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Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/

superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled

with spin-waves in FI are calculated by combining Maxwell and Landau–Lifshitz–Gilbert equations. In the S/FI/S

junction, it is found that the current–voltage (I–V ) characteristic shows two resonant peaks for each mode of the EM

field. Voltages at the resonant peaks are obtained as a function of the normal modes of EM field, which indicates a

composite excitation of the EM field and spin-waves in the S/FI/S junction. We also examine another type of junction,

in which a nonmagnetic insulator (I) is located at one of interfaces between S and FI. In such a S/I/FI/S junction, three

resonant peaks appear in the I–V curve, since the Josephson-phase couples to the EM field in the I layer.
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1. Introduction

The dc Josephson effect is characterized by the zero-

voltage current through a thin insulating barrier sandwiched

by two superconductors.1) This effect is a macroscopic

quantum phenomenon involving phase coherence between

two superconductors. When a finite voltage (V )-drop appears

in the junction, the difference in the phase of super-

conducting order parameter, i.e., Josephson-phase (�),

oscillates with time according to @�=@t ¼ ð2e=h� ÞV , and the

alternating current with frequency ð2e=h� ÞV flows in the

junction. This ac Josephson effect is derived by the gauge

invariance including �. The electromagnetic response

dominated by � shows a resonant behavior in the junction.

When a dc magnetic field and the dc voltage are applied to

the junction, the electromagnetic (EM) field is generated by

spatially modulated ac Josephson current. In this case, the

current–voltage (I–V ) curve exhibits resonant peaks due to

the resonance between the ac Josephson current and the EM

field generated by the spatially modulated ac Josephson

current itself. This is called Fiske resonance.2–6)

In recent years, a ferromagnetic Josephson junction

composed of ferromagnetic metal (F) and superconductors

(S’s), i.e., S/F/S junction, has received much attention.7–10)

One of the interesting effects is the formation of � state

arising from the Zeeman splitting in F. In addition, the

interaction between Cooper pairs and spin waves in F is also

of importance in the transport properties in the S/F/S

junction.11–19) In a small junction, where the junction width

is smaller than the Josephson penetration depth, the spin-

wave excitation induced by the ac Josephson effect is

observed.18) In the recent experiment in a S/F/S junction

including a nonmagnetic insulator (I) in one of interfaces

between S and F, it has been reported that the Fiske

resonance has multiple structures that must be associated

with the spin-wave excitation.20) Volkov et al. have

theoretically studied collective excitations in such a junction

and reported an additional structure in the Fiske resonance

induced by spin-waves.19) In their theory, a nonmagnetic

insulator is crucial to obtain the Fiske resonance coupled

with spin-waves. On the other hand, another type of

ferromagnetic Josephson junction composed of ferromag-

netic insulator (FI) and two S’s, i.e., S/FI/S junction, is also

expected to show the similar multiple structures in the Fiske

resonance. It has been reported that the dissipation effect

in the S/FI/S junction is smaller than that in the S/F/S

junction.21,22) Such a small dissipation in the S/FI/S junction

is due to the small probability of quasi-particle excitation

in the FI.21,22) The damping of spin-waves induced by the

similar mechanism is also very small in the FI compared

to the case in F.23,24) Therefore, the coupling between

Josephson-phase and spin-waves can be observed more

clearly in the S/FI/S junction.

In this paper, we theoretically study a composite

excitation of the Josephson-phase and spin-waves in the

S/FI/S and S/I/FI/S junctions. First, we calculate the

dynamics of Josephson-phase coupled with spin waves by

using Maxwell and Landau–Lifshitz–Gilbert (LLG) equa-

tions. Second, we derive the dc Josephson current induced

by the Fiske resonance. In the S/FI/S junction, two resonant

peaks appear in a I–V curve for each mode of the EM field.

These two resonant peaks may be associated with the direct

coupling between spin-waves and the EM field inside the

junction. We also discuss the Fiske resonance in the S/I/

FI/S junction. The non-magnetic high resistive layer is

sometimes important, since the magnetic dead layer exist in

the ferromagnetic insulator near the S/FI interface. Our

results clearly show the difference between S/FI/S and S/I/

FI/S junctions in the dispersion relations of the Fiske

resonance. In such a S/I/FI/S junction, we show that three

resonant peaks appear in the I–V curve for each mode of the

EM field.

The rest of this paper is organized as follows. In x2, by

combining the Maxwell and LLG equations in a S/FI/S

junction, we formulate the dc Josephson current induced

by the Fiske resonance. In x3, the Fiske resonance is

discussed in S/FI/S and S/I/FI/S junctions. Summary is

given in x4.
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2. Formulation of Fiske Resonance in S/FI/S Junction

The system considered is a Josephson junction with a FI

sandwiched by two s-wave superconductors (S’s) as shown

in Fig. 1. The magnetization in the FI is parallel to the

z-direction.18) A uniform dc magnetic field is applied in the

x-direction. In the measurement of the Fiske resonance, the

dc magnetic field is smaller than several tens of gauss.

