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Doctor Moliner 50, E-46100 Burjassot (València), Spain
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We present a realization of the idea that the Higgs boson is mainly a bound state of neutrinos

induced by strong four-fermion interactions. The conflicts of this idea with the measured values of

the top quark and Higgs boson masses are overcome by introducing, in addition to the right-handed

neutrino, a new fermion singlet, which, at low energies, implements the inverse seesaw mechanism.

The singlet fermions also develop a scalar bound state that mixes with the Higgs boson. This allows

us to obtain a small Higgs boson mass even if the couplings are large, as required in composite

scalar scenarios. The model gives the correct masses for the top quark and Higgs boson for

compositeness scales below the Planck scale and masses of the new particles above the electroweak

scale, so that we obtain naturally a low-scale seesaw scenario for neutrino masses. The theory

contains additional scalar particles coupled to the neutral fermions, which could be tested in present

and near future experiments.
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I. INTRODUCTION

In 1989 Bardeen et al. [1] (BHL) put forward the

idea that the Higgs boson could be a bound state of

top quarks by using an adapted Nambu-Jona-Lasinio

(NJL) model [2,3] (see also [4–9] for similar

approaches
1
). The mechanism is very attractive because

it gives a prediction for the top quark mass and for the

Higgs boson mass, which can be compared with

experiment. These predictions are based on two main

ingredients: (i) The existence of a Landau pole in the

top quark Yukawa and Higgs boson self-couplings at

the compositeness scale and (ii) the existence of

infrared fixed points in the renormalization group

equations (RGEs), which make the low-energy predic-

tions stable [12,13]. Unfortunately, the minimal version

predicts a too heavy top quark (mass above 200 GeV)

and an extremely heavy Higgs boson (mh ∼ 2mt at

leading order and above 300 GeV once corrections

are included). Since then, many authors have tried

to generalize the mechanism to give predictions in

agreement with experiment (for a review see, for

instance, [14,15]).

Among the different ideas, we find particularly inter-

esting the possibility that the Higgs boson is, mainly, a

bound state of neutrinos [16–19] because, after all,

neutrinos are already present in the Standard Model

(SM) and should have some non-SM interactions in

order to explain the observed neutrino masses and

mixings. In particular, if neutrino masses come from

the type I seesaw model, neutrino Yukawa couplings

could be large enough to implement the BHL mecha-

nism. This approach has two important problems: (i) In

the type I seesaw, the Majorana masses of right-handed

neutrinos should be quite large (at least ∼1013 GeV) for

Yukawa couplings of order one, which are needed

to generate the bound state. This means that there are

just a few orders of magnitude of running to reach the

Landau pole before the Plank scale. (ii) It is very

difficult to obtain the 125 GeV Higgs boson mass

because it tends to be too heavy. In Ref. [16] problem

(i) was circumvented by adding three families of

neutrinos with identical couplings and problem (ii) by

adding, by hand, a fundamental scalar singlet that mixes

with the Higgs doublet. This produces a shift in the

Higgs boson mass and allows one to accommodate the

measured value.

Here, we propose a quite different approach: (i) will be

solved by lowering the right-handed neutrino mass. This
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1
NJL interactions among “subquarks” were also used in

[10,11] to give predictions for the top quark and Higgs boson
masses.
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can be implemented naturally in inverse seesaw
2
type

scenarios [25,26] (see also [27,28]). To solve (ii) we will

also introduce a new scalar, however, this scalar will be a

composite of the new fermions required in the inverse

seesaw scenario, and therefore, its couplings will be fixed

by the compositeness condition.

Thus, in Sec. II we briefly describe the BHL mechanism.

In Sec. II Awe sketch the minimal version as applied to the

pure SM, and in Sec. II B we present the case in which the

Higgs boson is mainly a bound state of neutrinos within

the type I seesaw scenario according to Ref. [16]. In Sec. III

we discuss our implementation of the BHL mechanism.

First, in Sec. III A, we briefly review the inverse seesaw

model. Then, in Sec. III B we give the high-energy

Lagrangian, which only contains fermions and three four-

fermion interactions, and derive the low-energy Lagrangian,

which contains the SM Higgs doublet as a bound state

of the fermions plus and additional composite scalar singlet.

We also obtain the matching conditions for the couplings of

the two Lagrangians and show that all the dimensionless

couplings of the low-energy Lagrangian (three Yukawa and

three quartic couplings) are written in terms of two param-

eters at the compositeness scale. Last, in Sec. III Cwe run all

couplings down to the electroweak scale and compute the

top quark and Higgs boson masses, which are compared

with the experimental values. Finally, in Sec. IV we discuss

the main results of this work.

II. THE BHL MECHANISM

A. The SM case

In the BHL approach, one considers a SM without the

scalar doublet and, instead, one introduces a four-fermion

interaction among top quarks

L4f ¼
h2t

m2

0H

ðT̄LtRÞðt̄RTLÞ þ H:c:; ð1Þ

where TL is the SM left-handed third generation quark

doublet and tR is the top quark right-handed singlet. By

iterating this interaction one can show [1,3] that if it is

strong enough it will induce spontaneous symmetry break-

ing (SSB), ht̄LtRi ≠ 0, and the presence of a scalar bound

state of top quarks. For our purposes, this can be seen more

transparently by using the “bosonized” version [1]; namely,

the four-fermion interaction can be written as

LΛ ¼ −m2

0HjHj2 þ y0tT̄LtRH þ H:c:; ð2Þ

where H is a scalar doublet. On can easily check the

equivalence of Eqs. (1) and (2) by using the equations of

motion to remove the scalar field H, which gives h2t ¼ y2
0t.

