

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript

The version presented in WRAP is the author’s accepted manuscript and may differ from the

published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/156815

How to cite:

Please refer to published version for the most recent bibliographic citation information.

If a published version is known of, the repository item page linked to above, will contain

details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the

University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the

individual author(s) and/or other copyright owners. To the extent reasonable and

practicable the material made available in WRAP has been checked for eligibility before

being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit

purposes without prior permission or charge. Provided that the authors, title and full

bibliographic details are credited, a hyperlink and/or URL is given for the original metadata

page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/156815
mailto:wrap@warwick.ac.uk

1

Composite Experience Replay Based Deep
Reinforcement Learning with Application in Wind

Farm Control
Hongyang Dong and Xiaowei Zhao

Abstract—In this paper, a deep reinforcement learning (RL)-
based control approach with enhanced learning efficiency and
effectiveness is proposed to address the wind farm control
problem. Specifically, a novel composite experience replay (CER)
strategy is designed and embedded in the deep deterministic
policy gradient (DDPG) algorithm. CER provides a new sampling
scheme that can mine the information of stored transitions in-
depth by making a trade-off between rewards and temporal-
difference (TD) errors. Modified importance-sampling weights
are introduced to the training process of neural networks to deal
with the distribution mismatching problem induced by CER.
Then our CER-DDPG approach is applied to optimizing the
total power production of wind farms. The main challenge of this
control problem comes from the strong wake effects among wind
turbines and the stochastic features of environments, rendering
it intractable for conventional control approaches. A reward
regularization process is designed along with the CER-DDPG,
which employs an additional neural network to handle the bias
of rewards caused by the stochastic wind speeds. Tests with a
dynamic wind farm simulator (WFSim) show that our method
achieves higher rewards with less training costs than conventional
deep RL-based control approaches, and it has the ability to
increase the total power generation of wind farms with different
specifications.

Index Terms—Intelligent Control; Wind Farm Control; Model-
Free Control; Reinforcement Learning; Neural Networks.

I. INTRODUCTION

A. Deep Reinforcement Learning-Based Control

Reinforcement Learning (RL) is a booming artificial in-
telligence technology that integrates the core idea of many
subjects, such as machine learning and control theory [1]. An
essential principle of RL is trial-and-error: the agent learns
its actions by interacting with the environment. This process
forms a control policy, which is a mapping between states and
actions. RL aims to find a control policy that can optimize
the long-term rewards, despite the limitation of environment
knowledge and the lack of detailed system models. Due to
the significant application potential of RL in various industry
fields, it has aroused extensive research interests in recent
years [2], [3], [4], [5], [6], [7], [8]. Moreover, deep learning
(DL) technique has greatly promoted the development of
RL. Deep RL employs deep neural networks as function

This work was funded by the UK Engineering and Physical Sciences
Research Council (grant number: EP/S001905/1).

H. Dong and X. Zhao (corresponding author) are with the Intelli-
gent Control & Smart Energy (ICSE) Research Group, School of En-
gineering, University of Warwick, Coventry, CV4 7AL, UK. Emails:
hongyang.dong@warwick.ac.uk, xiaowei.zhao@warwick.ac.uk.

approximators, rendering it feasible to deal with complex
problems. For example, the famous deep Q-network (DQN) [9]
was proposed for problems with tabular control domains, and
it has been successfully applied to playing video games. Then,
the deep deterministic policy gradient (DDPG) algorithm was
designed in [10] to handle tasks with continuous/infinite action
domains.

One issue that blocks the direct application of DL to RL
is that the sequential observations received by RL agents
usually have strong temporal correlations. This violates the
independent and identical distribution requirement in many
DL algorithms, making the learning process hard to converge
or even unstable. Experience replay is an effective method
to address this knotty problem, as demonstrated in DQN
and DDPG. To be specific, it employs a memory buffer
to store previous experiences (i.e., transitions), and a small
batch of samples are randomly selected from the memory to
train networks at every iteration. In this way, the temporal
correlations among the sampled transitions can be largely
broke. However, the original experience replay selects tran-
sitions through a uniformly random way. This can lead to low
training efficiency since the transitions may be more or less
surprising, redundant, or task-relevant to the deep RL learning
[11]. Aiming to address this issue, Schaul et al. proposed
the prioritized experience replay (PER) technique [11] and
applied it to DQN. PER measures the priorities of transitions
by temporal difference (TD) errors, i.e., the transitions with
higher magnitudes of TD errors have higher chances to be
sampled. As shown in many studies [11], [12], [13], [14],
PER surpasses the performance of the original DQN, and
some attempts have been made to extend PER to the DDPG
framework [13], [15], [16].

However, as observed in some studies e.g. [13], directly
transplanting PER to DDPG may not gain much (even lead
to degraded performance) compared with original DDPG.
This is because PER was initially designed for DQN where
only the action-state value function (i.e. the Q function) is
approximated. The TD-error is directly employed to drive this
approximation process, rendering it perfect for prioritization
purposes. However, compared with DQN, DDPG has an
additional actor to generate continuous control policies. Thus,
the priorities of transitions for DDPG should be re-designed,
since the importance of TD-errors to the actor is questionable.
This is one of the challenges that our paper aims to tackle.
It motivates us to employ a composite set of priorities to
sample transitions, aiming to exploit the information of data

2

WT i WT j WT k

UꝎ

(b) Wind Farm Without Wake Steering

Wake of WT i Mixed Wake
of WT i & j

UꝎ

(c) Wind Farm With Wake Steering

i j

(a) Denmark's Horns Rev Offshore Wind Farm

Wake of WT i Mixed Wake
of WT i & j

WT i WT j WT k

Photo by Christian Steiness

Figure 1: Illustrations of the wind farm, wake effect, and wake steering

in-depth and balance the learning process of actor and critic,
and eventually lead to a novel data-driven model-free deep RL
method with enhanced learning efficiency and effectiveness.

B. Control of Wind Farm

Wind power is one of the fastest-growing renewable energy.
The development of wind farms (which consist of many
individual wind turbines) has been growing quickly in recent
years. Fig. 1.a, photoed by Christian Steiness, shows the
Denmark’s Horns Rev offshore wind farm, which represents
the typical layout of wind farms. It also reveals an important
feature/issue of wind farms - wake effect [17], [18], [19].
As illustrated in Fig. 1.b, the wake effect means that the
upstream wind turbines’ power generation process leads to
wakes behind them, which can influence the power production
of downstream turbines. Horns Rev offshore wind farm suffers
a 20% loss on annual power production caused by wake effects
[20].

To deal with the influence of wake effects on the efficiency
and profitability of wind farms, many researchers studied
wake steering strategies [21], [22], [23], [24], [25], [26],
[27]. As illustrated in Fig. 1c, wake steering redirects wakes
through controlling the yaw angle of every wind turbine. This
may decrease the upstream turbines’ generation but increase
the whole-farm-level power production. However, since the
wake effect is a complicated phenomenon, building an accu-
rate model for control actions and wakes is quite difficult.
Therefore, model-based wake steering strategies may suffer
from handling the resulting modelling errors and uncertainties,
leading to degraded performance.

Alternatively, data-driven approaches for wake steering have
attracted research interests [28], [29], [30]. A data-driven
parametric model for wake effects was proposed in [28], then
a tabular-style random-search method based on the parametric
model and game theory was designed for yaw settings opti-
mization. A Bayesian ascent approach was proposed in [29],
[30], and applied to wind farm control. Compared with the
game theory, it can provide a more sophisticated searching
strategy and can be applied to continuous state domains.

However, these elegant results still require steady-state wind
farm models to carry out searching processes, lacking adapting
abilities to the time-varying wind speeds and dynamic wake
effects. Also, they are all open-loop optimization approaches
employing unrestricted searching on the state domain. They
cannot provide constrained control policies to optimize power
generation from arbitrary initial conditions gradually. These
facts motivate us to develop a constrained wind-farm control
strategy that is data-driven, model-free and has the ability to
adapt to time-varying wind speeds and dynamic wake effects.
We build upon RL to achieve this goal.

