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dimensional data
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Abstract

For high-dimensional data set with complicated dependency structures, the full
likelihood approach often renders to intractable computational complexity. This
imposes di±culty on model selection as most of the traditionally used informa-
tion criteria require the evaluation of the full likelihood. We propose a composite
likelihood version of the Bayesian information criterion (BIC) and establish its
consistency property for the selection of the true underlying model. Under some
mild regularity conditions, the proposed BIC is shown to be selection consistent,
where the number of potential model parameters is allowed to increase to in̄nity
at a certain rate of the sample size. Simulation studies demonstrate the empirical
performance of this new BIC criterion, especially for the scenario that the number
of parameters increases with the sample size.
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SUMMARY

For high-dimensional data set with complicated dependency structures, the full likelihood

approach often renders to intractable computational complexity. This imposes difficulty on

model selection as most of the traditionally used information criteria require the evaluation

of the full likelihood. We propose a composite likelihood version of the Bayesian information

criterion (BIC) and establish its consistency property for the selection of the true underlying

model. Under some mild regularity conditions, the proposed BIC is shown to be selection

consistent, where the number of potential model parameters is allowed to increase to infinity

at a certain rate of the sample size. Simulation studies demonstrate the empirical performance

of this new BIC criterion, especially for the scenario that the number of parameters increases

with the sample size.

Some key words: Consistency; Model selection; Pseudo-likelihood; Variable selection.

1

Hosted by The Berkeley Electronic Press



1. INTRODUCTION

In the analysis of high-dimensional data with complex dependency structures, the exact

likelihood inference often renders to computational complexity. A compromise is to employ

simpler pseudo-likelihoods, such as the composite likelihood approach (Lindsay, 1988 and Cox

& Reid, 2004). A composite likelihood is constructed by low-dimensional likelihood objects

defined over small subsets of data. This dimension reduction methodology on the likelihood

function has been successfully applied in many areas, including for example, generalized linear

mixed models (Renard et al., 2004), genetics (Fearnhead & Donnelly, 2002), spatial statistics

(Hjort & Omre, 1994; Heagerty & Lele, 1998; Varin & Vidoni, 2005) and multivariate survival

analysis (Parner, 2001 and Li & Lin, 2006). It has demonstrated to possess desirable theoret-

ical properties, such as estimation consistency and asymptotic normality, and can be utilized

to establish hypothesis testing procedures in a similar fashion to the classical likelihood ratio

test; see a recent review paper by Varin (2008) and more references therein.

There often exist many potential candidate models to reveal the data generating mecha-

nism. Model selection has become a very important issue in the endeavor of statistical mod-

elling. In the work of Varin & Vidoni (2005), a composite likelihood information criterion

analogous to Akaike’s (1973) information criterion (AIC) has been proposed. Their method

selects the model with the best prediction power by minimizing a composite Kullback-Leibler

(KL) distance for a future experiment. The proposed first-order unbiased selection statistic

contains two components: One is the composite loglikelihood of the data under a candidate

model, and the other gives the penalty pertaining to the effective number of parameters in

the model. In particular, when the composite likelihood takes the ordinary likelihood, the

penalty term reduces to the exact number of parameters in the model, which coincides with

the AIC. Note that AIC focuses on selecting models with best prediction power and that it

is not a consistent model selection criterion (e.g. Haughton, 1988). As a result, AIC tends to

favor over-fitting models. In effect, Varin & Vidoni’s composite likelihood selection criterion

resembles AIC, due to the fact that it penalizes the number of parameters at the rate of O(1).

In some applications, building a parsimonious model is critical to proper interpretations of,

say, covariate effects; therefore, although over-fitting does not impact prediction much, it will

be problematic in studies of association.

This paper focuses on the development of Bayesian information criterion (BIC) for the
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composite likelihood methodology. BIC was first proposed by Schwarz (1978) in the paradigm

of the maximum likelihood methodology. Later, many authors have extended it to other

estimation methods, including Konish, Ando & Imoto (2004) in the penalized maximum

likelihood method. See also Berger, Ghost & Mukhopadhyay (2003), Chakrabarti & Ghosh

(2006) and Jiang (2007). Essentially, BIC penalizes more heavily on the number of parameters

at the rate of O(log(n)), and has been shown to be a consistent model selection criterion in

many settings; for example, the linear model (Rao & Wu, 1989), the partially linear model

(Wang, Li & Tsai, 2007), the change-point analysis (Yao, 1988; Csörgö & Horváth, 1997),

and the longitudinal data analysis (Wang & Qu, 2009). Recently, Chen & Chen (2008)

proposed an extended BIC (EBIC) criterion in the setting of linear regression models with

high-dimensional covariates, where an extra penalty was proposed to penalize the dimension

of model space that supposedly increases with the sample size. This penalty is essentially to

enforce the selection of sparse models when the number of regression coefficients, P , tends to

infinity as the sample size n increases. Such an EBIC criterion has shown to be a consistent

model selection criterion in the case of linear models with large model spaces.

We consider a general statistical model for high-dimensional data with complicated cor-

relation structures. One example of the high-dimensional data is correlated regression data

with (e.g. longitudinal or clustered data), with a large number of covariates. When the

composite likelihood is the method of parameter estimation, it is of interest to investigate

whether BIC is available for model selection, and if so how it behaves. This motivates us to

address the following three issues: (1) To define a BIC in the composite likelihood method-

ology, which will be referred to as the composite likelihood BIC or CL-BIC in the rest of

this paper. This CL-BIC will be applicable for the situation where the number of parameters

increases with the sample size. (2) To establish a large sample property of the model selection

consistency for the proposed CL-BIC, which is a key advantage of BIC or its variants as seen

in the literature. (3) To compare CL-BIC with Varin and Vidoni’s composite likelihood AIC

in order to understand the performances between AIC and BIC in the composite likelihood

methodology. It is worth noting that Chen & Chen’s EBIC becomes a special case of the

proposed CL-BIC with the univariate composite likelihood in the linear model. In addition,

the CL-BIC is also applicable for the full likelihood methodology, as the full likelihood is

a special case of composite likelihood. In simulation studies given in Section 4, we include
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a comparison of CL-BIC between the full and composite likelihood methods, since the full

likelihood method serves as the gold standard in the simulation setting.