This equivalence is exact, at some scale Λ, because the

fieldH has no kinetic term and, at this point, it must be seen

as an auxiliary field. However, quantum corrections involv-

ing only fermion loops will necessarily generate a scalar

kinetic term and scalar self-interactions. Thus, at a scale μ

just below the Λ scale, one generates kinetic terms for the

H, a renormalization of the mass and quartic terms

Lμ ¼ ZHðμÞjDμHj2 − m̃2
HðμÞjHj2 − 1

2
λ̃ðμÞjHj4

þ ỹtðμÞT̄LtRH þ H:c: ð3Þ

Calculation of the corresponding fermion loopswith a cutoff

Λ and imposing the “compositeness” boundary conditions

ZHðΛÞ¼ 0; λ̃ðΛÞ¼ 0; m̃2
HðΛÞ¼m2

0H; ỹtðΛÞ¼ y0t;

ð4Þ

one obtains

ZHðμÞ ¼ Ncy
2

0tLðμÞ; λ̃ðμÞ ¼ 2Ncy
4

0tLðμÞ;

m̃2
HðμÞ ¼ m2

0H − 2y2
0t

Nc

16π2
ðΛ2 − μ2Þ; ð5Þ

where

LðμÞ≡ 1

16π2
log

Λ
2

μ2
: ð6Þ

Notice that Yukawa couplings ỹt do not receive one-loop
corrections from fermions, therefore, ỹtðμÞ ¼ ỹtðΛÞ ¼ y0t.

Then, one rescales the field H → H=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ZHðμÞ
p

to

obtain the SM Lagrangian (with only top quark Yukawa

couplings),

LμR ¼ jDμHj2 −m2
HðμÞjHj2 − 1

2
λðμÞjHj4

þ ytðμÞT̄LtRH þ H:c:; ð7Þ

with

m2
HðμÞ ¼ m̃2

HðμÞ=ZHðμÞ;

y2t ðμÞ ¼ y2
0t=ZHðμÞ ¼

1

NcLðμÞ
; ð8Þ

λðμÞ ¼ λ̃ðμÞ=Z2
HðμÞ ¼

2

NcLðμÞ
¼ 2y2t ðμÞ: ð9Þ

2
There is some recent work in which low-scale seesaw models

are used to explain small neutrino masses. In particular, in [20]
they are used in a composite scalar scenario. However, in this
work the Higgs boson doublet is a fundamental Higgs and no
attempt is made to explain the observed Higgs boson and top
quark masses. Rather, the NJL framework is used to justify lepton
number violation and provide solutions to the cosmological
baryon asymmetry and dark matter problems (for the use of
right-handed neutrino condensates to solve these problems, see
also [21–23]). On the other hand, in [24] it is shown that the
inverse seesaw scenario is the most natural way to implement
neutrino masses in the littlest Higgs model with T parity.
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We see that the two couplings ytðμÞ and λðμÞ diverge

together when μ ¼ Λ, λðμÞ ¼ 2y2t ðμÞ. The last equation

is very important since it gives the relation between the

Higgs boson and the top quark masses. In fact, if

H0 ¼ ðvþ hÞ=
ffiffiffi

2
p

, one finds

mt ¼ ytðmtÞ
v
ffiffiffi

2
p ; m2

h ¼ λðmtÞv2¼ 2y2t ðmtÞv2¼ 4m2
t ;

ð10Þ

which is the standard compositeness result. Moreover, once

Λ is given, we have a prediction for the top quark and Higgs

boson masses (for simplicity we take mh ≈ λðmtÞv2; the
small running from mt to mh and finite corrections can also

be included),

y2t ðmtÞ ¼
1

NcLðmtÞ
¼ 16π2

Nc logðΛ2=m2
t Þ

→ m2
t ¼

8π2v2

Nc logðΛ2=m2
t Þ
: ð11Þ

The solution can be written in terms of the Lambert

function W−1ðxÞ

mt ¼ Λ exp

�

1

2
W−1

�

−
8π2v2

NcΛ
2

��

ð12Þ

and gives mt ¼ 164 GeV for Λ ¼ 1015 GeV, which is

reasonable, while the prediction mh ∼ 2mt is quite wrong.

For lower Λ, mt (and so mh) is larger. For instance, if

Λ ¼ 1010 GeV, Eq. (12) gives mt ¼ 210 GeV. However,

this calculation is not complete. Equations (8) should be

understood as boundary conditions for scales close to the

compositeness scale Λ, where the Higgs boson is not a

dynamical field (therefore, cannot appear in loops), and

gauge corrections are presumably small (the main contri-

butions come from QCD, which are small at large scales).

Thus, below the compositeness scale, the Higgs boson

contributions (fermion self-energies, vertex corrections,

and scalar self-interactions) should be included. Also,

strong interactions could become important at lower

energies. Therefore, to give accurate predictions, one

should use the complete RGEs of the SM with the

boundary conditions Eqs. (8) and (9). Still, the calculation

above illustrates the main consequences of the approach;

once Λ is given, everything is fixed, in particular mt

and mh.

Let us now see how the full predictions can be obtained.

