term ǫ follows centralized Gamma(2, 2) so that

its expectation is zero.

We choose τ = 0.3 for the asymmetry distribution of the error term

to construct the common quantile regression (QR) estimator β̂τ defined in

Subsection 3, and select τk =
k
10

for k = 1, 2, · · · , 9 (m = 9) to construct the

AWLS estimator β̃ defined in (2.2). According to Zou and Yuan (2008), the

CQR estimator β̂ is defined by minimizing the following composite objective

function:

(β̂T
CQ, α̂τ1 , · · · , α̂τm)

T = arg min
β,ατ1

,··· ,ατm

n
∑

i=1

m
∑

k=1

ρτk(Yi − ατk − βTXi). (4.1)
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According to Bradic, Fan and Wang (2011), the WCQR estimator β̂WCQ

is determined by minimizing the composite objective function (4.1) with

weight wk to each ρτk(·).
To obtain a consistent estimator of the density function fe(ατk), we

first use the OLS method to estimate a preliminary estimator β̂OLS, and

then compute the residuals as ǫ̂i = Yi −XT
i β̂OLS. fe(ατk) is then estimated

by the nonparametric kernel density estimator through ǫ̂i, i = 1, 2, · · · , n.
Consequently, the optimal weights in the AWLS estimator β̃ defined in (2.2)

can be attained.

For the sample sizes n = 100, 200 and 400, the empirical bias, relative

efficiency (RE) and mean squared error (MSE) of the four estimators and

ordinary least square estimator (OLS) over 500 replications are reported in

Table 1. The boxplots with sample size n = 200 for the five estimators are

depicted in Figure 1. For the different sample sizes of n, the boxplot trends

are similar. Further, to check the influence of m on the AWLS estimator,

the quantile levels τ ’s are valued from 0.1 to 0.9 with three step lengths 0.2,

0.1 and 0.05. In these cases, the compositions are based respectively on

5, 9, and 17 initial estimators. The boxplots of the AWLS estimators with

different choices of m and the same sample size n = 200 are presented in

Figure 2. We also did simulations for the cases of n = 100 and n = 400. As

the results do not have significant difference, we do not report them here.

Table 1 and Figures 1 and 2 about here

Table 1, Figures 1 and 2 obviously suggest the following conclusions. (1)

The AWLS estimator β̃ and the WCQR estimator of Bradic, Fan and

Wang (2011) behave comparably better than the other competitors in the
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sense that the MSEs are significantly reduced, the boxplots are observably

thinned, and nearly all the relative efficiencies are greater than 1. (2) With-

out composition, the QR estimator is better than the OLS estimator due to

the skewness of the Gamma distribution. (3) In each subfigure of Figure 2,

the boxplots are almost identical, showing that the AWLS estimator for the

linear quantile regression model is robust to the choice of m.

It is worth pointing out that the simulation result depends the assump-

tion on the distribution of the error term. As shown by a referee, if the error

is Gaussian, the OLS is by far the best method in this setting because the

basic quantile regression estimators are much worse than OLS in this case.

In fact our AWLS aims at combining several quantile regression estimators,

and then it can be guaranteed that the AWLS estimator is better than any

single quantile regression estimator.

Experiment 2. Consider the dependent data Y1, Y2, · · · , Yn generated

from the model

Yi = Xiθ + εi,

where Xi ∼ N(0, 1), θ = 5, ε1 = ǫ1, εi = 0.7εi−1+ ǫi for i = 2, 3, · · · , n, and
ǫi, i = 1, · · · , n, are independent and identically distributed as N(0, 1). We

compare the finite sample behaviors of the blockwise composite likelihood

estimator and the AWLS estimator. To get blockwise data and composite

likelihood estimator, we take c = 1/3, τk = (k + 1)/10, k = 1, 2, · · · , 8.
The simulation results of bias, MSE and RE obtained by different sample

sizes and 500 repetitions are listed in Table 2. We can conclude that the

proposed AWLS estimator makes progresses in bias, MSE compared with

the original blockwise likelihood estimator.
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Experiment 3. For the nonparametric regression

Yi = sin(2πXi) + 2 exp(X2
i ) + ǫi, i = 1, · · · , n,

where Xi ∼ U(0, 1), the errors are chosen as ǫi ∼ N(0, 0.52), and the sample

sizes are designed as n = 100, 200 and 400, respectively. The common local

constant (LC) estimator (kernel estimator) is defined as

r̂h(x) =
n

∑

i=1

YiK(
Xi − x

h
)
/

n
∑

i=1

K(
Xi − x

h
). (4.2)

As a comparison, we here define a composite estimator using the composite

objective function method: for hk = τkn
−η, k = 1, · · · ,m, the composite

local constant (CLC) estimator is the minimizer of the form:

r̂(x) = argmin
a

n
∑

i=1

m
∑

k=1

(Yi − a)2K
(Xi − x

hk

)

.

