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COMPOSITE IMAGES OF GALOIS FOR ELLIPTIC CURVES

OVER Q AND ENTANGLEMENT FIELDS

JACKSON S. MORROW

Abstract. Let E be an elliptic curve defined over Q without complex mul-
tiplication. For each prime ℓ, there is a representation ρE,ℓ : Gal(Q/Q) →

GL2(Z/ℓZ) that describes the Galois action on the ℓ-torsion points ofE. Build-
ing on recent work of Rouse–Zureick-Brown and Zywina, we find models for
composite level modular curves whose rational points classify elliptic curves
over Q with simultaneously non-surjective, composite images of Galois. We
also provably determine the rational points on almost all of these curves. Fi-
nally, we give an application of our results to the study of entanglement fields.

1. Introduction

Let E be an elliptic curve over a number field K. For any positive integer n, we
denote the n-torsion subgroup of E(K), where K is a fixed algebraic closure of K,
by E[n]. For a prime ℓ, let

E[ℓ∞] := lim←−
n≥1

E[ℓn]

and

E[tors] := lim←−
n≥1

E[n].

By fixing a Ẑ-basis for E[tors], there is an induced Z/nZ-basis on E[n] for any
positive integer n. The absolute Galois group GK := Gal(K/K) has a natural
action on each torsion subgroup, which respects each group structure. In particular,
we have the continuous representations

ρE,n : GK −→ Aut(Z/nZ) ∼= GL2(Z/nZ) (mod n),

ρE,ℓ∞ : GK −→ Aut(E[ℓ∞]) ∼= GL2(Zℓ) (ℓ-adic),

ρE : GK −→ Aut(E[tors]) ∼= GL2(Ẑ) (adélic),

where the image under ρ is uniquely determined up to conjugacy in its respective
general linear group. The n-division field K(E[n]) is the fixed field of K by the
kernel of the mod n representation; moreover, the Galois group of this number field
is the image of the mod n representation.

A celebrated theorem of Serre [Ser72] says that for an elliptic curve over K
without complex multiplication (non-CM), the adélic representation ρE has open

image in GL2(Ẑ). Serre’s theorem raised many questions concerning the possible

images of the adélic representation. The group GL2(Ẑ) is both a product group
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and a profinite group via the isomorphisms
∏

ℓ prime

GL2(Zℓ) ∼= GL2(Ẑ) ∼= lim←−
n

GL2(Z/nZ).

Serge Lang [Lan87] referred to these two characterizations as the horizontal and

vertical natures of GL2(Ẑ), respectively, and this binal nature of GL2(Ẑ) provides
two flavors of questions stemming from Serre’s work.

Horizontally speaking, for any non-CM elliptic curve overK, there exists a small-
est integer rE/K > 0 such that for all ℓ ≥ rE/K , the ℓ-adic representation is surjec-
tive. Serre asked if rE/K depends only on K, and whether rE/Q = 37. In [Zywb],
Zywina gave a refined conjecture concerning the surjectivity of the mod ℓ image
and provided a practical algorithm (implemented in Sage) to compute the finite
set of primes ℓ for which ρE,ℓ is not surjective; a prime ℓ is called exceptional if it
belongs to this finite set.

Vertically speaking, one interesting question is to determine when the adélic
image is surjective. Serre showed that the adélic image is always contained in

some index 2 subgroup of GL2(Ẑ) for E defined over Q. Greicius [Gre10] found
necessary and sufficient abstract conditions on a number field L for which ρE could
be surjective. Building on previous work of Duke [Duk97] and Jones [Jon10], Zywina
[Zyw10,Zywa] proved that for a number field L �= Q such that L∩Qcyc. = Q, almost
all elliptic curves over L (in the sense of density) have surjective, adélic image.

The vertical variant also leads us to ask for the possible values for the index
of the adélic image for a given non-CM elliptic curve. This question is the focus

of [Maz77, Program B]. In particular, given an open subgroup H ⊂ GL2(Ẑ), this
program strives to classify all elliptic curves E/K such that the image of ρE is
contained in H. The work of this program suggests that there exists a constant
B(K) such that for every elliptic curve E/K without complex multiplication, the

index of ρE(GK) in GL2(Ẑ) is bounded by B(K).
To determine ρE(GK), one begins by computing the ℓ-adic image ρE,ℓ∞ for each

prime ℓ, which leads to the inclusions

ρE(GK) →֒
∏

ℓ prime

ρE,ℓ∞(GK) ⊆
∏

ℓ prime

GL2(Zℓ).

The image of ρE(GK) under the above inclusion will project onto each ℓ-adic factor,
and so a natural first step in Mazur’s Program B is to classify the ℓ-adic image of
Galois.

We briefly recall recent progress in Mazur’s Program B. Zywina [Zywc] has de-
scribed all known, and conjecturally all, pairs (E, ℓ) such that ρE,ℓ(GQ) is non-
surjective. Rouse and Zureick-Brown [RZB15] provided a complete list of the 1208
possible 2-adic Galois representations associated to non-CM elliptic curves over Q.
Sutherland and Zywina [SZ] also determined all of the prime power level modular
curves XG for which XG(Q) is infinite. In all of these works, the authors give ratio-
nal functions whose values correspond to j-invariants of non-CM elliptic curves over
Q with image of Galois conjugate to a subgroup of G in the appropriate general
linear group. The computations of these rational functions occupy the majority of
these works.

In this paper, we investigate the composite-(m1,m2) image (ρE,m1
×ρE,m2

)(GK)
for m1,m2 relatively prime. Let ℓ be a prime, let Gn,ℓ ⊂ GL2(Z/ℓZ) be a proper
subgroup which arises as an image of ρE,ℓ(GQ) and contains −I (these subgroups

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPOSITE IMAGES OF GALOIS FOR ELLIPTIC CURVES OVER Q 2391

come from [Zywc], and we produce the list of these subgroups Gn,ℓ in Appen-
dix A; here ℓ refers to the level of the group and n is simply an index), and let
Hi ⊂ GL2(Z/2

mZ) be a proper subgroup which arises as an image of ρE,2∞(GQ)
and contains −I coming from [RZB, gl2data.txt]. Using the rational functions
corresponding to the j-maps of the modular curves XHi

(2m) and XGn,ℓ
(ℓ), con-

struct the following fibered product:

X ′ XGn
(ℓ)

XHi
(2m) P1

Q

j(Gn,ℓ)

j(Hi)

We define the composite-(2m, ℓ) level modular curve XHi,Gn,ℓ
(2m · ℓ) to be the

normalization of the fibered product X ′. The aforementioned j-map equations
allow us to readily find equations for X ′, but this curve is usually singular, which
necessitates taking a normalization.

The Q-points on XHi,Gn,ℓ
(2m · ℓ) correspond to elliptic curves E over Q with

composite-(2m, ℓ) image conjugate to some subgroup of Hi×Gn,ℓ ⊂ GL2(Z/2
mZ)×

GL2(Z/ℓZ) ∼= GL2(Z/2
m ·ℓZ) via the chinese remainder theorem. Succinctly, these

rational points classify elliptic curves over Q with simultaneously non-surjective,
composite-(2m, ℓ) image of Galois.

Notation. Before we state our main results, we set some notation for specific sub-
groups of GL2(Z/ℓZ). Let Csp(ℓ) be the subgroup of diagonal matrices. Let ǫ = −1
if ℓ ≡ 3 (mod 4) and otherwise let ǫ ≥ 2 be the smallest integer which is not a qua-
dratic residue modulo ℓ. Let Cnsp(ℓ) be the subgroup consisting of matrices of the
form

(
a bǫ
b a

)
with (a, b) ∈ Z/ℓZ2\{(0, 0)}. LetNsp(ℓ) and Nnsp(ℓ) be the normalizers

of Csp(ℓ) and Cnsp(ℓ), respectively, in GL2(Z/ℓZ). We have [Nsp(ℓ) : Csp(ℓ)] = 2
and the non-identity coset of Csp(ℓ) in Nsp(ℓ) is represented by ( 0 1

1 0 ). We have
[Nnsp(ℓ) : Cnsp(ℓ)] = 2 and the non-identity coset of Cnsp(ℓ) in Nnsp(ℓ) is rep-
resented by

(
1 0
0 −1

)
. Let B(ℓ) be the subgroup of upper triangular matrices in

GL2(Z/ℓZ).

1.1. Statement of results. In this paper, we study the possible composite-(2m, 3)
for m = 1, 2, 3, 4 and composite-(2, ℓ) for ℓ = 5, 7, 11, 13 images of Galois associated
non-CM elliptic curves over Q.

Theorem A. Let E/Q be a non-CM elliptic curve.

(1) If the composite-(2, 3) image of E is simultaneously non-surjective, then

the image is conjugate to a subgroup of one of the following subgroups of

GL2(Z/6Z):

{G3,2 ×G3,3, G2,2 ×G2,3, G2,2 ×G1,3, G2,2 ×G3,3, G2,2 ×G4,3, G1,2 ×G3,3} .
(2) If the composite-(4, 3) image of E is simultaneously non-surjective, then

the image is conjugate to a subgroup of one of the following subgroups of

GL2(Z/12Z):

{H9 ×G3,3, H10 ×G3,3, H11 ×G4,3, H12 ×G4,3, H13 ×G3,3} .
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(3) If the composite-(8, 3) image of E is simultaneously non-surjective, then

the image is conjugate to a subgroup of one of the following subgroups of

GL2(Z/24Z):

{H30 ×G4,3, H31 ×G4,3, H39 ×G4,3, H45 ×G4,3, H47 ×G4,3, H50 ×G4,3} .

(4) If the composite-(16, 3) image of E is simultaneously non-surjective, then

the image is conjugate to a subgroup of one of the following subgroups of

GL2(Z/48Z):
{
H103 ×G4,3, H104 ×G4,3, H105 ×G4,3, H107 ×G4,3, H110 ×G4,3, H112 ×G4,3,

H113 ×G4,3, H114 ×G4,3, H150 ×G4,3, H153 ×G4,3, H165 ×G4,3, H166 ×G4,3

}
.

Proposition B. Let E/Q be a non-CM elliptic curve.

(1) It occurs infinitely often that the index of (ρE,2× ρE,3)(GQ) in GL2(Z/6Z)
is either 4, 8, 9, 12, 18, or 36.

(2) It occurs infinitely often that the index of (ρE,4×ρE,3)(GQ) in GL2(Z/12Z)
divides 18 or 24.

(3) It occurs infinitely often that the index of (ρE,8×ρE,3)(GQ) in GL2(Z/24Z)
divides 36.

(4) It occurs infinitely often that the index of (ρE,16×ρE,3)(GQ) in GL2(Z/48Z)
divides 72.

By restricting our attention to non-CM elliptic curves E with a specified mod 2
image of Galois, we can prove additional results on the composite-(2, ℓ) image for
ℓ = 5, 7, 11, 13.