C. Our Contributions

In this paper, a deep RL-based control approach with
enhanced learning efficiency and effectiveness is proposed and
applied to wind farm control problems. Particularly, a new
sampling strategy is introduced into the DDPG framework. We
name it as the composite experience replay (CER) because it
utilizes the information of not only TD-errors but also rewards
to sample the training batch, and here rewards are employed
to measure the priorities of transitions with respect to actor-
networks. This design is based on the observation that the
updates of actor-networks are implicitly driven by rewards in
policy gradient algorithms. In fact, the early versions of policy
gradient algorithms directly employed rewards for training,
such as the well-known REINFORCE algorithm [1]. CER
has the ability to balance the two sets of priorities (i.e., TD
errors and rewards), making a trade-off between the learning
of critic and actor. Moreover, modified importance-sampling
weights based on the composite priorities are employed to
correct the biases induced by the distribution mismatching
in CER. Testing results show that the CER-DDPG algorithm
proposed in this paper achieves higher rewards with less
training episodes than the original and PER-based DDPG
approaches.

As an application study, we apply CER-DDPG to the control
problem of wind farms, aiming to maximize the farm-level
power production through wake steering. To this end, an
additional reward regularization process is designed along with

3

Critic Network

Main

Q(|)s

''(|)s

Actor Network

Main

Actor Network

Target

'

Critic Network

Target

'Q

Soft Replacement

Soft Replacement

Loss Function of Critic

2 ' '

1

1
, '[, '(|) |] (, |)

n Q Q
i i i i i i i ii

L r Q s s Q s a
n

' ''[, '(|) |]Q

Q s s

(, |)Q
Q s a

Reward

Regularization
r

a

Gradient of Actor

1

1
[(, |) (|)]

n Q
i i i ii

Q s a s
n

Wind Farm

Update

Update

r

Composite Experience Replay

()s
()a

()s

s s
，

()

1 1 1 1, , ,s a s r

Memory Buffer

(fixed size: m)

1r 1

ST for

ST for r

Sub Batch R

Batch
Sampling

Recursive
Single-Sampling

Re-sampling
if li = 3

Label the transition (li)
accroding to duplicate

Mini Batch
(fixed size: n)

()s

, , ,i i i is a s r

i

Sub Batch T

Size : (1)n

, , ,m m m ms a s r

mr m

Update

Size : n

Raw Power Data

Figure 2: Overview of CER-DDPG with application in wind farm control

the CER-DDPG. It employs a neural network to handle the
bias of rewards caused by stochastic wind speeds, enhancing
the adapting ability of the algorithm. It is noteworthy that
the whole approach is closed-loop and model-free. It can
provide bounded control signals and achieve power production
optimization under unknown dynamics of wakes and yaw
actuators. The algorithm is tested with a dynamic wind farm
simulator (WFSim) designed in [31]. Simulation tests indicate
that our approach can lead to clear farm-level power produc-
tion increase compared with conventional strategies.

The remainder of this paper are summarized as follows.
The detailed design of our deep RL-based control approach
is presented in Sec. II. Then, it is extended and applied to
wind farm control in Sec. III. Test results under prototypical
wind farm settings are demonstrated in Sec. IV. Finally, Sec.
V concludes this paper.

II. DESIGN OF DEEP DETERMINISTIC POLICY GRADIENT

WITH COMPOSITE EXPERIENCE REPLAY

A. Algorithm Overview

RL is commonly modeled as a Markovian Decision Process
(MDP). Specifically, consider an agent whose current state is
denoted by st ∈ S at time t. After taking an action at ∈ A,
it transfers to a successor state s+t (i.e. the state at t + 1)
and receives a scalar reward rt ∈ R from the environment.
And here S , A, and R denote the state, action, and reward
spaces of the agent, respectively. We aim to propose an RL
algorithm to learn a control policy µ(s), such that the long-
term return RtI =

∑∞

t=tI
ξt−tI rt can be maximized, where tI

denotes the start time and ξ ∈ (0, 1] is a discount factor. In this
paper, a CER-DDPG algorithm is designed to this end. Fig. 2
illustrates the main structures and data flow of CER-DDPG.
It contains several parts: DDPG, composite experience replay,

reward regularization, and the wind farm. The main body of
CER-DDPG is introduced in the following subsections, then
the reward regularization and the mechanism of the wind farm
are given in the next section.

B. Deep Deterministic Policy Gradient

We base our approach on DDPG, which essentially is
an advanced actor-critic algorithm. Specifically, the critic is
designed to evaluate an action-state value function Qµ(s, a).
At a specific time point t, Qµ(st, at) represents the long-term
reward when action at is taken at state st and a control policy
µ(s) is pursued thereafter. Based on this definition, an essential
property of Qµ(st, at) is

Qµ(st, at) = rt + ξQµ(s
+
t , µ(s

+
t)) (1)

We aim to learn an optimal control policy µ∗(s) that maxi-
mizes Qµ(st, at), formalized by

µ∗(s) = argmax
µ

Qµ(st, at) (2)

For complicated problems, neural networks (NNs) are usu-
ally employed in the actor-critic structure, and their update
laws are based on Eqs. (1) and (2). Particularly, four NNs are
employed in DDPG, i.e., main actor, main critic, target actor,
and target critic. Their parameters are respectively denoted by
θµ, θQ, θµ

′

, and θQ
′

. Besides, their outputs are respectively
denoted by µ(s|θµ), Q(s, a|θQ), µ′(s|θµ

′

), and Q′(s, a|θQ
′

).
Then we introduce the training process of DDPG. The target

networks are updated by tracking the main networks via the
“soft replacement” law:

θµ
′

← (1− τ)θµ
′

+ τθµ

θQ
′

← (1− τ)θQ
′

+ τθQ
(3)

4

and here τ ∈ (0, 1] is normally a small constant. The updating
of main critic network is driven by the following loss function:

L =
1

n

n∑
i=1

ωiδ
2
i (4)

where n denotes the batch size of selected samples at every
training step, ωi is the importance weight of the ith sample,
its specific expression is given in the design of CER. Besides,
δi is the TD-error of the ith sample, defined as

δi = ri + ξQ′[s+i , µ
′(s+i |θ

µ′

)|θQ
′

]−Q(si, ai|θ
Q) (5)

where s+i denotes the successor state of si. The idea of
utilizing TD-errors to update the critic is inspired by Eq. (1).
Different from the conventional actor-critic approaches, DDPG
employs an additional set of actor-critic (i.e. the target actor
and critic) that slowly tracks the main actor-critic (as shown
in Eq. (3)) to construct TD-errors. This design can reduce the
variance induced by the changes of the main actor and critic,
enhancing the overall training stability.

Moreover, following Eq. (2), the main actor is designed to
achieve µ(s|θµ) = argmaxa Q(s, a|θQ). However, directly
searching the maximum of Q(s, a|θQ) at every training step
is intractable. Alternatively, the main actor is updated by a
policy gradient strategy:

∇θµ =
1

n

n∑
i=1

ωi

∂Q(si, µ(si|θ
µ)|θQ)

∂θµ

=
1

n

n∑
i=1

ωi[∇µQ(si, µ(si|θ
µ)|θQ) · ∇θµµ(si|θ

µ)]

(6)

It should be emphasized that a small batch of transitions
B = {(si, ai, s

+

i , ri)}i=1,...,n is employed in every training
step. As mentioned in the Introduction, selecting these training
batches through Monte Carlo or original PER may result in
a degraded training efficiency. A novel sampling strategy, i.e.
CER, is designed in the following subsection to address this
issue.

C. Composite Experience Replay

CER aims to select transitions that can provide more infor-
mation than others for the training process of NNs, ultimately
improving the overall training effectiveness and efficiency of
DDPG. To this end, the sampling priorities of transitions need
to be defined. On the one hand, TD errors are directly involved
in the loss construction of the critic (as shown in Eq. (4)). Thus
they can measure how “surprise” the corresponding transition
is, with respect to the critic. On the other hand, as discussed
in the Introduction, the actor is implicitly driven by rewards.
So rewards are proper choices for transition prioritization
purposes with respect to the actor. Moreover, using rewards to
measure the importance of transitions is a bio-inspired design
since human is usually sensitive to peak rewards [32], [33].