The complete SM RGE beta functions are

βyt ¼ yt

�

9

2
y2t − 8g2

3
−
9

4
g2
2
−
17

20
g2
1

�

; ð13Þ

βλ ¼ 12

�

λ2 þ 9

400
g4
1
þ 3

40
g2
1
g2
2
þ 3

16
g4
2

þ λ

�

y2t −
3

20
g2
1
−
3

4
g2
2

�

− y4t

�

; ð14Þ

where g3, g2, g1 are the SM SU(3), SU(2), and U(1) SM

gauge couplings [normalized with the SU(5) prescription,

such that the weak mixing angle is given by tan2 θW ¼
ð3=5Þg2

1
=g2

2
and, for a generic coupling g, we are using the

convention βg ¼ 16π2μdg=dμ].

One can check that the couplings in Eq. (8) satisfy these

equations once one takes Nc ¼ 3, removes gauge terms,

and includes only contributions from fermion loops.

To impose the boundary conditions in Eq. (8) we cannot

take directly μ ¼ Λ since then the couplings diverge. We

will take the boundary conditions slightly below Λ, at μ ¼
Λκ ≡ Λ=κ with κ ≳ 1,

y2t ðΛκÞ¼
8π2

Nc logðκÞ
; λðΛκÞ¼ 2y2t ðΛ=κÞ¼

16π2

Nc logðκÞ
;

ð15Þ

which can be seen as matching conditions between the

SM and the theory at the compositeness scale. Thus, we

are assuming that we have the complete SM below

Λκ ≲ Λ, while from Λκ to Λ we have an effective theory

in which the Higgs boson is not a dynamical degree of

freedom (does not run in loops) and gauge interactions

are neglected. This setup eventually leads to a Landau

pole for all couplings at the scale Λ, but introduces a

dependence on the parameter κ, which parametrizes

possible matching uncertainties at the scale Λ. Most

of these uncertainties will be erased in the running from

Λ to the electroweak scale, if Λ ≫ mt, because of the

infrared fixed point structure of Eqs. (13) and (14),

which drive the couplings at low energies toward values

at which the corresponding beta functions cancel. For

instance, if in Eq. (13) weak couplings are neglected,

low-energy values of yt are attracted toward yt ∼
4

3
g3

(see, for instance, [12,13]). Notice that the details of the

complete theory (in this case the use of four-fermion

interactions to obtain the bound states) are encapsulated

in the boundary conditions (15).

Thus, one takes the gauge couplings measured at the

Z-boson mass scale mZ, runs them up to the scale Λk, and

then, using Eq. (15) and Eqs. (13) and (14), one obtains

ytðmtÞ and λðmhÞ, and therefore,
3
mt and mh.

With this procedure, one gets mt ¼ 223� 3 and mh ¼
246� 4 GeV for Λ ¼ 1017 GeV, and mt ¼ 455� 45 and

3
Well-known SM finite corrections at the weak scale can also

be included, if necessary.
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mh ¼ 605� 142 GeV for Λ ¼ 104 GeV, where the uncer-

tainties come from the input parameters [basically g3ðmZÞ]
and κ, which we vary κ from 2 to 10. These values are

compatible with the results of Ref. [1] when their input

parameters are used. This has to be compared with the

measured values mt ∼ 173 and mh ∼ 125 GeV. Quarks,

however, are not observed as free particles and there are

several possible definitions for their masses. The most

precisely measured value for the top quark mass is

obtained by kinematic reconstruction and yields

mt ∼ 173 GeV. Its connection with the parameters of

the Lagrangian is not clear, although it is believed to be

related, up to corrections of the order of the QCD scale

ΛQCD with the so-called pole mass, denoted here by mt

and defined as the position of the pole of the propagator

computed perturbatively. Running Yukawa couplings are

defined in the MS scheme and are more closely related

to the running mass m̄tðm̄tÞ. It is known that the relation

between these two quantities, pole and running masses,

is affected by large QCD radiative corrections, which

produces a shift of the order of 10 GeV between

the two definitions (see, for instance, Ref. [29]). This

would lower the mass from 173 to 163 GeV. The situation

is even more complicated if one also includes electroweak

corrections, which can be large because of the presence of

tadpole contributions [29]. Fortunately, one can show that,

at least at one loop, the connection between the pole mass

and the Yukawa coupling is free from these tadpole

contributions, rendering the electroweak corrections

small. Therefore, we use the known expressions that

connect the pole quark mass with the Yukawa coupling

[29,30]. Anyway, even taking into account all these

corrections, it is clear that the top quark mass prediction

is off by more than 50 GeV. The Higgs mass prediction is

even worse since the measured value is mh ¼ 125.1�
0.14 GeV and its connection to quartic couplings is only

affected by small weak corrections.

Clearly the minimal version of the mechanism is off even

for scales close to the Planck scale. The Higgs boson mass

prediction, above the top quark mass, seems particularly

difficult to reconcile with experiment. Moreover, the infra-

red fixed point structure of the RGEs suggests that, to

reconcile the mechanism with experiment, it is not enough

to modify the theory at high scales, but it is also necessary

to introduce new light degrees of freedom that modify

the RGEs.

B. The Higgs as a neutrino bound state

Here we briefly review the scenario in which the Higgs

boson is a bound state of neutrinos [16–19], specifically, we

follow more closely the Krog and Hill (KH) approach [16].