Theorem C. Let E/Q be a non-CM elliptic curve. Suppose that ρE,2(GQ) conju-
gate to a subgroup of G3,2 i.e., the discriminant of E, is a square.

(1) If the composite-(2, 5) image of E is simultaneously non-surjective, then the

image is conjugate to a subgroup of G3,2 ×G9,5 in GL2(Z/10Z).
(2) If the composite-(2, 7) image of E is simultaneously non-surjective, then the

image is conjugate to a subgroup of G3,2 ×G7,7 in GL2(Z/14Z).
(3) If the composite-(2, 11) image of E is simultaneously non-surjective, then

the image is conjugate to a subgroup of G3,2 ×G3,11 in GL2(Z/22Z).
(4) If the composite-(2, 13) image of E is simultaneously non-surjective, then

the image is conjugate to a subgroup of G3,2 ×G7,13 in GL2(Z/26Z).

Proposition D. Let E/Q be a non-CM elliptic curve. Suppose that ρE,2(GQ)
conjugate to a subgroup of G3,2 i.e., the discriminant of E, is a square.

(1) It occurs infinitely often that the index of (ρE,2×ρE,5)(GQ) in GL2(Z/10Z)
divides 10.

(2) It occurs infinitely often that the index of (ρE,2×ρE,7)(GQ) in GL2(Z/14Z)
divides 16.

(3) It occurs finitely often that 110 divides the index of (ρE,2 × ρE,11)(GQ) in

GL2(Z/22Z).
(4) It occurs finitely often that 182 divides the index of (ρE,2 × ρE,13)(GQ) in

GL2(Z/26Z).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPOSITE IMAGES OF GALOIS FOR ELLIPTIC CURVES OVER Q 2393

1.2. Sketch of proof. The first step in the proofs of Theorems A and C is to
find models for the composite level modular curves corresponding to the subgroups
coming from Rouse–Zureick-Brown [RZB15] and Zywina [Zywc]. Once we have the
models for these modular curves, we determine their Q-points. The analysis of
rational points on this collection of modular curves involves a variety of techniques,
which we discuss in Section 4 and execute in Sections 5, 6, and 7. The Magma code
verifying claims made in these sections can be found at [Mor17] as well as diagrams
summarizing the results of Theorem A.

1.3. Organization of the paper. In Section 2, we give a synopsis of the neces-
sary background on modular curves of prime power level. In Section 3, we construct
models for our composite level modular curves. In Section 4, we explain the tech-
niques used to determine these rational points. The subsequent Sections 5, 6, and
7 provide further details of this analysis for curves of increasing genera. We con-
clude in Section 8 by applying our results to the study of entanglement fields. In
Appendix A, we recall relevant background and introduce notation from [Zywc],
which we use throughout.

2. Background

For a subgroup G ⊂ GL2(Z/ℓZ) with det(G) = Z/ℓZ× and −I ∈ G, we can
associate to it a modular curveXG, which is a smooth, projective, and geometrically
irreducible curve over Q. It comes with a natural morphism

πG : XG −→ SpecQ[j] ∪ {∞} =: P1
Q,

such that for an elliptic curve E/Q with jE /∈ {0, 1728}, the group ρE,ℓ(GQ) is
conjugate to a subgroup of G if and only if jE = πG(P ) for some rational point
P ∈ XG(Q). The modular curves XG of genus 0 with XG(Q) �= ∅ are isomorphic
to the projective line, and for each such curve, the function field is of form Q(h)
for some modular function h of level ℓ. Giving the morphism πG is then equivalent
to expressing the modular j-invariant in the form J(h).

We now describe a set of necessary conditions on the possible non-surjective
images of ρE,n(GQ), where n ≥ 2.

Definition 2.1. A subgroup G of GL2(Z/nZ) is applicable if it satisfies the fol-
lowing conditions:

• G �= GL2(Z/nZ),
• −I ∈ G and det(G) = (Z/nZ)×,
• G contains an element with trace 0 and determinant −1 that fixes a point
in (Z/nZ)2 of order n.

Proposition 2.2 ([Zywc, Proposition 2.2]). Let E be an elliptic curve over Q for

which ρE,n(GQ) is not surjective. Then ±ρE,n(GQ) is an applicable subgroup of

GL2(Z/nZ).

Proposition 2.2 gives necessary conditions for when a proper subgroup of
GL2(Z/nZ) can occur as the image of Galois, and hence reduces a part of the prob-
lem to a group-theoretic computation. From here, Zywina constructs the modular
curves corresponding to these subgroups and classifies the rational points on them.
This result gives a conjecturally complete description of the horizontal flavored
question concerning the mod ℓ representations. We recall the applicable subgroups
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Gn,ℓ of prime level ℓ as well as the j-map for their associated modular curve XGn
(ℓ)

in Appendix A. Unless otherwise stated, any subgroup Gn,ℓ of GL2(Z/ℓZ) will be
applicable and come from this list.

In [RZB15], Rouse and Zureick-Brown consider the vertical flavored question
through their study of the 2-adic images. The authors determine the possible 2-
adic images of Galois by finding all the rational points on the “tower” of 2-power

level modular curves. For a subgroup H of GL2(Ẑ) and an integer n such that

H contains the kernel of the reduction map GL2(Ẑ) → GL2(Z/nZ), the authors
define XH to be the quotient of the modular curve X(n) by the image H(n) of H in
GL2(Z/nZ). This quotient roughly classifies elliptic curves whose adélic image of
Galois is contained in H. Furthermore, the authors describe a necessary condition
on the ℓ-adic image.

Definition 2.3. A subgroup H ⊂ GL2(Zℓ) is arithmetically maximal if

• det : H → Z×
ℓ is surjective,

• there is an M ∈ H with determinant −1 and trace zero, and
• there is no subgroup K with H ⊆ K so that XK has genus ≥ 2.

Rouse and Zureick-Brown give an equivalent statement to that in Proposition 2.2.
In particular if E/Q is an elliptic curve and H = ρE,2∞(GQ), then H is contained
in an arithmetically maximal subgroup. The authors determine that there exist
727 arithmetically maximal subgroups of GL2(Z2) and give a beautifully detailed
diagram of these subgroups (see [RZB15, Figure 1]). As above, let Hi denote the
ith subgroup in their list (as given in [RZB, gl2data.txt]) and j(Hi) its respective
j-map; the level of Hi will be clear from the context.

3. Composite level modular curves

In this section, we discuss models for our composite level modular curves. Recall
that the composite-(2m, ℓ) level modular curve is the normalization of the fibered
product XGn

(ℓ)×P1
Q
XHi

(2m), where the maps to P1
Q are the j-maps j(Gn,ℓ) and

j(Hi) of XGn
(ℓ) and XHi

(2m), respectively.

3.1. Models for Theorem A. In the proof of Theorem A, we build the “tower”
of (2n ·3)-power level modular curves. First, we compute the rational points on the
level 6 modular curves, which acts as the foundation of our tower. If the subgroup
H ×G ⊂ GL2(Z/2Z)×GL2(Z/3Z) ∼= GL2(Z/6Z) occurs as a composite image of
Galois, then we find the subgroups of level 4 from [RZB, gl2data.txt] that cover
H (e.g., that contain H in the kernel of reduction). We find such level 4 subgroups
for all six possible composite-(2, 3) images and proceed by computing the rational
points on the composite-(4, 3) level modular curves. We repeat this procedure for
each tier of our tower ending with level 16.

For n = 1, we sometimes find hyperelliptic models. For n = 2, 3, 4, we often
find models for the composite-(2n, 3) level modular curves as superelliptic curves
defined by the affine equation y3 = f(x2).

3.2. Models for Theorem C. The discriminant condition allows us to construct
hyperelliptic models for the composite-(2, ℓ) level modular curves in Theorem C.
Indeed, an elliptic curve E/Q with such a discriminant has 2-division field Q(E[2])
isomorphic to Q(α), where α is a root of the defining cubic equation f(x) of E,
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which is equivalent to jE being of the form s2 + 1728 for some s ∈ Q. For ap-
plicable subgroups Gn,ℓ ⊂ GL2(Z/ℓZ), except for the level 11 subgroup G3,11, the
composite-(2, ℓ) level modular curve has the form

XG3,2,Gn,ℓ
(2 · ℓ) : s2 + 1728 = f(t)/g(t),

where f, g ∈ Q[t]. Through some simple manipulation, we rewrite our modular
curve as g(t)2s2 = f(t)g(t)− 1728g(t)2 = h(t)2w(t) for some h,w ∈ Q[t]. Then we
consider the birational map

ϕ : XG3,2,Gn,ℓ
(2 · ℓ) −→ X

(s, t) �−→ (g(t)s/h(t), t).

Hence we have reduced our problem to finding the rational points on the hyperel-
liptic curve

X : y2 = w(t).

Remark 3.1. In the proofs of Theorems A and C, we first consider maximal applica-
ble subgroups. If H,H ′ ⊆ GL2(Z/ℓZ) are both applicable such that H is maximal
and H ′ ⊂ H, then we have a map between the composite level modular curves
XG,H′ → XG,H . Hence, the points on XG,H′ must map to points on XG,H . In
particular, if XG,H(Q) is finite, then so is XG,H′(Q).

4. Analysis of rational points—theory

The composite level curves whose models we computed have genera ranging from
0 to 7. See Table 1 for a list of the genera which appear in each composite level.

4.1. Low genus curves. For the genus 0 curves, we determine whether the curve
has a rational point, and if so we compute an explicit isomorphism with P1

Q. For
the genus 1 curves, we determine whether the curves have a non-singular rational
point, and if so we compute a model for the resulting elliptic curve and determine
its rank and torsion subgroup. This is straightforward: most of the covering maps
have degree 2, so we end up with a model of the form y2 = p(t), where p(t) is a
polynomial, and the desired technique is implemented in Magma. The remaining
cases are handled via other techniques.

For the higher genera, our toolkit to analyze rational points consists of:

(1) local methods,
(2) the Chabauty–Coleman method,
(3) quotients,
(4) étale descent,
(5) the Mordell–Weil sieve,
(6) Prym varieties.

Below, we describe some of the theory behind these techniques and the subsequent
sections provide a case by case analysis of the rational points on our composite level
modular curves.

Remark 4.1 (Facts about rational points on XG,H). Every rational point on a curve
XG,H of genus one that has rank zero is a cusp or a CM point. Also, all the rational
point curves of higher genera are either cusps or CM points, and hence there are
no sporadic points.
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Table 1. Data of isomorphism classes for composite level modular curves

Type (2, 3) (4, 3) (8, 3) (16, 3) (2, 5) (2, 7) (2, 11)

P1 6 5 4 4 1 1

Elliptic curve with rank 0 2 14 12

Elliptic curve with rank > 0 2

Genus 2 8 1 3

Genus 3 and hyperelliptic 8 2

Genus 3 and non-hyperelliptic 5

Genus 4 and non-hyperelliptic 6

Genus 6 and hyperelliptic 2

Genus 7 and non-hyperelliptic 1

4.2. The Chabauty–Coleman method. Let X/Q be a smooth, projective, and
geometrically integral curve. In 1941, Chabauty [Cha41] proved the finiteness of
X(Q) under the condition that the Jacobian J of C has rank r := rkZ J(Q) less
than the genus g of X. Chabauty’s idea was to consider X(Q) inside the more

tractable space X(Qp) ∩ J(Q), where J(Q) is the p-adic closure of J(Q) inside
of J(Qp). To deduce finiteness of this intersection, Chabauty constructed locally
analytic functions, which are p-adic integrals in modern parlance, vanishing on
X(Q) and deduced his result utilizing the fact that an analytic function cannot
take a value infinitely often.