Motivated by these facts, two sets of priorities are stored
in CER. The first set of priorities is based on TD errors, we
denote it as PT , and the priority of the ith transition (i.e.,
(si, ai, s

+

i , ri)) is defined as

pT,i = |δi|+ ǫ (7)

where ǫ > 0 is a small constant employed to ensure that
transitions with near-zero TD errors still have probability to be
revisited. The other set of priorities is based on rewards, and
we denote it as PR. To ensure all priorities in PR are valid
probabilities, we need to project the reward space from R to
R

+, and we denote the projected reward of the ith transition
as r̄i. A simple way to achieve this goal is to set

r̄i = eηri (8)

and here η > 0 is a constant. Besides, in some applications,
R may be required to be projected to a bounded interval
[r̄min, r̄max], with r̄min, r̄max > 0 and r̄min < r̄max. This can
be ensured by setting

r̄i = (r̄max − r̄min)sig(ηri) + r̄min (9)

where sig(ηri) = 1/(1+e−ηri). Then, based on the projected
reward r̄i, we design the priorities in PR as

pR,i = r̄i + ǫ (10)

Based on these preliminaries, the detailed design of CER is
presented in Algorithm 1.

Particularly, the mini batch B is concurrently constructed by
both PT and PR with a user-defined ratio α. To effectively
sample transitions based on their priorities, two parallel sum-
tree (ST) structures (one for PT and the other for PR) are
employed [11]. This design ensures the sampling complexity
does not depend on the size of the memory buffer, and it also
renders an easier updating process of priorities.

Since the transitions are sampled by two sets of priorities,
the duplicate problem needs to be addressed. To this end,
special labels are employed in CER as described in Algorithm
1, and they are illustrated in Fig. 3. To be specific, in the mini
batch B, li = 1 means the transition is solely sampled by
PT ; and li = 2 means the transition is solely sampled by PR;
finally, li = 3 means the transition is sampled by both PT and
PR. Based on these labels, CER ensures that all the transitions
in B are different from each other, no matter they are repeated
during the sampling process or not.

(, , ,) 3,i i i i is a s r l

Group T
Transitions Sampled by PT

 BT

BR(, , ,) 1,j j j j js a s r l

(, , ,) 3,i i i i is a s r l

(, , ,) 2,k k k k ks a s r l

Group R
Transitions Sampled by PT

Figure 3: Transitions with different duplicate labels

In general, the estimation of expected values relies on the
updates corresponding to the same distributions as their expec-
tations. CER and also other prioritized sampling strategies (e.g.
PER) change such distributions. Importance-sampling weights
(ISWs) [34] can be utilized in CER to alleviate the potential

5

Algorithm 1 Composite Experience Replay
M: the memory buffer, with size m.
B: the resulting mini batch in each sampling, with size n.
BT : a sub mini batch for the transitions sampled by PT .
BR: a sub mini batch for the transitions sampled by PR.
PT (i): the sampling probability of the ith transition under PT .
PR(i): the sampling probability of the ith transition under PR.
α: the ratio of transitions sampled by PR.
li: the duplicate label of the ith transition.
λ: the number of transitions in BR.
ωT,i: the importance-sampling weight (ISW) of the ith tran-
sition under PT .
ωR,i: the ISW of the ith transition under PR.
ωi: the final ISW of the ith transition.
β: the exponent in ISW, and β ∈ (0, 1].

1: for each sampling do

2: Set li, ωi, and λ to zero, i = 1, 2, ...,m.
3: Sample ⌊(1−α)n⌋ transitions fromM with probability

PT (j) = pT,j/(
∑m

i=1
pT,i) and store them in BT .

4: Label every sampled transition by setting lj = 1.
5: Calculate ISW for every sampled transition: ωj = ωT,j ,

with ωT,j = [m · PT (j)]
−β/maxi{ωT,i}.

6: while λ+ ⌊(1− α)n⌋) < n do

7: Sample a single transition (sk, ak, s
+

k , rk) from M
with probability PR(k) = pR,k/(

∑m
i=1

pR,i).
8: if lk = 0 then

9: Label the transition by setting lk = 2.
10: Calculate ISW: ωk = ωR,k, with ωR,k = [m ·

PR(k)]
−β/maxi{ωR,i}.

11: Save the transition to BR and set λ = λ+ 1.
12: else if lk = 1 then

13: Label the transition by setting lk = 3.
14: Calculate ωk = ωR,k with ωR,k = [m ·

PR(k)]
−β/maxi{ωR,i}.

15: Modify the ISW to be: ωk = ωT,k + ωR,k.
16: else

17: Discard the transition and re-sample (go to 7).
18: end if

19: end while

20: Build B by concatenating BT and BR.
21: end for

estimation biases induced by the distribution mismatching.
Different from PER, the ISWs in CER are related to the
duplicate conditions of the corresponding transitions. Fig.
3 gives an insight into this issue. In fact, CER essentially
constructs two parallel groups of transitions by PT and PR,
i.e., Group T and R as illustrated in Fig. 3. And there is
no internal duplicate in either Group T or R. Thus, for the
transitions that are only in Group T or R (e.g., the transition
j and k in Fig. 3), their ISWs are directly decided by their
sampling probabilities:

ωj = ωT,j , ωT,j =
[m · PT (j)]

−β

maxi{ωT,i}

ωk = ωR,k, ωR,k =
[m · PR(k)]

−β

maxi{ωR,i}

(11)

Then, for the transitions that are in both Group T and
R (e.g., the transition i in Fig. 3), their ISWs are linear
combinations of the original ISWs in Eq. (11), as given in
Eq. (12).

ωi = ωT,i + ωR,i (12)

It should be emphasized again that, no matter how many
transitions are repeated in the two groups, CER ensures the
resulting mini batch B always has a fixed size and all the
transitions in B are different from each other.

III. CONTROL OF WIND FARM

We consider a wind farm with N individual wind turbines
denoted by WT 1, WT 2, ..., WT N , respectively. Based on
the actuator disc theory, the power generated by WT i can be
calculated by

Ei =
1

2
ρAiU

3
i Cp(ai, γi) (13)

where ρ is the air density and Ai is the rotor area. Also, Ui

denotes the wind speed at WT i, which is related to the free-
stream wind speed U∞ in front of the wind farm and also the
wake effects among turbines. Besides, Cp is called the power
coefficient, which is a function of the induction factor ai and
the yaw angle offset γi (with respect to the wind direction),
and here ai is related to the rotor’s rotation speed and pitch
angle. Particularly, one has

Cp(ai, γi) = 4ηai(1− ai)
2f(γi) (14)

where η is a positive constant, and the function f(γi) de-
scribes the relationship between γi and Cp, which will be
approximated by a neural network in this work.

By Eq. (13), one can change the turbine’s power production
by adjusting ai and γi. In conventional control strategy, every
wind turbine in the wind farm aims to maximize its own
power production. Based on the actuator disc theory, the Nash
equilibrium of this game problem (solved by Eqs. (13) and
(14)) is ai = 1/3 and γi = 0. This control strategy is
commonly referred to as the greedy strategy in the literature
[27], [28], [29], [35]. However, as illustrated in Figs. 1.b
and 1.c, the wake of upstream turbines have influence on the
effective wind speed Ui at the downstream turbines. Therefore,
the greedy strategy cannot maximize the overall output of the
whole farm: E =

∑N
i=1

Ei.
In this work, we design a yaw control method to achieve

wake steering and optimize the farm-level power production.
We set the turbines’ induction factors to be consistent with
the greedy strategy. On this basis, Cp is only related to γi.
We emphasize that the wake is a complex phenomenon with
stochastic properties, and accurately modeling the wake effect
is still an open problem. Thus, the mapping from the yaw
settings {γ1, ..., γi, ..., γN}, the free-stream wind speed U∞,
and the time t to the total power production is unknown. This
mapping is formalized as follows.