KH introduce the following four-fermion interactions (they

assume three families of leptons with a common coupling

and three colors for the quarks, whose indices will not be

displayed explicitly):

L4f ¼
h2ν

m2

0H

ðL̄LνRÞðν̄RLLÞ þ
h2tν

m2

0H

ðL̄LνRÞðt̄RTLÞ

þ 1

2
νcRMRνR þ H:c:; ð16Þ

where LL are the left-handed lepton doublets, νR are the

right-handed neutrinos, and MR is a 3 × 3 right-handed

neutrino Majorana mass matrix necessary to implement the

type I seesaw mechanism for neutrino masses. If hν ≫ hνt,
the NJL interaction can be written in terms of an auxiliary

scalar doublet H (to be identified as the Higgs doublet)

LΛ ¼ −m2

0HH
†H þ y0tT̄LtRH þ y0νL̄LνRH

þ 1

2
νcRMRνR þ H:c:; ð17Þ

as can be checked by removing the field H using the

equations of motion. Notice that in this procedure one

neglects terms of order y2
0t, which would induce a pure top

quark four-fermion interaction. This means that H will be

mainly a bound state of neutrinos with a small contribution

from top quarks.

Below the scale Λ, a Higgs kinetic term and a potential

are generated and, after Higgs wave function renormaliza-

tion, one recovers a SM Lagrangian, Eq. (7), but including

neutrino Yukawa couplings and right-handed neutrino

Majorana masses, written in terms of renormalized cou-

plings ytðμÞ and yνðμÞ. Then, one runs this Lagrangian

from Λ to the scale MR, where right-handed neutrinos

decouple and generate active neutrino masses given by the

standard seesaw formula mν ∼ y2νðMRÞhHi=MR. Since

yνðMRÞ are expected to be Oð1Þ in order to drive the

NJL and mν < 1 eV, MR is expected to be larger than

1013 GeV. Below MR one has the SM with tiny neutrino

Majorana masses. The point is that, above the scaleMR, the

neutrino Yukawa coupling yν contributes to the running of

the top quark Yukawa coupling

βyt ¼ yt

�

9

2
y2t þ 3y2ν þ � � �

�

; μ > MR; ð18Þ

where the ellipsis � � � represents SM gauge terms.

Then, above MR, the neutrino Yukawa couplings drive

the top quark Yukawa coupling to diverge at some scale

Λ ∼ 1020 GeV if the ratio yν=yt is large enough.

What about the Higgs boson mass? In Sec. II Awe have

seen that, in the NJL scheme, quartic couplings should also

diverge at the scaleΛ. However, in the pure SM this leads to

a too heavy Higgs boson. Unfortunately, the introduction of

the neutrino Yukawa couplings does not help here, in fact, it

even worsens the situation because Yukawa couplings give

always a negative contribution to the running of quartic

couplings. KH solve this problem by introducing a funda-

mental neutral scalar singlet S at the electroweak scale, as in
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scalar Higgs portal models [31–33]. In these models, if the

singlet scalar develops a vacuum expectation value (VEV)

hSi ≫ hHi, the mass of the lighter scalar is given by

m2

h ≃ 2

�

λH −
λ2HS

λS

�

hHi2; ð19Þ

where λH, λS and λHS are the quartic couplings ofH, S, and
mixed H, S respectively. From Eq. (19) it is clear that mh

can be relatively small even if the quartic couplings are

order one. Moreover, in the KH setup, only λH is fixed by

the compositeness boundary conditions, while λHS and λS
are arbitrary and can be adjusted at will.

III. THE INVERSE SEESAW MODEL WITH

COMPOSITE SCALARS

A. The inverse seesaw model of neutrino masses

A nice way to lower the seesaw scale at arbitrary scales is

provided by the so-called inverse seesaw (ISS) mechanism.

In this mechanism [25,26], one introduces, in addition to

three right-handed neutrinos νR, three new singlet fermions

nL, with Lagrangian

LISS ¼ L̄LyννRH þ ν̄RMνnnL þ 1

2
ncLμnnL þ H:c:; ð20Þ

where yν, Mνn, and μn are 3 × 3 matrices. Notice that, if

μn ¼ 0, the lepton number can be assigned in such a way

that it is conserved. After SSB the Lagrangian (20) leads to

the following Majorana mass term

LISS ¼
1

2
ð νcL νR ncL Þ

0

B

@

0 y�νhHi 0

y†νhHi 0 Mνn

0 MT
νn μn

1

C

A

0

B

@

νL

νcR

nL

1

C

A

þ H:c: ð21Þ

If μn ¼ 0, this can be diagonalized exactly and leads to

three Dirac neutrinos, whose masses squared are the

eigenvalues of the matrix M2
νH

¼ y�νyνhHi2 þM†
νnMνn,

and three exactly massless Weyl neutrinos. If μn ≠ 0, the

lepton number is explicitly broken and the would-be

massless neutrinos acquire a mass matrix given by (in

the limit Mνn ≫ yνhHi)

mν ≃ y�ν
hHi
MT

νn

μn
hHi
Mνn

y†ν; ð22Þ

so that if μn is small, mν can be below 1 eV even if yν is
order one and Mνn about 1 TeV.

An interesting variation consists in taking μn ¼ 0 and

adding a Majorana mass term for right-handed neutrinos,

νcRμννR. In that case, active neutrino masses are not

generated at tree level (the determinant of the mass

matrix remains zero), but are generated at one loop [34].