Therefore, we can neglect the in-plane magnetization induced

by the applied dc magnetic field. Here, we consider that the ac

electric and magnetic fields are in the z- and x-direction

respectively, both of which are uniform in the x-direction.

We consider the situation, in which the z-dependence of

the electric and magnetic fields in the FI is negligible due to

the very thin thickness of the FI (dFI). In the S regions,

it is assumed that the magnetic field depends on y- and

z-component. The current density has a nonzero y-component

in the superconducting regions (Meissner current) and a

nonzero z-component in the ferromagnetic region (quasi-

particle and Josephson currents). Based on the above

assumptions, the Maxwell equation in each region is given by

rot½Ezð y; tÞez� ¼ �
@

@t
½�0Hxð y; z; tÞ þMxð y; tÞ�ex; ð1Þ

rot½Hxð y; z; tÞex� ¼ J
y
Mð y; tÞey; ð2Þ

rot½Hxð y; tÞex� �
@

@t
½Dzð y; tÞez� ¼ Jz

J ð y; tÞez þ Jz
Qð y; tÞez;

ð3Þ

Mxð y; tÞ ¼

Z 1

�1

dy0 dt0 �xð y� y0; t � t0ÞHxð y
0; t0Þ; ð4Þ

Jz
J ð y; tÞ ¼ Jc sin �ð y; tÞ; ð5Þ

Jz
Qð y; tÞ ¼

1

RFI

Ezð y; tÞ: ð6Þ

Here, ei (i ¼ x; y; z) is a unit vector, Ezð y; tÞ is the electric

field in the FI, Hxð y; z; tÞ and Hxð y; tÞ are the magnetic fields

in the S and the FI, respectively. The electrical flux density,

Dzð y; tÞ, in FI is given by Dzð y; tÞ ¼ �FIEzð y; tÞ, where �FI is

the dielectric constant in FI. Jz
J ð y; tÞ and Jc are the Josephson

current and the Josephson critical current densities, respec-

tively. Jz
Qð y; tÞ and RFI are the quasi-particle current density

and the resistivity of FI, respectively. The x-component of

the magnetization, Mxð y; tÞ, in the FI is given by eq. (4).

The motion of magnetization is described by the LLG

equation,23)

dM

dt
¼ ��M �Heff þ

�

M
M �

dM

dt

� �

; ð7Þ

where M is the magnetization of FI, � is the gyromagnetic

ratio, and � is the Gilbert damping. The effective field, to

which M responds, is given by Heff .

By using Maxwell and LLG equations, we can obtain the

voltage coupled with spin-waves [the detail of derivation for

eq. (8) is given in Appendix A] as follows:

@2V ð y; tÞ

@y2
¼

1

c2FI

�

@2V ð y; tÞ

@t2
þ

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0Þ
@2V ð y0; t0Þ

@t2

þ �FI

@V ð y; tÞ

@t
þ �FI

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0Þ
@V ð y0; t0Þ

@t

�

þ
1

	2

JJc
Jz
J ð y; tÞ þ

1

	2

JJc

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0ÞJz
J ð y

0; t0Þ; ð8Þ

where cFI ¼ fdFI=½ðdFI þ 2	 JÞ�FI�0�g
1=2, 	 J ¼ fh�=

½2e�0ðdFI þ 2	 JÞJc�g
1=2, and �FI ¼ ð�FIRFIÞ

�1 are the effec-

tive velocity of light in the FI, the Josephson penetration

depth, and the damping factor caused by quasi-particle

resistivity, RFI, in the FI, respectively.

We look for the solution of eq. (8) in the form

V ð y; tÞ ¼ V0 þ vð y; tÞ; ð9Þ

where V0 and vð y; tÞ are the dc bias voltage and ac voltage

induced by the ac Josephson current, respectively. In this

case, the phase difference, �ð y; tÞ, between two S’s is given by

�ð y; tÞ ¼ !Jt � kHyþ �1ð y; tÞ; ð10Þ

where !J ¼ ð2e=h� ÞV0 is the Josephson frequency, kH ¼

2��0dFIHex=�0 depends on the external magnetic field, Hex,

and �0 is the magnetic flux quantum. �1ð y; tÞ is related to

vð y; tÞ by the equation,

vð y; tÞ ¼
h�

2e

@�1ð y; tÞ

@t
: ð11Þ

Substituting eqs. (9) and (11) into eq. (8), we obtain the

equation for �1ð y; tÞ as follows:

@2�1ð y; tÞ

@y2
¼

1

c2FI

�

@2�1ð y; tÞ

@t2
þ

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0Þ
@2�1ð y

0; t0Þ

@t2

þ �FI

@�1ð y; tÞ

@t
þ �FI

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0Þ
@�1ð y

0; t0Þ

@t

�

þ
1

	2

JJc
Jz
J ð y; tÞ þ

1

	2

JJc

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0ÞJz
J ð y

0; t0Þ: ð12Þ

W

dFI

L

z // M

y

x // Hex

M

S

S

FI

Fig. 1. (Color online) Schematic figure of a S/FI/S junction with

ferromagnetic insulator (FI) between two superconductors (S’s). dFI is the

thickness of FI. L and W are the widths of the junction. M and Hex are the

magnetization in the FI and the applied dc magnetic field, respectively.
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We expand �1ð y; tÞ in terms of the normal modes of

the electromagnetic field generated by the ac Josephson

current,

�1ð y; tÞ ¼ Im
X

1

n¼1

gne
i!Jt cosðknyÞ

" #

; ð13Þ

where gn is a complex number and kn ¼ n�=L.