Using techniques from p-adic analysis, namely Newton polygons, Coleman [Col85]
controlled the zeros of these p-adic integrals to give an explicit upper bound on the
number of Q-points of a curve over Q when the rank r ≤ g − 1 and p is a prime of
good reduction. The practical output is that if r ≤ g − 1, then p-adic integration
produces an explicit 1-variable power series f ∈ Zp�t� whose set of Zp-solutions
contains all of the rational points. This is all implemented in Magma for genus 2
curves over Q, and in Section 5.2, we discuss the documentation.

In Section 6.2.3, we perform an explicit Chabauty computation for a non-
hyperelliptic genus 3 curves, so we briefly recall results from p-adic integration; we
refer the reader to [MP12,KRZB18] for further details. Let CQp

denote the base
change of C to Qp for p a prime of good reduction. Given a point P ∈ XFp

(Fp),
the inverse image of P under the surjective reduction map

ρ : C(Qp) CFp
(Fp)

is isomorphic to a p-adic disk DP ; this isomorhpism is induced by the uniformizer
t at any point Q ∈ DP . Since the p-adic disk has trivial de Rham cohomology, any
ω ∈ H0(CQp

,Ω1) can be expressed as a power series on DP :

ω|DP
=

∞∑

i=0

ait
idt ∈ Zp�t�dt.
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Now for Q1, Q2 ∈ DP , the p-adic integral is defined by formal antidifferentiation as

∫ Q2

Q1

ω :=

∫ t(Q2)

t(Q1)

∞∑

i=0

ait
idt =

(
∞∑

i=0

ai
i+ 1

ti+1

)∣∣∣∣∣

t(Q2)

t(Q1)

.

To summarize, the Chabauty–Coleman method states that if r ≤ g − 1 and p is a
prime of good reduction, then there exists a (g−r)-dimensional space of differentials
ΛC ⊂ H0(CQp

,Ω1) such that the p-adic integrals
∫
ω vanish on Q-points of C.

Using results on Newton polygons, we can effectively bound these zeros inside each
residue disk.

4.3. Étale descent. Étale descent is a “going up” style technique, first studied
in [CG89,Wet97] and developed as a full theory in [Sko01]. It is now a standard
technique for resolving the rational points on curves (cf. [FW01,Bru03]).

Let π : X → Y be a degree n étale cover defined over a number field K such
that Y is the quotient of some free action of a group G on X. By Riemann–
Hurwitz, the genus of X is ng(Y ) − (n − 1). Then there exists a finite collection
π1 : X1 → Y, . . . , πn : Xn → Y of twists of X → Y such that

n⋃

i=1

πi(Xi(K)) = Y (K).

We shall use this procedure in the case of étale double covers. In this case, G =
Z/2Z, and since the twists are consequently quadratic, we will instead denote the
twist of a double cover X → Y by Xd → Y , where d ∈ K×/(K×)2. The above
discussion gives that, for any point of Y (K), there will exist d ∈ O×

K,S/(O×
K,S)

2

such that P lifts to a point of Xd(K), where S is the union of the sets of primes of
bad reduction of X and Y and of the primes of OK lying over 2.

4.4. The Mordell–Weil sieve. In many situations, we encounter a curve C with
only one known, non-singular Q-point ∞, and we wish to prove that C(Q) = {∞}.
We can define an Abel–Jacobi map based at ∞, which allows us to consider the
commuting diagram

C(Q) J(Q)

∏
p∈S CFp

(Fp)
∏

p∈S JFp
(Fp)

ι

β α

ιS

where S is the set of primes of good reduction.
Suppose that there exist some other non-singular point ∞ �= P ∈ C(Q). The

idea of the Mordell–Weil sieve is to derive a contradiction from various bits of local
information coming from ιS , using the global constraint that a rational point on the
curve maps into J(Q). We explain the details in Section 6.1, and refer the reader
to [BS10] for a further discussion.

4.5. Prym varieties. Let π : D → C be an unramified finite morphism of degree
2 between curves over K and let ι : D → D be the non-trivial involution of D/C.
The Riemann–Hurwitz theorem implies that g(C) > 0 and g(D) = 2g(C)− 1. The
associated Prym variety Prym(D/C) is the connected component containing 0 of
the kernel π∗ : JD → JC , which coincides with the image of (id∗ −ι∗) : JD → JD.
Moreover, Prym(D/C) is an abelian subvariety of JD of dimension g(C)− 1 with
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principal polarization coming from the restriction of the principal polarization on
JD. Historically, Prym varieties provided examples of principally polarized abelian
varieties, which are not Jacobian varieties.

In our situation, C is a genus 3 non-hyperelliptic curve. Bruin [Bru08] finds an
explicit description of the associated Prym variety as JF , where F is a genus 2
hyperelliptic curve. In addition to the description of the Prym variety, he gives
an explicitly computable map ϕ : Dδ → JFδ

. Bruin’s map does not require the
existence of a rational point on Dδ, so we could apply this construction to prove
that Dδ(Q) is empty even if Dδ does have local points everywhere. In good circum-
stances, the rank of JFδ

(Q) is 0 for all relevant twists, and after finding the torsion
subgroup of JFδ

(Q) and pulling back to Dδ(Q), we can determine the Q-points
of C by computing the image of Dδ(Q) under π. If the rank is positive, then one
must proceed in a different manner.

5. Analysis of rational points—genus 2

There are 12 isomorphism classes of composite level modular curves with genus 2.
Among these, six have Jacobians with rank 0, four with rank 1, and two with rank
2. We will use étale descent on the rank 2 cases and Chabauty and quotients on the
others. In each case, the rank of the Jacobian is computed with Magma’s RankBound
instrinsic. In the subsections below, the curve X will denote a hyperelliptic curve
of genus 2, and JX its Jacobian.

5.1. Rank 0. If rk JX(Q) = 0, then JX(Q) is torsion. To find all of the rational
points on X, it suffices to compute the torsion subgroup of JX(Q) and compute
the preimages under an Abel–Jacobi map X →֒ JX . This is implemented in Magma

as the Chabauty0(J) command, where J is JX .

5.2. Rank 1. If rk JX(Q) = 1, then one can attempt Chabauty’s method. This is
implemented in Magma as the Chabauty(ptJ) command, where ptJ is a Q-point on
JX which generates JX / JX [tors]. The intrinsic combines the Chabauty–Coleman
method with the Mordell–Weil sieve to provably find the rational points on X.

5.3. Rank 2. If rk JX(Q) = 2, then Chabauty’s method does not apply; instead,
we proceed with étale descent. In each case, the Jacobian of X has a rational
2-torsion point. Thus, given a model

X : y2 = f(x)

of X, f factors as f1f2 where both polynomials are of positive, even degree, and X
admits étale double covers Cd → X, where the curve Cd is given by

Cd :

{
dy21 = f1(x),

dy22 = f2(x).

Let S denote the set of bad places as in Section 4.3. By étale descent, every rational
point on X lifts to a rational point on Cd(Q) for d in the set divisors of primes in S,
their multiples, and negations. The Jacobian of Cd is isogenous to JX ×Ed, where
Ed is the Jacobian of the (possibly pointless) genus 1 curve dy22 = f2(x) (where we
assume that deg f2 ≥ deg f1, so that deg f2 ≥ 3).
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The two curves XH40,G4,3
(24) and XH97,G4,3

(24) are isomorphic to the rank 2
hyperelliptic curve

H : y2 = 2x6 + 2 = 2(x2 + 1)(x4 − x2 + 1).

This curve admits étale covers by the genus 3 curves

Cd :

{
dy21 = (x2 + 1),

dy22 = 2(x4 − x2 + 1)

for d ∈ {±1,±2,±3,±6}. We find that the genus 1 curves dy22 = 2(x4−x2+1) only
have local points everywhere when d = 2. We compute that the curve 2y21 = (x2+1)
is isomorphic to P1

Q and the curve 2y22 = 2(x4 − x2 + 1) is isomorphic to the rank
0 elliptic curve

E : y2 + 2xy = x3 − 8x2 + 12x.

The diagram

Cd(Q)

P1
Q H(Q) E(Q)

P1
Q

pr1 pr2π

x

tells us that the points on Cd(Q) come from the preimages of the points on E(Q).
This allows us to determine the rational points on Cd and thus on H and on
XH40,G4,3

(24) and XH97,G4,3
(24).

6. Analysis of rational points—genus 3

There are 15 isomorphism classes of genus 3 curves. Of these classes, 10 are
hyperelliptic. The curves XG3,2,G2,7

(14) and XG3,2,G6,7
(14) are hyperelliptic and

have rank equal to 0, and we handle these curves by using a Mordell–Weil sieve
argument. The remaining hyperelliptic cases occur when considering composite-
(16, 3) level modular curves, and we handle these cases using quotients or étale
descent.

The other five isomorphism classes

XH105,G4,3
(48), XH106,G4,3

(48), XH107,G4,3
(48), XH109,G4,3

(48), and XH124,G4,3
(48)

are non-hyperelliptic. The curve XH109,G4,3
(48) admits a rank 0 subquotient; by

using Prym varieties, we determine the points on the rank 2 curve XH124,G4,3
(48);

we also provably find the points on the rank 1 curve XH106,G4,3
(48) through a

Chabauty argument. For the remaining two isomorphism classes, we are unable to
compute all of the Q-points, and we discuss our attempts in Section 6.2.4.

6.1. Analysis of genus 3 hyperelliptic curves. As mentioned above, we find
models for some composite level modular curves as genus 3 hyperelliptic curves.
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6.1.1. Analysis of XG3,2,G2,7
(14). The modular curve XG3,2,G2,7

(14) has a model
given by the genus 3 hyperelliptic curve

XG3,2,G2,7
(14) : y2 = (x3 − 4x2 + 3x+ 1)(x4 − 10x3 + 27x2 − 10x− 27).

For simplicity, we denote the smooth projective compactification of this modular
curve by X. Magma computes that rk JX(Q) = 0, so JX(Q) is torsion. We find
that there exists a non-singular point [1 : 0 : 0] ∈ X(Q), and we claim that this is
in fact the only point on X. For ease of notation, we shall denote this point as P0.