The paper is organized as follows. Section 2 presents the BIC in the composite likelihood

framework, and Section 3 concentrates on the property of model selection consistency for

the proposed CL-BIC. Section 4 illustrates the performance of the CL-BIC and comparisons

with AIC via simulation studies, and Section 5 concludes the paper with some remarks. Some

technical details are listed in the appendix.

2. COMPOSITE LIKELIHOOD BAYESIAN INFORMATION CRITERION

2.1. Composite Likelihood

The composite likelihood (CL) paradigm (Lindsay, 1988) constitutes a rich class of pseudo-

likelihoods based on marginal likelihood objects. Let {f(y; ψ), ψ ∈ Ψ} be a parametric

statistical model, with the parameter space Ψ ⊆ RQ. Let Y = (Y ′
1 , . . . , Y

′
n)′ denote the

dataset, where Yi = (yi1, . . . , yimi)
′ are the vector of observations sampled independently on

unit i, i = 1, . . . , n, from a study population. For convenience, we may regard the Y as the

vectorized data, in which one observation yij is indexed by j = 1, . . . , mi and i = 1, . . . , n.

Since the methodology of composite likelihood lies in the idea of dimension reduction for

the likelihood function, the parameter ψ would be partitioned as ψ = (θ, η), where θ is

the parameter of interest to be estimated and η is the nuisance parameter that will not

be estimated by the composite likelihood method. Consequently, the model selection with

the composite likelihood methodology concerns with parameter θ, and the corresponding

parameter space is Θ ⊆ RP ,, with dimension P possibly dependent on the sample size.

To form a composite likelihood, first consider a collection of index subsets A = {A :

A ⊆ Ω}, where each element A is a subset of Ω = {(i, j), j = 1, . . . , mi, i = 1, . . . , n}. For a

given unit i, similarly we denote Ai = {A : A ⊆ Ωi} with Ωi = {(i, j), j = 1, . . . ,mi}. This

implies that Ω = ∪n
i=1Ωi. Clearly the cardinality of set Ω, card(Ω), escalates as the sample

size n increases. Then, let YA denotes the subset of the data with respect to set A, namely

YA = {ya, a ∈ A}. According to Lindsay (1988), a composite likelihood function is defined as

CL(θ; Y ) =
∏

A∈A
LA(θ; Y )wA =

n∏

i=1

∏

A∈Ai

LA(θ; Y )wA , (1)
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where LA(θ; Y ) = f(yA; θ) is the marginal likelihood with respect to composite set A, and

{wA} is a set of suitable weights. It is easy to see that a singleton Ai = {Ωi} corresponds

to the full likelihood, and Ai = {{1}, . . . , {mi}} gives rise to a composite likelihood of uni-

variate margins. The log composite likelihood is cl(θ; Y ) =
∑n

i=1

∑
A∈Ai

wA`A(θ; Y ), where

cl(θ; Y ) = log CL(θ;Y ) and `A(θ;Y ) = log LA(θ; Y ). The maximum composite likelihood

estimator (CLE) is given by

θ̂c = arg max
θ∈Θ

cl(θ;Y ).

Since each term in (1) is a likelihood object, the resulting composite likelihood estimat-

ing equation ∇θcl(θ; Y ) = 0 is unbiased under the assumption that these likelihood objects

are valid marginal densities of the underlying joint parametric model f(y;ψ). As usual, the

composite likelihood estimate is obtained as a solution to this composite likelihood estimat-

ing equation. From the classical theory of estimating functions (e.g. Song, 2007, Chapter

3), the associated maximum composite likelihood estimator, θ̂c = θ̂c(Y ), is consistent and

asymptotically normally distributed, under some mild regularity conditions. See also Varin

(2008).

2.2. Bayes Information Criterion

Denote the true full parameter by ψT = (θT , ηT ) ∈ int(Ψ) and then the true marginal

parameter by θT ∈ int(Θ). Consequently, the true full model is f(y;ψT ) and the true marginal

model constitutes a set of true composite marginals {f(yA; θT ), A ∈ Ai} for one unit, say i.

To derive BIC in the composite likelihood framework, we need some additional notations.

Let P = dim(Θ), and let s be a subset of {1, . . . , P}. Denote by θs the parameter θ with

those elements outside s being pre-specified as 0 or some known values. Because set s and

a candidate marginal submodel {f(yA; θs), A ∈ A} correspond to each other uniquely, this

submodel is simply denoted by s for convenience. Consequently, set T ⊆ {1, . . . , P} denotes

the true marginal model.

Let ds be the number of parameters under a marginal submodel s. Let S denote the

model space of all possible submodels being considered. Associated with each submodel s,

let πs(θs|ωs) be the prior density of parameter θs, where ωs is a certain given hyper-parameter,

and let p(s) be the prior probability of the occurrence of the submodel defined on space S.
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Following Schwarz’s (1978) BIC method, we would select the best submodel that maxi-

mizes the posterior probability of the submodel given the equal priors. When the full likeli-

hood is numerically prohibitive to compute, we replace the full likelihood by the composite

likelihood defined in (1). This leads to a modified posterior probability, referred to as the

composite posterior probability (CPP), for a submodel s,

CPP(s|Y ) =
p(s)

∫
Θs
{CL(θs;Y )}πs(θs|ωs)dθs∑

r∈S p(r)
∫
Θr
{CL(θr; Y )}πr(θr|ωr)dθr

, s ∈ S. (2)

It is worth pointing out that although CL(θs; Y ) in (1) is generally not a proper probability

distribution, this CPP defined in (2) is due to the normalization, and hence it has the sim-

ilar interpretation as the original BIC; that is, the best model is selected according to the

maximum composite posterior probability among all the possible submodels.