Neutrino masses are given by a similar expression but

with an extra loop suppression factor, which allows for

larger values of μν.

B. The inverse seesaw model with composite scalars

In the following,wewill embed thismechanism in theBHL

scheme, and the interesting thing is that, since themassesof the

new neutral heavy leptons could be naturally at the electro-

weak scale, they can be obtained through SSB of a composite

singlet scalar at low scales and implement the Higgs portal

mechanism to accommodate the Higgs boson mass.

We will consider a Lagrangian with only fermions and

the following interactions and Majorana mass terms
4
:

L4f ¼
h2ν

m2

0H

ðL̄LνRÞðν̄RLLÞþ
h2s

m2

0H

ðn̄LνRÞðν̄RnLÞ

þ
�

h2tν

m2

0H

ðL̄LνRÞðt̄RTLÞþ
1

2
ncLμnnLþH:c:

�

; ð23Þ

where the Majorana mass term for nL, μn, can be included

becausenL is a singlet and it is necessary to obtainmasses for

active neutrinos (as discussed before, an alternativewould be

to add a right-handed neutrinoMajorana mass term ν̄cRμννR).

Notice that this Lagrangian, when μn ¼ 0, preserves two

global phase symmetries LνR
∶ νR → eiανR, LL → eiαLL,

andLnL
∶ nL → eiβnL. If μn ≠ 0,LnL

is explicitly broken but

LνR
is preserved; if μν ≠ 0, LνR

would be broken but LnL

would be preserved and, finally, a term ν̄RnL would break the
two but keepLνL

þ LnL
. This Lagrangian can be obtained (in

the limit in which hν ≫ htν) from

LΛ ¼ −m2

0HH
†H þ y0tT̄LtRH þ y0νL̄LνRH

−m2

0SS
†Sþ y0sSν̄RnL þ 1

2
ncLμnnL þ H:c:; ð24Þ

where S is a singlet scalar field, whichwill be interpreted as a
n̄LνR bound state. Fermion loops will induce a scalar

potential and kinetic terms for the scalars

Lμ¼ZHðμÞjDμHj2−m̃2
HðμÞjHj2þZSðμÞj∂μSj2−m̃2

SðμÞjSj2

−
1

2
λ̃HðμÞjHj4−1

2
λ̃SðμÞjSj4−

1

2
λ̃HSðμÞjHj2jSj2

þ
�

ỹtðμÞT̄LtRHþ ỹνðμÞL̄LνRHþ ỹsðμÞSν̄RnL

þ1

2
ncLμnnLþH:c:

�

: ð25Þ

4
For simplicity, we use only one family of leptons and nL, but

the mechanism can be generalized easily to three families à la
KH. Moreover, to generate masses for the other quarks and
leptons, one should also introduce additional four-fermion
interactions, which will be neglected here.
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Calculation of the corresponding fermion loops and impos-

ing the compositeness boundary conditions

ZHðΛÞ ¼ ZSðΛÞ ¼ 0; λ̃HðΛÞ ¼ λ̃SðΛÞ ¼ λ̃HSðΛÞ ¼ 0;

m̃2
HðΛÞ ¼m2

0H; m̃2

SðΛÞ ¼m2

0S;

ỹtðΛÞ ¼ y0t; ỹνðΛÞ ¼ y0ν; ỹsðΛÞ ¼ y0s; ð26Þ

gives

ZHðμÞ ¼ ðy2
0ν þ Ncy

2

0tÞLðμÞ; ZSðμÞ ¼ y2
0sLðμÞ;

λ̃HðμÞ ¼ ð2y4
0ν þ 2Ncy

4

0tÞLðμÞ;
λ̃SðμÞ ¼ 2y4

0sLðμÞ; λ̃HSðμÞ ¼ 2y2
0νy

2

0sLðμÞ

m̃2
HðμÞ ¼ m2

0H − ð2y2
0ν þ 2Ncy

2

0tÞ
1

16π2
ðΛ2 − μ2Þ;

m̃2

SðμÞ ¼ m2

0S −
y2
0s

8π2
ðΛ2 − μ2Þ ð27Þ

and, as in the SMcase, ỹtðμÞ¼ ỹtðΛÞ¼y0t, ỹνðμÞ ¼ ỹνðΛÞ ¼
y0ν, ỹsðμÞ ¼ ỹsðΛÞ ¼ y0s.

Now one rescales the scalar fields H → H=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ZHðμÞ
p

and

S → S=
ffiffiffiffiffiffiffiffiffiffiffiffi

ZSðμÞ
p

to obtain

LμR ¼ jDμHj2 −m2
HðμÞjHj2 þ j∂μSj2 −m2

SðμÞjSj2

−
1

2
λHðμÞjHj4 − 1

2
λSðμÞjSj4 −

1

2
λHSðμÞjHj2jSj2

þ
�

ytðμÞT̄LtRH þ yνðμÞL̄LνRH þ ysðμÞSν̄RnL

þ 1

2
ncLμnnL þ H:c:

�

; ð28Þ

with

m2
HðμÞ ¼ m̃2

HðμÞ=ZHðμÞ; m2

SðμÞ ¼ m̃2

SðμÞ=ZSðμÞ;

y2sðμÞ ¼ y2
0s=ZSðμÞ ¼

1

LðμÞ ; ð29Þ

y2t ðμÞ ¼ y2
0t=ZHðμÞ ¼

p2

ð1þ Ncp
2ÞLðμÞ ;

y2νðμÞ ¼ y2
0ν=ZHðμÞ ¼

1

ð1þ Ncp
2ÞLðμÞ ; ð30Þ

λHðμÞ ¼ λ̃HðμÞ=Z2
HðμÞ ¼

2ð1þ Ncp
4Þ

ð1þ Ncp
2Þ2LðμÞ ;