From [HS00, Exercise C.4], we have # JXFp
(Fp) = P1(1), where P1(T ) is the

numerator of the Weil zeta function of XFp
(Fp) for some prime p. Moreover, by

computing this value for a large number of primes and taking the greatest common
divisor, we find that # JX(Q) must divide 6. Since we have a non-singular point
P0 on X, we can embed X into JX via an Abel–Jacobi map

X(Q) →֒ JX(Q)

P �−→ [P − P0].

Our above computation tells us the possible torsion in JX(Q) is of order 1, 2, 3, or
6. Recall that the prime to p �= 2 torsion of JX(Q) injects into JX,Fp

(Fp). Let
S = {5, 11} and consider the Mordell–Weil sieve from Section 4.4.

Suppose there exists another non-singular point P ∈ X(Q). Since the divisor
[P −P0] is a torsion point of JX(Q), then it must also be torsion over Fp for all p.
Using Magma, we can enumerate XFp

(Fp) and check individually the orders of their
respective images in JX,Fp

(Fp). We compute that the points on XF5
(F5) map to

points of exact order in {1, 51} in JX,F5
(F5) and the points on XF11

(F11) map to
points of exact order in {1, 8, 20, 40, 60, 120} in JX,F11

(F11). Since none of these
values, except for 1, coincide and the prime to p torsion injects, we have that the
possible orders of the divisor [P − P0] in JX(Q) are either 5 or 11. However, our
initial computation told us that the possible torsion in JX(Q) must divide 6, and
so this absurdity proves that {P0} = X(Q).

6.1.2. Analysis of XH156,G4,3
(48). The modular curve XH156,G4,3

(48) has a model
as a genus 3 hyperelliptic curve

XH156,G4,3
(48) : y2 = −x7 − 8x.

For simplicity, we denote the smooth projective compactification of this modular
curve by X. Magma computes that the rank of X is at most 3. The rational points
on X lift to twists of the étale double cover by the genus 5 curves

Cd :

{
dy21 = x,

dy22 = −(x2 + 2)(x4 − 2x2 + 4)

for d ∈ {±1,±2,±3,±6}. Each of these curves maps to the genus 2 hyperelliptic
curve

Hd : dy
2 = −(x2 + 2)(x4 − 2x2 + 4).

For the above d, the Jacobian of Hd has rank 1. Using quotients and Chabauty,
we determine that there are four CM points on XH156,G4,3

(48) corresponding to
j = −3375 and j = 16581375.

6.2. Analysis of genus 3 non-hyperelliptic curves. In this subsection, we an-
alyze the rational points on the composite-(16, 3) level modular curves X which
have affine equation y3 = f(x2).
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6.2.1. Analysis of XH109,G4,3
(48). The modular curve XH109,G4,3

(48) is a genus 3,
non-hyperelliptic curve with affine equation

XH109,G4,3
(48) : y3 = 4(x4 − 8x2 + 8).

For simplicity, we denote the smooth projective compactification of this modular
curve by X. The canonical image of X ⊂ P2 is the smooth plane quartic

C : − 4v4 + u3w + 32v2w2 − 32w4 = 0.

This curve has a two-to-one map to the elliptic curve

E : v2 + 128v = u3 − 2048,

which has rank 0 with trivial torsion subgroup. To wit, we conclude XH109,G4,3
(48)

has no Q-rational points.

6.2.2. Analysis of XH124,G4,3
(48). The modular curve XH124,G4,3

(48) is the genus 3
non-hyperelliptic curve with affine equation

XH124,G4,3
(48) : y3 = 2(x4 + 4x2 + 2)2.

For simplicity, we denote the smooth projective compactification of this modular
curve by X. We compute that X maps to an elliptic curve E with Mordell–Weil
group E(Q) ∼= Z⊕Z/2Z. The existence of two torsion in JX implies that X admits
an étale double cover. By [Bru08], a genus 3 non-hyperelliptic curve over Q admits
an étale double cover if and only if it admits a model of the form

Q1(u, v, w)Q3(u, v, w) = Q2(u, v, w)
2,

where Q1, Q2, Q3 ∈ Q[u, v, w] are quadratic forms. The canonical image of X ⊂ P2

is the smooth plane quartic

C : u4 + 4u2v2 + 2v4 − 2vw3 = 0

with determinantal decomposition

Q1(u, v, w) := 2vw + 2v2,

Q2(u, v, w) := u2 + 2v2,

Q3(u, v, w) := v2 − vw + w2.

From these, we construct a genus 5, unramified double cover Dδ by

Dδ :

⎧
⎪⎨
⎪⎩

Q1(u, v, w) = δr2,

Q2(u, v, w) = δrs,

Q3(u, v, w) = δs2,

where δ ∈ {±1,±2,±3,±6}. Let ι : [u : v : w : r : s] �→ [u : v : w : −r : −s] be an
involution of Dδ. Every point on C(Q) lifts to two points on Dδ(Q) via ι. Thus,
in order to determine the rational points on C, it suffices to determine the rational
points on Dδ for each δ.

Let P0 = [1 : 0 : 0 : 0 : 1] ∈ Dδ(Q). We can embed Dδ in JDδ
via an Abel–Jacobi

map

Dδ →֒ JDδ

P �−→ [P − P0].
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When we compose this map with the projection map (id∗ −ι∗) : JDδ
→Prym(Dδ/C),

we obtain the Abel–Prym map

Dδ −→ Prym(Dδ/C)

P �−→ [P − ι(P )]− [P0 − ι(P0)].

Using the Magma code from [Bru08], we have the diagram

Dδ JFδ

C

ϕ

where Fδ is a genus 2 hyperelliptic curve. We find that every twist but the trivial
one either has no real points or is not locally soluble at 2 or 3. When δ = 1, we
find that JF1

(Q) has rank 0 and torsion subgroup of size four. We compute that
the four known points on Dδ(Q) map to distinct points in JF1

(Q), and hence we
deduce that the two known points on C(Q) are in fact the only points. We conclude
by checking that these points are cuspidal and CM corresponding to j = 1728.

6.2.3. Analysis of XH106,G4,3
(48). As above, the modular curve XH106,G4,3

(48) is a
genus 3 non-hyperelliptic curve with affine equation

XH106,G4,3
(48) : y3 = x4 + 8x2 + 8.

For simplicity, we denote the smooth projective compactification of this modular
curve by X. We first attempt the above methods of quotients and Prym varieties.
We find a non-trivial map from our curve X to an elliptic curve E with positive
rank and Z/2Z torsion, and so quotients do not yield a desired result. As above,
the existence of two torsion implies that our curve X admits an étale double cover,
and we compute the determinantal decomposition of X as well as the double cover
Dδ. There exists a twist δ such that the Prym variety Prym(Dδ/C) has positive
rank, and so the above technique does not apply.

Using the Magma instrinsic

RankBound(x^4 + 8x^2 + 8,3);

we compute that the rank of X is at most 1, which suggests that we proceed by a
Chabauty argument. The canonical image of X ⊂ P2 is the smooth plane quartic

C : u4 + 8u2v2 + 8v4 + vw3 = 0.

We compute that C(Q) contains two non-singular points Q0 := [2 : 0 : 1] and
Q1 := [1 : 0 : 0], and we claim that these are in fact the only points. By considering
different reduction modulo p, we see that JC(Q)[tors] ⊂ Z/2Z × Z/2Z. Recall
that for a genus 3 non-hyperelliptic curve C, the differences of bitangents of CQ

will generate JCQ
[2]. Furthermore, by determining these differences, we see that

there is only a single 2-torsion point coming from the elliptic curve E, and so
JC(Q) ∼= Z⊕ Z/2Z.

Using the point Q1, we can define an Abel–Jacobi map C(Q) →֒ JC(Q) and
form the degree zero divisor D = [Q0 − Q1]. Observe that 5 is a prime of good
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reduction for C, and consider the Chabauty setup:

C(Q) C(Q5)

JC(Q) JC(Q5)

By considering the reduction mod 5, we see that the classD is not divisible by two or
three, and hence D generates a finite index subgroup of JC(Q) since prime to p �= 2
torsion injects [Kat81, Appendix]. We wish to find a differential ωJ ∈ H0(JQ5

,Ω1)
such that ∫ D

0

ωJ = 0.

We see that 6D lies in the kernel of reduction modulo 5 and that there are six points
in CF5

(F5); two of these, P0 = Q0 and P1 = Q1, lie in the image of the Mordell–
Weil group under the Abel–Jacobi induced by P1. Since C is non-hyperelliptic, the
linear system |6D + 2[Q1]| is either empty or zero-dimensional, and we verify that
|6D + 2[Q1]| = D′, where D′ = Tr([34 : 2

√
−86430 : 225]). If we set Q = [34 :

2
√
−86430 : 225] and Q′ to be the conjugate, then we see that Q and Q1 = [1 : 0 : 0]

lie in the same residue disk DP1
of C(K) for the ramified extension K = Q5(

√
15).

Moreover, we have

∫ D

0

ωJ =
1

6

∫ 6D

0

ωJ =
1

6

(∫ [Q−Q1]

0

ωJ +

∫ [Q′−Q1]

0

ωJ

)

=
1

6

(∫ Q

Q1

ωC +

∫ Q′

Q1

ωC

)
,

where we identify H0(CQ5
,Ω1) with H0(JQ5

,Ω1) via [Sik09, Proposition 2.1].
We compute a basis {ω, ω′, ω′′} for H0(CQ5

,Ω1) such that

ω|DP1
≡ 2t+ 2t3 + 2t5 + · · · (mod 5),

in particular the expression is odd in the local coordinate t = y. Since t(Q) =
−t(Q′) as Q and Q′ are conjugate, we see that

∫ Q

Q1

ω +

∫ Q′

Q1

ω = 0,

and so ω ∈ ΛC . Moreover, the number of zeros for
∫
ω inside DP1

bounds the
size of #(C(Q) ∩ DP1

). Standard Chabauty results (cf. [Sik09, Section 2]) assert
that ω has one zero in the residue disk DP1

, and since 5 > 2 + 1 + 1, results
of Stoll [Sto06, Lemma 6.1 & Proposition 6.3] imply that the number of zeros of∫
ω within DP1

is bounded by 2. Therefore, we deduce that the p-adic integral∫
ω only vanishes on the conjugate tuple {Q,Q′} and on the known rational point

Q1 = [1 : 0 : 0] inside DP1
, and so C(Q) ∩ DP1

= Q1. A similar argument for
Q0 shows that C(Q) ∩ DP0

= Q0. The residue disks around P0 and P1 are the
only relevant ones since these are the only points which lie in the image of the
Abel–Jacobi CF5

(F5) →֒ JX,F5
(F5) determined by P �→ [P −P1]. Furthermore, we

conclude that C(Q) = {Q0, Q1}.
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6.2.4. The impish ones. There are two isomorphism classes

XH105,G4,3
(48) : y3 = x4 − 8x2 + 8,

XH107,G4,3
(48) : y3 = 8x4 − 8x2 + 1

of non-hyperelliptic genus 3 curves whose rational points we could not provably
determine. We record our attempts here, discuss why the above methods do not
work, and suggest further techniques for analysis. For the remainder of this section,
let X denote the smooth projective compactification of one of these modular curves.

