
Mach Learn (2010) 79: 73–103
DOI 10.1007/s10994-009-5150-6

Composite kernel learning

Marie Szafranski · Yves Grandvalet ·

Alain Rakotomamonjy

Received: 6 March 2009 / Revised: 22 July 2009 / Accepted: 8 September 2009 /
Published online: 14 October 2009
© The Author(s) 2009

Abstract The Support Vector Machine is an acknowledged powerful tool for building clas-
sifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple
Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose com-
bination is optimized in the learning process. Here, we propose Composite Kernel Learning
to address the situation where distinct components give rise to a group structure among ker-
nels. Our formulation of the learning problem encompasses several setups, putting more or
less emphasis on the group structure. We characterize the convexity of the learning problem,
and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the
behavior of our method on multi-channel data where groups correspond to channels.

Keywords Supervized learning · Support vector machine · Kernel learning · Structured
kernels · Feature selection and sparsity

1 Motivations

Kernel methods are very versatile tools for learning from examples (Schölkopf and Smola
2001). In these models, the observations x belonging to some measurable instance space

Editors: Nicolo Cesa-Bianchi, David R. Hardoon, and Gayle Leen.

M. Szafranski (�)
CNRS FRE 3190—IBISC, Université d’Évry Val d’Essonne, 91025 Évry Cedex, France
e-mail: marie.szafranski@ibisc.fr

M. Szafranski
CNRS UMR 6166—LIF, Universités d’Aix-Marseille, Marseille, France

Y. Grandvalet
CNRS UMR 6599—Heudiasyc, Université de Technologie de Compiègne, 60205 Compiègne Cedex,
France
e-mail: yves.grandvalet@hds.utc.fr

A. Rakotomamonjy
EA 4108—LITIS, Université de Rouen, 76801 Saint-Étienne-du-Rouvray Cedex, France
e-mail: alain.rakotomamonjy@univ-rouen.fr

mailto:marie.szafranski@ibisc.fr
mailto:yves.grandvalet@hds.utc.fr
mailto:alain.rakotomamonjy@univ-rouen.fr

74 Mach Learn (2010) 79: 73–103

X are implicitly mapped in a feature space H via a mapping � : X → H, where H is a
Reproducing Kernel Hilbert Space (RKHS) with reproducing kernel K : X × X → R.

When learning from a single source, selecting the right kernel is an essential choice,
conditioning the success of the learning method. Indeed, the kernel is crucial in many re-
spects regarding data representation issues. Formally, the primary role of K is to define the
evaluation functional in H:

∀x ∈ X ,K(x, ·) ∈ H and ∀f ∈ H, f (x) = 〈f,K(x, ·)〉H,

but K also defines

1. H, since ∀f ∈ H,∀x ∈ X ,∃αi ∈ R, i = 1, . . . ,∞, f (x) =
∑∞

i=1 αiK(xi,x);
2. a metric, and hence a smoothness functional in H, where, for f defined above, ‖f ‖2

H
=

∑∞
i=1

∑∞
j=1 αiαiK(xi,xj);

3. the mapping φ(x) = K(x, ·) and a scalar product between observations: ∀(x,x ′) ∈
X 2, 〈�(x),�(x ′)〉H = K(x,x ′).

In other words, the kernel defines

1. the hypothesis space H;
2. the complexity measure ‖f ‖2

H
indexing the family of nested functional spaces in the

structural risk minimization principle (Vapnik 1995);
3. the representation space of data endowed with a scalar product.

These observations motivate the developments of means to avoid the use of unsupported
kernel, which do not represent prior knowledge about the task at hand, and are fixed before
observing data. The consequences of the arbitrary choice that may be involved at this level
range from interpretability issues to poor performances (see for example Weston et al. 2001;
Grandvalet and Canu 2003). “Learning the kernel”, aims at alleviating these problems, by
adapting the kernel to the problem at hand.

A general model of learning the kernel has two components: (i) a family of kernels, that
is, a set K = {Kθ , θ ∈ �}, where � is a set of parameters and Kθ is the kernel parameterized
by θ , and (ii) an empirical functional, whose minimization with respect to θ will be used to
choose a kernel in K that best fits the data according to some empirical criterion.

In this paper, we develop the Composite Kernel Learning (CKL) approach, which is ded-
icated to learning the kernel when there is a known group structure among a set of candidate
kernels. This framework applies to learning problems arising from a single data source when
the input variables have a group structure, and it is also particularly well suited to the prob-
lem of learning from multiple sources. Then, each source can be represented by a group of
kernels, and the algorithm aims at identifying the relevant sources and their apposite kernel
representation. Thanks to the notion of source embedded in the kernel parameterization, our
framework introduces in the Multiple Kernel Learning framework (Lanckriet et al. 2004)
the ability to select sources, or alternatively to ensure the use of all sources.

We briefly review the different means proposed to extend kernel methods beyond the
predefined kernel setup in Sect. 2, with an emphasis on Multiple Kernel Learning and the
parametric relatives that inspired our approach. In Sect. 3, we formalize the general CKL
framework, starting from basic desiderata, and finishing with a general and compact for-
mulation amenable to optimization. The algorithm is provided in Sect. 4, and experiments
are reported in Sect. 5. Finally, Sect. 6 summarizes the paper and provides directions for
future research. We used the standard notations found in textbooks, such as Schölkopf and
Smola (2001); they are introduced when they first appear in the document, and an overview
is provided in Appendix C.

Mach Learn (2010) 79: 73–103 75

2 Flexible kernel methods

From now on, we restrict our discussion to binary classification, where, from n pairs
(xi, yi) ∈ X × {−1,1} of observations and binary labels, one aims at inferring a decision
rule that predicts the class label y of any observation x ∈ X . However, most of our state-
ments carry on to other settings, such as multiclass classification, regression or clustering
with kernel methods. Indeed, the penalties we will propose are learned from data, but they
are defined without any interdependence with the data-fitting term.

2.1 Support vector machines

A Support Vector Machine (SVM) is defined as the decision rule sign(f ⋆(x) + b⋆), where
f ⋆ and b⋆ are the solution of

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
f,b,ξ

1

2
‖f ‖2

H
+ C

n
∑

i=1

ξi (1a)

s.t. yi (f (xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n, (1b)

where f ∈ H, b ∈ R and ξ ∈ R
n are the optimization variables, and C is a positive regular-

ization parameter that is the only adjustable parameter in the SVM learning problem once H

has been chosen. Note that, though C and H are usually tuned in the same outer loop, their
role is completely different. While C sets the trade-off between regularity and data-fitting,
H, the so-called feature space, defines the embedding of the observations via the mapping
�. Hence, while choosing C amounts to select a model in a nested family of functional
spaces whose size is controlled by ‖f ‖2

H
(or equivalently by the margin in H), choosing H

boils down to picking a representation (endowed with a metric) for the observations x.
Adapting the kernel to data is not representative of model selection strategies that typ-

ically balance goodness of fit with simplicity. As a result, Vapnik (1995) did not provide
guidelines for choosing the kernel, which was considered to be chosen prior to seeing data
when deriving generalization bounds for SVMs. Following these observations, all methods
adapting the kernel to data will be here referred to as kernel learning instead of model selec-
tion.

Since solving (1) is usually not flexible enough to provide good results when H is fixed,
most applications of SVM incorporate a mechanism for learning the kernel. This mechanism
may be as simple as picking a kernel in a finite set, but may also be an elaborate optimization
process within a finite or infinite family of kernels. These options are described in more
details below.

2.2 Learning the kernel

In our view, kernel learning methods encompass all processes where the kernel K is chosen
from a pre-defined set K, by optimizing an empirical functional defined on the training set
{xi, yi}n

i=1. With this viewpoint, the most rudimentary, but also the most common way to
learn the kernel is cross-validation, that consists here in (i) defining a family of kernels (e.g.

Gaussian), indexed by one or more parameters (e.g. bandwidth), K = {Km}M
m=1, where m

indexes the trial values for the kernel parameters, and, (ii) computing a cross-validation score
on each hyper-parameter setting, and picking the kernel whose hyper-parameters minimize
the cross-validation score. In this example, the empirical functional used for learning the

76 Mach Learn (2010) 79: 73–103

kernel is the minimum of the cross-validation score with respect to the trial values of the
regularization parameter C.

A thorough discussion of the pros and cons of cross-validation is out of the scope of this
paper, but it is clear that this approach is inherently limited to one or two hyper-parameters
and few trial values. This observation led to several proposals allowing for more flexibil-
ity in the kernel choice, where cross-validation may still be used, but only for tuning the
regularization parameter C.

2.2.1 Filters, wrappers & embedded methods

As already stated, learning the kernel amounts to learn the feature mapping. It should thus
be of no surprise that the approaches investigated bear some similarities with the ones devel-
oped for variable selection,1 where one encounters filters, wrappers and embedded methods
(Guyon and Elisseeff 2003). Some general frameworks, such as hyperkernels (Ong et al.
2005) do not belong to a single category, but the distinction is appropriate in most cases.

In filter approaches, the kernel is adjusted before building the SVM, with no explicit re-
lationship with the objective value of Problem (1). For example, the kernel target alignment
of Cristianini et al. (2002) adapts the kernel matrix to the available data without training any
classifier.

In wrapper algorithms, the SVM solver is the inner loop of two nested optimizers, whose
outer loop is dedicated to adjust the kernel. This tuning may be guided by various gener-
alization bounds (Cristianini et al. 1999; Weston et al. 2001; Chapelle et al. 2002). In all
these methods, the set of admissible kernels K is defined by kernel parameter(s) θ , where θ

may be the kernel bandwidth, or a diagonal or a full covariance matrix in Gaussian kernels.
The empirical criterion optimized with respect to θ is a generalization bound such as the
radius/margin bound (using the actual radius and margin obtained with θ on the training
set).