Clearly, maximizing the composite posterior in (2) is equivalent to maximizing its numer-

ator, p(s)
∫
Θs
{CL(θs;Y )}πs(θs|ωs)dθs, because the denominator is model free. Under certain

regularity conditions (e.g. Tierney & Kadane, 1986; Tierney, Kass & Kadane, 1989), we

approximate the integral through the Laplace formula, given as follows:

∫

Θs

{CL(θs;Y )}πs(θs|ωs)dθs =
(2π)

ds
2

n
ds
2 |Qs(θ̃s)| 12

exp
{

nqs(θ̃s|Y, ωs)
}
{1 + Op(n−1)},

where qs(θ̃s|Y, ωs) = 1
n log{CL(θs; Y )πs(θs|ωs)}|θ̃s

, and Qs(θ̃s) = ∂2qs(θs|Y,ωs)
∂θs∂θ′s

|θ̃s
, with θ̃s being

the mode of qs(θs|Y, ωs). It follows that

−2 log
[
p(s)

∫
{CL(θs; Y )}πs(θs|ωs)dθs

]
= −2 log CL(θ̃s;Y )− 2 log πs(θ̃s|ωs) + ds log(n)

+ log |Qs(θ̃s)| − 2 log p(s)− ds log(2π)

+Op(n−1). (3)

Under the assumption that log{πs(θs|ωs)} = O(1), the mode θ̃s of qs(θs|Y, ωs) satisfies the

following asymptotic expansion:

θ̃s = θ̂c
s +

1
n

{
Js(θ̂c

s)
}−1

{
∂

∂θs
log πs(θs|ωs)

∣∣∣θ̂c
s

}
+ Op(n−2),

where θ̂c
s is the maximum composite likelihood estimator of θs under submodel s and

Js(θ̂c
s) = − 1

n

∂2 log CL(θs; Y )
∂θs∂θ′s

∣∣∣θ̂c
s

. (4)
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Furthermore, when the prior πs(θs|ωs) is chosen to be sufficiently flat in the neighborhood of

the θ̂c
s, retaining the leading terms in the approximation (3) at the rate of Op(1) or higher

results in

BIC(s) = −2 log CL(θ̂c
s; Y ) + ds log(n)− 2 log{p(s)}, (5)

where the last term may diverge at a faster rate than Op(1) in the case where the number of

the parameters increases to infinity with the increase of sample size.

In the case of the composite likelihood AIC, because the composite likelihood is a kind of

pseudolikelihood, Varin & Vidoni (2005) reached the form for the effective number of degrees

of freedom, namely d∗s = trace (H−1
s Vs), where the sensitivity and variability matrices are

given by, respectively,

Hs = EψT,0

{
−∂2 log CL(θs; Y )

∂θs∂θ′s

}
, and Vs = varψT,0

{
∂ log CL(θs; Y )

∂θs

}
, (6)

where the expectations are taken under the true distribution of data generation, f(y;ψT,0).

Using d∗s as an indicator of model complexity has been widely accepted (e.g. Pan, 2001)

in the pseudo-likelihood methodology. Thus, we adopt this d∗s into our BIC in the rest of

this paper, and a consistent estimator is denoted by d̂∗s = trace (Ĥ−1
s V̂s), which will be used

in all the related computation. It turns out that such modification is necessary to ensure the

selection consistency, as shown in Section 3. With regard to consistent estimation of both

Ĥs and V̂s, without the estimation of the nuisance parameter η, readers may refer to Varin

& Vidoni (2005) for detail.

2.3. Sparsity via Penalization

In the conventional setting where the number of parameters P is fixed (or not dependent

on the sample size n), it is commonly assumed that each submodel s has an equal probability

of being selected, namely a uniform prior over the model space, p(s) = 1/card(S), where

card(S) is the cardinality of S. Consequently, the last term in the BIC (5), −2 log{p(s)}, is

of order Op(1), and hence can be removed from the expression. As a result, (5) reduces to

the classical Schwarz’s BIC.

A much more challenging task of model selection in the high-dimensional data analysis is

that P is not fixed and increases as the sample size rises. Suppose that Pn = O(nκ), with κ >

0. In this case, the equal probability prior will actually favor models with more parameters;
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see for example Chen and Chen (2008). In many practical studies, important attributes

are typically handful, in spite of a large Pn. This naturally necessitates the imposition of

lower preferences on models with a large number of parameters; in other words, an additional

penalty is required in BIC to ensure an increasing chance of selecting models with sparsity.

This can be done by assigning priors through a stratified sampling scheme proposed by

Chen and Chen (2008). To proceed, first partition the model space into submodel spaces

S = ∪Pn
k=1Sk, where each Sk contains models with k parameters. For example, S1 is a

collection of all the models containing one parameter. Let τ(Sk) = card(Sk) be the size of Sk.

Obviously, τ(S1) = Pn. Within a given subspace Sk, an equal probability prior is imposed

as p(s|Sk) = 1/τ(Sk), s ∈ Sk. Obviously, smaller models gain higher prior probabilities.

Moreover, specifying prior probabilities for these subspaces proportional to their sizes, say

p(Sk) ∝ {τ(Sk)}ξ for some ξ ∈ [0, 1], we obtain that the prior probability of a submodel s

being selected via this stratified sampling procedure is proportional to τ(Sk)−γ , with γ =

1 − ξ ∈ [0, 1]. In particular, when ξ = 1, and γ = 0, this stratified prior reduces to the

unstratified uniform prior considered in the conventional BIC case.