First, these two isomorphism classes have Jacobians of rank at most 3, which
strongly suggests that Chabauty’s method is not possible. We next attempt an
argument using Prym varieties. For each isomorphism class, we find the determi-
nantal decomposition and form the étale double cover Dδ. To our chagrin, each X
has a twist Fδ with positive rank. The curve XH107,G4,3

(48) has a twist Fδ with
rank 1, and while Chabauty on the Prym is possible, the implement is difficult;
see [Bru08, Section 8] for a “by hand” example. The other curve XH105,G4,3

(48)
has a twist with rank 2 meaning we cannot attempt Chabauty’s method on the
Prym. These curves could admit other étale double covers coming from non-trivial
2-torsion in JX(Q). However, we determine that JX(Q)[tors] ∼= Z/2Z × Z/4Z
through local considerations, and so each curve X only admits one such double
cover.

As above, we find that these curves map to a positive rank elliptic curve, and so
JX ∼ E×A, where A is some abelian surface overQ. We first attempt to decompose
A into subfactors and hope that we find a rank 0 piece. We determine that A is
simple over Q using Honda–Tate theory and computing that the characteristic
polynomial of Frobenius is irreducible for some prime p. Similar computations
strongly suggest that A splits over a quadratic extension K/Q into the the two-fold
product of an elliptic curve E2 with good reduction outside of 2 and 3. In order
to find this elliptic curve, we need to enumerate the non-isomorphic elliptic curves
over K with such reduction.

Thankfully, a theorem of Shafarevich [Sil09, Theorem 6.1] states that there is a
finite list of such elliptic curves over any number field K/Q. Cremona and Lingham
[CL07] give an explicit algorithm for finding such curves, which involves computing
the integral points on a particular set of elliptic curves. This procedure has been
implemented in Magma as the command

EllipticCurveWithGoodReductionSearch(2*3*O,500);

(see [BCP97] for the documentation). To our chagrin, we do not find our desired
elliptic curves over any quadratic extension ramified at 2 and/or 3. If one did find
a quadratic extension K and the elliptic curve E2/K as above, then one could
proceed with elliptic Chabauty, a technique pioneered by Bruin [Bru03]. However,
this technique is not fully implemented in Magma since one needs to construct a map
from the curve XK to E2, which may or may not come from a quotient mapping. To
conclude, we check that the known points are CM and/or cuspidal and conjecture
that there are no other Q-points on these curves.

7. Analysis of rational points—higher genus

In our computations, we find models for our composite level modular curve of
genus greater than 3. There are three genus 6 hyperellipitc curves (two isomorphism
classes XH171,G4,3

(48) and XH172,G4,3
(48)). These two curves have rank equal to 0,
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and we handle them by finding explicit generators for the torsion subgroup of the
Jacobian. We encounter one genus 7 curve coming from the anomalous genus 1
modular curve XG3,2

(11) with infinitely many points. We also come across eight
genus 4 non-hyperelliptic curves whose construction resembles that of the genus 7
curve. In some cases, we can easily find the rational points on these curves using
quotients. However, there are two isomorphism classes of such curves whose Q-
points we cannot provably determine. Finally, there are three curves with unknown,
large genera that come from the three outstanding cases mentioned in List A.6.

7.1. Analysis of genus 4 non-hyperelliptic curves. There are eight non-
hyperelliptic curves of genus 4 occurring as composite-(16, 3) level modular curves
XHn,G4,3

(48), where n = 149, 150, 151, 153, 160, 161, 165, 166. For n = 149, 151,
160, 161, the modular curve XHn

is isomorphic to a rank 0 elliptic curve; hence
by computing preimages, we easily find the points on our composite level mod-
ular curve. We cannot determine the Q-points on the two isomorphism classes
(represented via their canonical image in P3)

XH150,G4,3
:

{
AC + 3BC −D2,

A2B − 2AB2 − 7B3 − C3,

XH153,G4,3
:

{
AC −BC −D2,

A2B + 2AB2 −B3 − 65536C3,

but we discuss our attempts below.
Let X := XHn,G4,3

(48) be one of the two remaining isomorphism classes defined
above. By construction, the curve X is a cover of the rank 1 elliptic curve E1 :=
XHn

. We also find that X covers another non-isogenous elliptic curve E2 of rank
1. Computations of local zeta functions at p = 7 assert that

JX ∼ E1 × E2 ×A,

where A is a simple abelian surface. Similar computations of local zeta functions
at p2 suggest that A is not geometrically simple and splits over some quadratic
extension of Q.

We encounter similar issues with these curves as we did in Section 6.2.4. The best
possible approach is elliptic Chabauty, but we were unsuccessful in finding elliptic
curves E′, E′′ defined over a quadratic number field K such that AK ∼ E′×E′′. As
before, the hardest part of the implementation is finding the morphism from XK to
E′ or E′′ defined over K. Another approach is to construct an étale double cover
of these curves. To proceed, one first shows that part of the 2-torsion in JX(Q)
comes from an elliptic factor E. Thus, one can form the normalization of the fibered
diagram X ×E1

E3 with ϕ∨ : E3 → E1 the dual isogeny to ϕ : E1 → E3 with kernel
the known 2-torsion point of E1. This construction produces our double cover
Z → X with non-optimal equations. Furthermore, working on the double cover
does not ameliorate the original issue. As above, we check that the known rational
points correspond to CM and/or cuspidal points.

7.2. Analysis of genus 6 hyperelliptic curves. There are two isomorphism
classes of genus 6 hyperelliptic curves. The hyperelliptic curves

XH171,G4,3
(48) : y2 = −x13 + 64x,

XH172,G4,3
(48) : y2 = −x13 − 64x
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are representatives for these classes. Magma computes that the rank of each of these
curves is 0, and so we proceed by computing the torsion subgroup of the Jacobian for
each respective curve. By evaluating Weil zeta functions and comparing invariant
factor decompositions of JX,Fp

, we conclude that

JX(Q) ∼= (Z/2Z)6.

Since the 2-torsion of a hyperelliptic Jacobian is determined by the roots of the
defining equation for the curve, we can find generators for each part of JX(Q) and
conclude that these curves only possess a point at infinity and another correspond-
ing to [0 : 0 : 1].

7.3. Analysis of XG3,2,G3,11
(22). There is only one modular curve from [Zywc] of

genus 1 with rank 1, namely XG3
(11), which is isomorphic to the elliptic curve

E : y2 + y = x3 − x2 − 7x + 10. In the appendix (cf. Section A.5), we recall
the morphism J(x, y) corresponding to the map from E → A1

Q ∪ {∞} and that

E(Q) ∼= 〈(4, 5)〉. The composite-(2, 11) level modular curve

XG3,2,G3,11
(22) :

{
y2 + y = x3 − x2 − 7x+ 10,

s2 + 123 = J(x, y)

is a genus 7 non-hyperelliptic curve in A3
Q. For simplicity, we denote the smooth

compactification of this curve by X. By pulling back points from E(Q), we find a
cuspidal point and the CM point [x : y : s : z] = [2 : 0 : 0 : 1] on X. Unfortunately,
we are unable to provably compute the rational points on the curve X. Below, we
discuss the attempted techniques and facts about said curve.

We know that
JX ∽ E ×A,

where E is the elliptic curve defined above and A is some 6-dimensional abelian
variety. Since rk E = 1, we want A to decompose in some way; ideally, we would
want A to have rank 0 some elliptic factor. Empirical evidence suggests that A is
not simple over Q and that A is isogenous to A1 ×A2 × A3, where Ai are abelian
surfaces. However, we are not able to determine the genus 2 curves Ci whose
Jacobians Ji are isomorphic to Ai.

Remark 7.1. Jeremy Rouse has written Magma code which “guesses” how the Jaco-
bian of a modular curve X decomposes by comparing point counts of X with traces
of af (p), where f is a newform of level p, and he ran this code on the composite-
(2, 11) level modular curve XG3,2,G3,11

(22). His results support that A decomposes
as above, but also that each Ai has analytic rank 0! Unfortunately, the genus 2
curves whose Jacobians are isomorphic to Ai are not in the LMFDB of genus 2
curves [LMF13], but this does give evidence that there are no non-obvious points
on XG3,2,G3,11

(22).

Following another suggestion of Jeremy Rouse, the geometry of the curve sug-
gests that we search for subcurves of X. If there exists a curve C such that X → C,
then there could exist some applicable subgroup H such that G3,2 ×G3,11 ⊆ H ⊂
GL2(Z/22Z), which witnesses C as the modular curve associated to H. We com-
pute the list of such subgroups and the genera of the associated modular curves to
deduce that the only modular quotient that is a P1

Q comes from the unique max-

imal subgroup H ′ of GL2(Z/22Z) containing G3,2 × G3,11. The quotient of X by
its automorphism group Z/2Z produces the known elliptic subcurve E. Although
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these techniques did not produce a subcurve, they do not entirely rule out the
possibility of a map from X to a curve of lower genus. We conjecture the following.

Conjecture 7.2. There does not exist a non-CM elliptic curve E over Q with

square discriminant such that (ρE,2 × ρE,11)(GQ) is simultaneously non-surjective.

7.4. The cursed ones. Up to conjugacy, there are four maximal subgroups of
GL2(Z/13Z) that have surjective determinant, namely G6,13, Nsp(13), Nnsp(13),
and G7,13. Zywina handles the cases concerning the subgroups of G6,13, and the
other three subgroups correspond to the outstanding cases.

Baran [Bar14] showed that the modular curves XNsp
(13) and XNnsp

(13) are both

isomorphic to the genus 3 curve C defined in P2
Q with equation

(y − z)x3 + (2y2 + zy)x2 + (−y3 + zy2 − 2z2y + z3)x+ (2z2y2 − 3z3y) = 0.

Baran also gives the morphism from the above model to the j-line. The seven
known rational points on C all correspond to cusps and CM points on XNsp

(13) and
XNnsp

(13). Recently, Balakrishnan, Dogra, Müller, Tuitman, and Vonk [BDM+17]
proved that C has no other rational points, using explicit Chabauty–Kim methods.
Their result is equivalent to saying that there does not exist a non-CM elliptic curve
over Q with ρE,13(GQ) conjugate to a subgroup of Nsp(13) and Nnsp(13).

Banwait and Cremona [BC14] have shown that XG7,13
(13) is isomorphic to the

genus 3 curve C ′ defined in P2
Q with equation

4x3y − 3x2y2 + 3xy3 − x3z + 16x2yz − 11xy2z + 5y3z

+ 3x2z2 + 9xyz2 + y2z2 + xz3 + 2yz3 = 0.

The authors also give the morphism from the modular curve to the j-line. The four
known rational points on C ′ correspond to a CM point and three non-CM points.
Conjecturally, C ′ has no other rational points, which is equivalent to saying that
[Zywc, Theorem 1.8(iv)] gives a necessary and sufficient condition on ρE,13(GQ).