Kernel learning can also be embedded in Problem (1), with the SVM objective value
minimized jointly with respect to the SVM parameters and the kernel hyper-parameters
(Grandvalet and Canu 2003). In this line of research, Argyriou et al. (2006) consider combi-
nations of kernels whose parameters are optimized by a DC (difference of convex functions)
program. The present approach builds on the simplest Multiple Kernel Learning (MKL)
framework initiated by Lanckriet et al. (2004), which is limited to the combination of pre-
scribed kernels but leads to simpler convex programs.

2.2.2 Multiple kernel learning

In MKL, we are provided with M candidate kernels, K1, . . . ,KM , and we wish to estimate
the parameters of the SVM classifier together with the weights of a convex combination of
kernels K1, . . . ,KM that defines the effective kernel Kσ

K =

{

Kσ =
M

∑

m=1

σmKm, σm ≥ 0,

M
∑

m=1

σm = 1

}

. (2)

Each kernel Km is associated to a RKHS Hm whose elements will be denoted fm, and σ =
(σ1, . . . , σM)⊤ is the vector of coefficients to be learned under the convex combination con-
straints. The positiveness constraint ensures that K is positive definite when the base kernels

1In variable selection, the situation is simpler since selecting variables provides simpler models, so that
variable selection or shrinkage may be used for model selection purposes.

Mach Learn (2010) 79: 73–103 77

Km are themselves positive definite. The unitary constraint may be seen as a normalization of
the effective kernel that is necessary to avoid diverging solutions. In an embedded approach,
where the empirical functional used to select Kσ is the fitting criterion (1), the unitary con-
straint on σ is also important to preserve the role of the SVM regularization parameter C.
Furthermore, provided that the individual kernels Km are properly normalized (with identi-
cal trace norm), the norm constraint on σ can be motivated by generalization error bounds
that are valid for learned kernels. The first works in this direction (Lanckriet et al. 2004;
Bousquet and Herrmann 2003) were found to be meaningless, with bounds on the expected
error never less than one, but Srebro and Ben-David (2006) provide tighter bounds based
on the pseudodimension of a family of kernel, which is at most the number of kernels in
combination (2).

The original MKL formulation of Lanckriet et al. (2004) was based on the dual of the
SVM optimization problem. It was later shown to be equivalent to the following primal
problem (Bach et al. 2004)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ

1

2

(M
∑

m=1

‖fm‖Hm

)2

+ C

n
∑

i=1

ξi (3a)

s.t. yi

(M
∑

m=1

fm(xi) + b

)

≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n, (3b)

whose solution leads to a decision rule of the form sign(
∑M

m=1 f ⋆
m(x)+ b⋆). This expression

of the learning problem is remarkable in that it only differs slightly from the original SVM
problem (1). The squared RKHS norm in H is simply replaced by a mixed-norm, with the
standard RKHS norm within each feature space Hm, and an ℓ1 norm in R

M on the vector
built by concatenating these norms.

With this mixed-norm, the objective function is not differentiable at ‖fm‖Hm = 0. This
is the cause of a considerable algorithmic burden, which is rewarded by the sparseness of
solutions, that is, solutions where some functions fm have zero norm. As each function fm

is computed from Km, this results in a sparse kernel expansion in (2).
Looking at Problem (3), one may wonder why a mixed-norm should be more flexible

than a squared RKHS norm, and why the former should be considered as a kernel learn-
ing technique. These questions are answered with the MKL formulation of Rakotomamonjy
et al. (2008), which is a variational form of Problem (3), in the sense that the solution of
Problem (3) is defined as the minimizer with respect to the additional variable σ of an
optimization problem in f1, . . . , fM , b, ξ . By introducing the parameters σ1, . . . , σM of the
combination (2) in the objective function, kernel learning comes explicitly into view. The
resulting optimization problem, which is equivalent to Problem (3), circumvents its differ-
entiability issues, as shown below:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ ,σ

1

2

M
∑

m=1

1

σm

‖fm‖2
Hm

+ C

n
∑

i=1

ξi (4a)

s.t. yi

(M
∑

m=1

fm(xi) + b

)

≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n (4b)

M
∑

m=1

σm = 1, σm ≥ 0, m = 1, . . . ,M, (4c)

78 Mach Learn (2010) 79: 73–103

where, here and in what follows, u/v is defined by continuation at zero as u/0 = ∞ if u
= 0
and 0/0 = 0.

MKL may be used in different prospects. When the individual kernels Km represent a
series, such as Gaussian kernels with different scale parameters, it constitutes an alternative
to cross-validating the kernel parameters. When the input data originates from M differents
sources, and that each kernel is affiliated to one group of input variables, it enables to select
relevant sources.

However, MKL is not meant to address problems where several kernels pertain to a single
source. In this situation, its sparseness mechanism does not account for the structure among
kernels. In particular, it cannot favor solutions discarding all the kernels computed from an
irrelevant source. Although most of the related coefficients should vanish in combination (2),
spurious correlation may cause irrelevant sources to participate to the solution. A single
coefficient could be attached for each source, but this solution forbids kernel adaptation
within each source, whose equivalent kernel would be clamped to the average kernel. Note
also that, in the opposite situation where we want to involve all sources in the solution, with
only a few kernels per source, MKL is not guaranteed to provide a solution complying with
the requisite.

2.3 Group and composite penalties

The selection/removal of kernels between or within predefined groups relies on the definition
of a structure among kernels. This type of hierarchy has been investigated among variables
in linear models (Yuan and Lin 2006; Szafranski et al. 2008a; Zhao et al. 2009).

The very general Composite Absolute Penalties (CAP) family of Zhao et al. (2009) con-
siders a linear model with M parameters, β = (β1, . . . , βM)T . Let I = {1, . . . ,M} be a set
of index on these parameters, a group structure on the parameters is defined by a series of
L subsets {Gℓ}L

ℓ=1, where Gℓ ⊆ I . Additionally, let {γℓ}L
ℓ=0 be L+ 1 norm parameters. Then,

the member of the CAP family for the chosen groups and norm parameters is

L
∑

ℓ=1

(

∑

m∈Gℓ

|βm|γℓ

)γ0/γℓ

.

To our knowledge, there is no efficient general purpose algorithm for fitting parametric
models with penalties belonging to the CAP family, but for the prominent particular cases
listed below, such algorithms exist. They all consider γ0 = 1 that enforces sparseness at the
group level and identical norms {γℓ}L

ℓ=1 at the parameter level:

• γℓ = 1 is the LASSO (Tibshirani 1996), which clears the group structure;
• γℓ = 4/3 is the Hierarchical Penalization (Szafranski et al. 2008a), which gives rise to

few dominant variables within groups;
• γℓ = 2 is the group-LASSO (Yuan and Lin 2006), which applies a proportional shrinkage

to the variables within groups;
• γℓ = ∞ is the iCAP penalty (examined in more details by Zhao et al. 2009), which limits

the maximal magnitude of the coefficients within groups.

Mixed-norms correspond to groups defined as a partition of the set of variables. A CAP
may also rely on nested groups, G1 ⊂ G2 ⊂ · · · ⊂ GL, and γ0 = 1, in which case it favors
what Zhao et al. call hierarchical selection, that is, the selection of groups of variables in
the predefined order {I \ GL}, {GL \ GL−1}, . . . , {G2 \ G1}, G1 according to some heredity
principle. This example is provided here to stress that Zhao et al.’s notion of hierarchy
differs from the one that will be introduced in Sect. 3.

Mach Learn (2010) 79: 73–103 79

2.4 Relations between MKL and CAP

CAP and its earlier predecessor LASSO have been initiated in the parametric regression
setting. Using the notations introduced for CAP, the LASSO penalty is

L
∑

ℓ=1

(

∑

m∈Gℓ

|βm|
)

=
M

∑

m=1

|βm| =
M

∑

m=1

(

β2
m

)1/2
,

but the LASSO penalty can take a more general form. In the example of M RKHS
H1, . . . , HM , one may consider the penalty

M
∑

m=1

‖fm‖Hm =
M

∑

m=1

(α⊤
mKmαm)1/2,

where αm ∈ R
n, Km is the mth kernel matrix Km(i, j) = Km(xi,xj) and fm(x) =

∑n

i=1 αm(i)K(xi,x).
The representer theorem (Schölkopf and Smola 2001) ensures that the fm solving the

MKL Problem (3a) are of the above form. Hence, MKL may be seen as a kernelization of
LASSO, extended to SVM classifiers, whose penalty generalizes the ones proposed in the
framework of additive modeling with spline functions (see Grandvalet and Canu 1999) to
arbitrary RKHS. In this sense, MKL extends the simplest member of the CAP family to
SVM classifiers.

Being a sum of ℓ2 norms, the MKL penalty is also of the group-LASSO type, but the
groups are defined at the level of the expansion coefficients αm.2 CKL extends the MKL
framework by defining groups at a higher level, that is at the kernel level: Composite Kernel
Learning is to CAP what Multiple Kernel Learning is to LASSO.

3 Composite kernel learning

The flat combination of kernels in MKL does not include any mechanism to cluster the
kernels related to each source. In order to favor the selection/removal of kernels between or
within predefined groups, one has to define a structure among kernels, which will guide the
selection process. We present here the kernel methods counterpart of the methods surveyed
in Sect. 2.3 for parametric models.