This estimator has a closed representation:

r̂(x) =
n

∑

i=1

m
∑

k=1

YiK
(Xi − x

hk

)/

n
∑

i=1

m
∑

k=1

K
(Xi − x

hk

)

, (4.3)

which can be regarded as an indirect composition of the LC estimators

(4.2) with different bandwidths. Besides, an aggregation (AGG) estimator

(Bunea et al. (2004)) is also considered as a competitor, which has the form

r̂∗(x) =
m
∑

k=1

wkr̂hk
(x),

where wk satisfies
∑m

k=1 wk = 1. The optimal weights are obtained by L1-

type penalized least squares defined by the equation (2.1) in Bunea et al.

(2004). To compute the optimal weights wk’s, the sample is randomly split

into two independent subsamples with equal sample size, one (training sam-

ple) is used to construct estimators r̂hk
and the other (validation sample) is
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used to aggregate them. As the weights rely on the split, 10 random splits

of the sample are run and then the aggregation estimator is obtained by an

average through the equation (4.1) in Rigollet and Tsybakov (2007).

In this experiment, the Epanechnikov kernelK(u) = 0.75(1−u2)1|u|≤1 is

employed, and to facilitate computation of the optimal weights for AWLS

estimator, the integral in A1(w) is approximated using 40 grid intervals.

For the three estimation procedures, we use two-fold cross-validation to

select a basic bandwidth hop. In the LC estimation procedure, hop is used

to define the LC estimator. For the CLC, AGG and the AWLS with the

bandwidths of the form hk = τkhop, m values of τk s are chosen in the range

[0.5, 1.5] with the step length 0.5/l. We consider the case: l = 6 and thus,

m = 13 and the resulting bandwidths hk = 0.5(l+k)
l

hop for k = 0, · · · , 12.
The simulation results are reported in Table 3, in which the MISE is the

empirical mean integrated squared errors through 500 repetitions. The

quantile curves of the LC, CLC, AGG and AWLS estimators for r(x) are

also presented. Because the results are similar for different sample sizes

of n, only the quantile curves with n = 200 are depicted in Figure 3 to

save space. Each subfigure contains 0.05, 0.5 and 0.95 quantile curves of

the nonparametric estimator and the true curve of r(x). To evaluate the

influence ofm, the 0.05, 0.5 and 0.95 quantile curves of the AWLS estimator

with n = 200 and l = 3, 6 and 9 (i.e., m = 7, 13 and 19), and the true curve

of r(x) are presented in Figure 4. We can see that the MISEs of the AWLS

estimators are all about 0.0158.

Table 2 and Figures 3 and 4 about here

By comparing the MISEs and the quantile curves of the four estimators
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in Table 3 and Figures 3 and 4, we have the following findings: (1) the

AGG works well with small MISE compared with the LC and CLC, but

the AWLS is the best one among the four estimators; (2) the CLC estimator

r̂(x) given in (4.3) is the worst one among these estimators, implying that

the composite objective function is not always efficient and (3) the AWLS

is robust to the choice of m.

In summary, the AWLS estimation usually works well and is not very

sensitive to the choice of the number m of initial estimators. Based on the

limited simulations, a value m between 10 and 15 is recommended.

4.2. Real data analysis

In this subsection, the cholostyramine dataset in Efron and Tibshirani

(1993) is analysed by the LC and AWLS for illustration. The dataset

contains 164 individuals who took part in an experiment to see if the drug

cholestyramine can lower blood cholesterol levels. The men were supposed

to take six packets of cholestyramine per day, but many of them actually

took much less. The covariate denoted by X measures ‘Compliance’ as a

percentage of the intended dose actually taken. The response denoted by

Y is ‘Improvement’ and makes a decrease in total blood plasma cholesterol

level from the beginning to the end of the experiment.

The scatter plot of Y against X in Figure 5 shows that the men who

took more cholestyramine tend to exhibit bigger improvements in their c-

holesterol levels, but the model structure seems complex. Thus, a nonpara-

metric regression model Y = r(X) + ǫ is modelled for the relationship be-

tween ‘Improvement’ and ‘Compliance’ (see Efron and Tibshirani (1993)).

To estimate the function r(·), the local constant (LC) estimator defined in
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(4.2) and the AWLS estimator are employed. In the estimation procedures,

we use the Epanechnikov kernel K(u) = 0.75(1 − u2)1|u|≤1 to construct

nonparametric estimators and use the equal weights to build the AWLS es-

timator for simplicity. As did in Experiment 2, the two-fold cross-validation

is used to determine the basic bandwidth hop. In the LC estimation proce-

dure, the resulting bandwidth is h = 8. Then, as in Experiment 2, m = 13

is chosen. Figure 5 depicts the scatter plot of Compliance and Improvement

and the curves of the LC estimator and the AWLS estimator of r(x).

Figure 5 and Figure 6 about here

We have three observations: the drug cholestyramine can lower blood c-

holesterol levels in general, when Compliance varies in the intervals [20, 50]

and [70, 100], the blood cholesterol levels rapidly improve, and the curves

of the LC estimator and the AWLS estimator are close to each other.