We check that: the points on C do not pull back to pointsXG3,2,Nsp
(26), the point

[0 : 0 : 1] on C pulls back to the CM point corresponding to j = 0 on XG3,2,Nnsp
(26),

and the known points on C ′ do not pull back to points on XG3,2,G7,13
(26). Following

the above conjectures, we formulate our own concerning the composite-(2, 13) image
of Galois.

Conjecture 7.3. There does not exist a non-CM elliptic curve E over Q with

square discriminant such that (ρE,2 × ρE,13)(GQ) is simultaneously non-surjective.

8. Applications—entanglement fields

In this final section, we discuss applications of our results to the study of en-
tanglement fields. An elliptic curve E over K has (m1,m2)-entanglement fields if
K(E[m1]) ∩K(E[m2]) �= K for some positive integers m1, m2.

In this scenario, “most” elliptic curves over Q have quadratic (2, n)-entanglement
fields for some n ∈ Z>0. Indeed, elliptic curves with square discriminant form a thin
set in the sense of Serre, so “most” elliptic curves have non-square discriminant.
For these curves, the 2-division field Q(E[2]) will contain Q(

√
ΔE). By Kronecker–

Weber, there exists some n such that Q(
√
ΔE) is contained in Q(ζn), and the Weil

pairing implies that Q(ζn) ⊂ Q(E[n]). Therefore, these curves satisfy Q(E[2]) ∩
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Q(E[n]) ⊇ Q(
√
ΔE), and so “most” elliptic curves have quadratic entanglement

fields.
In light of this fact, we restrict our consideration to non-CM elliptic curves

over Q with entanglement fields Q(E[ℓm1

1 ]) ∩ Q(E[ℓm2

2 ]) �= Q for distinct primes
ℓ1, ℓ2 and positive integers m1, m2. Note that this condition corresponds to the
phenomena of the (ℓm1

1 , ℓm2

2 )-composite level image of Galois being contained in a
proper subgroup of ρE,ℓ

m1
1

(GQ)× ρE,ℓ
m2
2

(GQ).

8.1. Statement of results. Using Theorem C, we prove existence results for (2, 5)
and (2, 7) entanglement fields of degree 3 when E has square discriminant. We also
exhibit an infinite family of elliptic curves over Q with (2, pn)-entanglement fields of
degree 3 where 3 | p−1. Finally, we complete the classification of non-abelian (2, 3)-
entanglement fields first studied by Brau and Jones [BJ16]. For the remainder of
this section, we ignore elliptic curves with rational full 2-torsion since these curves
cannot have (2, n)-entanglement fields by definition.

An important tool in our study of entanglements is Goursat’s topological lemma
(see [Rib76, Lemma 5.2.1] for a proof).

Lemma 8.1 (Goursat’s lemma). Let G0 and G1 be groups and G ⊆ G0 × G1 a

subgroup satisfying

πi(G) = Gi (i ∈ {0, 1}),
where πi denotes the canonical projection onto the ith factor. Then there exist a

normal group Q and surjective homomorphisms ψ0 : G0 → Q, ψ1 : G1 → Q for

which

G = {(g0, g1) ∈ G0 ×G1 : ψ0(g0) = ψ1(g1)} .
The idea is to use our results concerning composite level modular curves to find

possibilities for entanglement. Then we apply Goursat’s lemma to sift out the cases
where entanglement cannot occur from a group-theoretic viewpoint. From here, we
compute division fields using Magma and check for entanglements. To demonstrate
the technique, we first present a result proving the lack of entanglement fields for
a family of elliptic curves over Q.

Lemma 8.2. Let E be a non-CM elliptic curve over Q with square discriminant.

Then Q(E[2]) ∩ Q(E[5]) = Q.

Proof. From Theorem C and Proposition 2.2, we know that there is only one
possibility for non-surjective composite-(2, 5) image, namely the image is con-
jugate to G3,2 × G9,5. The subgroup G9,5 does not contain an index 3 nor-
mal subgroup, hence Lemma 8.1 implies that there does not exist a subgroup
G ≤ GL2(Z/2Z) × GL2(Z/5Z) that projects onto the mod 2 and mod 5 image.
Therefore, these curves cannot have entanglement fields via the Galois correspon-
dence. �

8.2. (2, 7)-entanglement fields. From Theorem C, the only possibility for simul-
taneous non-surjective composite-(2, 7) image of Galois is G3,2×G7,7 ≤ GL2(Z/2Z)
×GL2(Z/7Z). The subgroup G7 does contain an index 3, normal subgroup, so the
points on the modular curve XG3,2,G7,7

(14) correspond to j-invariants of elliptic
curves with possible entanglement fields coming from Q(E[2]) ∩ Q(E[7]). Since
such an elliptic curve E has 7-division field of degree 252, it is computationally
inefficient to study the subfields of Q(E[7]) or even Q(x(E[7])), where the latter
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number field contains the x-coordinates of the 7-torsion points. Hence, in order
to perform computations, we need to find a subfield of Q(E[7]) with manageable
degree.

Since Z(GL2(Z/7Z)) ≤ G7 and #Z(GL2(Z/7Z)) = 6, the fixed field L :=
Q(E[7])Z(GL2(Z/7Z)) is an index 6 subfield of Q(E[7]). From [Ade01, Table 5.1],
L is a degree 42 number field defined by the 7th-modular polynomial Φ7(X, jE).
For non-CM E coming from XG3,2,G7,7

(14), we compute degree 3 subfields of L
and check whether they are isomorphic to Q(E[2]); below, we give two examples of
non-CM elliptic curves with mod 2 and mod 7 entanglement fields.

Example 8.3. The non-CM elliptic curves

E1 : y
2 + xy = x3 − 4/129825457969x− 1/1168429121721,

E2 : y
2 + xy = x3 − 4/2209x− 1/19881

have (2, 7)-entanglement fields of degree three.

8.3. (2, p)-entanglement fields. In [RS01], Rubin and Silverberg give explicit
equations for elliptic curves over a field of characteristic �= 2, 3 with prescribed mod
2 image of Galois. By constructing an elliptic curve over Q with special 2-division
field, we exhibit an infinite family of elliptic curves with (2, p)-entanglement of
degree three.

Proposition 8.4. Let p be a prime ≥ 7 such that 3 | p − 1. Then there exist

infinitely many elliptic curves over E/Q such that Q(E[2]) ∩ Q(E[p]) ∼= L, where
L is the degree 3 number field of Q(ζp) by our assumption on p. Furthermore, we

give an explicit parametrization of such elliptic curves.

Proof. Since ϕ(p) = (p− 1), where ϕ is the Euler-totient function, the cyclotomic
field Q(ζp) contains the degree 3 intermediate field L of Q(ζp). Gauss [Gau66] (see
[Gur82, Equation 4] for a modern reference) showed that the minimal polynomial
of L is

g(X) = X3 +X2 + (p− 1)X/3− ((p− 1)/3 + kp)/9,

where k is uniquely determined by the integral representation 4p = (3k−2)2+27N2.
Let E be the elliptic curve with defining polynomial g(X). Using the change of

variables (X,Y ) → (x− 1/3, y), we find a Weierstrass model of the form

E : y2 = x3 − p

3
x+

p(2− 3k)

27
.

The construction of E forces the 2-division field Q(E[2]) to be isomoprhic to L.
Using [RS01, Theorem 1.1], the elliptic curve

Et : y
2 =x3 +

(1727pt2 + p+ 9/4k2t2 − 9/4k2 − 3kt2 + 3k + t2 − 1)

(p− 9/4k2 + 3k − 1)
x

+
(−1727pt3 − 5181pt2 + 3pt+ p− 9/4k2t3 − 27/4k2t2)

(p− 9/4k2 + 3k − 1)

+
(−27/4k2t− 9/4k2 + 3kt3 + 9kt2 + 9kt+ 3k − t3 − 3t2 − 3t− 1)

(p− 9/4k2 + 3k − 1)

has 2-torsion subgroup isomorphic to that of E for t ∈ Q. The existence of the
Weil pairing implies that elliptic curves of the form Et satisfy Q(Et[2])∩Q(Et[p]) ∼=
L. �
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Remark 8.5. Above, we present the general equation for Et. For a specific prime
p and unique k, the defining equation for Et can be quickly computed using the
Magma intrinsic RubinSilverbergPolynomials(2,j), where j is the j-invariant of
the elliptic curve E.

8.4. (2, 3)-entanglement fields. In a recent work [BJ16], Brau and Jones exhibit
a modular curve of level 6 overQ whoseQ-rational points correspond to j-invariants

of elliptic curves E over Q with Q(E[2]) ⊆ Q(ζ3,Δ
1/3
E ) ⊆ Q(E[3]) and hence (2, 3)-

entanglement fields. The construction of their modular curve begins with finding
the unique index 6 normal subgroups N ≤ GL2(Z/3Z) defined by

N :=
{(

x −y
y x

)
: x2 + y2 ≡ 1 mod 3

}
⊔
{( x y

y −x

)
: x2 + y2 ≡ −1 mod 3

}
.

The authors observe that N fits into the exact sequence

1 N GL2(Z/3Z) GL2(Z/2Z) 1.θ

Their modular curve of level 6 corresponds to the subgroup H ′ ≤ GL2(Z/6Z)
coming from the graph of θ,

H ′ := {(g2, g3) ∈ GL2(Z/2Z)×GL2(Z/3Z) : g2 = θ(g3)} .
The points lying in the image of j(XH′) correspond to j-invariants of elliptic curves
over Q satisfying the above division field condition. The surjectivity of θ tells
us that such elliptic curves have surjective mod 2 image of Galois as well. We
summarize and slightly clarify their results concerning these curves in the following
theorem.

Theorem 8.6 ([BJ16, Theorem 1.4]). Let E be a non-CM elliptic curve over Q

with j-invariant of the form

jE = 21033t3(1− 4t3),

where t ∈ Q \ {0, 1/2}. This family of elliptic curves has surjective mod 2 image of

Galois and non-abelian entanglement fields

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3,Δ
1/3
E ).

Brau and Jones pose the question [BJ16, Question 1.1] of classifying the triples
(E,m1,m2) with E an elliptic curve over a number field K and m1,m2 a pair of
relatively prime integers for which the mod m1 and mod m2 entanglement field
is non-abelian over K. We ask whether the elliptic curves defined in Theorem
8.6 are the only ones with non-abelian (2, 3)-entanglement fields. By constructing
covers of the modular curve XH′ , we find another family of elliptic curves with such
entanglement fields and provide a complete answer to [BJ16, Question 1.1] in the
case where K = Q and (m1,m2) = (2, 3).

Theorem 8.7. There exist infinitely many non-CM elliptic curves E over Q with

composite-(2, 3) image of Galois conjugate to GL2(Z/2Z) × G3,3 and non-abelian

entanglement fields

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3,Δ
1/3
E ).