Consequently, we reach a composite likelihood BIC for model selection given as follows:

CL-BIC(s) = −2 log CL(θ̂c
s; Y ) + d̂∗s log(n) + 2γ log{τ(Sd̂∗s

)}. (7)

In (7), the first term is minus twice of the composite loglikelihood that reflects the goodness-

of-fit for a given submodel s, the second term is the penalty for the model complexity; and

the third term is the penalty for the enforcement of sparsity on the model selected. The

coefficient γ tunes the degree of preference on large sized models. The larger the γ, the more

favorable a sparse model. It is worth noting that although the above development of the

CL-BIC is derived by a Bayesian approach, the practical use of the CL-BIC will not require

any specific Bayesian model components. For example, no prior distributions are needed in

the evaluation of the CL-BIC (7).

3. SELECTION CONSISTENCY

Given an arbitrary submodel s, it may be (1) the true marginal model T , with the

parameter vector θT that contains dT components; or (2) an under-fitting model s−, which

is a misspecified model under which the model parameter θT is not a subset of the θs−, ı.e.
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θs− + θT ; or (3) an over-fitting model s+, in that the parameter vector θs+ contains the true

θT but is not identical to the θT , that is, θT ⊂ θs+ and θs+ 6= θT . For these three scenarios,

let CL-BIC(s), s = T, s−, s+ denote the composite likelihood BIC criteria obtained under

the true (T), under-fitting (s−) and over-fitting marginal models (s+), respectively.

In this paper, we assume the conventional regularity conditions required for consistency

and asymptotic normality of the maximum likelihood estimator (Cox and Hinkley, 1974).

Furthermore, we assume four additional regularity conditions needed by the composite likeli-

hood estimation in connection to model misspecification (e.g. White, 1982; Varin & Vidoni,

2005), detailed as follows.

Assumption 1 (A1). For each submodel s, the parameter space Θs is a compact subset of

Rds , and for fixed Y , cl(θs;Y ) is twice continuously differentiable with respect to θs.

Assumption 2 (A2). (a) For each submodel s, |cl(θs;Y )|, |∂cl(θs;Y )/∂θsi ·∂cl(θs; Y )/∂θsj |,
|∂2cl(θs; Y )/∂θsiθsj |, i, j = 1, . . . , ds, are dominated by functions integrable with respect to

the probability measure of the true marginal model for all θs ∈ Θs. (b) Denote the log

composite likelihood ratio (CLR) between two marginal submodels s and s′ by

λs′|s(Y ; θs′ , θs) = log
{

CL(θs′ ;Y )
CL(θs; Y )

}
= cl(θs′ ; Y )− cl(θs; Y ). (8)

Assume EψT,0
{λT |s(Y ; θT,0, θs)} exists for all θs, and has a unique minimum at θs,0 ∈ int(Θs).

Here ψT,0 is the true value of the parameter ψT under the true full model f(y;ψ).

It is easy to see that this θs,0 effectively defines the pseudo true value of parameter θs in

Θs under a misspecified model s, which minimizes the expected composite Kullback-Leibler

distance (Varin & Vidoni, 2005) between the true marginal model and a marginal submodel

s. That is, θs,0 = argminθs∈Θs EψT,0
{λT |s(Y ; θT,0, θs)}.

Assumption 3 (A3). The composite likelihood estimator θ̂c
s is consistent, θ̂c

s
p→ θs,0, and

asymptotically normally distributed,
√

n(θ̂c
s − θs,0)

d→ Nds(0, G−1), where G is the Godambe

information matrix (or the sandwich covariance).

To establish the model selection consistency of the CL-BIC in the case of large P and

small n, namely P = Pn = O(nκ), as n →∞ for some κ > 0, assumption 4 below is imposed

to ensure that the true marginal model T is asymptotically identifiable in the large model

space.

Assumption 4 (A4). (a) varψT,0
{λT |s(Y ; θT,0, θs,0)} exists; (b) maxs∈S d∗s/ds ≤ C0 for

some constant C0, where d∗s is the effective number of degrees of freedom; and (c) both of the

9
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following conditions hold:

lim
n→∞min

s∈S

{
(log n)−

1
2

EψT,0
{λT |s(Y ; θT,0, θs,0)}

[varψT,0
{λT |s(Y ; θT,0, θs,0)}] 1

2

, s 6= T, ds ≤ dT

}
= ∞, (9)

lim inf
n→∞ min

s∈S

{
(log n)−

1
2 [varψT,0

{λT |s(Y ; θT,0, θs,0)}]
1
2 , s 6= T, ds ≤ dT

}
≥ C1, (10)

for a positive constant C1.

In effect, assumption 4 implies that for each under-fitting marginal submodel,

varψT,0
{λT |s(Y ; θT,0, θs,0)} = op

(
(log n)−1/2EψT,0

{λT |s(Y ; θT,0, θs,0)}
)

, (11)

lim
n→∞(log n)−1EψT,0

{λT |s(Y ; θT,0, θs,0)} = ∞. (12)

Assumption 4 is a generalization of the asymptotical identifiability condition given by Chen

and Chen (2008) in the linear model setting. Proposition 1 below shows this claim. To

proceed, consider a linear model, Y = Xθ + ε, where ε ∼ Nn(0, σ2I). Then, XT and Xs

denote the design matrices of the true model and a candidate model, respectively, with

respective vectors of the regression coefficients, θT and θs. Moreover, the true null value is

θT,0 under the true model, and the pseudo null value is θs,0 under the candidate model.