Finally, we use the R2 values of the LC estimator and the AWL-

S estimator to further confirm the advantage of the new method, where

R2 = 1 − ∑n
j=1(Yj − Ŷj)

2/
∑n

j=1(Yj − Ȳ )2, Ŷj is the predicted value of Yj

and Ȳ is the sample mean of Yjs. We first use two-fold cross-validation to

generate the optimal bandwidth hop and then use the method suggested in

Experiment 2 to produce the bandwidths hk for composite estimation con-

struction. The 500 values of R2 for the two estimators are computed when

such a procedure is repeated 500 times. The boxplots of R2 values are given

in Figure 6. It shows that R2 values of the the AWLS estimators are larger

than those of the LC estimators in general. And the AWLS estimator is

more stable than LC estimator due to smaller variation. Thus, the AWLS

fits the data better.
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Supplementary Materials

Contain the brief description of the online supplementary materials.
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Figure 1. The boxplots of the estimators for β1, β2, β3 and β4 in Experiment 1.
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Table 1: Simulation results in Experiment 1

n β̂1 β̂2 β̂3 β̂4

100

AWLS
Bias −0.0016 0.0042 −0.0042 0.0015

MSE 0.0055 0.0085 0.0092 0.0058

WCQR

Bias −0.0007 0.0017 −0.0009 −0.0015

MSE 0.0053 0.0080 0.0090 0.0063

RE 0.9668 0.9457 0.9800 1.0751

CQR

Bias −0.0026 0.0021 −0.0010 −0.0008

MSE 0.0077 0.0108 0.0117 0.0080

RE 1.4032 1.2708 1.2756 1.3739

QR

Bias −0.0011 0.0036 0.0004 −0.0029

MSE 0.0077 0.0116 0.0129 0.0082

RE 1.4160 1.3636 1.4003 1.3922

OLS

Bias −0.0015 0.0037 −0.0037 0.0008

MSE 0.0098 0.0146 0.0153 0.0103

RE 1.7938 1.7138 1.6640 1.7635

200

AWLS
Bias −0.0008 -0.0002 0.0025 −0.0023

MSE 0.0026 0.0036 0.0037 0.0027

WCQR

Bias −0.0010 0.0010 0.0026 −0.0031

MSE 0.0026 0.0037 0.0039 0.0027

RE 1.0006 0.9955 1.0604 1.0281

CQR

Bias −0.0017 0.0024 0.0035 −0.0039

MSE 0.0036 0.0053 0.0053 0.0039

RE 1.4126 1.4591 1.4472 1.4630

QR

Bias −0.0010 −0.0001 0.0075 −0.0056

MSE 0.0037 0.0057 0.0060 0.0043

RE 1.4430 1.5693 1.6230 1.6188

OLS

Bias −0.0015 0.0043 0.0009 −0.0000

MSE 0.0049 0.0075 0.0073 0.0050

RE 1.9276 2.0504 1.9909 1.8754

400

AWLS
Bias −0.0023 0.0024 0.0000 −0.0015

MSE 0.0011 0.0016 0.0017 0.0012

WCQR

Bias −0.0014 0.0021 −0.0008 −0.0006

MSE 0.0011 0.0017 0.0016 0.0012

RE 1.0008 1.0129 0.9748 0.9976

CQR

Bias −0.0009 0.0033 −0.0021 −0.0002

MSE 0.0019 0.0029 0.0027 0.0018

RE 1.5535 1.5467 1.4763 1.5712

QR

Bias −0.0011 0.0030 −0.0007 −0.0012

MSE 0.0019 0.0029 0.0027 0.0018

RE 1.7319 1.7638 1.6553 1.5533

OLS

Bias 0.0005 0.0021 −0.0013 −0.0009

MSE 0.0026 0.0035 0.0034 0.0026

RE 2.3196 2.1202 2.0401 2.2269
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Table 2: Simulation results in Experiment 2

n Bias MSE RE

100

AWLS -0.0004 0.0228 -

BCEL 0.0006 0.0254 1.1157

200

AWLS -0.0012 0.0091 -

BCEL 0.0011 0.0098 1.0764

400

AWLS -0.0007 0.0057 -

BCEL -0.0021 0.0060 1.0564

Table 3: MISE for nonparametric estimators in Experiment 2

n=100 n=200 n=400

LC 0.0397 0.0251 0.0114

CLC 0.0555 0.0475 0.0453

AGG 0.0287 0.0192 0.0121

AWLS 0.0264 0.0157 0.0109
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Figure 2. The boxplots of the AWLS estimators for β1, β2, β3 and β4 with different m in Experiment 1.
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Figure 3. Quantiles curves for the LC, CLC , AGG and AWLS estimators in Experiment 2.
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Figure 4. Quantiles curves for the AWLS estimators with different values of m in Experiment 2.
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