E = h(γ1, γ2, ..., γN , U∞, t) (15)

It also brings some severe barriers for us to directly employ
E as reward in CER-DDPG: 1) As indicated by Eq. (15), E
is related to U∞, while U∞ is time-varying (through its mean

6

speed is relatively stable). Therefore, a new reward signal
that can adapt to the change of U∞ should be considered. 2)
Wake is a dynamic process since it slowly propagates at the
wind farm. Therefore, as indicated by Eq. (15), E can change
with t even under steady {γ1, ..., γi, ..., γN} and U∞. Thus,
employing instantaneous power outputs to construct rewards
is improper.

A reward regularization process is employed in CER-DDPG
to address the problems mentioned above. First, we note that
the front wind turbines (i.e., the most upstream turbines in the
farm, denoted as Fi with a total number K) are not affected
by wake effects, and their greedy power outputs can show the
change of U∞:

Eg
Fi

=
1

2
ρAFi

U3
∞Cp(

1

3
, 0) (16)

Thus, Eg
F =

∑K
i Eg

Fi
can be employed to normalize E,

making E robust to the change of U∞. Then, for every
transition, we utilize the mean power output in a period of time
after every action to construct rewards. This can effectively al-
leviate the influence induced by the wake propagation process,
making the whole problem quasi-Markovian. Moreover, large
yaw offsets can result in loads and fatigues to the structure of
turbines, thus penalty items should also be introduced into the
reward function to mitigate this problem.

Based on these observations and analyses, the regularized
reward is designed to be

rt =
1

ta

∫ t+ta

t

[
E(h)

κf

∑K
i Eg

Fi
(h)
−κγ

N∑
i=1

γi(h)−κr]dh (17)

where ta denotes the time period for averaging, and κr,
κf , and κγ are user-defined gains for scaling, weighting and
offsetting purposes. A remaining issue is that Eg

Fi
is not

measurable during the real-time control process, and we need
to estimate it through γi and Eγi

Fi
. Based on (14), we formalize

their relationship by

Eγi

Fi
= Eg

Fi
f(γi) (18)

Some studies [27], [28], [29], [35], [36] utilize different
empirical formulas to approximate f(γi). A commonly-used
method [28], [36] is to employ a cosine function to correct
the power loss induced by the yaw offset γi:

Eγi

Fi
= Eg

Fi
cos(γi)

pP (19)

where pP is a positive constant to be identified by data.
In this paper, a more general method is designed to map

the relationship in (18) (i.e. approximate f(γi)). Specifically,
a neural network is employed, which takes γi and Eγi

Fi
as

inputs and the estimates of Eg
Fi

as outputs. The performance
of this method in comparison with (19) is provided in Sec. IV.

Moreover, we also take into account the dynamics of yaw
actuators:

γ̈i = z(γ̇i, γi) + g(γ̇i, γi, ui) (20)

where the specific expression of z and g are unknown for
controller design. And ui denotes the control input (usu-
ally in terms of torque or force), which should be within
[ui,min, ui,max]. An assumption regarding the dynamics in Eq.

Algorithm 2 CER-DDPG for wind-farm control

Initialize the parameters θµ, θµ
′

, θQ, and θQ
′

for NNs, and
set the learning rates.
Decide the size of the mini batch B and the memory buffer
M, i.e., n and m.
Initialize other user-defined parameters involved in the algo-
rithm, include: ξ, τ , α, β, η, ǫ, κr, κf , and κγ .

1: for each episode do

2: Observe the initial state s0.
3: for t = 0 to T do

4: Choose the action at = µ(st|θ
µ) + φt, where φt is

the exploration noise.
5: Apply at to the wind farm, calculate the reward rt

based on Eq. (17), and observe s+t .
6: Store the transition (st, at, s

+
t , rt) and its priorities

in M.
7: if training = TRUE then

8: Sample the mini batch B based on the CER in
Algorithm 1.

9: Update the parameter θQ of the main critic net-
work by minimizing the loss L as in Eq. (4).

10: Update the parameter θµ of the main actor network
by the policy gradient strategy in Eq. (6).

11: Update the parameters (θQ
′

and θµ
′

) of the target
critic and actor networks by the soft replacement
strategy in Eq. (3).

12: Update the priorities for all the transitions in B.
13: end if

14: end for

15: end for

(20) is that γ+

i , γ̇+

i ∈ L∞ if γi, γ̇i, ui ∈ L∞, where γ+

i and γ̇+

i

respectively denote the responses of γi and γ̇i after taking the
action ui. We note that most of the yaw actuators satisfy this
assumption. Moreover, since the response of yaw actuators is
much quicker than the wake propagation process, a stable γ+

i

with γ̇+

i = 0 can be expected at the end of each learning step.
Now we are ready to fit the CER-DDPG framework into

the wind-farm power control problem. We aim to maximize a
long-term reward: RtI =

∑∞

t=tI
γt−tI rt from any start time

t = tI , with rt is calculated by Eq. (17). The objective of CER-
DDPG is to develop a control policy µ(s), which can decide
the constrained control signal a = {u1, u2, ..., uN} in real
time, based on the state s = {γ1, γ2, ..., γN}. This algorithm
is summarized in Algorithm 2 in detail. Please also refer to
Algorithm 1 for notations and the specific design of CER.

IV. NUMERICAL SIMULATIONS

A. WFSim Introduction and General Simulation Settings

We test the performance of the proposed CER-DDPG on
the wind farm simulator (WFSim) [31]. WFSim is open-access
and its code & data can be found in [37]. WFsim is a dynamic
wind farm model with high computational efficiency, making
it suitable for case study purposes. Briefly, WFSim models the

7

Table I: Simulation Settings.

Properties & Parameters value

Layers of actor and critic 3

Hidden-layer neurons in actor and critic 32

Soft replacement rate, τ 0.01

Discount factor, ξ 0.95

Initial, incremental and maximal values of α 0, 0.00025, 0.5

Initial, incremental and maximal values of β 0.4, 0.001, 1

Sizes of the memory buffer and the sampling batch 10000, 128

Layers of the reward regularization module 3

Hidden-layer neurons in reward regularization 20

YI (kg·m2) 38.9

YD (N·m·s) 102.2

YS (N·m) 85.9

ui,min, ui,max (N·m) -1.5, 1.5

Yaw angle range (deg) [-30, 30]

κr , κf , κγ 1, 1.8, 0.1

η, ǫ 5, 0.01

wind flow by utilizing the 2D Navier-Stokes equations [31],
[38], [39]:

ρ
∂u

∂t
+ ρ∇(u̟) = −

∂p

∂x
+∇(σ∇u) + Sx + Tx

ρ
∂v

∂t
+ ρ∇(v̟) = −

∂p

∂y
+∇(σ∇v)

ρ∇(̟) = 0

(21)

where ρ and σ are respectively the air density and viscosity, p
denotes the pressure field, and ̟ = [u, v] denotes the velocity
vector field. Besides, Tx is the turbulence model, and the wind
turbine models are incorporated into Eq. (21) by Sx. Then, Eq.
(21) is discretized by employing a hybrid differencing scheme,
over a staggered grid of (Nx ×Ny) cells.