3.1 Groups of kernels

We consider problems where we have a set of kernels, partitioned in groups, which may
correspond to subsets of inputs, sources, or more generally distinct families of similarity
measures between examples. This structure will be represented by a tree, as we envision
more complex structures with a hierarchy of nested groups. We index the tree depth by h,
with h = 0 for the root, and h = 2 for the leaves. The leaf nodes represent the kernels at
hand for the classification task; the nodes at depth 1 stand for the group-kernels formed
by combining the kernels within each group; the root represents the global effective kernel

2Note that, except for the case where Km has a block-diagonal structure, there is no effective grouping in the
MKL penalty.

80 Mach Learn (2010) 79: 73–103

Fig. 1 A tree of height two depicting groups of kernels

merging the group-kernels. Without loss of generality, we consider that all leaves are at
depth 2. If not the case, an intermediate node should be inserted at depth 1 between the root
and each isolated leaf, as illustrated in Fig. 1.

In CKL, learning the kernel consists in learning the parameters of each combination of
kernels. There are L + 1 such combinations, one at each group level, and one at the root
level. As illustrated in Fig. 1, the weights of these combinations may be thought of as being
attached to the branches of the tree: a branch stemming from the root and going to node ℓ

is labelled by σ1,ℓ, which is the weight associated to the ℓth group in the effective kernel; a
branch stemming from node ℓ at depth 1 and reaching leaf m is labelled by σ2,m, which is
the weight associated to the mth kernel in its group-kernel.

3.2 Kernel selection

In the learning process, we would like to suppress the kernels and/or the groups that are
irrelevant for the classification task. In the tree representation, this removal process consists
in pruning the tree. When a branch is pruned at the leaf level, a single kernel is removed from
the combination. When a subtree is pruned, a group-kernel is removed from the combination,
and the corresponding group of kernels has no influence on the classifier. With the branch
labeling introduced above and illustrated in Fig. 1, removing kernel m consists in setting
σ2,m to 0, and removing group ℓ consists in setting σ1,ℓ to 0.

For the purpose of performing flat kernel selection, σ1,ℓ is redundant with σ2,m, but the
decomposition proposed here allows to pursue different goals, by constraining the solu-
tions to have a given sparsity pattern induced by the sparseness constraints at each level of
the hierarchy: in the example of Fig. 1, though they delete the same number of leaves,
we may prefer for a solution with σ1,3 = 0 (that is, the removal of group 3 composed
of kernels 5 and 6) to σ2,3 = σ2,4 = 0 that also removes two kernels, but retains all the
groups.

We now elaborate on the notations introduced in Sect. 2.3 for the CAP family. The M

kernels situated at the leaves are indexed by {1, . . . ,m, . . . ,M}, and the group-kernels (at

Mach Learn (2010) 79: 73–103 81

depth 1) are indexed by {1, . . . , ℓ, . . . ,L}. The set Gℓ of cardinality dℓ indexes the leaf-
kernels belonging to group-kernel ℓ, that is, the children of node ℓ. The groups form a
partition of the leaf-kernels, that is,

⋃

ℓ Gℓ = {1, . . . ,m, . . . ,M} and
∑

ℓ dℓ = M . Note that,
to lighten notations, the range of indexes will often be omitted in summations, in which
case: indexes i and j refer to examples and go from 1 to n; index m refers to leaf-kernels
and goes from 1 to M ; index ℓ refers to group-kernels and goes from 1 to L.

In a hard selection setup, where σ 1 = (σ1,1 . . . σ1,L)⊤ and σ 2 = (σ2,1 . . . σ2,M)⊤ are binary
vectors, the learning problem is stated as follows

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ ,σ 1σ 2

1

2

∑

m

‖fm‖2
Hm

+ C
∑

i

ξi (5a)

s.t. yi

(

∑

ℓ

σ1,ℓ

∑

m∈Gℓ

σ2,mfm(xi) + b

)

≥ 1 − ξi, i = 1, . . . , n (5b)

ξi ≥ 0, i = 1, . . . , n (5c)
∑

ℓ

dℓσ1,ℓ ≤ s1, σ1,ℓ ∈ {0,1}, ℓ = 1, . . . ,L (5d)

∑

m

σ2,m ≤ s2, σ2,m ∈ {0,1}, m = 1, . . . ,M, (5e)

where s1 and s2 designate the number of leaves that should be retained after pruning. The
constraint (5d) on σ 1 imposes some pruning at the group level, while the constraint (5e) on
σ 2 imposes some additional pruning at the leaf level. Note that constraint (5e) may only be
active if s2 ≤ s1.

Problem (5) has a number of shortcomings. First, it is an inherently combinatorial prob-
lem, for which finding a global optimum is challenging even with a small number of kernels.
Second, this type of hard selection problem is known to provide unstable solutions (Breiman
1996), especially when the number of kernels is not orders of magnitude lower than the train-
ing set size. Unstability refers here to large changes in the overall predictor, in particular via
the changes in the set of selected kernels, in response to small perturbations of the training
set. Besides having detrimental effects on the variability of model parameters, unstability
has been shown to badly affect model selection (Breiman 1996). More recently, stability has
been shown to characterize the generalization ability of learning algorithms (Bousquet and
Elisseeff 2002).

As the kernel choice is especially decisive for small to moderate sample sizes, we should
devise well-behaved algorithms in this setup. Hence, we will consider stable soft-selection
techniques, such as the ones based on ℓ2 or ℓ1 regularization.

3.3 Soft selection

To convert Problem (5) in a smooth soft-selection problem, we will transform the binary
vectors σ 1 and σ 2 in continuous positive variables, which may either “choke” some branches
or prune them. We also replace the hyper-parameters s1 and s2 in constraints (5d) and (5e)
by 1, since their role is redundant with the parameters dℓ when the latter are not restrained
to be equal to the group size. The problem reads

82 Mach Learn (2010) 79: 73–103

Fig. 2 Graph of σ1 vs.

(1 −
∑

m>1 σ
2/p
m) when

∑

m σ
2/p
m = 1. As p goes to

zero, the constraint approaches a
hard selection process with
σm ∈ {0,1}

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ ,σ 1σ 2

1

2

∑

m

‖fm‖2
Hm

+ C
∑

i

ξi (6a)

s.t. yi

(

∑

ℓ

σ1,ℓ

∑

m∈Gℓ

σ2,mfm(xi) + b

)

≥ 1 − ξi, i = 1, . . . , n (6b)

ξi ≥ 0, i = 1, . . . , n (6c)
∑

ℓ

dℓσ
2/p

1,ℓ ≤ 1, σ1,ℓ ≥ 0, ℓ = 1, . . . ,L (6d)

∑

m

σ
2/q

2,m ≤ 1, σ2,m ≥ 0, m = 1, . . . ,M, (6e)

where we incorporated two hyper-parameters p and q appearing respectively in constraints
(6d) and (6e), whose roles are to drive these constraint closer or further from their binary
counterpart in (5), as illustrated in Fig. 2. These exponents can thus be tuned to implement
harder or softer selection strategies, and different values for p and q will lead to more or
less emphasis on sparsity within or between groups. Some properties related to the choice
of p and q will be discussed in the following section, and the practical outcomes of these
choices will be illustrated in Sect. 5.

3.4 Properties

Problem (6) is difficult to analyze and to optimize. We derive here a “flat” equivalent for-
mulation using a single weight per kernel Km, using the simple fact that the composition
of combinations is itself a combination. The kernel group structure will not be lost in the
process, it will be transferred to the weights of the combination.

This simplification proceeds in three steps (see details in Appendix A). First, variable σ 2

disappears in a change of variables where σ appears, then, we use a necessary optimality
condition that ties σ 1 with σ for all stationnary points, including the global maximum.3

3A stationnary point is defined as a point satisfying the KKT conditions.

Mach Learn (2010) 79: 73–103 83

Finally, plugging these optimality conditions into Problem (6), we get
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ ,σ

1

2

∑

m

1

σm

‖fm‖2
Hm

+ C
∑

i

ξi (7a)

s.t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n (7b)

∑

ℓ

d
p/(p+q)

ℓ

(

∑

m∈Gℓ

σ 1/q
m

)q/(p+q)

≤ 1, σm ≥ 0, m = 1, . . . ,M, (7c)

where, here and it what follows (
∑

m σ
1/0
m)0 is defined as the ℓ∞ norm, with value maxm σm

since σm ≥ 0.
Problem (7) is equivalent to Problem (6) in the sense that its stationnary points corre-

spond to the ones of (6). As the objective function is convex, the stationnary points are
minima and multiple (local) minima may only occur if the feasible domain is non-convex.

This flat formulation is more easily amenable to the analysis of convexity, and optimiza-
tion can be carried out by a simple adaptation of the SimpleMKL algorithm (Rakotoma-
monjy et al. 2008). Indeed, compared to (4), Problem (7) only differs in constraint (7c) on
σ , where the ℓ1 norm is replaced by a mixed-norm ℓ(1/q,1/(p+q)). As a special case, MKL is
recovered from CKL for parameters (p, q) = (0,1).

Proposition 1 Problem (7) is convex if 0 ≤ q ≤ 1 and 0 ≤ p + q ≤ 1.