Proposition 1. In the linear model, assumption A4(c) given in (9) and (10) reduces to the

following condition:

lim
n→∞min

s∈S

{
(log n)−1∆n(s), s 6= T, ds ≤ dT

}
= ∞, (13)

with ∆n(s) = ||XT θT −D(s)XT θT,0||22, and D(s) = Xs(X ′
sXs)−1X ′

s is the hat matrix.

The proof of Proposition 1 is presented in the appendix.

We establish the model selection consistency of the CL-BIC in the following two theorems.

The first concerns with the consistency for the under-fitting models and the second for the

over-fitting models.

Theorem 2. Suppose the number of parameters Pn = O(nκ), κ > 0. Under the regularity

conditions (A1)-(A4), for any γ > 0,

PψT,0
{CL-BIC(T ) < CL-BIC(s−)} → 1, as n →∞.

To prove Theorem 2, we need the following three lemmas.
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Lemma 3. Given a candidate marginal submodel s ∈ Sds (either under- or over-fitting),

consider a quadratic form:

Q(s) =
(
θ̂c
s − θs,0

)′{−∂2cl (θs; Y )
∂θs∂θ′s

} ∣∣∣θ̂c
s

(
θ̂c
s − θs,0

)
, s ∈ Sds . (14)

Then as n →∞, Q(s) asymptotically follows a mixture of chi-square distributions,
∑ds

j=1 ζj(s)χ2
j ,

where ζ1(s), . . . , ζds(s) are the eigenvalues of the matrix H−1
s Vs, and χ2

j , j = 1, . . . , ds are i.i.d.

according to the chi-square distribution with 1 degree of freedom. Both Hs and Vs are given

in (6).

Lemma 4. For a given set of K independent standard normal random variables Z1, . . . , ZK ,

max{Zi, i = 1, . . . , K} = Op(
√

log K).

Lemma 5. For the quadratic form Q(s) given in (14), under the same setting of Lemma 3,

max {Q(s), s ∈ Sds} = Op(d∗s log(Pn)),

where d∗s =
∑ds

j=1 ζj(s), with eigenvalues ζj(s)’s being given in Lemma 3.

The proofs of the three lemmas are detailed in the appendix. Now we prove Theorem 2.

Proof. In the following, we use s, instead of s−, to denote an under-fitting submodel just for

the convenience of exposition. Expanding the composite log-likelihood around the composite

likelihood estimate θ̂c
s, we obtain

cl(θs,0; Y ) = cl(θ̂c
s; Y ) +

∂cl(θs;Y )
∂θs

|θ̂c
s
(θs,0 − θ̂c

s) +

1
2
(θs,0 − θ̂c

s)
′∂

2cl(θs; Y )
∂θs∂θ′s

|θ̂c
s
(θs,0 − θ̂c

s){1 + op(1)}, (15)

where the second term in (15) is zero, and the third term is −1
2Q(s). It follows from Lemma

3 that for a large n,

−2{cl(θs,0; Y )− cl(θ̂c
s; Y )} = Q(s) + op(1) =

ds∑

j=1

ζjχ
2
j + op(1),

where both ζj and χ2
j are given in Lemma 3. Thus, by Lemma 5 for a submodel s ∈ Sds , we

obtain

max
s∈Sds

2{cl(θ̂c
s; Y )− cl(θs,0; Y )} = Op(log n), (16)

11
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where Pn = O(nκ). On the other hand, for the true marginal model T , Lemma 3 implies

that

2{cl(θ̂c
T ;Y )− cl(θT,0; Y )} =

dT∑

j=1

ζj(T )χ2
j = Op(1), (17)

where ζj(T ), j = 1, . . . , dT are the eigenvalues of H−1
T VT .

Furthermore, by the Central Limit Theorem, for each submodel s,

Z(s) =
λT |s(Y ; θT,0, θs,0)− EψT,0

{λT |s(Y ; θT,0, θs,0)}
varψT,0

{λT |s−(Y ; θT,0, θs−,0)}
d−→ N(0, 1).

Thus, Lemma 4 and equation (11) entail that

λT |s(Y ; θT,0, θs,0)− EψT,0
{λT |s−(Y ; θT,0, θs,0)}

≤ max {Z(s), s ∈ Sds}
[
varψT,0

{λT |s(Y ; θT,0, θs,0)}
] 1

2 {1 + op(1)}

= Op(
√

log n)
[
varψT,0

{λT |s−(Y ; θT,0, θs−,0)}
] 1

2 {1 + op(1)}

= op(EψT,0
{λT |s−(Y ; θT,0, θs−,0)}),

Summarizing all the results, we have for an under-fitting submodel s,

−2{cl(θ̂c
s;Y )− cl(θ̂c

T ; Y )}

= −2{cl(θ̂c
s; Y )− cl(θs,0; Y )}+ 2{cl(θ̂c

T ; Y )− cl(θT,0; Y )}

+2[λT |s(Y ; θT,0, θs,0)− EψT,0
{λT |s(Y ; θT,0, θs,0)}] + 2EψT,0

{λT |s(Y ; θT,0, θs,0)}

= EψT,0
{λT |s(Y ; θT,0, θs,0)}{1 + op(1)}.

It follows from equation (12) that limn→∞−2{(log n)−1(cl(θ̂c
s; Y )−cl(θ̂c

T ; Y ))} = ∞. Since the

penalty terms in the difference of {CL-BIC(s−) − CL-BIC(T )} are both of order Op(log n),

we obtain PψT,0
{CL-BIC(T ) < CL-BIC(s−)} → 1.

Next we consider the over-fitting scenario.

Theorem 6. Suppose the number of parameters Pn = O(nκ), κ > 0, and suppose the regu-

larity conditions A1-A4 hold. When γ > 1− 1/(2κ), for an over-fitting model s+,

PψT,0
{CL-BIC(T ) < CL-BIC(s+)} → 1, as n →∞.