λSðμÞ ¼ λ̃SðμÞ=Z2

SðμÞ ¼
2

LðμÞ ; ð31Þ

λHSðμÞ ¼ λ̃HSðμÞ=ðZHðμÞZSðμÞÞ ¼
2

ð1þ Ncp
2ÞLðμÞ ;

p≡ y0t=y0ν; ð32Þ

where we have defined p≡ y0t=y0ν, which characterizes

the relative strength of top quark to neutrino interactions

and must be small.

If the two scalar fields develop a VEV, the model

specified by the Lagrangian in Eq. (28) implements the

ISS mechanism described in Sec. III with a mass

Mνn ¼ yshSi. Therefore, if μn ≪ hHi ≪ hSi, one can

explain small neutrino masses. Moreover, with this hier-

archy of scales, one can also implement the Higgs portal

model [31–33], in which the effective low-energy Higgs

quartic coupling λ can be small even if the complete theory

quartic couplings are large, as usually required in NJL

scenarios (see Sec. II B). This leads to the following

hierarchy of masses: mν∼μnhHi2=hSi2≪mt, mh ∝ hHi≪
M∼ms, mνH

∝ hSi ≪ Λ, where we have denoted by M,

generically, the scale of new particles, the scalar S, ms, and

the neutral heavy leptons νH, mνH
. Notice that, since the

scalar potential has an extra global symmetry,
5
S → eiαS,

broken spontaneously, the low-energy spectrum contains, in

addition to the SM fields, a Goldstone boson coupledmainly

to the neutral heavy particles. Then, it is a kind of singlet

Majoron [35] (triplet and doublet Majorons [36,37] are now

excluded because of the well-measured invisible decay

width of the Z boson). The phenomenology of this type

of model is very interesting and one can usually cope with it

(a detailed phenomenological study of the model and some

of its variations will be given elsewhere). Just note that the

mixing of the singlet scalar with the doublet will induce

modifications of the Higgs boson couplings, which are

experimentally constrained, and an invisible decay of the

Higgs boson to Majorons, which is also constrained. These

constraints can be satisfied by taking hSi large enough. Here
we are more interested in the possibility of obtaining the

observed top quark and the Higgs boson masses in this NJL

scenario. Since the Majorana mass for the new fermion nL
must bemuch below the electroweak scale μn ≪ hHi, it will
not affect this calculation and can be safely neglected. We

will reintroduce it at the end when we discuss neutrino

masses.

C. The top quark and Higgs boson masses

To obtain the value ofmt, we take the measured values of

the gauge couplings at mZ and run them up to Λκ with SM

RGEs. Since the new particles are all singlets, at one loop,

they do not affect the running of gauge couplings. At the

scale Λκ, we impose the boundary conditions (29)–(32) and

obtain all Yukawa couplings, yt, yν, ys, and quartic

couplings λH, λS, λHS, as functions of κ and p. Then we

run them with the RGEs of the complete model (see the

Appendix for the beta functions) up to the scale M, which

we fix at some value above the electroweak scale. At the

5
This is just a consequence of the global symmetries of the new

four-fermion interactions we have introduced.
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scale M we assume that S develops a VEV,
6
giving a ν̄RnL

mass term so that the fermions νR and nL combine to form a

Dirac fermion (if μn ¼ 0, if μn ≠ 0 a pseudo-Dirac fermion)

with mass mνH
∼ ysðMÞhSi ∼M. Then, to obtain the top

quark mass, we decouple the heavy particles and run the top

quark Yukawa coupling with the SM RGEs from M to

μ ¼ mt, which at this point is still unknown, but can easily

be computed by using the SM relation
7

ytðmtÞ ¼
ffiffiffi

2

p mt

v
ð1þ δtÞ; δt ≈ −0.059: ð33Þ

Here δt represents the well-known SM corrections to the

relation between the top quark pole mass and the Yukawa

coupling [29,30]. δt includes QCD corrections that, as

commented on in Sec. II, are very large and some small

electroweak corrections. For masses mt ∼ 173 and

mh ∼ 125 GeV, δt can be well approximated by the number

given above, which we use in the following calculations,

but it can be computed for arbitrary values of mt and mh.

We represent in Fig. 1 an example of the running of all

Yukawa couplings for p ¼ 0.1, Λ ¼ 1017 GeV, κ ¼ 2, and

M ¼ 10 TeV that reproduces the correct value of

mt ∼ 173 GeV. The SM RGEs running is shown in the

dashed blue line, while the running with the new particles is

shown in the solid blue line (from M to Λκ). Above Λκ all

Yukawa couplings run only with fermion loops (dotted

line) and meet the Landau pole at μ ¼ Λ. We see how the

Yukawa couplings yν and ys pull the top quark Yukawa

coupling yt toward the Landau pole.