Proof A problem minimizing a convex criterion on a convex set is convex:

• the objective function (7a) is convex (cf. Rakotomamonjy et al. 2008);
• the usual SVM constraints (7b) define convex sets in (f1, . . . , fM , b, ξ);
• if 0 ≤ q ≤ 1 and 0 ≤ p + q ≤ 1, the constraints (7c) defines a convex set in σ since

– (
∑

m∈Gℓ
σ

1/q
m)q is convex;

–
∑

ℓ t
1/(p+q)

ℓ is convex and non-decreasing in tℓ. �

The proposition below generalizes the equivalence between the MKL formulations of
Bach et al. (2004) and Rakotomamonjy et al. (2008), that is, between Problems (3) and (4)
respectively. If MKL may be seen as the kernelization of the LASSO, CKL can be inter-
preted as the kernelization of the hierarchical penalizer of Szafranski et al. (2008a) or more
generally of the Composite Absolute Penalty (CAP) of Zhao et al. (2009).

Proposition 2 Problem (7) is equivalent to
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ

1

2

(

∑

ℓ

d t
ℓ

(

∑

m∈Gℓ

‖fm‖s
Hm

)r/s
)2/r

+ C
∑

i

ξi (8a)

s.t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n, (8b)

where s = 2
q+1 , r = 2

p+q+1 and t = 1 − r
s
, in the sense that the minima of (7) are the minima

of (8).
See proof in Appendix B.

84 Mach Learn (2010) 79: 73–103

Table 1 Equivalence between
mixed-norms in σm in
Problem (7), and mixed-norms in
‖fm‖Hm

in Problem (8) for
some particular (p, q) values

(p, q) (0,1) (1,0) (−1,1) (1/2,1/2) (1,1)

σm ℓ(1,1) ℓ(1,∞) ℓ(∞,1) ℓ(1,2) ℓ(1/2,1)

‖fm‖Hm
ℓ(1,1) ℓ(1,2) ℓ(2,1) ℓ(1,4/3) ℓ(2/3,1)

Corollary 1 Problem (7) is sparse at the group level if and only if p + q ≥ 1. It is sparse at

the leaf level if and only if q ≥ 1 or p + q ≥ 1.

Proof This is the direct consequence of the equivalence stated in Proposition 2, since spar-
sity is obtained if and only if the boundary of the feasible region is nondifferentiable at
fm = 0 (Nikolova 2000). The sub-differential at ‖fm‖Hm = 0 is reduced to one point if and
only if s > 1, that is q < 1, and the sub-differential at

∑

m∈Gℓ
‖fm‖Hm = 0 is reduced to one

point if and only if r > 1, that is p + q < 1. �

Note that the external square on the norm of (8) affects the strength of the penalty, but
not its type. Hence, CKL penalizes a kernelized mixed-norm ℓ(r,s) in ‖fm‖Hm .

Table 1 displays some particular instances of the equivalence given in Proposition 2.
Since the latter was obtained from the primal formulation of Problem (7), it also holds for
non-convex penalties, such as the one displayed in the last column of the table.

The first column of Table 1 illustrates that CKL indeed generalizes MKL, since it enables
to implement a ℓ(1,1) mixed-norm, that is the ℓ1 norm of MKL. The second column leads to
a ℓ(1,2) mixed-norm, that could also be obtained by an MKL algorithm using the average of
leaf-kernels within each group. The third column displays a more interesting result, with the
ℓ(2,1) that encourages a sparse expansion within each group, and then performs a standard
SVM with the kernel formed by summing the group-kernels. This setting corresponds to
the situation where we want all sources to participate to the solution, but where the relevant
similarities are to be discovered for each source. It has been used in the regression frame-
work for audio signals (Kowalski and Torrésani 2008). The fourth solution, leading to a
ℓ(1,4/3) norm is the kernelized version of hierarchical penalization (Szafranski et al. 2008a),
which takes into account the group structure, provides sparse results at the group-level and
approximately sparse ones at the leaf level, with few leading coefficients. Finally, the last
column displays a non-convex solution that enables exact sparsity at the group-level and at
the leaf-level, with a group-structure that greatly encourages group selection.

Figure 3 illustrates the shape of the feasible region

∑

ℓ

d t
ℓ

(

∑

m∈Gℓ

‖fm‖s
Hm

)r/s

≤ 1,

for the values of (r, s) given in Table 1, in a problem with M = 3 kernels.
The left column depicts the 3D-shape in the positive octant, where the two horizontal

axes represent the positive quadrant (‖f1‖H1 ,‖f2‖H2) associated to the first group G1, and
the vertical axis represents ‖f3‖H3 associated to the second group G2.

The cuts at ‖f2‖H2 = 0 and ‖f3‖H3 = 0 are displayed to provide a between-group plane
and the within group view of the feasible region in the center and right column respectively.
These plots provide an intuitive way to comprehend the convexity and sparsity issues. Spar-
sity is related to convexity and the shape of the boundary of the admissible set as ‖fm‖Hm

goes to zero (Nikolova 2000).

Mach Learn (2010) 79: 73–103 85

Fig. 3 Feasible regions for the mixed-norm of Table 1 for a problem with three kernels (K1 and K2 in
the same group, K3 in the second group): left, 3-D representation in (‖f1‖H1

,‖f2‖H2
,‖f3‖H3

); center:
between-group cut at ‖f2‖H2

= 0; right: within-group cut at ‖f3‖H3
= 0

4 Solving the problem

Since CKL generalizes MKL, we begin this section by a brief review of the algorithmic
developments of MKL dedicated to solve Problem (3) or one of its equivalent forms. The
original MKL algorithm of Lanckriet et al. (2004) was based on a quadratically-constrained
quadratic program (QCQP) solver that had high computational requirements and was thus

86 Mach Learn (2010) 79: 73–103

limited to small problems, that is, small numbers of kernels and data points. This restraint
motivated the introduction of a smoothing term allowing to use the SMO algorithm (Bach
et al. 2004).

The following generation of MKL algorithms was then based on wrapper algorithms,
consisting in two nested optimization problems, where the outer loop optimizes the kernel
and the inner loop is a standard SVM solver. The outer loop was a cutting plane algorithm
for the Semi-Infinite Linear Program (SILP) of Sonnenburg et al. (2006) that optimizes the
non-smooth dual of Problem (3); it was later improved by a gradient algorithm addressing
Problem (4) in the SimpleMKL of Rakotomamonjy et al. (2008).

The benefit of these approaches is to rely on standard SVM solvers, for which several
efficient implementations exist. This type of approach was also used in the multiple task
learning framework by Argyriou et al. (2008), and again in some recent developments of
MKL (Xu et al. 2009; Bach 2009).

We first chose the gradient-based approach that was demonstrated to be efficient for
MKL (Szafranski et al. 2008b). Nevertheless, moving along a curved surface such as the
ones illustrated in Fig. 3 may be problematic for some mixed-norms. Hence, we pursue here
another wrapper approach, where we will use a fixed point strategy to update the kernels
parameters in the outer loop.

4.1 A wrapper approach

Our wrapper scheme extends SimpleMKL by considering the following optimization prob-
lem

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
σ

J (σ) (9a)

s.t.
∑

ℓ

(

d
p

ℓ

(

∑

m∈Gℓ

σ 1/q
m

)q
)1/(p+q)

≤ 1, σm ≥ 0, m = 1, . . . ,M, (9b)

where J (σ) is defined as the objective value of

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ

1

2

∑

m

1

σm

‖fm‖2
Hm

+ C
∑

i

ξi (10a)

s.t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n. (10b)

In the inner loop, the criterion is optimized with respect to {fm}, b and ξ , considering
that the coefficients σ are fixed. In the outer loop, σ is updated to decrease the criterion,
using an expression derived from the optimality conditions, with the dual variables related
to {fm}, b and ξ being fixed.

4.2 First-order optimality conditions

To lay down the foundations of our algorithm, we derive the first-order optimality condi-
tions for each part of Problem (7). These conditions characterize the global minimizer if
Problem (7) is convex, and all local minima otherwise. The Lagrangian reads

Mach Learn (2010) 79: 73–103 87

L =
1

2

∑

m

1

σm

‖fm‖2
Hm

+ C
∑

i

ξi −
∑

i

αi

[

yi

(

∑

m

fm(xi) + b

)

+ ξi − 1

]

−
∑

i

ηiξi

+ λ

[

∑

ℓ

(

d
p

ℓ

(

∑

m∈Gℓ

σ 1/q
m

)q
)1/(p+q)

− 1

]

−
∑

m

μmσm,

where αi and ηi , the usual positive Lagrange multipliers related to the constraints (7b) on
the slack variable ξi , will be optimized by considering Problem (10), while λ and μm are the
positive Lagrange multipliers related to constraints (7c) on σm, that appear in Problem (9).

4.2.1 Optimality conditions for fm, b and ξ

We first focus on the optimality conditions of Problem (10). The derivative of L with respect
to fm, b and ξ give

∂L

∂fm

= 0 ⇒ fm(·) = σm

∑

i

αiyiKm(xi, ·)

∂L

∂b
= 0 ⇒

∑

i

αiyi = 0

∂L

∂ξi

= 0 ⇒ 0 ≤ αi ≤ C.

Hence, the equivalent dual formulation of Problem (10) is a standard SVM problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
α

−
1

2

∑

i,j

αiαjyiyjKσ (xi,xj) +
∑

i

αi (11a)

s.t.
∑

i

αiyi = 0 (11b)

C ≥ αi ≥ 0, i = 1, . . . , n, (11c)

where Kσ is the effective kernel defined in (2). Note that this dual pertains to the sub-
problem (10), not to the global problem (7).