Proof. Without the loss of generality, for an over-fitting marginal submodel s+, we write

θs+ = (θT , θW ), where θW denotes the vector of nuisance parameters. Accordingly, θ̂c
s+ =

12
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(θ̂c
T , θ̂c

W ) denote the maximum composite likelihood estimator obtained from the over-fitting

model s+ with the corresponding composite log-likelihood denoted as cl+(θ̂c
T , θ̂c

W ; Y ). Like-

wise, let θ̃c
T be the maximum composite likelihood estimator obtained from the true marginal

submodel T with the corresponding composite log-likelihood denoted as clT (θ̃c
T , 0;Y ).

Applying Taylor expansion on clT (θ̂c
T , 0;Y ) around θ̃c

T , we obtain

clT (θ̂c
T , 0;Y )− clT (θ̃c

T , 0;Y ) =
1
2
(θ̂c

T − θ̃c
T )′

{
∂2clT (θT , θW ;Y )

∂θT ∂θ′T

∣∣∣(θ̃c
T ,0)

}
(θ̂c

T − θ̃c
T ){1 + op(1)}. (18)

Given that both θ̃c
T and θ̂c

T are root-n consistent for the true null value θT,0, we have (θ̂c
T −

θ̃c
T ) = Op(n−

1
2 ). Then, similar to the proof of Lemma 3 in the appendix, it is easy to show

that the quadratic form in (18) is of order Op(1).

On the other hand, applying Taylor expansion on cl+(θT , θW ) around θ̂c
W and then eval-

uating the expansion at θ̂T = θ̂c
T and θW = 0, we obtain

cl+(θ̂c
T , 0;Y )− cl+(θ̂c

T , θ̂c
W ; Y ) =

1
2
(θ̂c

W )′
{

∂2cl+(θ̂c
T , θW ; Y )

∂θW ∂θ′W

∣∣∣θ̂W

}
θ̂c
W {1 + op(1)}. (19)

It is known that under the over-fitting model, θ̂c
W is consistent and asymptotically normally

distributed, N(0,H−1
W VW H−1

W ), where

HW = EψT,0

{
−∂2cl+(θT , θW ; Y )

∂θW ∂θT
W

}
, and VW = varψT,0

{
∂cl+(θT , θW ; Y )

∂θW

}
.

Let ζ1(W ), . . . , ζr(W ) be the r eigenvalues of matrix H−1
W VW , where r = ds+−dT . According

to Lemma 3, −2{cl+(θ̂c
T , θ̂c

W ;Y )−cl+(θ̂c
T , 0;Y )} follows asymptotically a mixture of chi-square

distributions,
∑r

j=1 ζj(W )χ2
j . Then, Lemma 5 implies that

max
[
−2{cl+(θ̂c

T , θ̂c
W ;Y )− cl+(θ̂c

T , 0;Y )}, s+ ∈ Sds+

]
= Op((d∗s − d∗T ) log(Pn)). (20)

Finally, the difference of the CL-BIC criteria between the over-fitting and true marginal

submodels is given by

CL-BIC(s+)− CL-BIC(T )

= −2
{

cl+
(
θ̂c
s+; Y

)
− clT

(
θ̃c
T ; Y

)}
+ (d∗s − d∗T ) log(n) + 2γ

{
log(τ(Sd∗s+))− log(τ(Sd∗T ))

}

≥ −2
{

cl+
(
θ̂c
s+; Y

)
− cl+

(
θ̂c
T ; Y

)}
− 2

{
cl+

(
θ̂c
T ; Y

)
− clT

(
θ̂c
T ;Y

)}

−2
{

clT
(
θ̂c
T ;Y

)
− clT

(
θ̃c
T ; Y

)}
+ (d∗s − d∗T ) log(n) + 2γ(d∗s − d∗T ) log(Pn)

≥ (d∗s − d∗T )Op(log(n) + 2(γ − 1) log(Pn)).
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When γ ≥ 1 − 1/(2κ), we have PψT,0
{CL-EBIC(T ) < CL-BIC(s+)} → 1, as n → ∞, given

Pn = O(nκ), κ > 0.

4. SIMULATION

To examine the performance of the CL-BIC, we conduct two Monte Carlo simulation

experiments that primarily concern the selection of tuning parameter in the LASSO ap-

proach (Tibshirani, 1996). The CL-BIC assists us to select an optimal tuning parameter

by comparing the CL-BIC values among a set of sequentially generated candidate models.

We consider the multivariate familial data analysis discussed in Zhao and Joe (2005). The

sample is drawn from families with inter-correlations among individuals in a family. Denote

the number of families by n and the number of members in each family by m. The response

vector of measurements for the i-th family is denoted by Yi = (yi1, . . . , yim)′. Associated is

a set of covariates at the individual level, Xi = (xi1, . . . , xim)′, with xik = (xik1, . . . , xikP )′,

representing the P covariates observed for the k-th individual in the i-th family. The first

study concerns a multivariate normal model, in which Yi follows a multivariate normal dis-

tribution, Nm(µi, Σ), where the mean vector is governed by a linear model, µi = Xiβ, with

β = (β1, . . . , βP ). The covariance matrix Σ was specified according to an exchangeable de-

pendence structure, σk,k′ = ρ. The second simulation study is based on a multivariate probit

model, in which the binary response vector arises from a dichotomization of an underlying

multivariate normal of exactly the same specification as given in the first study. In addition,

among all the covariate coefficients, most of them are zero while a small subset are non-zero.

We wish to select the significant covariates among the P candidates.