In particular, these curves satisfy either

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3,Δ
1/3
E ) ∼= Q(x(E[3]))

or

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3,Δ
1/3
E ) ∼= Q(E[3]).
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Furthermore, we provide a parametrization of such elliptic curves.

Proof. Let G3,3 be the level 3 applicable subgroup from List A.2, which we can
identify as the Borel subgroup of GL2(Z/3Z). There exists a unique index 6 normal
subgroup of G3,3, namely

G′ := 〈( 2 0
0 2 )〉 .

Since G′ ≤ N , we have the following exact sequences:

1 N GL2(Z/3Z) GL2(Z/2Z) 1

1 G′ G3 GL2(Z/2Z) 1

θ1

θ2

Let

H ′′ := {(g2, g3) ∈ GL2(Z/2Z)×G3,3 : g2 = θ2(g3)}
denote the graph of θ2. Since H ′′ ≤ H ′, there is a map between the modular
curves XH′′ → XH′ . Using List A.2, we can construct the level 6 modular curve
corresponding to H ′′, namely

XH′′ : 21033s3(1− 4s3) =
27(t+ 1)(t+ 9)3

t3
.

This is a genus 0 curve endowed with a rational point, hence isomorphic to P1
Q.

The rational points on the curve XH′′ correspond to elliptic curves over Q with
composite-(2, 3) image conjugate to a subgroup of GL2(Z/2Z)×G3,3 andQ(E[2]) ⊆
Q(ζ3,Δ

1/3
E ) ⊆ Q(E[3]).

The surjectivity of θ2 implies that the mod 2 image is surjective, and hence the
conditions on ρE,3(GQ) imply that the 3-division field has degree at least 12 and

contains Q(E[2]) ⊂ Q(ζ3,Δ
1/3
E ). Therefore, the rational points on XH′′ classify

elliptic curves with non-abelian entanglement

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3,Δ
1/3
E ).

When ρE,3(GQ) is conjugate to G3,3 (equivalently when the composite-(2, 3) image
surjects onto G3,3), we have

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3,Δ
1/3
E ) ∼= Q(x(E[3])),

and when ρE,3(GQ) is conjugate to H{3,1},3 or H{3,2},3, then

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3,Δ
1/3
E ) ∼= Q(E[3]).

The parametrization for these curves can be found at [Mor17]. �

Corollary 8.8. There do not exist non-CM j-invariants outside of those from

Theorems 8.6 and 8.7 corresponding to elliptic curves with non-abelian (2, 3)-entan-
glement fields.

Proof. The only applicable subgroups of level 3 that have an index 6, normal sub-
group are G3,3, H{3,1},3, and H{3,2},3, where the latter two subgroups are index
two subgroups of the first. In particular, [Zyw10, Theorem 1.2] asserts that el-
liptic curves with such mod 3 images have the same j-invariant; curves with the
latter two images of Galois contain rational 3-torsion whereas the first does not.
Since the S3 is the only non-abelian mod 2 image of Galois, our result follows from
Lemma 8.1. �
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Appendix A. Applicable prime level subgroups

In this appendix, we reproduce the list of applicable subgroups from [Zywc] and
give the rational function expressing the modular j-invariant for certain exceptional
primes ℓ in addition to presenting these subgroups as lattices in GL2(Z/ℓZ) for easy
navigation. We decorate the cases where we cannot provably analyze the rational
points on the modular curve XG3,2,Gn,ℓ

(2 · ℓ) with a tilde. Also the subgroups are
hyperlinked to their definition.

A.1. List(ℓ = 2). Up to conjugacy there are three proper subgroups of GL2(Z/2Z),
all of which are arithmetically maximal (see Figure 1):

G1,2 = {I} , G2,2 = {I, ( 1 1
0 1 )} , G3,2 = {I, ( 1 1

1 0 ), (
0 1
1 1 )} .

G1,2

G2,2 G3,2

GL2(Z/2Z)

2 3

23

Figure 1. Applicable subgroup lattice for GL2(Z/2Z)

From [Zywc, Theorem 1.1], ρE,2(GQ) is conjugate in GL2(F2) to a subgroup of
Gi if and only if jE is of the form

J1(t) = 256
(t2 + t+ 1)3

t2(t+ 1)
, J2(t) = 256

(t+ 1)3

t
, J3(t) = t2 + 1728

for some t ∈ Q and each respective i.

A.2. List(ℓ = 3). Define the following subgroups of GL2(Z/3Z) (see Figure 2):

• let G1,3 be the group Csp(3),
• let G2,3 be the group Nsp(3),
• let G3,3 be the group B(3),
• let G4,3 be the group Nnsp(3),
• let H{1,1},3 be the subgroup consisting of the matrices of the form ( 1 0

0 ∗ ),
• let H{3,1},3 be the subgroup consisting of the matrices of the form ( 1 ∗

0 ∗ ),
• let H{3,2},3 be the subgroup consisting of the matrices of the form ( ∗ ∗

0 1 ).

Each of the groups Gi contains −I, and the groups H{i,j},3 do not contain −I.
Moreover, we have Gi,3 = ±H{i,j},3.

From [Zywc, Theorem 1.2(ii)], ρE,3(GQ) is conjugate in GL2(F3) to a subgroup
of Gi,3 if and only if jE is of the form

J1(t) = 27
(t+ 1)3(t+ 3)3(t2 + 3)3

t3(t2 + 3t+ 3)3
, J2(t) = 27

(t+ 1)3(t− 3)3

t3
,

J3(t) = 27
(t+ 1)(t+ 9)3

t3
, J4(t) = t3
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{I}

H{1,1},3

H{3,1},3 H{3,2},3 G1,3

G4,3 G3,3 G2,3

GL2(Z/3Z)

2

3
3

2

16

2
2 2

63

12

4

Figure 2. Applicable subgroup lattice for GL2(Z/3Z)

for some t ∈ Q and each respective i. Furthermore, [Zywc, Theorem 1.2(iii,iv)]
provides explicit conditions (isomorphisms) when ρE,3(GQ) is conjugate to H{i,j},3

for i = 1, 3 and j = 1, 2.

A.3. List(ℓ = 5). Define the following subgroups of GL2(Z/5Z) (see Figure A.3):

• let G1,5 be the subgroup consisting of the matrices of the form ±( 1 0
0 ∗ ),

• let G2,5 be the group Csp(5),
• let G3,5 be the unique subgroup of Nnsp(5) of index 3; it is generated by
( 2 0
0 2 ),

(
1 0
0 −1

)
, and ( 0 1

3 0 ),
• let G4,5 be the group Nsp(5),
• let G5,5 be the subgroup consisting of the matrices of the form ±( ∗ ∗

0 1 ),
• let G6,5 be the subgroup consisting of the matrices of the form ±( 1 ∗

0 ∗ ),
• let G7,5 be the group Nnsp(5),
• let G8,5 be the group B(5),
• let G9,5 be the unique maximal subgroup of GL2(Z/5Z) which contains
Nsp(5); it is generated by ( 2 0

0 1 ), (
1 0
0 2 ),

(
0 −1
1 0

)
, and

(
1 1
1 −1

)
,

• let H{1,1},5 be the subgroup consisting of the matrices of the form ( 1 0
0 ∗ ),

• let H{1,2},5 be the subgroup consisting of the matrices of the form
(
a2 0
0 a

)
,

• let H{5,1},5 be the subgroup consisting of the matrices of the form ( ∗ ∗
0 1 ),

• let H{5,2},5 be the subgroup consisting of the matrices of the form ( a ∗
0 a2 ),

• let H{6,1},5 be the subgroup consisting of the matrices of the form ( 1 ∗
0 ∗ ),

• let H{6,2},5 be the subgroup consisting of the matrices of the form
(
a2 ∗
0 a

)
.

Each of the groups Gi contains −I, and the groups H{i,j},5 do not contain −I.
Moreover, we have Gi,5 = ±Hi,j .
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{I}

H{1,1},5 H{1,2},5

H{5,1},5 H{5,2},5 H{6,1},5 H{6,2},5 G1,5

G3,5 G5,5 G6,5 G2,5

G8,5 G4,5

G7,5 G9,5

GL2(Z/5Z)

4

4

20

20

20

5
5

2

2

16

2
2

2
2 2

2
2

10

2

3

3

6

10 5

15

Figure 3. Applicable subgroup lattice for GL2(Z/5Z)

From [Zywc, Theorem 1.4(ii)], ρE,5(GQ) is conjugate in GL2(F5) to a subgroup
of Gi,5 if and only if jE is of the form

J1(t) =
(t20 + 228t15 + 494t10 − 228t5 + 1)3

t5(t10 − 11t5 − 1)5
,

J2(t) =
(t2 + 5t+ 5)3(t4 + 5t2 + 25)3(t4 + 5t3 + 20t2 + 25t+ 25)3

t5(t4 + 5t3 + 15t2 + 25t+ 25)5
,

J3(t) =
54t3(t2 + 5t+ 10)3(2t2 + 5t+ 5)3(4t4 + 30t3 + 95t2 + 150t+ 100)3

(t2 + 5t+ 5)5(t4 + 5t3 + 15t2 + 25t+ 25)5
,

J4(t) =
(t+ 5)3(t2 − 5)3(t2 + 5t+ 10)3

(t2 + 5t+ 10)3
,

J5(t) =
(t4 + 228t3 + 494t2 − 228t+ 1)3

t(t2 − 11t− 1)5
,

J6(t) =
(t4 − 12t3 + 14t2 + 12t+ 1)3

t5(t2 − 11t− 1)
,

J7(t) =
53(t+ 1)(2t+ 1)3(2t3 − 3t+ 3)3

(t2 + t− 1)5
,

J8(t) =
52(t2 + 10t+ 5)3

t5
,

J9(t) = t3(t2 + 5t+ 40)
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for some t ∈ Q and each respective i. Furthermore, [Zywc, Theorem 1.4(iii)]
provides explicit conditions when ρE,5(GQ) is conjugate to H{i,j},5 for i = 1, 5, 6
and j = 1, 2.

A.4. List(ℓ = 7). Define the following subgroups of GL2(Z/7Z) (see Figure 4):

• let G1,7 be the subgroup of Nsp(7) consisting of elements of Csp(7) with
square determinant and elements of Nsp(7) \Csp(7) with non-square deter-
minant; it is generated by ( 2 0

0 4 ), (
0 2
1 9 ), and

(
−1 0
0 −1

)
,

• let G2,7 be the group Nsp(7),
• let G3,7 be the subgroup consisting of matrices of the form ±( 1 ∗

0 ∗ ),
• let G4,7 be the subgroup consisting of matrices of the form ±( ∗ ∗

0 1 ),
• let G5,7 be the subgroup consisting of matrices of the form ( a ∗

0 ±a ),
• let G6,7 be the group Nnsp(7),
• let G7,7 be the group B(7),
• let H{1,1},7 be the subgroup generated by ( 2 0

0 4 ) and ( 0 2
1 0 ),

• let H{3,1},7 be the subgroup consisting of matrices of the form ( 1 ∗
0 ∗ ),

• let H{3,2},7 be the subgroup consisting of matrices of the form
(
±1 ∗
0 a2

)
,

• let H{4,1},7 be the subgroup consisting of matrices of the form ( ∗ ∗
0 1 ),

• let H{4,2},7 be the subgroup consisting of matrices of the form
(
a2 ∗
0 ±1

)
,

• let H{5,1},7 be the subgroup consisting of matrices of the form
(

±a2 ∗
0 a2

)
,

• let H{5,2},7 be the subgroup consisting of matrices of the form
(

a2 ∗
0 ±a2

)
,

• let H{7,1},7 be the subgroup consisting of matrices of the form ( ∗ ∗
0 a2 ),

• let H{7,2},7 be the subgroup consisting of matrices of the form
(
a2 ∗
0 ∗

)
.