4.2.2 Optimality conditions for σm

The first-order optimality conditions for σm, derived in Appendix B, establish the relation
between σm and ‖fm‖Hm , which is

σm = ‖fm‖2q/(q+1)
Hm

(

d−1
ℓ sℓ

)p/(p+q+1)

(

∑

ℓ′

d
p/(p+q+1)

ℓ′ s
(q+1)/(p+q+1)

ℓ′

)−(p+q)

, (12)

where sℓ =
∑

m∈Gℓ
‖fm‖2/(q+1)

Hm
.

Since ‖fm‖2
Hm

= σ 2
m

∑

i,j αiαjyiyjKm(xi,xj), (12) only provides an implicit definition
of the optimal value of σm. Let gm(σ) denote the right-hand-side of (12), we have that
g(σ) = (g1(σ), . . . , gM(σ)) is a continuous mapping from the closed unit ball defined by

88 Mach Learn (2010) 79: 73–103

constraint (9b) to itself. Hence, Brouwer’s fixed point theorem applies,4 and the outer loop
of the wrapper can be performed by a fixed point strategy, using the expression (12).

When the values of p and q do not define a convex set in (9b), Brouwer’s theorem
does not hold anymore. Nevertheless, one can circumvent this problem by considering the
optimization with respect to σ 1 and σ 2, such as in Problem (6) provided the constraints (6d)
and (6e) both span closed unit balls.

4.3 Algorithm

We now have all the ingredients to define our wrapper algorithm (see Algorithm 1). The
stopping criterion for assessing the convergence of σ can be based on standard criteria for
fixed point algorithms, while the one related to the SVM solver can be based on the duality
gap. In the following experiments, it is respectively based on the stability of σ and J (σ).

5 Channel selection for brain computer interfaces

We consider here two studies in Brain-Computer Interfaces (BCI). In BCI, one aims at
recognizing the cerebral activity of a person subject to a stimulus, thanks to an array of
sensors placed on the scalp of the subject that records a set of electroencephalograms (EEG).
Here, the EEG signals are collected from 64 electrodes or channels, positioned onto the scalp
as illustrated in Fig. 4.

Automated channel selection has to be performed for each single subject since it leads to
better performances or a substantial reduction of the number of useful channels (Schröder et
al. 2005). Reducing the number of channels involved in the decision function is of primary
importance for BCI real-life applications, since it makes the acquisition system cheaper,
easier to use and to set-up.

In this setup, each electrode may be considered as a source that generates a series of po-
tentials along the experiment. Composite Kernel Learning is well-suited to the identification
of a specific behavior in the EEG signals, by its ability to encode the notion of channels.

Algorithm 1: CKL

initialize σ

solve the SVM problem → J (σ)

repeat

repeat
σ = g(σ) // with gm(σ) defined by the r.h.s of (12)

until convergence

solve the SVM problem → J (σ)

until convergence

4Brouwer’s fixed point theorem states that, if B is a closed unit ball, then, any continuous function g : B → B,
has at least one fixed point.

Mach Learn (2010) 79: 73–103 89

Fig. 4 Positions of the 64
electrodes on the scalp, for the
two considered BCI problems.
The arrow represents the frontal
direction

Besides the benefits of potentially reducing the number of channels, CKL may also be ben-
eficial if able to identify the salient features within each channel. Hence, we will experiment
with a non-convex parameterization of CKL that encourages sparseness within and between
groups, in order to reach a sparse solution at the channel and the feature levels. Note that,
for non-convex settings, we have no means to assess the convergence towards a global opti-
mum. Though the SVM solver may return the optimal decision rule for the returned σ , we
have no way to secure global convergence for the outer Problem (9), and no certificate of
sub-optimality, such as the one that could be provided by a duality gap.

In the following, CKL1/2 stands for a convex version of our algorithm, with p = q = 1/2
(a ℓ(1,4/3) mixed-norm), CKL1 is a non-convex version, with p = q = 1 (a ℓ(2/3,1) dissimilar-
ity, that we will also abusively qualify as a mixed-norm). Note that MKL is also implemented
by our algorithm, with p = 0 and q = 1.

5.1 P300 speller paradigm

5.1.1 Protocol

The so-called oddball paradigm states that a rare expected stimulus produces a positive
deflection in an EEG signal after about 300 ms. The P300 speller interface is based on this
paradigm (Farwell and Donchin 1998). Its role is to trigger a related event potential, namely
the P300, in response to a visual stimulus. This protocol uses a matrix composed of 6 rows
and 6 columns of letters and numbers, as illustrated in Fig. 5. First, the subject chooses a
specific character in the matrix. Then, the 12 lines (rows or columns) are intensified in a
random order. When an intensified row or column contains the chosen character, the subject
is asked to count; this is assumed to generate a P300. Because the signal to noise ratio of a
scalp EEG signal is usually low, this process is repeated 15 times per character.

90 Mach Learn (2010) 79: 73–103

Fig. 5 The spelling matrix

The dataset, collected for a BCI competition (Blankertz et al. 2004), is processed as
described in Rakotomamonjy and Guigue (2008). For each channel, 14 time samples (that
will be referred as frames), going from the beginning of the stimulus up to 667 ms after,
have been extracted from the EEG signals. Frames 7 and 8, respectively centered around
300 and 350 ms, are the most salient ones according to the paradigm.

The dataset is composed of 7560 EEG signals (observations), paired with positive or
negative stimuli responses (classes). The 896 features extracted (64 channels ×14 frames)
are not transformed. However, to unify the presentation, we will refer to these features as
kernels. The kernels related to a given channel form a group of kernels, and we have to
learn M = 896 coefficients σm, divided into L = 64 groups. Thus, our goal is to identify the
significant channels, and within these channels, the significant frames, which discriminate
the positive from the negative signals.

The classification protocol is the following: we have randomly picked 567 training ex-
amples from the dataset and used the remaining as testing examples. The parameter C has
been selected by 5-fold cross-validation. This overall procedure has been repeated 10 times.
Using a small part of the examples for training is motivated by the use of ensemble of
SVM (that we do not consider here) at a later stage of the EEG classification procedure
(Rakotomamonjy and Guigue 2008). The performance is measured by the AUC, due to the
post-processing that is done throughout repetitions in the P300: as the final decision regard-
ing letters is taken after several trials, the correct row and column should receive high scores
to identify correctly the letter.

5.1.2 Results

Table 2 summarizes the average performance of SVM, MKL, and CKL, that is, for 4 differ-
ent penalization terms: quadratic penalization for the classical SVM (that is, trained with the
mean of the 896 kernels), ℓ1 norm for MKL, and mixed-norms for the two versions of CKL
assessed here: CKL1/2 and CKL1. The number of channels and kernels selected by these
algorithms and the time needed for the training process are also reported, together with the
standard deviations.

The prediction performances of the four algorithms are similar, with an insignificant ad-
vantage for MKL. In terms of kernels, MKL is much sparser than CKL1/2, but twice less
sparse than CKL1. Regarding the number of groups, CKL1 is still the sparsest solution, re-
moving about three quarters of the channels. At this level CKL1/2 is sparser than MKL, al-
though it retained many more kernels: as expected, CKL1/2 favors sparseness among groups
rather than sparseness in kernels.

Mach Learn (2010) 79: 73–103 91

Table 2 Average results and standard deviations, for SVMs with different kernel learning strategies on the
BCI dataset (P300 speller paradigm)

Algorithms AUC # Channels # Kernels Time (s)

SVM 84.6 ± 0.9 64 896 1.9 ± 1.0

CKL1/2 84.9 ± 1.1 40.1 ± 15.2 513.0 ± 224.7 149.1 ± 94.1

CKL1 84.7 ± 1.1 14.6 ± 13.1 65.8 ± 52.2 64.8 ± 18.5

MKL 85.7 ± 0.9 47.0 ± 7.9 112.6 ± 46.2 60.3 ± 12.1

Insofar as SVM does not require to estimate the coefficients σm, the training process is
much faster than for other methods. The kernel learning methods training time is however
still reasonable, and is rewarded by interpretability and cheaper evaluations in the test phase.
CKL1/2 is slower than MKL and CKL1 on this problem, but this difference is not consistently
observed: the orders of magnitude are identical for all versions.

Figure 6 represents the median relevance of the electrodes computed over the 10 ex-
periments. It displays which electrodes have been selected by the different kernel learning
methods. For one experiment, the relevance of channel ℓ is computed by the relative contri-
bution of group ℓ to the norm of the solution, that is

d t
ℓ

Z

(

∑

m∈Gℓ

‖f ⋆
m‖s

Hm

)1/s

, (13)

where Z is a normalization factor that sets the sum of relevances to one and where

‖f ⋆
m‖2

Hm
= σ ⋆

m
2
∑

i,j

α⋆
i α

⋆
jyiyjKm(xi,xj).

The results for CKL1 are particularly neat, with high relevances for the electrodes in
the areas of the visual cortex (lateral electrodes PO7 and PO8). The scalp maps for MKL
and CKL1/2 show the importance of the same region, followed by the primary motor and
somatosensory cortex (C• and CPZ).5 In addition, they also highlight numerous frontal elec-
trodes that are not likely to be relevant for the BCI P300 Speller paradigm. Finally, the plots
of relevance through time (not shown) are similar for all kernel learning methods, with a
sudden peak at frames 7 and 8 followed by a slow decline.

5.1.3 Sanity check for channel selection

We provide supplementary experiments to support the relevance of the channel selection
mechanism of CKL. We first have randomly picked x channels, then randomly selected y

kernels among the x × 14 candidates. Variable x (resp. y) has been set so that it corresponds
to the average number of channels (resp. kernels) used by CKL1/2 and CKL1, that is 41 and
15 (resp. 513 and 66).