4.1. Multivariate normal model

We consider two different scenarios. In the first scenario, we set P = 30, n = 200

and m = 4. The covariates are generated from a multivariate normal with the standard

normal N(0, 1) marginals and inter-correlation Cov(xikp, xikp′) = 0.2. The within-family

correlation ρ is set to either 0.3 or 0.6. The regression coefficients of the true marginal

model are set to two values β1(T ) = (0.1, 0.2, 0.4, 0.1, 0.4, 0.2, 0.3, 0.4, 0.5, 0.3), or β2(T ) =

(0.5, 0.1, 0.4, 0.3, 0.5, 0.1, 0.004, 0.04, 0.03, 0.003), with the other 20 coefficients set to zero.

14
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The second case contains 10 nonzero coefficients, while four of them are too small and con-

sidered to be no useful and not be used to compute the positive selection rates. This setup

can help us evaluate the performance of the model selection criteria when the covariates have

different levels of effect. In the second scenario, we set P = 1000, n = 200, and m = 4. The

covariates are partitioned into 20 blocks of 50 each. Within each block, the covariates are

generated from a multivariate normal with univariate standard normal marginals and equal

inter-covariate correlation 0.2, and covariates from different blocks have zero correlations.

Similarly, the within-family correlation ρ is set to either 0.3 or 0.6. The regression coefficients

of the true marginal model are set to the same values as those in scenario I with the other

990 coefficients set to zero.

To apply LASSO, we impose penalization on the composite likelihood with L1 penalty.

We gradually increase the tuning parameter in the penalty term and obtain a sequence of

nested models. Under scenario II with P >> n, we randomly partition the 1000 covariates

into 8 disjoint subsets of 125 covariates each and apply the penalized composite likelihood

on each subset. We then pool the reduced subsets of covariates together and perform the

same procedure to obtain the sequence of nested models, at which the CL-BIC is computed

to determine the optimal tuning.

For each candidate model, the CL-BIC is evaluated under either the univariate (or

onewise) composite likelihood
∑n

i=1

∑m
k=1 cl(yik; β), or the pairwise composite loglikelihood

∑n
i=1

∑
k<k′ cl(yik, yik′ ;β). The resulting two CL-BIC criteria are denoted as CLU -BIC or

CLB-BIC, respectively. For the purpose of comparison, we also include Varin and Vidoni’s

CLU -AIC based on the univariate composite likelihood, and Chen and Chen’s EBIC based

on the full likelihood that serves as the gold standard. The two versions of CL-BIC and the

EBIC are calculated with γ = 0, and 0.5 for scenario I and with γ = 0, 0.5 1.0 for scenario

II.

Table 1 and 2 summarize the performance of the different information criteria. The

positive selection rate (PSR) is defined as the ratio of identified significant predictors among

all the significant predictors. The false discovery rate (FDR) is defined as the ratio of false

identified predictors among all the identified predictors. In a multiple testing framework, the

positive selection rates reflects the power or sensitivity of the test, and the false discovery

rate reflects the error rate or selectivity of the test.

15
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Table 1 provides the performance of different methods when n = 200, and P = 30.

we observe that the strength of correlation does mildly affect the performance of different

methods. But the relative comparison among different methods remain the same pattern

at different correlation levels. As CLU -AIC has less penalty on the model complexity, it

always achieves higher PSR than CLU -BIC and CLB-BIC. Under such a modest sample

size and small P setting, all the information criteria have satisfactory FDR control. With

regard to the size of γ for the CL-BIC criteria, γ = 0.5 or higher seems unnecessary, and

it attenuates the power. Therefore, using γ = 0 is recommended here by both CL-BIC and

EBIC. The CLB-BIC always achieve higher PSR than CLU -BIC, demonstrating the efficiency

gain by using the pairwise model rather than the univariate models. Compared to the full

likelihood based EBIC, CLB-BIC has shown PSR and FDR very close to that of EBIC. This

demonstrates that under the exchangeable correlation structure, the discrepancy between the

pairwise likelihood and the full likelihood is very little.

Table 2 provides the performance of different methods when n = 200, and P = 1000.

With such a large number of covariates, the CLU -AIC does not adequately control the FDR

rate. It seems that CLB-BIC0.5 has a satisfactory performance and controls the FDR rate

very well. The penalty with γ = 1 seems too harsh, and it attenuates the power. Therefore,

when P = 1000 and n = 200, CLB-BIC0.5 is recommended. This also agrees with theorem

6 that, when P = O(nκ), to achieve selection consistency, it requires γ ≥ 1 − 1/(2κ). In

this simulation setup, P = n1.3, so γ = 0.6 is the optimal choice to ensure the consistency.

The CLB-BIC always achieves higher PSR than CLU -BIC, suggesting the importance of

incorporating correlation in the composite likelihood. The performance of CLB-BIC is very

close to that of EBIC.

4.2. Multivariate probit model

Under exactly the same setup in Section 4.1, binary correlated responses are obtained by

dichotomizing the continuous multivariate normal measurements. Also, the two scenarios of

P < n and P >> n are considered. For a multivariate probit model with many covariates,

the full likelihood involves high dimensional integration and is computationally prohibitive.

We thus compare the performance of the different information criteria under only composite

likelihood methodology, including CLU -AIC, CLU -BIC, and CLB-BIC. Results are summa-

16

http://biostats.bepress.com/umichbiostat/paper79



rized in Tables 3 and 4. It is noted that even with P = 30, and n = 100, the overfitting

effect of CLU -AIC is exhibited. When P = 1000, the FDR of CLU -AIC is about 50 to 70

percent, indicating an inadequate control of the error rate. The CLB-BIC always has higher

PSR than CLU -BIC because of the advantage of using pairwise likelihood over univariate

marginal likelihood. When P = 30, the penalty term with γ = 0 is sufficient to maintain a

good FDR for CLB-BIC. When P = 1000, the penalty term with γ = 0.5 is needed to control

the error rate. Thus for the multivariate probit model, the CLB-BIC is recommended for its

computational feasibility and simplicity compared to the full likelihood approach, and also it

clearly provides a satisfactory performance in terms of sensitivity and selectivity.