To obtain the Higgs boson mass we have to study the

Higgs potential. As commented before, we assume that the

two scalars obtain a VEV, then we write

Hð0Þ¼ 1
ffiffiffi

2
p ðvþhþ iωð0ÞÞ; S¼ 1

ffiffiffi

2
p ðuþ sþ iθÞ: ð34Þ

Since the potential has an extra global symmetry S → eiαS,
broken spontaneously, the low-energy spectrum (below

μ ¼ M) contains, in addition to the SM fields, a Goldstone

boson, which is given by the imaginary part of S, θ. On the
other hand, the real part of S mixes with the Higgs doublet

with a mass matrix squared given by [in the ðh; sÞ basis]

M2

scalars ¼
�

λHv
2 λHSvu

λHSvu λSu
2

�

; v≡
ffiffiffi

2

p
hHi; u≡

ffiffiffi

2

p
hSi:

ð35Þ

The smallest of the eigenvalues m2

h can be identified with

the observed Higgs boson mass squared, while the largest

will give the mass squared of the new scalar (for u ≫ v,

m2
s ∼ λSu

2). It is easy to check that these two eigenvalues

are related by

m2

h ¼ v2
�

λH −
λ2HS

λS

�

1 − λHv
2=m2

s

1 − ðλH − λ2HS=λSÞv2=m2
s

⟶

ms≫v
v2
�

λH −
λ2HS

λS

��

1 −
λ2HS

λS

v2

m2
s

þ � � �
�

: ð36Þ

Then if ms ≫ v, the effect of the new scalar on the Higgs

boson mass is just a redefinition of the SM quartic coupling

λ, in terms of the couplings of the complete theory
8

λðMÞ ¼
�

λHðMÞ − λ2HSðMÞ
λSðMÞ

�

: ð37Þ

Since we know, from the measured value of the Higgs

boson mass, that λ is small, and the λH;HS;S are naturally

large in composite scenarios, Eq. (37) requires a cancella-

tion. It is interesting to note
9
that in our model this

cancellation naturally occurs for p ≪ 1 because of the

boundary conditions in Eqs. (31) and (32).

1

2

5

FIG. 1. Evolution of the Yukawa couplings, as explained in the

text, for p ¼ 0.1, Λ ¼ 1017 GeV, κ ¼ 2. The new heavy particles

are assumed to have a mass M ¼ 10 TeV where they decouple.

Then, from M to the electroweak scale, the top quark Yukawa

coupling yt is run according to SM RGEs. For the chosen values,

this procedure gives finally mt ¼ 173 GeV.

6
We assume that the parameters of the model are adjusted,

such as both the doublet H and the singlet S develop a vacuum
expectation value, i.e., m2

HðMÞ < 0 and m2

SðMÞ < 0.
7
Therefore, we stop the running when this equation is satisfied.

8
We perform the matching at a scaleM of the order of the mass

of the new particles, the fermions, and the scalars, which we

assume are of the same order. Since for u ≫ v, mνH
∼ ysu=

ffiffiffi

2
p

and m2
s ∼ λSu

2, one needs λS and y2s to be of the same order. This
is guaranteed by the boundary conditions at the Λκ scale. To be
definite, in our calculations we take M ¼ ms, but we have
checked that this condition is not strongly modified by the
running from Λκ to M.

9
We thank the referee for remarking this important point to us.
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The connection between mh and λ will have tree-level

corrections δhs, which vanish for ms ≫ v, as shown in

Eq. (36). Moreover, one-loop logarithmic electroweak

corrections can be incorporated by running λ from M to

mt according to the SM. Finally, to connect λðmtÞ with the

physical Higgs boson mass mh, one should also take into

account the well-known one-loop SM corrections at the mt

scale [38], δh. Thus, one has

m2

h ¼ λðmtÞv2
1þ δhs

1þ δh
; δh ∼ −0.011; ð38Þ

where δh is given by a complicated expression that depends

on the masses of SM particles [38], but for mh ∼ 125 and

mt ∼ 173 GeV, it is well approximated by the value above,

while δhs is obtained by comparing the first line in Eq. (36)

with Eq. (38) when one-loop corrections are set to zero, that

is, when δh ¼ 0 and λðmtÞ ¼ λðMÞ,

δhs≃−
λ2HSðMÞ
λSðMÞ

v2

m2
s

�

1−

�

λHðMÞ−λ2HSðMÞ
λSðMÞ

�

v2

m2
s

�

−1

: ð39Þ

To evaluate these expressions we need the λH;S;SH

couplings at the scale M and λ at the scale mt. For that

we run them using the beta functions given in the

Appendix. In Fig. 2 we give an example with the same

values of p, M, Λ, and κ as in Fig. 1, where we see how

λH;S;SH evolve to lower energies from the Landau pole.

Since at μ ¼ M ¼ 10 TeV all the heavy particles decouple,

the couplings λH;S;SH do not run anymore but leave a SM-

like theory with an effective coupling λðMÞ given by

Eq. (37). Then, from M to the electroweak scale λ runs

according the SM RGEs. This procedure gives finally (for

the chosen values of p, M, Λ, and κ) mh ¼ 125 GeV

(and mt ¼ 173 GeV).

We can repeat this procedure for different values of p, Λ
(and κ, M) and check if they are able to reproduce the

measured values of mt ∼ 173 and mh ∼ 125 GeV.