Table 3 gives the average performances for classical SVMs: SVMx is trained with a
subset of x channels randomly chosen as described above, while SVMCV is trained with the
single channel that reaches the highest cross-validation score.

5These channels also appear in the third quartile map of CKL1.

92 Mach Learn (2010) 79: 73–103

F
ig

.
6

E
le

ct
ro

de
m

ed
ia

n
re

le
va

nc
e

fo
r

M
K

L
,C

K
L

1/
2

an
d

C
K

L
1

(P
30

0
sp

el
le

r
pa

ra
di

gm
).

T
he

d
a
rk

er
th

e
co

lo
r,

th
e

h
ig

h
er

th
e

re
le

va
nc

e.
E

le
ct

ro
d
es

in
w

h
it

e
w

it
h

a
b
la

ck
ci

rc
le

ar
e

di
sc

ar
de

d
(t

he
re

le
va

nc
e

is
ex

ac
tl

y
ze

ro
)

Mach Learn (2010) 79: 73–103 93

Table 3 Average results and
standard deviations for SVMs
(P300 speller paradigm).
SVMCV selects the single best
channel using a cross-validation
procedure, while SVMx

randomly selects a subset of x

channels

Algorithms AUC # Channels # Kernels

SVM41 80.7 ± 1.0 41 513

SVM15 76.8 ± 1.7 15 66

SVMCV 68.8 ± 2.0 1 14

With only one channel left, SVMCV performs significantly worse than any other method.
Several channels are thus necessary to build accurate SVM classifiers. Note that most of
the channels picked out by cross-validation, shown in Fig. 7, are also identified by CKL
(see Fig. 6). SVM15 behaves poorly compared with CKL1, highlighting the ability of CKL
to identify appropriate channels. The same remark applies to SVM41, where, despite the
important number of channels and kernels involved, the average AUC is much lower than
for CKL1/2 that selected 41 channels. Figure 7 shows that some of the channels assumed to
be relevant according to CKL1/2 are missing here, especially electrodes PO8 and P8 located
in the visual cortex, and electrodes CPZ , CP1 and C1 in the somatosensory cortex.

5.2 Contingent negative variation paradigm

5.2.1 Protocol

This new set of BCI experiments aims at detecting some activated regions in the brain when
an event is being anticipated (Garipelli et al. 2009).6 The potentials are here recorded ac-
cording to the Contingent Negative Variation (CNV) paradigm (Walter et al. 1964). In this
paradigm, a warning stimulus predicts the appearance of an imperative stimulus in a pre-
dictable inter-stimulus-interval. More precisely, an experiment processes as follows. A sub-
ject, looking at a screen, encounters two kinds of events:

1. In “GO” events, a green dot is displayed in the middle of the screen. This signal triggers
the anticipation of the subject. Four seconds later, the dot becomes red, prompting the
subject to press a button as soon as possible.

2. In “NOGO ” events, a yellow dot is displayed in the middle of the screen. The subject has
been instructed to do nothing in this situation. When, four seconds later, the dot becomes
red, the subject does not react.

The data gather recordings on two subjects, in 20 experimental sessions, each being
composed of 10 trials. For each subject, we have thus 200 examples. The 64 EEG signals
are available from time 0 to 3.25 s, in the anticipation phase, before the event appears (at
4 s). This results in 64 × 21 = 1344 linear kernels.

Available knowledge on the problem identifies the central role of the electrode CZ . More
generally, the channels located in the central region of the scalp are expected to be rele-
vant for classification, contrary to the one at the periphery. Complying with that knowledge,
Garipelli et al. (2009) use Linear Discriminant Analysis (LDA) on CZ to estimate the pre-
dictability of anticipation.

5.2.2 Results

We compare the results obtained with LDA to the ones achieved by CKL. The parameter C

is estimated by 10-fold cross-validation, which is also used to estimate the test error rate.

6We thank the authors for sharing their data with us.

94 Mach Learn (2010) 79: 73–103

F
ig

.
7

E
le

ct
ro

de
m

ed
ia

n
re

le
va

nc
e

fo
r

di
ff

er
en

t
S

V
M

s,
w

it
h

ch
an

ne
ls

an
d

ke
rn

el
s

ra
nd

om
ly

se
le

ct
ed

(P
30

0
sp

el
le

r
pa

ra
di

gm
).

T
he

d
a
rk

er
th

e
co

lo
r,

th
e

h
ig

h
er

th
e

re
le

va
nc

e.
E

le
ct

ro
d
es

in
w

h
it

e
w

it
h

a
b
la

ck
ci

rc
le

ar
e

di
sc

ar
de

d
(t

he
re

le
va

nc
e

is
ex

ac
tl

y
ze

ro
).

Fo
r

S
V

M
C

V
,

el
ec

tr
o

d
es

in
b
la

ck
co

rr
es

po
nd

to
th

e
be

st
ch

an
ne

ls
id

en
ti

fi
ed

us
in

g
a

cr
os

s-
va

li
da

ti
on

pr
oc

ed
ur

e
(o

ve
r

th
e

10
re

pe
ti

ti
on

s,
P

O
8

an
d

C
1

ha
ve

be
en

se
le

ct
ed

3
ti

m
es

ea
ch

)

Mach Learn (2010) 79: 73–103 95

Table 4 Average
cross-validation score with
standard deviations for Subject 1,
for SVMs with different kernel
learning strategies on the BCI
dataset (CNV paradigm). The
number of channels and kernels
correspond to the predictor
trained on the whole data set

Subject 1 Error rate (%) # Channels # Kernels Time (s)

LDA 25.0 ± 1.2 CZ 21 –

SVM 21.0 ± 1.0 64 1344 0.3

CKL1/2 22.0 ± 1.0 50 988 20.7

CKL1 23.0 ± 1.3 9 37 6.24

MKL 24.0 ± 1.5 29 58 23.1

Table 5 Average
cross-validation score with
standard deviations for Subject 2,
for SVMs with different kernel
learning strategies on the BCI
dataset (CNV paradigm). The
number of channels and kernels
correspond to the predictor
trained on the whole data set

Subject 2 Error rate (%) # Channels # Kernels Time (s)

LDA 36.5 ± 0.9 CZ 21 –

SVM 29.0 ± 1.3 64 1344 0.4

CKL1/2 27.0 ± 1.2 44 800 16.7

CKL1 23.0 ± 1.1 6 35 8.6

MKL 33.0 ± 1.3 51 112 20.0

This procedure is slightly biased, but since all the methods share this bias, the comparison
should be fair. Considering the high variability between folds, we did not go through a
thorough double cross-validation procedure. The reported standard deviations are likely be
irrepresentative of the variability with respect to changes in the training set, due to the known
bias of the variance estimators in K-fold cross-validation (Bengio and Grandvalet 2004).

Tables 4 and 5 reports the average performances for CKL1/2, CKL1 and MKL in terms of
accuracy, channel and kernel selection, and training time. The accuracy achieved by a SVM,
trained with the mean of the 1344 kernels, is also reported.

Concerning Subject 1, all SVMs perform slightly better than LDA. In this experiment,
CKL1/2 is much less sparse, in the number of kernels and channels, than MKL or CKL1.
The latter only retains 9 channels for classifying.

For Subject 2, both versions of CKL considerably improve upon LDA. Although CKL1/2

selects most of the kernels, it is sparser than MKL in terms of groups. CKL1, with only 6
channels achieves the lowest error rate.

With regard to training times, the overhead compared to SVMs is comparable to the
previous experiment. MKL and CKL1/2 require approximately the same time, and CKL1,
which provides very sparse results is about twice faster.

Results concerning interpretation are obtained with the whole dataset. Figure 8 shows
the relevance of the electrodes, for both subject, as computed in (13) for the P300 speller
problem. The three versions of CKL highlight the central region of the brain. However,
CKL1 discards most peripheric channels, whereas CKL1/2 and MKL locate numerous rel-
evant electrodes out of the central area. For the first subject, CZ is estimated to be relevant
by all methods. The results for the second subject are somewhat puzzling, since the contri-
bution of CZ is much lower than the one of FZ . This shift may be due to an inappropriate
positioning of the measurement device on the scalp.

5.2.3 Sanity check for channel selection

Here also, additional experiments are carried out to support the channel and kernel selection
given by CKL, using the scheme described in Sect. 5.1.3. We consider two random draws
per subject, that correspond, in terms of number of kernels and channels, to the solutions

96 Mach Learn (2010) 79: 73–103

F
ig

.
8

E
le

ct
ro

de
re

le
va

nc
e

fo
r

S
ub

je
ct

1
(t

o
p
)

an
d

S
ub

je
ct

2
(b

o
tt

o
m

),
fo

r
M

K
L

,C
K

L
1/

2
an

d
C

K
L

1
(C

N
V

pa
ra

di
gm

).
T

he
d
a
rk

er
th

e
co

lo
r,

th
e

h
ig

h
er

th
e

re
le

va
nc

e.
E

le
ct

ro
d

es

in
w

h
it

e
w

it
h

a
b
la

ck
ci

rc
le

ar
e

di
sc

ar
de

d
(t

he
re

le
va

nc
e

is
ex

ac
tl

y
ze

ro
)

Mach Learn (2010) 79: 73–103 97

Table 6 Average
cross-validation score with
standard deviations for Subjects 1
and 2, for SVMs (CNV
paradigm). SVMCV selects the
best channel using a
cross-validation procedure, while
SVMx randomly selects a subset
of x channels. The results
reported for SVMx are averaged
over 10 repetitions

Algorithms Error rate (%) # Channels # Kernels

Subject 1 SVM50 29.1 ± 1.0 50 988

SVM9 37.9 ± 1.1 9 37

SVMCV 25.5 ± 1.2 C2 21

Subject 2 SVM44 31.2 ± 1.1 44 800

SVM6 36.2 ± 0.9 6 35

SVMCV 27.5 ± 0.7 FC1 21

produced by CKL1/2 and CKL1. This process is repeated 10 times. Table 6 summarizes
the performances for these SVMs, as for a SVM trained with the channel that reaches the
highest cross-validation score. Figure 9 displays the electrodes used for each method.