The main settings for the simulations are summarized in
Table I. We consider a wind farm with six turbines. For this
wind farm, we set the critics and actors in our CER-DDPG to
be three-layer fully-connected NNs. Their hidden layers have
32 neurons and use the relu function as the activation function.
The soft replacement rate for the target critic and actor is
τ = 0.01. The discount factor is ξ = 0.95. For CER, the
ratio α is initially set to be 0, then it is slowly increased
with a small increment δα = 0.00025 for every training step.
The maximum of α is set to be 0.5. The size of the memory
buffer M is 10000 with 128 transitions being selected from
M to form the mini batch B in every training step. There
are 200 steps in each training episode. At the beginning of
each episode, all turbines follow the greedy strategy. We use
Eqs. (7) and (8) to design priorities. Moreover, the model of
the yaw actuator follows the FAST code designed by NREL
(National Renewable Energy Laboratory of US) [40]:

YI γ̈i(t)+YDγ̇i(t)+YSγi(t)−υi(t) = 0, i = 1, 2, ..., N (22)

where YI , YD, and YS are respectively the inertia, torsional
damping constant, and torsional spring stiffness. They are
chosen to be: YI = 38.9kg·m2, YD = 102.2N·m·s, and
YS = 85.9N·m. And υ denotes the cumulative torque applied

to the yaw actuator. It should be emphasized that YI , YD, and
YS are all unknown, and the control policy aims to decide the
change of υ(t) at every time step, i.e.,

υi(t+ 1) = υi(t) + ui(t) (23)

Moreover, the bounds of ui is set to be ui,min = −1.5N·m
and ui,max = 1.5N·m, i = 1, 2, ..., N .

Based on these settings, simulations under different wind-
farm layouts, wind-turbines types and environmental condi-
tions are given in the following subsections, providing com-
prehensive evaluation of the proposed CER-DDPG method.

B. Simulation Results with the NREL 5MW Wind Turbines

In the subsection, six NREL 5MW wind turbines are
employed to construct the wind farm. The flow field in
WFSim is set to be 2040m×1050m, which is discretized into
80×40 spatial grids. Two scenarios are considered here, as
qualitatively illustrated in Fig. 4, where D = 126.4m is the
turbines’ rotor diameter. The difference between these two
scenarios is that the turbines in the scenario 2 are moved
in the crosswind direction to reduce overlaps among the
turbine rotors. Following relevant studies [28], [29], we restrict
turbines’ yaw offsets (with respect to the free-stream wind
direction) to [−30◦, 30◦] per safety requirements, and we
set the clockwise direction as the forward direction of yaw
maneuvers.

5D

UꝎ

(a) Scenario 1

WT 4 3DWT 5 WT 6

WT 1 WT 2 WT 3

5D

UꝎ

(b) Scenario 2

WT 4

3D
WT 5

WT 6

WT 1

WT 2

WT 3

0.5D

0.5D

X

Y

Figure 4: Illustration of the two layouts of wind farms.

As discussed in Sec. III, a neural network (NN) is required
for reward regularization purposes in the CER-DDPG. To this
end, the power outputs of the front turbines under different
wind conditions (U∞ = 8, 9, 10m/s) are collected. Then a fully
connected NN with a single hidden layer is employed. The

8

hidden layer has 20 neurons and employs the sigmoid function
as its activation function. The input of this NN is the yaw
angle: xi = γi, and the output is set to be: yi = Eγi

Fi
/Eg

Fi
. A

total of 90 training pairs (xi, yi) are collected, and the training
results are given in Fig. 5. There are two main facts that can
be observed in Fig. 5: 1) one can see that the ratio Eγi

Fi
/Eg

Fi

is irrelevant to the wind speed, and it is only decided by γi. 2)
The NN can successfully map the relationship between γi and
Eγi

Fi
/Eg

Fi
. Thus, by employing this NN and the measurements

of γi and Eγi

Fi
, one can accurately estimate Eg

Fi
without any

knowledge of the time-varying free-stream wind speed U∞

and use it to construct the regularized reward in Eq. (17).

Figure 5: Approximation result via NN.

Figure 6: Approximation result via empirical formula.

We also compare the performance of our method with
the commonly-used approximation method in (19). Fig. 6
illustrates the approximation results via (19) under different
pP : 1) pP = 2, which follows the experimental result in [36];
2) pP = 1.8834, which is deduced by the least-square method
to minimize the root mean square (RMS) error with respect
to training data. It is noteworthy that the result pP = 1.8834
also fits perfectly with [28] - the authors set pP = 1.88 in
this reference to fit high-fidelity simulation data. From Figs.

5 and 6, one can clearly see that the performance of our NN
is superior to the approximation method in (19). The RMS
error with respect to training data are 3×10−4 under our NN,
while that of the approximation method in (19) are 8× 10−3

and 5 × 10−3 under the settings pP = 2 and pP = 1.8834,
respectively.

The free-stream wind speed U∞ is changing within
[8, 10.5]m/s during the training process of CER-DDPG, driven
by a random-walk noise. In addition, for comparison purposes,
the original DDPG and the PER-DDPG are also employed to
carry out simulations. The simulation scenario with the layout
1 follows the settings given in Table I. It is observed that
all three deep RL approaches can increase the total power
production through wake steering. This fact is shown in Fig.
7, which illustrates the changes of the cumulative reward per
episode under different algorithms. For ease of analysis, the
cumulative rewards are normalized by the maximum reward
observed during the learning process of all algorithms. One can
see that, though all the three algorithms can finally approxi-
mate the maximum episode reward, the CER-DDPG proposed
in this paper accelerates the learning process: it almost gets
the maximum episode reward after only 100 learning episodes.

0 50 100 150 200 250 300 350 400 450
0

20%

40%

60%

80%

100%

Figure 7: Normalized cumulative rewards under different al-
gorithms (scenario 1).

Then, we analyze the performance of CER-DDPG in detail.
To this end, we use the CER-DDPG networks (after 200
training episodes) to perform the closed-loop control for the
wind farm. The initial condition is set to be γi(0) = 0 and
γ̇i(0) = 0, i = 1, 2, 3, 4, 5, 6, and the control signals (i.e., ui)
are updated by CER-DDPG per 2 seconds. The initial wind
speed is U∞ = 10.5m/s. The time responses of γi and ui of all
turbines (denote by WTi, i = 1, 2, 3, 4, 5, 6) are given in Fig.
8. One can see that our CER-DDPG successfully drives the
yaw actuators to achieve wake steering with limited control
inputs, and the resulting yaw angles after 500s are around
{24.9511, 18.1793, 0.1785, 21.0259, 20.8083, 0.7567}deg.

Moreover, the total power productions during the wake
steering process are illustrated in Fig. 9. To clearly show the
relative changes of the power production, the data in this figure
has been normalized by the standard power output under the

9

0 100 200 300 400 500 600 700
0

10

20

30

0 100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 8: Simulation results of yaw angles and control inputs
under CER-DDPG (scenario 1).

0 100 200 300 400 500 600 700
80%

90%

100%

110%

120%

130%

Figure 9: Normalized power productions under CER-DDPG
(scenario 1).

greedy strategy. It is noteworthy that wake effects have time-
delayed features. One can see that, before the wakes under
new yaw settings are fully propagated (the first 300s in the
simulation as shown in Fig. 9), the total power output is
decreased due to yaw offsets. Then this situation is rapidly
improved after 300s, and a clear increase (over 25%) for the
total power production can be obtained. This phenomenon
also shows a key feature of reinforcement learning - instead
of pursuing a high instantaneous or short-time reward (like
the greedy strategy), the reinforcement learning agent aims to
maximize a long-term reward. The flow fields under both the
CER-DDPG and the greedy strategy at 700s are given in Fig.
10. One can see that CER-DDPG successfully mitigates the
wake effects of upstream turbines with respect to downstream
turbines, rendering the increase of the total power production.

Then we test our algorithm under scenario 2. As shown in
Fig. 4.b, the positions of turbines are varied at Y direction
in this scenario. Due to the special layout, excessive penalties
for yaw offsets will hinder wind farm control in this case.
Therefore we reduce κf from 0.1 to 0.05 and increase η

(a) Flow field without wake steering

(b) Flow field with wake steering by CER-DDPG

Figure 10: Flow fields with and without wake steering (sce-
nario 1, at t = 700s).

0 50 100 150 200 250 300 350 400 450
0

20%

40%

60%

80%

100%

Figure 11: Normalized cumulative rewards under different
algorithms (scenario 2).

from 5 to 20 to keep ‘inceasing total power maximization’
still as the first-priority task in our wind farm control. All
the other simulation settings follow Table I. The normalized
cumulative rewards under the CER-DDPG, PER-DDPG, and
original DDPG are given in Fig. 11. One can see that the CER-
DDPG algorithm proposed in this paper still has better learning
efficiency and effectiveness - it achieves higher cumulative
rewards than the other two methods after 100 episodes. Same
as scenario 1, we also test our CER-DDPG under a closed-
loop control problem. The results are given in Figs. 12 and 13.