Each of the groups Gi contains −I, and the groups H{i,j},7 do not contain −I.
Moreover, we have Gi,7 = ±H{i,j},7.

From [Zywc, Theorem 1.5(ii)], ρE,7(GQ) is conjugate in GL2(F7) to a subgroup
of Gi,7 if and only if jE is of the form

J1(t) = 33 · 5 · 75/27,

J2(t) =
t(t+ 1)3(t2 − 5t− 1)3(t2 − 5t+ 8)3(t4 − 5t3 + 8t2 − 7t+ 7)3

(t3 − 4t2 + 3t+ 1)7
,

J3(t) =
(t2 − t+ 1)3(t6 − 11t5 + 30t4 − 15t3 − 10t2 + t+ 1)3

(t− 1)7t7(t3 − 8t2 + 5t+ 1)
,

J4(t) =
(t2 − t+ 1)3(t6 + 229t5 + 270t4 − 1695t3 + 1430t2 − 235t+ 1)3

(t− 1)t(t3 − 8t2 + 5t+ 1)7
,

J5(t) = − (t2 − 3t− 3)3(t2 − t+ 1)3(3t2 − 9t+ 5)3(5t2 − t− 1)3

(t3 − 2t2 − t+ 1)(t3 − t2 − 2t+ 1)7
,

J6(t) =
64t3(t2 + 7)3(t2 − 7t+ 14)3(5t2 − 14y − 7)3

(t3 − 7t2 + 7t+ 7)7
,

J7(t) =
(t2 + 245t+ 2401)3(t2 + 13t+ 49)

t7

for some t ∈ Q and each respective i. Furthermore, [Zywc, Theorem 1.5(iii,iv)]
provides us with explicit conditions when ρE,7(GQ) is conjugate to H{i,j},7 for
i = 1, 3, 4, 5, 7 and j = 1, 2.
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{I}

H{4,1},7 H{4,2},7

H{1,1},7 H{5,2},7 H{5,1},7 H{3,2},7 H{3,1},7

G1,7 G5,7 H{7,2},7 G4,7 H{7,1},7 G3,7

G2,7 G7,7 G6,7

GL2(Z/7Z)

42 42
18

42

42 42
42

2 2

2

3

3

2

22

3

3

2

2

2

2
3

3
3

22

96

2128 8

Figure 4. Applicable subgroup lattice for GL2(Z/7Z)

A.5. List(ℓ = 11). Define the following subgroups of GL2(Z/11Z) (see Figure 5):

• let G1,11 be the subgroup generated by ±( 1 1
0 1 ) and ( 4 0

0 6 ),
• let G2,11 be the subgroup generated by ±( 1 1

0 1 ) and ( 5 0
0 7 ),

• let G3,11 be the group Nnsp(11),
• let H{1,1},11 be the subgroup generated by ( 1 1

0 1 ) and ( 4 0
0 6 ),

• let H{1,2},11 be the subgroup generated by ( 1 1
0 1 ) and ( 7 0

0 5 ),
• let H{2,1},11 be the subgroup generated by ( 1 1

0 1 ) and ( 5 0
0 7 ),

• let H{2,2},11 be the subgroup generated by ( 1 1
0 1 ) and ( 6 0

0 4 ).

Each of the groups Gi contains −I, and the groups H{i,j},11 do not contain −I.
Moreover, we have Gi,11 = ±H{i,j},11.

From [Zywc, Theorem 1.6(ii,iii)], there are unique values for jE that correspond
to ±ρE,11(GQ) being conjugate in GL2(Z/11Z) to a subgroup of G1,11 and G2,11.

The modular curve XG3
(11) = X+

nsp(11) is the only one from Zywina’s classifi-
cation that has genus 1 with infinitely many rational points. To explicitly describe
this modular curve, let E be the elliptic curve over Q defined by the Weierstrass
equation y2 + y = x3 − x2 − 7x + 10 and let O be the point at infinity. The
Mordell–Weil group E(Q) is an infinite cyclic group generated by the point (4, 5).
Halberstadt [Hal98] showed thatX+

nsp(11) is isomorphic to E and that the morphism
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{I}

H{2,1},11 H{2,2},11 H{1,1},11 H{1,2},11

G2,11 G̃3,11 G1,11

GL2(Z/11Z)

110

110 110

110

2
2

240

2
2

55
6060

Figure 5. Applicable subgroup lattice for GL2(Z/11Z)

to the j-line corresponds to

J(x, y) :=
(f1f2f3f4)

3

f2
5 f

11
6

,

where

f1 = x2 + 3x− 6, f2 = 11(x2 − 5y)+(2x4+23x3 − 72x2 − 28x+ 127),

f3 = 6y + 11x− 19, f4 = 22(x− 2)y + (5x3 + 17x2 − 112x− 120),

f5 = 11y + (2x2 + 17x− 34), f6 = (x− 4)y − (5x− 9).

From [Zywc, Theorem 1.6(iv)], ρE,11(GQ) is conjugate to G3,11 if and only if jE =
J(P ) for some point P ∈ E(Q) \ {O}.
Remark A.1. In [Zywc, Section 4.5.5], Zywina gives explicit polynomials A,B,C ∈
Q[x] of degree 55 such that for a non-CM elliptic curve E/Q, we have jE = J(P ) for
some P ∈ E(Q)\{O} if and only if the polynomial A(x)j2E+B(x)jE +C(x) ∈ Q[x]
has a rational root. Hence given a numerical jE , this gives a straightforward way
to check the criterion that ρE,11(GQ) is conjugate to a subgroup of G3,11.

A.6. List(ℓ = 13). Define the following subgroups of GL2(Z/13Z) (see Figure 6):

• let G1,13 be the subgroup consisting of matrices of the form ( ∗ ∗
0 b3 ),

• let G2,13 be the subgroup consisting of matrices of the form
(
a3 ∗
0 ∗

)
,

• let G3,13 be the subgroup consisting of matrices ( a ∗
0 b ) for which (a/b)4 = 1,

• let G4,13 be the subgroup consisting of matrices of the form ( ∗ ∗
0 b2 ),

• let G5,13 be the subgroup consisting of matrices of the form
(
a2 ∗
0 ∗

)
,

• let G6,13 be the group B(13),
• let G7,13 be the subgroup generated by the matrices ( 2 0

0 2 ), (
2 0
0 3 ),

(
0 −1
1 0

)
,

and
(

1 1
−1 1

)
; it contains the scalar matrices and its image in PGL2(Z/13Z)

is isomorphic to S4,
• let H{4,1},13 be the subgroup consisting of matrices of the form ( ∗ ∗

0 a4 ),

• let H{4,2},13 be the subgroup consisting of matrices of the form
(

b2 ∗
0 a4

)
and

( 2 0
0 4 ),
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• let H{5,1},13 be the subgroup consisting of matrices of the form
(
a4 ∗
0 ∗

)
,

• let H{5,2},13 be the subgroup consisting of matrices of the form
(

a4 ∗
0 b2

)
and

( 4 0
0 2 ).

Each of the groups G{i,13} contains −I, and the groups H{i,j},13 do not contain
−I. Moreover, we have Gi,13 = ±H{i,j},13.

{I}

H{5,1},13 H{5,2},13 H{4,1},13 H{4,2},13

G3,13 G5,13 G2,13 G4,13 G1,13

G̃7,13 G6,13

GL2(Z/13Z)

468

468 468

468

624
2

2

624

2
2

624

288

3
3

3
22

91 14

Figure 6. Applicable subgroup lattice for GL2(Z/13Z)

Define the polynomials

P1(t) =
t12 + 231t11 + 269t10 − 3160t9 + 6022t8 − 9616t7 + 21880t6

−34102t5 + 28297t4 − 12455t3 + 2876t2 − 243t+ 1
,

P2(t) =
t12 − 9t11 + 29t10 − 40t9 + 22t8 − 16t7 + 40t6

−22t5 − 23t4 + 25t3 − 4t2 − 3t+ 1
,

P3(t) = (t4 − t3 + 2t2 − 9t+ 3)(3t4 − 3t3 − 7t2 + 12t− 4)(4t4 − 4t3 − 5t2 + 3t− 1),

P4(t) = t8 + 235t7 + 1207t6 + 955t5 + 3840t4 − 955t3 + 1207t2 − 235t+ 1,

P5(t) = t8 − 5t7 + 7t6 − 5t5 + 5t3 + 7t2 + 5t+ 1,

P6(t) = t4 + 7t3 + 20t2 + 19t+ 1.

From [Zywc, Theorem 1.8(ii)], ρE,13(GQ) is conjugate in GL2(Z/13Z) to Gi,13 if
and only if jE is of the form

J1(t) =
(t2 − t+ 1)3P1(t)

3

(t− 1)t(t3 − 4t2 + t+ 1)13
,
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J2(t) =
(t2 − t+ 1)3P2(t)

3

(t− 1)13t13(t3 − 4t2 + t+ 1)
,

J3(t) = − 134(t2 − t+ 1)3P3(t)
3

((t3 − 4t2 + t+ 1)13(5t3 − 7t2 − 8t+ 5))
,

J4(t) =
(t4 − t3 + 5t2 + t+ 1)P4(t)

3

t(t2 − 3t− 1)13
,

J5(t) =
(t4 − t3 + 5t2 + t+ 1)P5(t)

3

t13(t2 − 3t− 1)
,

J6(t) =
(t2 + 5t+ 13)P6(t)

3

t

for some t ∈ Q and each respective i. Furthermore, [Zywc, Theorem 1.8(iii)] gives
explicit conditions on when ρE,13(GQ) is conjugate to H{i,j},13 for i = 4, 5 and
j = 1, 2, and [Zywc, Theorem 1.8(iv)] gives necessary numerical conditions for
when ρE,13(GQ) is conjugate to G7,13. The case ℓ = 13 is the first case for which
Zywina does not give a complete description, which is due to three outstanding
cases (see Section 7.4). Furthermore, the author gives equations for the modular
curves XH(ℓ) of level ℓ, where ℓ is a primes ≤ 37 and H is an applicable subgroup
of GL2(Z/ℓZ).
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