Concerning Subject 1, the first two versions of SVMs perform badly, especially SVM9

where CZ was chosen only once and CPZ only twice over the 10 repetitions. The error rate
for SVMCV is comparable to the one of LDA, and it selects C2, which is relevant in all
versions of CKL. The error rate of SVMCV is slightly greater than the one of CKL1/2 or
CKL1.

For Subject 2, SVMCV fails compared to CKL1, but reaches the performance of CKL1/2

with the “outsider” FC1. SVMs with randomly selected kernels behave poorly again, with
regard to CKL.

6 Conclusion

This paper is at the crossroad of kernel learning and variable selection. From the former
viewpoint, we extended multiple kernel learning to take into account the group structure
among kernels. From the latter viewpoint, we generalized the hierarchical penalization
frameworks based on mixed norms to kernel classifiers, by considering penalties in RKHS
instead of parameter spaces.

We provide here a smooth variational formulation for arbitrary mixed-norm penalties,
enabling to tackle a wide variety of problems. This formulation is not restricted to convex
mixed-norms, a property that turns out to be of interest for reaching sparser, hence more
interpretable solutions.

Our approach is embedded, in the sense that the kernel hyper-parameters are optimized
jointly with the kernel expansion to minimize the hinge loss. It is however implemented by
a simple wrapper algorithm, for which the inner and the outer subproblems have the same
objective function, and where the inner loop is a standard SVM problem.

In particular, this implementation allows to use available solvers for kernel machines in
the inner loop. Hence, although this paper considered binary classification problems, our ap-
proach can be readily extended to other learning problems, such as multiclass classification,
clustering, regression or ranking.

Appendix A: Detailed derivation of Problem (7)

We rewrite Problem (6) by applying successively two changes of variable. We first note
that, when σ1,ℓ or σ2,m is null, then the optimal fm is also null. Hence, we may apply

98 Mach Learn (2010) 79: 73–103

F
ig

.
9

E
le

ct
ro

de
m

ed
ia

n
re

le
va

nc
e

fo
r

S
ub

je
ct

1
(t

o
p
)

an
d

S
ub

je
ct

2
(b

o
tt

o
m

),
fo

r
di

ff
er

en
tS

V
M

s,
w

it
h

ch
an

ne
ls

an
d

ke
rn

el
s

ra
nd

om
ly

se
le

ct
ed

ov
er

10
re

pe
ti

ti
on

s
(P

30
0

sp
el

le
r

pa
ra

di
gm

).
T

he
d
a
rk

er
th

e
co

lo
r,

th
e

h
ig

h
er

th
e

re
le

va
nc

e.
E

le
ct

ro
d
es

in
w

h
it

e
w

it
h

a
b
la

ck
ci

rc
le

ar
e

di
sc

ar
de

d
(t

he
re

le
va

nc
e

is
ex

ac
tl

y
ze

ro
).

Fo
r

S
V

M
C

V
,e

le
ct

ro
d

es
in

b
la

ck

co
rr

es
po

nd
to

th
e

be
st

ch
an

ne
ls

id
en

ti
fi

ed
us

in
g

a
cr

os
s-

va
li

da
ti

on
pr

oc
ed

ur
e

Mach Learn (2010) 79: 73–103 99

fm ← σ1,ℓσ2,mfm since this transformation is one-to-one provided σ1,ℓ
= 0 and σ2,m
= 0.
We then follow with, σ1,ℓ ← σ

2/p

1,ℓ , σ2,m ← σ
2/q

2,m ; this yields:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ ,σ 1,σ 2

1

2

∑

ℓ

1

σ
p

1,ℓ

∑

m∈Gℓ

1

σ
q

2,m

‖fm‖2
Hm

+ C
∑

i

ξi

s.t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n
∑

ℓ

dℓσ1,ℓ ≤ 1, σ1,ℓ ≥ 0 ℓ = 1, . . . ,L

∑

m

σ2,m ≤ 1, σ2,m ≥ 0 m = 1, . . . ,M,

then, we proceed to another change of variable, that is, σm = σ
p

1,ℓσ
q

2,m, and Problem (6) is
equivalent to the following optimization problem in f1, . . . , fM , b, ξ ,σ 1,σ :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
f1,...,fM

b,ξ ,σ 1,σ

1

2

∑

m

1

σm

‖fm‖2
Hm

+ C
∑

i

ξi (14a)

s.t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi, ξi ≥ 0 i = 1, . . . , n (14b)

∑

ℓ

dℓσ1,ℓ ≤ 1, σ1,ℓ ≥ 0 ℓ = 1, . . . ,L (14c)

∑

ℓ

σ
−p/q

1,ℓ

∑

m∈Gℓ

σ 1/q
m ≤ 1, σm ≥ 0 m = 1, . . . ,M. (14d)

We now use the fact that, in the formulation above, the first-order necessary optimality con-
ditions establish a functional link between σ 1 and σ . This link is derived from the Karush-
Kuhn-Tucker necessary optimality conditions of Problem (14), computed from the associ-
ated Lagrange function L:

∂L

∂σ1,ℓ

= λ1dℓ − λ2
p

q
σ

−(p+q)/q

1,ℓ

∑

m∈Gℓ

σ 1/q
m − η1,ℓ, (15)

∂L

∂σm

= −
‖fm‖2

Hm

σ 2
m

+ λ2
1

q
σ

−p/q

1,ℓ σ (1−q)/q
m − η2,m, (16)

where λ1 and λ2 are the Lagrange parameters related to the norm constraints (14c) and (14d)
respectively while η1,ℓ and η2,m are associated to the positivity of σ1,ℓ and σm.

From (16), one sees that, except for the trivial case where
∑

m ‖fm‖2
Hm

= 0, λ2
= 0 at the
optimum. Then, one easily derives from (15) that, at the optimum, qλ1 = pλ2.

Finally, combining (15) and the ones stating that the norm constraints (14c) and (14d)
are saturated, after some algebra, we get that the optimal (σ ⋆,σ ⋆

1) satisfies

∑

ℓ

σ ⋆
1,ℓ

−p/q
∑

m∈Gℓ

σ ⋆
m

1/q =
∑

ℓ

d
p/(p+q)

ℓ

(

∑

m∈Gℓ

σ ⋆
m

1/q
)q/(p+q)

.

Plugging this optimality condition into Problem (14), we get Problem (7).

100 Mach Learn (2010) 79: 73–103

Appendix B: Proof of Proposition 2

The proof of Proposition 2 can be decomposed into three steps. We first derive the optimality
conditions for σm, from which we express a relationship between σm and fm at stationary
points. Since the stationary points are local minima of the convex objective function, the
minima of (7) are minima of (8). Finally, this expression in fm is plugged in the original
objective function.

The Lagrangian associated to Problem (7) is

L =
1

2

∑

m

1

σm

‖fm‖2
Hm

+ C
∑

i

ξi −
∑

i

αi

[

yi

(

∑

m

fm(xi) + b

)

+ ξi − 1

]

−
∑

i

ηiξi + λ

[

∑

ℓ

(

d
p

ℓ

(

∑

m∈Gℓ

σ 1/q
m

)q
)1/(p+q)

− 1

]

−
∑

m

μmσm,

where ηi and μm are the Lagrange parameters respectively related to the positivity of ηi and
σm, and λ is the Lagrange parameter pertaining to the norm constraint (7c). The first-order
necessary optimality condition ∂L/∂σm = 0 reads

−
‖fm‖2

Hm

2σ 2
m

+
λ

p + q
σ (1−q)/q

m

(

d−1
ℓ

∑

m∈Gℓ

σ 1/q
m

)−p/(p+q)

− μm = 0.

As all the Lagrange parameters are non-negative, except for the trivial case where, for all m,
σm = 0, the Lagrange parameter λ is non-zero. We then have that, either

σm = 0 and ‖fm‖Hm = 0, either

σm =
(

p + q

2λ

)q/(q+1)

‖fm‖2q/(q+1)
Hm

(

d−1
ℓ

∑

m∈Gℓ

σ 1/q
m

)pq/(p+q)(q+1)

.
(17)

To uncover the relationship of σm with ‖fm‖Hm at the stationnary points, we start from (17):

σ 1/q
m =

(

p + q

2λ

)1/(q+1)

‖fm‖2/q+1
Hm

(

d−1
ℓ

∑

m∈Gℓ

σ 1/q
m

)p/(p+q)(q+1)

,

(

∑

m∈Gℓ

σ 1/q
m

)q+1

=
p + q

2λ

(

∑

m∈Gℓ

‖fm‖2/q+1
Hm

)q+1(

d−1
ℓ

∑

m∈Gℓ

σ 1/q
m

)p/(p+q)

, (18)

(

∑

m∈Gℓ

σ 1/q
m

)q

=

[

p + q

2λ
d

−p/(p+q)

ℓ

(

∑

m∈Gℓ

‖fm‖2/q+1
Hm

)(q+1)
](p+q)/(p+q+1)

.