In Fig. 3 we depict the region of p;Λ that can reproduce

values of mt in a region of 1 GeV around mt ¼ 173 GeV

(band with green-pink colors) and mh in a region of 1 GeV

around mh ¼ 125 GeV (gray band). We do this for two

values of κ in each plot (for fixed M ¼ 1 TeV on the right

and M ¼ 1000 TeV on the left). We see that, indeed, there

is an overlapping region where one can reproduce both the

Higgs boson and the top quark masses. For M ¼ 1 TeV

0.2

0.5

1

2

5

FIG. 2. Evolution of the scalar quartic couplings, as explained

in the text, for the same values as in Fig. 1. At the scale M ¼
10 TeV the new particles decouple, leaving a SM quartic

coupling, given by Eq. (37), which runs up to the weak scale

according to the SM RGEs. For the chosen values, this procedure

gives finally mh ¼ 125 GeV.

172.0

172.5

173.0

173.5

174.0

124.0

124.5

125.0

125.5

126.0

FIG. 3. Region of p, Λ that can reproduce values of mt in a region of 1 GeV around mt ¼ 173 GeV (bands with green-pink colors,

lighter grays if seen as grayscale) and mh in a region of 1 GeV around mh ¼ 125 GeV (darker thinner gray bands). On the left for

M ¼ 1000 TeV and on the right for M ¼ 1 TeV. In each plot, we present results for two different values of κ.
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this is found around Λ ∼ 1019 GeV, while for M ¼
1000 TeV the overlapping region occurs around

Λ ∼ 1012 GeV. Larger values of M lead to lower values

of Λ, but for M ≳ 108 GeV there are no solutions. The

effect of the exact scale at which we perform the matching

between the complete model and the model with static

scalars, which is parametrized by κ ¼ Λ=Λκ, only changed

the preferred value of p, which is always small, as required

for consistency. We only represent values of Λ a couple of

orders of magnitude above M, since for Λ close to M the

range of running is very small and the results are com-

pletely dominated by the matching, which cannot reliably

be computed without knowing the details of the complete

theory behind the four-fermion interactions.

Once mt and mh are obtained with the correct values, all

the couplings and scales are quite constrained. However,

the Majorana mass terms of the heavy fermions μν and/or

μn are completely free and can be adjusted to obtain

neutrino masses below 1 eV using the inverse seesaw

formula, Eq. (22). A complete analysis of neutrino masses,

as for the rest of the fermions, requires a three family

analysis, but it is clear that given the freedom in μν;n there

should be no problem for adjusting neutrino masses and

mixings. Alternatively, one could also try to generate the

Majorana mass terms by using composite scalars breaking

lepton number as done in [39] with the interesting conse-

quences discussed there.

IV. CONCLUSIONS

Following previous works [16,18,19], we have explored

the possibility that the observed Higgs boson is mainly a

bound state of neutrinos formed because a strong four-

fermion interaction between neutrinos appears at high

scales. The minimal version of this scenario has problems

to reproduce the observed top quark mass and, especially,

the Higgs boson mass. We have overcome these problems

by introducing, in addition to right-handed neutrinos νR, a

new singlet fermion nL, with four-fermion interactions

ðν̄RnLÞðn̄LνRÞ, which gives rise to a new scalar bound state.

This singlet scalar develops a VEV and, therefore, mixes

with the Higgs doublet, allowing us to obtain a small Higgs

mass even if the couplings are large, as required in

composite scalar models.

The compositeness condition basically fixes all Yukawa

and quartic couplings at the compositeness scale; therefore,

the parameters of the model are very constrained. In spite of

that, this setup can accommodate the correct masses for the

top quark and Higgs boson for compositeness scales below

the Planck scale and masses of the new particles above the

electroweak scale but below ∼108 GeV.

If small Majorana masses are allowed for νR and/or nL,
we naturally obtain a low-scale seesaw scenario for

neutrino masses with the presence of additional neutral

scalars coupled to the neutral fermions. If the scale of the

new particles is not much larger than 1 TeV, the model

exhibits a very rich phenomenology that could be tested in

present and near future experiments and will be studied in

another publication. Further extensions in which the

Majorana mass terms for νR and/or nL are also generated

by dynamical symmetry breaking might also be interesting.
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APPENDIX: RGEs OF THE MODEL

Here we give the RGE beta functions of the model,

which have been computed with the help of SARAH [40]

[we use the SU(5) convention 3g2
1
¼ 5g02 for the U(1)

factor].

Gauge couplings (same as in the SM):

βg1 ¼
41

10
g3
1
; βg2 ¼ −

19

6
g3
2
; βg3 ¼ −7g3

3
: ðA1Þ

Yukawas:

βyt ¼ yt

�

9

2
y2t − 8g2

3
−
9

4
g2
2
−
17

20
g2
1
þ y2ν

�

βyν ¼ yν

�

5

2
y2ν þ

1

2
y2s þ 3y2t −

9

20
ð5g2

2
þ g2

1
Þ
�

βys ¼ ysð2y2s þ y2νÞ: ðA2Þ

Quartic couplings:

βλH ¼ 12λ2Hþ 27

100
g4
1
þ 9

10
g2
1
g2
2
þ9

4
g4
2

þλH

�

12y2t −
9

5
g2
1
−9g2

2
þ4y2ν

�

þ2λ2HS−4y4ν−12y4t

βλS ¼ 10λ2Sþ4λSy
2
s þ4λ2HS−4y4s

βλHS
¼ λHS

�

4λHSþ6λHþ4λSþ2y2νþ2y2s þ6y2t

−
9

10
g2
1
−
9

2
g2
2

�

−4y2sy
2
ν: ðA3Þ
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