This equation of �1ð y; tÞ satisfies ½@�1=@y�y¼0 ¼

½@�1=@y�y¼L ¼ 0, which corresponds to the open-ended

boundary condition for vð y; tÞ. We consider �1ð y; tÞ to be a

small perturbation and solve eq. (13) by taking Jz
J ð y; tÞ to be

Jc sinð!Jt � kHyÞ. Substituting eq. (13) into eq. (12), gn
becomes (see Appendix B)

gn ¼ �
c2FI
	 J

�ðkH;�!JÞ

�
Bn � iCn

!2
n � �ðkn;�!JÞ!

2

J þ i�FI�ðkn;�!JÞ
; ð14Þ

Bn ¼
2

L

Z L

0

dy cosðknyÞ cosðkHyÞ; ð15Þ

Cn ¼
2

L

Z L

0

dy cosðknyÞ sinðkHyÞ; ð16Þ

�ðq;�!JÞ ¼
1þ �xðq;�!JÞdFI

ðdFI þ 2	 JÞ�0

; ð17Þ

where !n ¼ ðcFI�=LÞn, and q means kH or kn. In the

linearized LLG equation, the magnetic susceptibility in the

FI is given by (see Appendix C)

�xðq; !JÞ ¼ �Mz

�S þ i�!J

�2

S � ð1þ �2Þ!2

J þ i2��S!J

: ð18Þ

Here, �S is spin wave frequency whose dispersion relation is

given by

�S ¼ �B þ



h�
q2; ð19Þ

where �B ¼ �ðHK �Mz=�0Þ. HK and 
 are the aniso-

tropic field and the stiffness of spin waves in the FI,

respectively.

Next, we calculate the dc Josephson current coupled with

spin waves as a function of the dc voltage and of the external

magnetic field. The function, sin½!Jt � kHyþ �1ð y; tÞ�, is

expanded with respect to �1ð y; tÞ and the dc Josephson

current is given by

Jdc � lim
T!1

1

T

Z T

0

dt
1

L

Z L

0

dy Jc cosð!Jt � kHyÞ�1ð y; tÞ: ð20Þ

Introducing eqs. (13) and (14) into eq. (20), the analytic

formula of the dc Josephson current is obtained as,

Jdc ¼
Jcc

2

FI

4	2

J

X

1

n¼1

�nF
2

n ð�Þ; ð21Þ

�n ¼ Re½�ðkH; !JÞX�; ð22Þ

X ¼ f!2

n � �0ðkn; !JÞ!
2

J þ �00ðkn; !JÞ�FI!J

þ i½�0ðkn; !JÞ�FI!J þ �00ðkn; !JÞ!
2

J �g
�1; ð23Þ

�ðq; !JÞ ¼ �0ðq; !JÞ þ i�00ðq; !JÞ; ð24Þ

F2

n ð�Þ ¼
2�

�þ n=2

sinð��� n�=2Þ

��� n�=2

� �

; ð25Þ

where � is equal to �=�0 and � ¼ �0HexdFIL. �
0ðq; !JÞ ¼

Re½�ðq; !JÞ� and �00ðq; !JÞ ¼ Im½�ðq; !JÞ� [see eqs. (17) and

(18)].

3. Results and Discussion

In this section, we examine the numerical solution for

eq. (21). Figure 2 shows the dc Josephson current density

induced by the Fiske resonance as a function of the

dc voltage for 	 J=L ¼ 1, �B=!L ¼ 3, 
=ðh�!LÞ ¼ 1:5�

10
�16 m2, �Mz=ð�0!LÞ ¼ 1,25) � ¼ 1� 10

�4,24) dFI=ðdFI þ

2	LÞ ¼ 0:1, �FI=!L ¼ 0:5,26) and !L ¼ cFI�=L. � is fixed as

n=2 in the Fnð�Þ function. In the black solid line of Fig. 2,

the normalized dc Josephson current density Jdc in eq. (21) is

shown as a function of normalized dc voltage.27) Red (solid),

blue (broken), green (dashed), purple (chain), and dark green

(chain double-dashed) lines are the dc Josephson current of

each mode number of electromagnetic field, n. In this Figure,

the resonant behavior of Jdc is due to the Fiske resonance in

the S/FI/S junction. However, at V0=ð!Lh�=2eÞ � 3, it is

found that additional structures of Jdc appear. From Fig. 2, it

is found that two resonant peaks appear for each n. The

appearance of the two resonant peaks in the S/FI/S junction

are very different from conventional Josephson junctions, in

which a single resonant peak appears for the each mode of

EM field.2–6) Large peak around V0=ð!Lh�=2eÞ ¼ 3 is due to

the summation of n > 8 because dc Josephson currents of

contribution from large n appear around V0=ð!Lh�=2eÞ ¼ 3 in

a manner to be described.