10

0 100 200 300 400 500 600 700
0

10

20

30

0 100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 12: Simulation results of yaw angles and control inputs
under CER-DDPG (scenario 2).

0 100 200 300 400 500 600 700
95%

100%

105%

110%

115%

Figure 13: Normalized power productions under CER-DDPG
(scenario 2).

After the wakes are fully propagated, CER-DDPG can achieve
an 11% growth for the total power production, compared with
the greedy strategy. The flow fields at 700s are given in Fig.
14. As shown in Fig. 14, the wind farm layout scenario 2
reduces the overlaps among turbine rotors, which helps the
downstream turbines suffer less from the wake effects under
the greedy strategy. This is why the deep RL algorithm leads
to a relatively lower increase for the total power generation
when compared with scenario 1.

C. Simulation Results with the DTU 10MW Wind Turbines

To show the adaptability of the proposed CER-DDPG, we
employ a different type of wind turbines - the DTU 10MW
wind turbines, to carry out simulation tests in this subsection.
The wind-farm layout is set to be same with the scenario 1
in Sec. IV.B, while the rotor diameter of DTU 10MW wind
turbine is D = 178.3m. The flow field in WFSim is set to be
2674.5m×1248.1m (15D × 7D), and it is discretized into a
100 × 50 staggered grid. All the settings of our CER-DDPG
are kept unchanged from Table I.

(a) Flow field without wake steering

(b) Flow field with wake steering by CER-DDPG

Figure 14: Flow fields with and without wake steering (sce-
nario 2, at t = 700s).

For comparison purposes, we also employ the adjoint-
based model predictive control (AMPC) method proposed in
[22] to carry out simulations and compare the performance
and features of our CER-DDPG with AMPC. AMPC is a
model-based method that is built upon the 2D Navier-Stokes
equations in (21). In [22], AMPC is designed to maximize
wind farm power generation via induction control, and we
adapt it to a yaw control algorithm in this case study. The
core principle of AMPC is to employ a discrete-time wind
farm model deduced by Eqs. (21):

E(Xk)Xk+1 = AXk +B(Xk)βk + b(Xk) (24)

where the state variable Xk stacks all the longitudinal and
lateral flow velocities and the scaled pressure components in
every cell of the staggered grid (Nx × Ny) [22], and βk

denotes the control input vector. One can refer to [22] for the
detailed expression of E,A,B, b and also other design details
of AMPC. It should be emphasized that Eq. (24) is actually
the inherent mathematical model of WFSim. Thus there are
no modelling errors and uncertainties when applying AMPC
to WFSim. This feature allows AMPC to have the potentially
best control performance that can be achieved with WFSim,
rendering AMPC a suitable method and an excellent baseline
to carry out comparison with our CER-DDPG.

We set the state & control input constraints of AMPC to
be the same with CER-DDPG. We test the performance of
our CER-DDPG (after 200 training episodes) and AMPC with
the DTU 10MW wind turbines. Simulation results of yaw
angles are given in Fig. 15. It is interesting to see that these

11

two controllers converge to similar yaw offsets at the end of
simulations, and this result is also validated by the flow fields
(at t = 700s) as shown in Figs. 16. To be specific, after
500s, the turbine yaw angles under CER-DDPG are around
{26.34, 18.08, 0.00, 25.24, 25.25, 9.09} deg, and those under
AMPC are {26.49, 19.11, 0.10, 25.74, 25.62, 12.94} deg. The
normalized power outputs (with respect to the greedy strategy)
under CER-DDPG and AMPC are illustrated in Fig. 17.
One can see that both control methods lead to clear power
generation increases (over 24%) with respect to the greedy
strategy.

Figure 15: Yaw angle changes under CER-DDPG and AMPC
with DTU 10MW wind turbines.

As discussed above, since AMPC directly employs the
inherent mathematical model of WFSim, it is not influenced by
modelling errors & uncertainties and can potentially achieve
the best control performance with WFSim. Simulation results
indicate that our CER-DDPG achieves similar performance to
AMPC - showing the effectiveness and the optimizing ability
of our CER-DDPG.

Though both CER-DDPG and AMPC can successfully
achieve wake steering and increase the farm’s total power
generations, they have different features with each other, as
summarized in Table II. As a model-based method, AMPC
employs the wind conditions in every cell of the staggered
grid at every time step to predict future states, allowing AMPC
to capture the whole-flow-field information and rendering
relatively smoother yaw-change curves with fewer fluctuations
when compared with CER-DDPG. However, it is not feasible
to accurately measure the wind conditions in every cell of a
pre-determined staggered grid for a flow field (e.g., a 100×50
grid is employed for a 2675.5m×1248.1m flow field in this
case study) in practice. Moreover, such full-state-style infor-
mation of the flow field also leads to a large number of system
states (over ten thousand states are employed in AMPC in
this case study), resulting in a high computational complexity

(a) Flow field under CER-DDPG

(b) Flow field under AMPC

Figure 16: Flow fields under CER-DDPG and AMPC with
DTU 10MW wind turbines (at t = 700s).

in real-time closed-loop control. In contrast, CER-DDPG is
model-free and only requires turbines’ power outputs to carry
out learning, avoiding the use of impractical measurements
and leading to enhanced applicability and generality. But
similar to other data-driven RL algorithms [9], [10], [32],
CER-DDPG still requires a relatively large amount of data for
offline training purposes, which usually leads to a high offline
computational complexity. In contrast, MPC has no offline cost
but needs to solve a complex optimal control task at every time
step in real-time control, resulting in a high computational cost
online.

Figure 17: Normalized power outputs under CER-DDPG and
AMPC with DTU 10MW wind turbines.

12

Table II: Comparison of AMPC and CER-DDPG.

AMPC in [22] CER-DDPG

Optimizing Ability
√ √

Model dependence model-based model-free

Online Complexity high low

Offline Complexity low high

Requirement of full-flow states
√

×

D. Simulations under Different Environmental Conditions

In this subsection, additional simulation results under dif-
ferent environmental conditions are provided to show the
robustness of the CER-DDPG method proposed in this paper.
In the following case studies, The wind farm specifications
(with DTU 10MW wind turbines) and the settings of CER-
DDPG are all kept same with Table I and Sec. IV.C.

1) Simulations under Time-Varying Wind Speeds. As dis-
cussed in Sec. III, a reward regularization module is employed
in CER-DDPG to adapt to different wind speeds during the
training process. To test its performance under time-varying
wind speeds in real-time control, we consider a wind profile
as illustrated in Fig. 18. The normalized power outputs (with
respect to the greedy mode under the initial wind speed at
t = 0s) are illustrated in Fig. 19. The CER-DDPG method
proposed in this paper leads to clear power generation in-
creases (23.1% on average after 300s) when compared with
the greedy strategy, showing its effectiveness and robustness
to time-varying wind speeds. The flow fields under the greedy
strategy and CER-DDPG are illustrated in Fig. 20.

Figure 18: Wind speed changes.

2) Simulations under Time-Varying Wind Directions &

Speeds. In this paper, CER-DDPG is trained under a main
wind direction, which is a common practice for wind farm
yaw control [28], [29], [30]. Here we test the robustness of
CER-DDPG to fluctuating wind directions around the main
wind direction, while the changes of wind speed are shown
in Fig. 18. We follow the settings given in [22] - the wind
direction varies from the main wind direction (i.e. x-direction)
in the interval of ±8o per every 100s, as shown in Fig. 21. The

Figure 19: Power outputs under time-varying wind speeds.

(a) Flow field under the greedy strategy

(b) Flow field under CER-DDPG

Figure 20: Flow fields under time-varying wind speeds (at
t = 1000s).

flow fields at t = 1000s under the greedy strategy and CER-
DDPG are illustrated in Fig. 22. One can see that, wakes have
irregular features in this simulation scenario. The normalized
power generations (with respect to the power generation at
t = 0s under the greedy mode) are given in Fig. 23. It shows
that our CER-DDPG approach still leads to higher generations
than the greedy strategy.