As λ
= 0, the constraint (7c) is saturated. We use this fact to get rid of λ. Denoting sℓ =
∑

m∈Gℓ
‖fm‖2/q+1

Hm
, and summing both sides of (19) over ℓ, we get

2λ

p + q
=

(

∑

ℓ

d
p/(p+q+1)

ℓ s
(q+1)/(p+q+1)

ℓ

)p+q+1

. (19)

Mach Learn (2010) 79: 73–103 101

Finally, plugging (19) and (19) in (17), we obtain the relationship

σm = ‖fm‖2q/(q+1)
Hm

(

d−1
ℓ sℓ

)p/(p+q+1)

(

∑

ℓ

d
p/(p+q+1)

ℓ s
(q+1)/(p+q+1)

ℓ

)−(p+q)

.

Note that this equation also holds for σm = 0. It is now sufficient to replace σm by this
expression in the objective function of Problem (7) to obtain the claimed equivalence with
Problem (8) in Proposition 2.

Appendix C: Overview of notations and symbols

Data

X observation domain
n number of training examples

i, j indices, often running over {1, . . . , n}
xi observations in X

yi class labels in {−1,1}

Kernels

H feature space
� feature map, � : X → H

K reproducing kernel K : X × X → R

〈·, ·〉H scalar product in H; if f (·) =
∑∞

i=1 αiK(xi, ·) and g(·) =
∑∞

j=1 αjK(xj , ·), then
〈f,g〉H =

∑∞
i=1

∑∞
j=1 αiαjK(xi,xj)

‖ · ‖H norm induced by the scalar product in H, ‖f ‖H =
√

〈f,f 〉H

K kernel matrix Kij = K(xi,xj)

αi expansion coefficients or Lagrange multipliers

SVM-related

f function, from X to R

b constant offset (or threshold) in R

ξi slack variables in R (constrained to be non-negative)
ξ vector of all slack variables in R

n

C regularization parameter in front of the empirical risk term
ηi Lagrange multiplier related to the positivity of ξi

MKL and CKL-related

K set of admissible kernels
M number of kernels
m kernel index, often running over {1, . . . ,M}
L number of groups for CKL
ℓ group index, running over {1, . . . ,L}

Gℓ set of indices for group ℓ, Gℓ ⊆ {1, . . . ,M}
dℓ cardinality of Gℓ

Hm mth feature space
Km reproducing kernel for the mth feature space
σm weight of the mth kernel in the kernel combination

102 Mach Learn (2010) 79: 73–103

σ vector of kernel weights in R
M

Kσ equivalent kernel Kσ =
∑M

m=1 σmKm

σ1,ℓ weight of the ℓth group in the kernel combination
σ 1 vector of group weights in R

L

σ2,m weight of the mth kernel in the group-kernel combination
σ 2 vector of kernel weights in R

M

Miscellaneous

R set of reals
A⊤ transposed of matrix A (ditto for vectors)

sign sign function, from R to {−1,1}, sign(x) =

{

−1 if x < 0

0 if x ≥ 0

ℓ(p,q) mixed (p, q)-norm, the ℓ(p,q) norm of σ is (
∑

ℓ(
∑

m∈Gℓ
σ

p
m)q/p)1/q

References

Argyriou, A., Hauser, R., Micchelli, C. A., & Pontil, M. (2006). A dc-programming algorithm for kernel
selection. In W. W. Cohen & A. Moore (Eds.), Proceedings of the twenty-third international conference

on machine learning (pp. 41–48). New York: ACM.
Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine Learning,

73(3), 243–272.
Bach, F. (2009). Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in

neural information processing systems 21. Cambridge: MIT Press.
Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I. (2004). Multiple kernel learning, conic duality, and the

SMO algorithm. In ACM international conference proceeding series. Proceedings of the 21th annual

international conference on machine learning (ICML 2004) (pp. 41–48). New York: ACM.
Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of K-fold cross-validation. Jour-

nal of Machine Learning Research (JMLR), 5, 1089–1105.
Blankertz, B., Müller, K.-R., Curio, G., Vaughan, T. M., Schalk, G., Wolpaw, J. R., Schlögl, A., Neuper, C.,

Pfurtscheller, G., Hinterberger, T., Schröder, M., & Birbaumer, N. (2004). The BCI competition 2003:
progress and perspectives in detection and discrimination of EEG single trials. IEEE Transactions on

Biomedical Engineering, 51(6), 1044–1051.
Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning Research, 2,

499–526.
Bousquet, O., & Herrmann, D. J. L. (2003). On the complexity of learning the kernel matrix. In S. Becker, S.

Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems 15 (pp. 399–406).
Cambridge: MIT Press.

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics, 24(6),
2350–2383.

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support
vector machines. Machine Learning, 46(1), 131–159.

Cristianini, N., Campbell, C., & Shawe-Taylor, J. (1999). Dynamically adapting kernels in support vector
machines. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing

systems 11 (pp. 204–210). Cambridge: MIT Press.
Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, K. (2002). On kernel-target alignment. In T. G.

Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems 14

(pp. 367–373). Cambridge: MIT Press.
Farwell, A., & Donchin, E. (1998). Talking off the top of your head: toward a mental prosthesis utilizing

event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510–523.
Garipelli, G., Chavarriaga, R., & del Millán, J. R. (2009). Fast recognition of anticipation related potentials.

IEEE Transactions on Biomedical Engineering, 56(4), 1257–1260.
Grandvalet, Y., & Canu, S. (1999). Outcomes of the equivalence of adaptive ridge with least absolute shrink-

age. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing

systems 11 (NIPS 1998) (pp. 445–451). Cambridge: MIT Press.

Mach Learn (2010) 79: 73–103 103

Grandvalet, Y., & Canu, S. (2003). Adaptive scaling for feature selection in SVMs. In S. Becker, S. Thrun, &
K. Obermayer (Eds.), Advances in neural information processing systems 15 (pp. 569–576). Cambridge:
MIT Press.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine

Learning Research, 3, 1157–1182.
Kowalski, M., & Torrésani, B. (2008). Sparsity and persistence: mixed norms provide simple signals models

with dependent coefficients. Signal, Image and Video Processing, 1863–1703.
Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., & Jordan, M. I. (2004). Learning the kernel

matrix with semi-definite programming. Journal of Machine Learning Research, 5, 27–72.
Nikolova, M. (2000). Local strong homogeneity of a regularized estimator. SIAM Journal on Applied Mathe-

matics, 61(2), 633–658.
Ong, C. S., Smola, A. J., & Williamson, R. C. (2005). Learning the kernel with hyperkernels. Journal of

Machine Learning Research, 6, 1043–1071.
Rakotomamonjy, A., & Guigue, V. (2008). BCI competition 3: Dataset 2—ensemble of SVM for BCI P300

speller. IEEE Transactions on Biomedical Engineering, 55(3), 1147–1154.
Rakotomamonjy, A., Bach, F. R., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. Journal of Machine Learn-

ing Research (JMLR), 9, 2491–2521.
Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, opti-

mization, and beyond. Cambridge: MIT Press.
Schröder, M., Lal, T. N., Hinterberger, T., Bogdan, M., Hill, J., Birbaumer, N., Rosenstiel, W., & Schölkopf,

B. (2005). Robust EEG channel selection across subjects for brain computer interfaces. EURASIP Jour-

nal on Applied Signal Processing, 19, 3103–3112.
Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale multiple kernel learning. Journal

of Machine Learning Research, 7, 1531–1565.
Srebro, N., & Ben-David, S. (2006). Learning bounds for support vector machines with learned kernels. In

G. Lugosi & H.-U. Simon (Eds.), 19th annual conference on learning theory (Vol. 4005, pp. 169–183).
Berlin: Springer.

Szafranski, M., Grandvalet, Y., & Morizet-Mahoudeaux, P. (2008a). Hierarchical penalization. In J. C. Platt,
D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems 20 (pp.
1457–1464). Cambridge: MIT Press.

Szafranski, M., Grandvalet, Y., & Rakotomamonjy, A. (2008b). Composite kernel learning. In A. McCallum
& S. Roweis (Eds.), Proceedings of the 25th annual international conference on machine learning

(ICML 2008) (pp. 1040–1047). Eastbourne: Omnipress.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Soci-

ety, Series B, 58(1), 267–288.
Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent negative

variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature, 203,
380–384.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2001). Feature selection for
SVMs. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing

systems 13 (pp. 668–674). Cambridge: MIT Press.
Xu, Z., Jin, R., King, I., & Lyu, M. (2009). An extended level method for efficient multiple kernel learning.

In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing

systems 21 (pp. 1825–1832). Cambridge: MIT Press.
Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of

the Royal Statistical Society, Series B, 68(1), 49–67.
Zhao, P., Rocha, G., & Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical

variable selection. Annals of Statistics, 37(6A), 3468–3497.

	Composite kernel learning
	Abstract
	Motivations
	Flexible kernel methods
	Support vector machines
	Learning the kernel
	Filters, wrappers & embedded methods
	Multiple kernel learning

	Group and composite penalties
	Relations between MKL and CAP

	Composite kernel learning
	Groups of kernels
	Kernel selection
	Soft selection
	Properties

	Solving the problem
	A wrapper approach
	First-order optimality conditions
	Optimality conditions for fm, b and xi
	Optimality conditions for sigmam

	Algorithm

	Channel selection for brain computer interfaces
	P300 speller paradigm
	Protocol
	Results
	Sanity check for channel selection

	Contingent negative variation paradigm
	Protocol
	Results
	Sanity check for channel selection

	Conclusion
	Appendix A: Detailed derivation of Problem (7)
	Appendix B: Proof of Proposition 2
	Appendix C: Overview of notations and symbols
	References