0
/(V ω

J d
c
/J

c

1 2 3
0

1

2
 n = 1
 n = 2
 n = 3
 n = 4
 n = 5n = 1

n = 2

n = 3

n = 4
n = 5

/ 2 e)
L

Fig. 2. (Color online) DC Josephson current density, Jdc, as a function of dc voltage, V0, in a S/FI/S junction. The black solid line is the total dc

Josephson current. Red (solid), blue (broken), green (dashed), purple (chain), and dark green (chain double-dashed) lines are the dc Josephson current of each

mode number, n, of electromagnetic field. The applied dc magnetic field determines n via eq. (25).
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To elucidate the origin of the resonant structures in the

S/FI/S junction, we analyze eqs. (21) and (22). When the

denominator of �n in eq. (22) is minimum with respect to

!J, �n takes a maximum, so that the dc Josephson current

shows the resonant behavior as shown in Fig. 2. The dc

voltage at which the resonance occurs is determined by

neglecting the damping term in eq. (22) as � ¼ �FI ¼ 0.

Setting the denominator of �n to be zero, the voltage is

given by

V�
0
¼

h�

2e

(

1

2

"

!2

n þ�
2

S þ
dFI

dFI þ 2	L

�Mz�S

�0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
n þ�2

S þ
dFI

dFI þ 2	L

�Mz�S

�0

� �2

� 4!2
n�

2

S

s

#)1=2

;

ð26Þ

where !n is the frequency of the EM field in the FI, and �S

and �Mz�S=�0 are the frequency of spin-waves and the real

part of the magnetic susceptibility with � ¼ 0 in the FI. We

have two dc voltages, Vþ
0

and V�
0
, at which the Fiske

resonance occurs for each n. From the analytic formula in

eq. (26), it is found that two dispersions result from the

coupling between the EM field and spin waves in the FI.

Figure 3 shows a V0–n curves obtained by eq. (26). The

vertical axis is the dc voltage normalized by !Lh�=2e and the

horizontal axis is the mode number of EM field. In Fig. 3,

Vþ
0

and V�
0

are shown by open circles and open squares,

respectively. For n < 3, Vþ
0

is nearly constant as a function

of n, whereas V�
0

is linear with n. In Vþ
0

for n < 3, the

voltage is nearly equal to �Sh�=2e, which relates to the spin

wave energy in Fig. 3. For n � 3, Vþ
0
increases as a function

of n, whereas V�
0
becomes flat with increasing n. For n � 3,

V�
0
is nearly equal to �Sh�=2e in Fig. 3. Therefore, it is found

that the flat behavior of the voltage comes from the spin-

wave excitation in the FI. The spin-wave excitation in the FI

is induced by the EM field generated by the ac Josephson

current and the effect of the spin-wave excitation is reflected

in the Fiske resonance in the S/FI/S junction.

Here, we examine the �FI- and �-dependence of Jdc.

Figure 4(a) shows Jdc as a function of V0 by changing

�FI=!L. From this figure, it is found that the Fiske resonance

without very sharp peaks around V0=ð!Lh�=2eÞ ¼ 3 exhibits

strong damping by increasing �FI=!L. On the other hand,

very sharp peaks around V0=ð!Lh�=2eÞ ¼ 3 almost does not

depends on �FI=!L unlike another resonant peaks. Next, we

focus on sharp peaks around V0=ð!Lh�=2eÞ ¼ 3. Figure 4(b)

shows Jdc as a function of V0 by changing �. These peaks

around V0=ð!Lh�=2eÞ ¼ 3 in Fig. 4(b) strongly depend on

� because these resonant peaks mainly comes from spin-

waves. From Fig. 4, we can easily obtain the Fiske

resonance coupled with spin-waves in the S/FI/S junction

due to the small �FI and �.

The effect of spin-waves having a finite wave number q is

neglected in the Fiske resonance because of the following

reason: In eq. (19), the first term �B is caused by the

anisotropic and demagnetizing fields and finite wave number

q is given by n�=L. In a conventional FI, h��B is about tens

of �eV.23) On the other hand, 
q2 is of the order peV due to

the small stiffness of spin-waves28) when the width (L) of the

junction is a few mm.

Next, we consider the Fiske resonance in the S/I/FI/S

junction. The details of the calculation are given by

Appendix D. To analyze the origin of the Fiske resonance

accompanied by the spin-wave excitation in the S/I/FI/S

junction, we examine eqs. (D�15) and (D�17). The condition

of the resonance is given by the minimum in the

n

0
/(

V
ω

0
V

+

0
V

−

1 2 3 4 5 6 7
0

2

4

6
/ 2

e)
L

Fig. 3. (Color online) DC voltage, V0, as a function of mode number, n,

of electromagnetic field in S/FI/S junction.