Although simulation results indicate that our CER-DDPG
has a certain level of robustness to wind direction fluctuations,
it should be emphasized that such robustness is validated only
when the wind direction is fluctuating around the main wind
direction within a limited range. The algorithm requires to
be re-trained if the main wind direction changes drastically.
To demonstrate that CER-DDPG can adapt to different main

13

Figure 21: Wind direction changes.

(a) Flow field under the greedy strategy

(b) Flow field under CER-DDPG

Figure 22: Flow fields under time-varying wind directions &
speeds (at t = 1000s).

wind directions, we employ a new scenario in which the main
wind direction varies 10 degrees counterclockwise from the
x-direction, and the changes of wind speed still follow Fig.
18. The flow fields under the greedy method and CER-DDPG
with this new main wind direction are provided in Fig. 24.
After 500s, the turbine yaw offsets (with respect to the new
main wind direction) under CER-DDPG are around {24.02,
21.27, 16.29, 22.09, 11.43, 19.06} deg. The normalized power
outputs with respect to the greedy strategy are given in Fig. 25,
which illustrate that an average increase of 26.3% is achieved
after the wake changes are fully propagated, showing that
CER-DDPG can adapt to different main wind directions.

3) Simulations under Different Turbulence Levels. In WF-

Figure 23: Power outputs under time-varying wind directions
& speeds.

(a) Flow field under the greedy strategy

(b) Flow field under CER-DDPG

Figure 24: Flow fields under the changed main wind direction
with time-varying wind speeds (at t = 1000s).

Sim, three adjustable parameters: d, d′ and ls, are embed-
ded in the turbulence model to match different turbulence
intensities. The detailed definitions and physical meanings of
these parameters are given in [31], [41]. In this case study,
we carry out Monte Carlo simulations to comprehensively
test the CER-DDPG’s robustness to these turbulence-related
parameters. Following the guide of WFSim and the default
settings in WFSim for DTU 10MW wind turbines (d = 700m,
d′ = 50m, ls = 0.05), we set the changing ranges of d and
d′ in Monte Carlo simulations to be d ∈ [200, 800]m and
d′ ∈ [20, 180]m. We consider three batches of simulations with
ls to be 0.02, 0.05 and 0.08, respectively. Each batch contains

14

Figure 25: Power outputs under the changed main wind
direction with time-varying wind speeds.

1000 separated 1000-second simulations. In these simulations,
d and d′ are randomly selected from the corresponding ranges,
and the changes of wind speed follow Fig. 18. In every
simulation, the averaged power generation over the last 500
seconds under the CER-DDPG method is calculated. Its ratio
to the corresponding greedy strategy (under the same simu-
lation conditions, including all turbulence-related parameters)
is shown in Fig. 26. This figure indicates that CER-DDPG
has robustness to different turbulence levels (corresponding
to different turbulence-related parameters). A 30.18% power
generation increase is achieved on average of all Monte Carlo
simulations. Even in the most extreme cases, CER-DDPG can
still increase the power generations by approximately 15%.

Figure 26: Monte Carlo simulation results under different
turbulence settings.

Remark 1: WFSim [31] has been employed to carry out case
studies in this section, which is a control-oriented wind farm
simulator built upon the Navier-Stokes equations as shown
in Eqs. (21) and (24). WFSim makes a trade-off between
computational complexity and modelling accuracy. On the
one hand, the inherent mathematical model in WFSim is

significantly less costly than high-fidelity large-eddy simu-
lations. On the one hand, as a dynamic simulator, WFSim
has a much higher accuracy than commonly-used steady-
state models/simulators (e.g. FLORIS [28] and Jensen [42]).
These features make WFSim an ideal choice for testing wind
farm control methods. But the downside is that WFSim can
only carry out two-dimension flow field simulations with a
degraded accuracy when compared with the full-dimension
large-eddy simulations, leading to inevitable simulation errors
in comparison with real wind farms.

Remark 2: Similar to many other mode-free deep RL
algorithms [9], [10], [32], the CER-DDPG method designed in
this paper is independent of the training/testing environment.
Its key features (e.g. data-driven and optimizing abilities) are
always valid no matter in simulations or in practical use.
It should be mentioned that training and validating in the
same simulation environment (e.g. the WFSim environment
employed in this paper) may result in sub-optimal solutions
in practice use. In addition, it should be emphasized that all
simulators inevitably have simulation errors in comparison
with real wind farms. Thus an online fine-tuning process
will be carried out for our CER-DDPG in practical use.
Particularly, CER-DDPG can be first pre-trained by a proper
simulator or a sufficient set of actual wind farm data to make
an initial guess for the optimal control policy. Then, after it
is applied to the real wind farm, CER-DDPG can be fine-
tuned by the online wind farm data to potentially improve
its performance, and the composite experience replay strategy
proposed in this paper can accelerate this online fine-tuning
process.

Remark 3: Simulations with WFSim verify the effectiveness
of the deep RL algorithm proposed in this paper. As analyzed
in Introduction and shown in Sec. IV. B, directly employing
PER in DDPG does not gain much in the case studies. In
contrast, by balancing the two sets of priorities (i.e. TD errors
and rewards) and sampling transitions based on the composite
priorities, our deep RL method leads to superior performance
and better training efficiency than the standard DDPG algo-
rithm and the PER-based DDPG algorithm. Moreover, the
whole algorithm design is generic, which has the ability to
achieve data-driven model-free control for a large class of
complex systems. In addition, the composite experience replay
module designed in this paper has a flexible structure. It has
the potential to be combined with other strategies, such as
the asynchronous advantage actor-critic (A3C) [43] strategy
to further improve efficiency via the asynchronous learning
process - this will be our future work in this direction.

V. CONCLUSIONS

A novel deep RL-based control approach has been proposed
in this paper to address wind farm control problems. Specifi-
cally, we enhanced the learning efficiency and effectiveness of
DDPG through a novel experience replay strategy, i.e. the CER
strategy. In CER, we employed both TD-errors and rewards
to measure the priorities of transitions, then concurrently
sampled transitions based on both sets of priorities. In addition,
the modified importance-sampling weights were employed to

15

anneal the biases introduced by CER. To utilize CER-DDPG
to handle the wind farm control problems, we also designed
a reward regularization module, which brought the essential
adapting ability to the algorithm with respect to time-varying
wind speeds. A dynamic wind farm simulator, WFSim, was
employed for case studies. Simulation results showed that our
algorithm achieved superior learning performance compared
with the original and PER-based DDPG. It can increase
the farm-level power generation under different wind-farm
specifications.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[3] Y. Jiang and Z.-P. Jiang, Robust adaptive dynamic programming. John
Wiley & Sons, 2017.

[4] B. Luo, Y. Yang, and D. Liu, “Policy iteration Q-learning for data-
based two-player zero-sum game of linear discrete-time systems,” IEEE

Transactions on Cybernetics, 2020, Early Access.
[5] ——, “Adaptive Q-learning for data-based optimal output regulation

with experience replay,” IEEE transactions on Cybernetics, vol. 48,
no. 12, pp. 3337–3348, 2018.

[6] Q. Wei, L. Wang, Y. Liu, and M. M. Polycarpou, “Optimal elevator
group control via deep asynchronous actor-critic learning,” IEEE Trans-

actions on Neural Networks and Learning Systems, 2020, Early Access.
[7] D. Wang, C. Mu, D. Liu, and H. Ma, “On mixed data and event

driven design for adaptive-critic-based nonlinear H∞ control,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 29, no. 4,
pp. 993–1005, 2017.

[8] C. Mu, Z. Ni, C. Sun, and H. He, “Air-breathing hypersonic vehicle
tracking control based on adaptive dynamic programming,” IEEE Trans-

actions on Neural Networks and Learning Systems, vol. 28, no. 3, pp.
584–598, 2016.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations, San

Juan, Puerto Rico, May 2-4, 2016.
[11] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience

replay,” in International Conference on Machine Learning, 2016.
[12] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,

“Dueling network architectures for deep reinforcement learning,” in
International Conference on Machine Learning, 2016.