5. CONCLUDING REMARKS

As a consistent model selection criterion, BIC has been widely accepted in practice. This

method selects a model to achieve the balance between the model fitting and the model

complexity. In contrast, AIC focuses on selecting a model with the best prediction power,

which may contain unimportant predictors. Both BIC and AIC are known to be based on

the so-called L0 penalty. The LASSO method (Tibshirani, 1996) is based on a continuous L1

penalty, allowing for the model selection among a set of infinitely many candidate models.

LASSO involves a tuning parameter that needs to be determined in light of an optimal

criterion. BIC, as well as AIC and cross-validation based criteria, has been widely used to

determine the tuning parameter in the LASSO method or other bridge regression methods.

In this sense, the proposed CL-BIC provides a feasible and rigorous tool to determine the

optimal tuning parameter when the L1 penalty is applied on composite likelihood in the

high-dimensional data analysis.

Model selection is difficult when the number of parameters in the model increases with

the sample size. Recently, EBIC (Chen and Chen, 2008) has been advocated to address

the difficulty through adding an extra penalization term on the dimensionality of the model

space. The selection consistency of the EBIC has been only established in the linear regression

setting. The proposed CL-BIC may be regarded as an extension of EBIC, but it is applicable

to a much broader range of likelihood or quasi-likelihood methods. The model selection

consistency of CL-BIC remains true under mild regularity conditions. This is illustrated
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numerically via two important statistical models. Obviously, a key advantage of the CL-BIC

is that it makes the variable selection possible even if the full likelihood is not feasible to

compute.
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APPENDIX: Proofs

Proof of Proposition 1: Note that in the regression model with iid normally distributed errors,

the composite likelihood of the one-dimensional marginal likelihood coincides with the full

likelihood. Thus, Hs = Vs = (X ′
sXs)/σ2. This implies that d∗s = ds.
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To determine the pseudo null value θs,0, we begin with

2σ2EθT,0

{
ΓT |s(Y ; θT,0, θs)

}

=− EθT,0

{
(Y −XT θT,0)′(Y −XT θT,0)

}
+ EθT,0

{
(Y −Xsθs)′(Y −Xsθs)

}

=(XT θT,0 −Xsθs)′(XT θT,0 −Xsθs).

(21)

Then its minimizer is θs,0 = (X ′
sXs)−1X ′

sXT θT,0. It follows that the minimum is given by

EθT,0

{
ΓT |s(Y ; θT,0, θs,0)

}
=

1
2σ2

(
XT θT,0 −D(s)XT θT,0

)′(
XT θT,0 −D(s)XT θT,0

)

=||XT θT,0 −H(s)XT θT,0||22/(2σ2).
(22)

On the other hand,

varθT,0

{
ΓT |s(Y ; θT,0, θs,0)

}
=

1
4(σ2)2

var{ε′((I −D(s))XT θT,0)}

=||XT θT,0 −H(s)XT θT,0||22/(4σ4).
(23)

Applying the above results to Assumption 4(c), it is clear that equations (9) and (10) imply

equation 13.

Proof of Lemma 3: First, White’s (1982) Theorem 3.2 (A.3) implies that under the regularity

conditions A1-A3,
1
n

∂2cl(θs; Y )
∂θs∂θ′s

∣∣∣θ̂c
s

a.s.→ EψT,0

{
∂2cl(θs;Y1)

∂θs∂θ′s

} ∣∣
θs,0

Since θ̂c
s−θs,0 is asymptotically normally distributed with mean 0 and asymptotic covariance

matrix H−1
s VsH

−1
s , by Slutsky’s Theorem, Q(s) asymptotically follows the same distribu-

tion as the quadratic from
(
θ̂c
s − θs,0

)′
Hs

(
θ̂c
s − θs,0

)
, which converges in distribution to a

weighted sum of chi-square random variables,
∑ds

j=1 ζj(s)χ2
j , where ζj(s) are the eigenvalues

of H−1
s Vs and χ2

j are i.i.d. with chi-square distribution with 1-degree of freedom. The proof

of Lemma 3 is complete.

Proof of Lemma 4: Note that by Bonferroni Inequality, for a constant c > 0,

P (max{Zi, i = 1, . . . , K} ≥ c) ≤
K∑

i=1

P (Zi ≥ c).

In the mean while, we have

1− Φ(c) ≤ 1
c

∫ ∞

c2/2

1√
2π

e−zdz

=
φ(c)

c
,

21

Hosted by The Berkeley Electronic Press



where Φ(·) and φ(·) are the CDF and density of the standard normal, respectively. This

entails

P (max{Zi, i = 1, . . . , K} ≥ c) ≤ Kφ(c)
c

=
Ke−c2/2

√
2πc

.

Let c =
√

2 log K. Then,

Ke−c2/2

√
2πc

=
K√

2πK
√

2 log K
→ 0, as K →∞.

This leads to max{Zi, i = 1, . . . , K} = Op(
√

log K).

Proof of Lemma 5: The space Sds contains a total of


 Pn

ds


 possible submodels. For each

submodel s ∈ Sds , Lemma 3 entails, for large n,

Q(s) =
ds∑

j=1

ζj(s)Z2
j + op(1) ≤ d∗s max

{
Z2

j , j = 1, . . . , ds

}
+ op(1),

where Z1, . . . , Zds are i.i.d. with N(0, 1), and d∗s =
∑ds

j=1 ζj(s). By Lemma 4, we obtain

max {Q(s), s ∈ Sds} ≤ d∗s max
{
Z2

j , j = 1, . . . , ds

}
+ op(1) = Op(d∗s log(Pn)).
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