0
/(V ω

J
d

c
/J

c

(a)

2.6 2.8 3 3.2 3.4
0

1

2

ΓFI/ωL = 0.5
ΓFI/ωL = 1

/ 2e)
L

0
/(V ω

J
d

c
/J

c

(b)

2.6 2.8 3 3.2 3.4
0

1

2

α = 1 10
-4

α = 1 10
-2

/ 2e)
L

Fig. 4. (Color online) (a) DC Josephson current density, Jdc, as a function

of dc voltage, V0, by changing �FI=!L in a S/FI/S junction. (b) Jdc as a

function of V0, by changing � in a S/FI/S junction. Where parameters used

by numerical calculation are 	J=L ¼ 1, �B=!L ¼ 3, �Mz=ð�0!LÞ ¼ 1,

dFI=ðdFI þ 2	LÞ ¼ 0:1.
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denominator. To find out the voltage at which the Fiske

resonance occurs, we neglect the damping term in the

denominator of eqs. (D�15) and (D�17). As a result, the

voltages at the Fiske resonance are given by

V I
0
¼

h�

2e
!I
n; ð27Þ

V�
0
¼

h�

2e

(

1

2

"

!2

n þ�
2

S þ
dFI

dFI þ 	L

�Mz�S

�0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
n þ�2

S þ
dFI

dFI þ 	L

�Mz�S

�0

� �2

� 4!2
n�

2

S

s

#)1=2

;

ð28Þ

indicating that there are three dc voltages resulting in the

Fiske resonance for each n in the S/I/FI/S junction.

Figure 5 shows the V0–n characteristic obtained by

eqs. (27) and (28). The vertical axis is the dc voltage

normalized by !Lh�=2e and the horizontal axis is the mode

number of EM field. In Fig. 5, V I
0
, Vþ

0
, and V�

0
are shown by

open triangles, open circles and open squares, respectively.

V I
0
linearly increases as a function of n as shown in Fig. 5

and comes from the resonance between the EM field in the

I and the ac Josephson current. For n < 3, Vþ
0

is nearly

flat as a function of n, whereas V�
0

shows linear behavior

with n. For n � 3, Vþ
0

increases as a function of n,

whereas V�
0

becomes flat with increasing n. The voltage of

flat region as a function of n is nearly equal to �Sh�=2e in

Fig. 5.

In this paper, we assumed that the magnetization of FI is a

single domain structure. Usually, magnetization structure

in the FI possesses a complicated domain structure. The

ferromagnet with multidomain structure has multiple

magnetic resonance modes different from the single domain

system.29) Therefore, we can expect several additional Fiske

resonance peaks in the I–V curve arising from the domain

structure in the FI. Those domain structure and their spin

dynamics, which depend on our choice of material, have rich

variety and wide spectrum. However, it is difficult to include

the multidomain structure of FI in the present theory. The

Fiske resonance in the ferromagnetic Josephson junction

with the magnetic domains is beyond the scope of the

present paper, and will be studied in another one.

4. Summary

We have theoretically studied the coupling of Josephson-

phase and spin-waves in the S/FI/S junction. The dc

Josephson current induced by the Fiske resonance is

calculated by combining the Maxwell and the Landau–

Lifshitz–Gilbert (LLG) equations. The dc Josephson current

shows the resonant behavior as a function of the applied dc

voltage. We derived the analytic formula of the resonant

condition in the Fiske resonance in the S/FI/S junction.

Two resonant peaks appear in the I–V curve for each mode

number of EM field. We found that the two resonant peaks

are generated by the coupling between spin-waves and

the EM field in the FI. We have also studied the Fiske

resonance in the S/I/FI/S junction and found that

additional resonant structures appear due to the coupling

between the ac Josephson current and the EM field in the I

layer.
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Appendix A: Derivation of Eq. (8)

We integrate eq. (1) with a narrow stripe A with

infinitesimal width (dy) in the yz-plane,
Z

A

dS
@

@y
Ezð y; tÞ ¼ �

Z

A

dS
@

@t
½�0Hxð y; z; tÞ þMxð y; tÞ�;

ðA�1Þ

where Ezð y; tÞ is confined to the ferromagnetic layer due to

vanishing Ezð y; tÞ in the S. Integrating eq. (A�1) with respect

to y and introducing the London penetration depth 	L

defined by

	L ¼
1

Hxð y; tÞ

Z �1

�dFI=2

dzHxð y; z; tÞ; dFI 	 	L; ðA�2Þ

eq. (A�1) becomes

�dFI
@

@y
Ezð y; tÞ

¼ �0

@

@t
Hxð y; tÞðdFI þ 2	LÞ þ dFI

@

@t
Mxð y; tÞ: ðA�3Þ

In the same way, we integrate eq. (2) over the cross-section

area S0 of the junction in the xz-plane and obtain

Hxð y; tÞ ¼
1

W
IMð y; tÞ; IMð y; tÞ 


Z

S0
dS J

y
Mð y; tÞ; ðA�4Þ

where W is the width along the x-axis of the junction and

IMð y; tÞ is the current at position y in the superconducting

electrode. Substituting eq. (A�4) into eqs. (A�3) and (4), we

obtain the partial differential equation

@

@y
V ð y; tÞ ¼ �

�0

W
ðdFI þ 2	LÞ

@

@t
IMð y; tÞ

þ
dFI

W

@

@t

Z 1

�1

dy0 dt0 �xð y� y0; t � t0ÞIMð y
0; t0Þ;