[13] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, “Distributed prioritized experience
replay,” in International Conference on Machine Learning, 2018.

[14] X. Liang, X. Du, G. Wang, and Z. Han, “A deep q learning network for
traffic lights’ cycle control in vehicular networks,” IEEE Transactions

on Vehicular Technology, 2019, Early Access.
[15] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel ddpg method

with prioritized experience replay,” in IEEE International Conference

on Systems, Man, and Cybernetics, 2017, pp. 316–321.
[16] Y. Ye, D. Qiu, M. Sun, D. Papadaskalopoulos, and G. Strbac, “Deep

reinforcement learning for strategic bidding in electricity markets,” IEEE

Transactions on Smart Grid, 2019.
[17] L. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake

aerodynamics,” Progress in Aerospace Sciences, vol. 39, no. 6-7, pp.
467–510, 2003.

[18] M. Adaramola and P.-Å. Krogstad, “Experimental investigation of wake
effects on wind turbine performance,” Renewable Energy, vol. 36, no. 8,
pp. 2078–2086, 2011.

[19] N. Marathe, A. Swift, B. Hirth, R. Walker, and J. Schroeder, “Charac-
terizing power performance and wake of a wind turbine under yaw and
blade pitch,” Wind Energy, vol. 19, no. 5, pp. 963–978, 2016.

[20] R. J. Barthelmie, K. Hansen, S. T. Frandsen, O. Rathmann, J. Schepers,
W. Schlez, J. Phillips, K. Rados, A. Zervos, E. Politis et al., “Modelling
and measuring flow and wind turbine wakes in large wind farms
offshore,” Wind Energy: An International Journal for Progress and

Applications in Wind Power Conversion Technology, vol. 12, no. 5, pp.
431–444, 2009.

[21] D. Song, J. Yang, X. Fan, Y. Liu, A. Liu, G. Chen, and Y. H. Joo,
“Maximum power extraction for wind turbines through a novel yaw
control solution using predicted wind directions,” Energy Conversion

and Management, vol. 157, pp. 587–599, 2018.
[22] M. Vali, V. Petrović, S. Boersma, J.-W. van Wingerden, L. Y. Pao, and

M. Kühn, “Adjoint-based model predictive control for optimal energy
extraction in waked wind farms,” Control Engineering Practice, vol. 84,
pp. 48–62, 2019.

[23] A. C. Kheirabadi and R. Nagamune, “Modeling and power optimization
of floating offshore wind farms with yaw and induction-based turbine
repositioning,” in 2019 American Control Conference (ACC). IEEE,
2019, pp. 5458–5463.

[24] J. Quick, J. Annoni, R. King, K. Dykes, P. Fleming, and A. Ning,
“Optimization under uncertainty for wake steering strategies,” in Journal

of physics: Conference series, vol. 854, no. 1, 2017, Paper ID: 012036.
[25] P. A. Fleming, A. Ning, P. M. Gebraad, and K. Dykes, “Wind plant

system engineering through optimization of layout and yaw control,”
Wind Energy, vol. 19, no. 2, pp. 329–344, 2016.

[26] M. Vali, V. Petrović, S. Boersma, J.-W. van Wingerden, and M. Kühn,
“Adjoint-based model predictive control of wind farms: Beyond the quasi
steady-state power maximization,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 4510–4515, 2017.

[27] F. Ebrahimi, A. Khayatiyan, and E. Farjah, “A novel optimizing power
control strategy for centralized wind farm control system,” Renewable

Energy, vol. 86, pp. 399–408, 2016.
[28] P. M. O. Gebraad, F. Teeuwisse, J. Van Wingerden, P. A. Fleming,

S. Ruben, J. Marden, and L. Pao, “Wind plant power optimization
through yaw control using a parametric model for wake effects - a CFD
simulation study,” Wind Energy, vol. 19, no. 1, pp. 95–114, 2016.

[29] J. Park and K. H. Law, “Bayesian ascent: A data-driven optimization
scheme for real-time control with application to wind farm power
maximization,” IEEE Transactions on Control Systems Technology,
vol. 24, no. 5, pp. 1655–1668, 2016.

[30] ——, “A data-driven, cooperative wind farm control to maximize the
total power production,” Applied Energy, vol. 165, pp. 151–165, 2016.

[31] S. Boersma, B. Doekemeijer, M. Vali, J. Meyers, and J.-W. van Winger-
den, “A control-oriented dynamic wind farm model: WFSim,” Wind

Energy Science, vol. 3, no. 1, pp. 75–95, 2018.
[32] Z. Zhang, J. Chen, Z. Chen, and W. Li, “Asynchronous episodic deep

deterministic policy gradient: Toward continuous control in computation-
ally complex environments,” IEEE Transactions on Cybernetics, 2019,
Early Access.

[33] A. M. Do, A. V. Rupert, and G. Wolford, “Evaluations of pleasurable
experiences: The peak-end rule,” Psychonomic Bulletin & Review,
vol. 15, no. 1, pp. 96–98, 2008.

[34] A. R. Mahmood, H. P. van Hasselt, and R. S. Sutton, “Weighted
importance sampling for off-policy learning with linear function ap-
proximation,” in Advances in Neural Information Processing Systems,
2014, pp. 3014–3022.

[35] J. R. Marden, S. D. Ruben, and L. Y. Pao, “A model-free approach to
wind farm control using game theoretic methods,” IEEE Transactions

on Control Systems Technology, vol. 21, no. 4, pp. 1207–1214, 2013.
[36] D. Medici, “Experimental studies of wind turbine wakes: power optimi-

sation and meandering,” Ph.D. dissertation, KTH, 2005.
[37] https://github.com/TUDelft DataDrivenControl/WFSim.
[38] S. Boersma, M. Vali, M. Kühn, and J.-W. van Wingerden, “Quasi linear

parameter varying modeling for wind farm control using the 2D Navier-
Stokes equations,” in American Control Conference, 2016, IEEE, pp.
4409–4414.

[39] M. Vali, J.-W. van Wingerden, S. Boersma, V. Petrović, and M. Kühn,
“A predictive control framework for optimal energy extraction of wind
farms,” in Journal of Physics: Conference Series, Paper ID: 052013,
2016, IOP Publishing.

[40] J. M. Jonkman, M. L. Buhl Jr et al., “FAST user’s guide,” National
Renewable Energy Lab (NREL), Golden, CO, US, Tech. Rep., 2005.

[41] B. M. Doekemeijer, S. Boersma, L. Y. Pao, T. Knudsen, and J.-
W. v. Wingerden, “Online model calibration for a simplified les model
in pursuit of real-time closed-loop wind farm control,” Wind Energy

Science, vol. 3, no. 2, pp. 749–765, 2018.
[42] N. O. Jensen, “A note on wind generator interaction,” 1983.

16

[43] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Re-
inforcement learning through asynchronous advantage actor-critic on a
GPU,” in International Conference on Learning Representations, 2017.

Hongyang Dong is currently a Research Fellow
in Machine Learning and Intelligent Control at
the School of Engineering, University of Warwick,
Coventry, UK. He obtained his Ph.D. degree in Con-
trol Science and Engineering from Harbin Institute
of Technology, Harbin, China, in 2018. His current
research interests include reinforcement learning,
deep learning, intelligent control and adaptive con-
trol, with their applications in complex systems.

Xiaowei Zhao is Professor of Control Engineering
and an EPSRC Fellow at the School of Engineering,
University of Warwick, Coventry, U.K. He obtained
the PhD degree in Control Theory from Imperial
College London, London, U.K., in 2010. After that
he worked as a postdoctoral researcher at the Univer-
sity of Oxford, Oxford, U.K., for three years before
joining Warwick in 2013. His main research areas
are control theory and machine learning with appli-
cations in offshore renewable energy systems, local
smart energy systems, and autonomous systems.