ðA�5Þ
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2
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n
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+
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−

I
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V
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L

Fig. 5. (Color online) DC voltage, V0, as a function of mode number, n,

of electromagnetic field in S/I/FI/S junction. We take parameters as

�B=!L ¼ 3, cI=cFI ¼ 0:5, �Mz=ð�0!LÞ ¼ 1 and dFI=ðdFI þ 	LÞ ¼ 0:2.
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where V ð y; tÞ 
 dFEzð y; tÞ is the voltage across the FI. The

Ampere’s law in the FI is

@

@y
IMð y; tÞ ¼ �

�FI

dFI
W

@

@t
V ð y; tÞ �WJz

J ð y; tÞ �WJz
Qð y; tÞ

ðA�6Þ

Differentiating partially eq. (A�5) with respect to y,

eq. (A�5) becomes

@2

@y2
V ð y; tÞ ¼ �L0 @

@t

@

@y
IMð y; tÞ

� L0 dFI

dFI þ 2	L

1

�0

@

@t
Fð y; tÞ; ðA�7Þ

where

Fð y; tÞ ¼
@

@y

Z 1

�1

dy0 dt0 �xð y� y0; t � t0ÞIMð y
0; t0Þ: ðA�8Þ

To obtain the voltage equation coupled with spin waves in

the FI, we transform the function Fð y; tÞ. When we execute

the Fourier transformation on �xð y� y0; t � t0Þ and IMð y
0; t0Þ

referring to y0, Fð y; tÞ is given by

Fð y; tÞ ¼
1

2�

Z 1

�1

dq dt0 eiqy�xðq; t � t0ÞiqIMðq; t
0Þ: ðA�9Þ

Making use of the Fourier transformation of y in eq. (A�6),

iqIMðq; tÞ ¼ �C0 @

@t
V ðq; tÞ �WJz

J ðq; tÞ �WJz
Qðq; tÞ; ðA�10Þ

and substituting eq. (A�10) into eq. (A�9), Fð y; tÞ is given by

Fð y; tÞ ¼ �

Z 1

�1

dy0 dt0 �xð y� y0; t � t0Þ

� C0 @

@t0
V ð y0; t0Þ þWJz

J ð y
0; t0Þ þWJz

Qð y
0; t0Þ

� �

;

ðA�11Þ

where C0 ¼ �FIW=dFI. Substituting eq. (A�11) into eq. (A�7)

and using the relation V ð y; tÞ ¼ dFIEzð y; tÞ, we have the

partial differential equation

@2V ð y; tÞ

@y2
¼

1

c2FI

�

@2V ð y; tÞ

@t2
þ

dFI

dFI þ 2	L

1

�0

@

@t

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0Þ
@V ð y0; t0Þ

@t0

þ �FI

@V ð y; tÞ

@t
þ �FI

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0ÞV ð y0; t0Þ

�

þ
h�

2e	2

JJc
Jz
J ð y; tÞ þ

h�

2e	2

JJc

dFI

dFI þ 2	L

1

�0

�

Z 1

�1

dy0 dt0 �xð y� y0; t � t0ÞJz
J ð y

0; t0Þ;

ðA�12Þ

Appendix B: Calculation of Factor gn

To obtain the complex coefficient gn, substituting eq. (13)

and JJ � Jc sinð!Jt � kHyÞ into eq. (12), we obtain the

equation for gn,

X

1

n¼1

gne
i!Jt cosðknyÞ½�!2

n þ �ðkn;�!JÞ!
2

J

� i�FI�ðkn;�!JÞ!J� ¼
c2FI

	2

J

�ðkH;�!JÞe
i!Jt�ikHy; ðB�1Þ

where !n ¼ ðcFI�=LÞn and �ðq;�!JÞ ¼ 1þ �xðq;�!JÞdFI=

½ðdFI þ 2	 JÞ�0� and q denotes kH or kn. For both sides of

eq. (B�1), multiplying cosðknyÞ and performing integration

with respect to y from 0 to L, we get gn as follows:

gn ¼ �
c2FI
	 J

�ðkH;�!JÞ

�
Bn � iCn

!2
n � �ðkn;�!JÞ!

2

J þ i�FI�ðkn;�!JÞ
; ðB�2Þ

Bn ¼
2

L

Z L

0

dy cosðknyÞ cosðkHyÞ; ðB�3Þ

Cn ¼
2

L

Z L

0

dy cosðknyÞ sinðkHyÞ: ðB�4Þ

Appendix C: Linearized Solution of LLG Equation

We outline the derivation of the magnetic susceptibility in

the FI by using the LLG equation. We consider the situation,

in which the direction of magnetization is perpendicular to

the junction. In the experimental measurement of the Fiske

resonance, the dc magnetic field is smaller than several tens

of gauss. Therefore, we can neglect the gradient of the

magnetization due to the applied dc magnetic field. Since the

precessional angle of spin in the FI is usually very small

even at the magnetic resonance, we linearize the LLG

equation as follows:

dMx

dt
¼ ��My HK �

Mz

�0

� �

þ �Mz�@2yMy � �
dMy

dt
; ðC�1Þ

dMy

dt
¼ �Mx HK �

Mz

�0

� �

� �Mzhx � �Mz�@2yMx þ �
dMx

dt
;

ðC�2Þ

where HK and Mz=�0 are an anisotropic field and a

demagnetization field in the FI, respectively. We assume

the solutions of eqs. (C�1) and (C�2) of the form

Mi ¼ �iðq; !JÞhxe
i!Jte

�iqy; i ¼ x; y; ðC�3Þ

where �iðq; !JÞ is a magnetic susceptibility of FI and hx is

the amplitude of x-component of ac magnetic field and q is

a wave number of spin wave. Substituting eq. (C�3) into

eqs. (C�1) and (C�2), the solutions of the linearized LLG

equation are

Mx ¼ �xðq; !JÞhx; ðC�4Þ

�xðq; !JÞ ¼ �Mz

�S þ i�!J

�2

S � ð1þ �2Þ!2

J þ i2��S!J

; ðC�5Þ

My ¼ �yðq; !JÞhx; ðC�6Þ

�yðq; !JÞ ¼ ��Mz

i!J

�2

S � ð1þ �2Þ!2

J þ i2��S!J

; ðC�7Þ

�S ¼ �B þ



h�
q2; �B ¼ � HK �

Mz

�0

� �

; ðC�8Þ

where HK is an anisotropic field in the FI and 
 is a stiffness

of spin waves.

Appendix D: Derivation of dc Josephson Current in

S/I/FI/S Junction

In this Appendix, we consider the Josephson junction

S. HIKINO et al.J. Phys. Soc. Jpn. 80 (2011) 074707 FULL PAPERS

074707-6 #2011 The Physical Society of Japan

J. Phys. Soc. Jpn. 2011.80.
Downloaded from journals.jps.jp by 106.51.226.7 on 08/04/22. For personal use only.



including a nonmagnetic insulator (I) between the S and the

FI, that is the S/I/FI/S junction.

To calculate the Josephson current in the S/I/FI/S

junction, we solve the Maxwell equation as shown in the

section II to add to equations describing the I as follows:

rot½EI
zð y; tÞez� ¼ ��0

@

@t
½H I

xð y; z; tÞ�ex; ðD�1Þ

rot½H I
xð y; tÞex� � �I

@

@t
½EI

zð y; tÞez� ¼ Jz
J ð y; tÞez þ �IE

I
zð y; tÞez;

ðD�2Þ

where the subscript I in the above equations indicates fields

in the non-magnetic insulator. �I and �I are a dielectric

constant and a conductivity in the I, respectively. Jz
J is a

Josephson current. In the same manner as the calculation in

x2, we integrate the Faraday’s law with respect to the plane

parallel to the yz-plane and the Ampere’s law with respect to

the plane parallel to the xz-plane. As a result, Ampere’s and

Faraday’s laws are given by

�
@EFI

z ð y; tÞ

@y
dFI �

@EI
zð y; tÞ

@y
dI

¼ �0

@HFI
x ð y; tÞ

@t
ðdFI þ 	LÞ þ

@MxðtÞ

@t
dFI

þ �0

@H I
xð y; tÞ

@t
ðdI þ 	LÞ; ðD�3Þ

H i
xð y; tÞ ¼

1

W
IiL; i ¼ FI or I: ðD�4Þ

The definition of IiL is same as that of eq. (A�4). Performing

the procedure of calculation to obtain eq. (8) for eqs. (D�3)

and (D�4), we obtain equations describing ac voltages

induced by the ac Josephson current in the I and the FI layers

as

@2V Ið y; tÞ

@y2
¼

1

c2I

@2V Ið y; tÞ

@2t
þ

1

c2I
�I

@V Ið y; tÞ

@t
þ

h�

2e

1

	2

I Jc

@JJð y; tÞ

@t
; ðD�5Þ

c�2

I ¼
dI þ 	L

dI
�I�0; 	�2

I ¼
2e

h�
�0ðdI þ 	LÞ; �I ¼

1

�IRI

; ðD�6Þ

@2VFIð y; tÞ

@y2
¼

1

c2FI

@2VFIð y; tÞ

@2t
þ

1

c2FI

dFI

dFI þ 	L

@

@t

Z 1

�1

dt0 �xðt � t0Þ
@VFIð y; t0Þ

@t

þ
1

c2FI
�FI

@VFIð y; tÞ

@t
þ

@

@t

Z 1

�1

dt0 �xðt � t0ÞVFIð y; t0Þ

þ
h�

2e

1

	2

FIJc

@JJð y; tÞ

@t
þ

h�

2e

1

	2

FIJc

dFI

dFI þ 	L

@

@t

Z 1

�1

dt0 �xðt � t0ÞJJð y; t
0Þ; ðD�7Þ

c�2

FI ¼
dFI þ 	L

dFI
�FI�0; 	�2

FI ¼
2e

h�
�0ðdFI þ 	LÞ; �FI ¼

1

�FIRFI

; ðD�8Þ

where dI is the thickness of I. �I and RI are a dielectric constant and resistance per unit length in the I. Here, we adopt the

iterative calculation to obtain the dc Josephson current due to the resonance between the electromagnetic field and Josephson

current as shown in previous section. First, we calculate the voltage induced by the ac Josephson current in each layers.

Josephson current is characterized by the phase difference between two S’s. Therefore, we assume that the Josephson current

flowing layers is given by JJð y; tÞ ¼ Jc sinð!Jt � kHyÞ, where kH ¼ 2��0HexðdFI þ dIÞ=�0 and !J is the Josephson

frequency. For the boundary condition, we adopt the open-ended boundary condition for the reason mentioned in x2. In this

case, the voltage expression satisfying the open-ended boundary condition is given by

V jð y; tÞ ¼ Im
X

1

n¼1

v j
ne

i!Jt cosðknyÞ

" #

; j ¼ I or FI; ðD�9Þ

where v j
n are complex numbers and kn ¼ n�=L. Substituting eq. (D�9) into eqs. (D�5) and (D�7), we can obtain the voltage in

I and F layers as follows:

V Ið y; tÞ ¼
h�

eL

cI

	 I

� �2
X

1

n¼1

�

��I!
2

JBn þ !J½!
2

J � ð!I
nÞ

2�Cn

½!2

J � ð!I
nÞ

2�2 þ ð�I!JÞ
2

sinð!JtÞ

þ
!J½!

2

J � ð!I
nÞ

2�Bn þ �I!
2

JCn

ð!I
n � !JÞ

2 þ ð�I!JÞ
2

cosð!JtÞ

�

cosðknyÞ; ðD�10Þ

VFIð y; tÞ ¼ �
h�

eL

cFI

	 I

� �2
X

1

n¼1

½Re½gð!JÞ� sinð!JÞ þ Im½gð!JÞ� cosð!JtÞ� cosðknyÞ; ðD�11Þ

gn ¼ �
cFI

	 J

� �2

�ð�!JÞ
Bn � iCn

!2
n � �ð�!JÞ!

2

J þ i�FI�ð�!JÞ
; ðD�12Þ

where !I
n and !n are given by ðcI�=LÞn and ðcFI�=LÞn, respectively. Bn and Cn are same expressions as eqs. (15) and (16),

respectively.

Next we calculate the dc Josephson current coupled with spin waves as a function of the dc voltage and of the external

magnetic field. Since we consider V IðFIÞð y; tÞ as a perturbation, we can expand the sine function in terms of V IðFIÞð y; tÞ. Within

the first order term with respect to V IðFIÞð y; tÞ, the dc Josephson current is approximately given by
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Jdc � lim
T!1

1

T

Z T

0

dt
1

L

Z L

0

dy Jc cosð!Jt � kHyÞ
2�

�0

Z

dt½V Ið y; tÞ þ VFIð y; tÞ�: ðD�13Þ

Substituting eqs. (D�10) and (D�11) into eq. (D�13), we can obtain the analytic formula of the dc Josephson current in the

S/I/FI/S junction as follows:

Jdc ¼ J I
dc þ JFI

dc ; ðD�14Þ

J I
dc ¼

Jcc
2

I

4	2

I

X

1

n¼1

�I!J

½ð!I
nÞ

2 � !2

J �
2 þ ð�I!JÞ

2
F2

n ð�Þ; ðD�15Þ

JFI
dc ¼

Jcc
2

FI

4	2

FI

X

1

n¼1

�
FI
n F

2

n ð�Þ; ðD�16Þ

�
FI
n ¼

�0ð!JÞ½�
0ð!JÞ�FI!J þ �00ð!JÞ!

2

J � þ �00ð!JÞ½!
2

n � �0ð!JÞ!
2

J þ �00ð!JÞ�FI!J�

½!2
n � �0ð!JÞ!

2

J þ �00ð!JÞ�FI!J�
2 þ ½�0ð!JÞ�FI!J þ �00ð!JÞ!

2

J �
2

; ðD�17Þ

where !I
n and !n are given by ðcI�=LÞn and ðcFI�=LÞn, respectively. Fnð�Þ is same function as eq. (25). J I

dc comes from the

resonance between the electromagnetic field generated inside the I and the ac Josephson current. JFI
dc originates in the

resonance between the electromagnetic field generated inside the FI and the ac Josephson current.
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