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Composite Model Reference Adaptive Control with

Parameter Convergence under Finite Excitation
Namhoon Cho, Hyo-Sang Shin*, Youdan Kim, and Antonios Tsourdos

Abstract—A new parameter estimation method is proposed in
the framework of composite model reference adaptive control
for improved parameter convergence without persistent excita-
tion. The regressor filtering scheme is adopted to perform the
parameter estimation with signals that can be obtained easily.
A new framework for residual signal construction is proposed.
The incoming data is first accumulated to build the information
matrix, and then its quality is evaluated with respect to a chosen
measure to select and store the best one. The information matrix
is built to have full rank after sufficient but not persistent
excitation. In this way, the exponential convergence of both
tracking error and parameter estimation error can be guaranteed
without persistent oscillation in the external command which
drives the system. Numerical simulations are performed to verify
the theoretical findings and to demonstrate the advantages of the
proposed adaptation law over the standard direct adaptation law.

I. INTRODUCTION

The adaptive control system aims to maintain the perfor-

mance of the control system remaining close to the nominal

performance under uncertainties. In order to achieve the aim,

adaptive control generally includes an approximate model that

captures uncertainty and adaptive augmentation that comple-

ments the nominal controller with the approximate uncertainty

model. The uncertainty model is generally a function ap-

proximator, and the regression algorithm working for better

approximation is called the adaptation law.

In order to best maintain the nominal performance, the

approximated uncertainty model should be as close as possible

to the actual uncertainty. If the chosen uncertainty model has a

parametric form, it is widely accepted that there exists an ideal

value of parameter with which the error between the model and

actual uncertainty is minimized over a domain. Accordingly,

it is desirable to design an adaptation law drives parameter

estimate to the ideal value.

The issue is that the parameter estimation accuracy is not

the only consideration that should be taken into account

in the design of adaptation laws. Note that the parameter

estimation error dynamics closely interacts with the track-

ing error dynamics in the overall closed-loop system. In

order to improve the transient bound of tracking error or

to improve the learning rate for fast adaptation, one might
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adopt a simple adaptation law with a high gain. However,

it could induce undesirable behaviours including abnormally

abrupt control response, unwished amplification of the high

frequency component of unmodelled dynamics. Furthermore,

instability phenomena such as parameter drift [1] and bursting

[2] could occur in the absence of Persistent Excitation (PE).

It is therefore required to consider not only the accuracy of

the parameter estimate, but also control response and tracking

error performance in the design of adaptation laws.

There have been extensive studies to address the issue aris-

ing from the interaction between adaptation and tracking. Most

of the previous studies focused on overcoming the shortages

of the simple adaptation laws. They can be classified into

two categories; 1) robust adaptive control, and 2) composite

adaptive control.

The robust adaptive control approach focused on developing

modified adaptation laws or new architectures that provide

more robust closed-loop system. The modified adaptation laws

are usually given by sum of the standard direct adaptation

term and a modification term. Various methods are proposed

for design of the modification terms; σ-modification [3], e-

modification [4], Q-modification [5], Kalman filter modifica-

tion [6], adaptive loop transfer recovery [7], low-frequency

learning [8], etc. The adaptive controller architectures such as

the L1 adaptive control [9] and the derivative-free adaptive

control [10] are proposed for robust adaptive control. These

methods in general utilize the leading principle that the robust-

ness margin can be enhanced by including additional damping

or raising the order of system. However, most of these methods

guarantee only the boundedness of parameter estimation error

and asymptotic convergence of the tracking error. Also, for

the structured uncertainty case, parameter convergence is not

guaranteed unless the PE condition is satisfied, in the mod-

ification methods such as [3]–[9]. Moreover, these methods

perform only adjustment of parameters rather than parameter

‘estimation’. Therefore, the existing robust adaptive control

methods lack the accuracy of the parameter estimate, while

they improve control response and tracking error performance.

The composite adaptive control approach focused on in-

cluding model prediction error in the adaptation law to take

the benefits of combining direct and indirect approaches. The

idea of combined direct and indirect adaptation is presented

in [11]–[13]. On a similar basis, the composite adaptation

laws are developed and applied to robot manipulator control

in [14], [15]. A state feedback composite model reference

adaptive control system which utilized the regressor filtering

scheme is proposed in [16], and it extended the design of

[11]–[15]. A locally weighted learning scheme called receptive
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field weighted regression is adopted as the learning algorithm

for composite adaptive control in [17]. Many other studies

suggest the use of composite approach in adaptive control

for various classes of systems [18], [19] and for various

control design methods [20]–[22]. Existing methods using the

composite approach are based on online parameter estimation

schemes. The transient adaptation and control response can be

smoothed, the tracking error performance can be improved as

a result, and also the robustness of closed-loop system can be

improved in comparison to the simple direct adaptation law.

However, these methods often require PE for exponential pa-

rameter convergence, particularly in the linearly parameterized

structured uncertainty case. Furthermore, as the least squares

optimal approach used in parameter estimator design results

in a time-varying adaptation gain, the tuning is complicated

and less flexible. Hence, the existing composite adaptive

control methods are incomplete, while they perform parameter

estimation and improve control response and tracking error

performance.

It is evident that there is no previous study handling the

three considerations all together in a well-balanced manner.

Our observation is that the PE requirement for parameter

convergence is the main obstacle in achieving the balance

between the three considerations; the PE requirement could

introduce continuous oscillatory behaviour of the state and

control, which is not practical.

To this end, this paper aims to develop a new parameter-

estimation-based adaptation law that can handle these consid-

erations in a well-balanced way. The main focus of this study

is to relax the PE requirement to achieve this. For this purpose,

1) the regressor filtering scheme is adopted, and 2) a new

residual design is proposed. The regressor filtering scheme

is adopted to get a well-posed linear parameter estimation

problem with easily-obtainable signals. After that, a new

framework for constructing the residual signal is proposed.

The residual is designed to take the form of multiplication

of a real symmetric information matrix and the parameter

estimation error. Since the rank deficiency of information

matrix is the fundamental cause that necessitates PE, the key

idea in our study is to build the information matrix explicitly

so that it can have full rank after Finite Excitation (FE).

It is proven that the proposed framework provides analytical

guarantees on the stability of both tracking error and parameter

estimation error for the structured uncertainty case. The expo-

nential stability can be guaranteed under the assumption of FE,

not PE. The transient performance can be adjusted by gain

tuning. Since the proposed method is basically a composite

adaptive control and the exponential stability guarantee is

beneficial for the robustness of the closed-loop system, certain

enhancement of robustness can be expected as an accompany-

ing benefit.

Note that the proposed method is complementary to the

concurrent learning in [23]–[25] and the composite learning

in [26]. The adaptation method designed in this paper shares

some similarities with these existing methods which are re-

cently developed on a sound basis to relax PE condition. How-

ever, the algorithm developed for residual signal construction

in this paper is new and novel, and its mechanism is substan-

tially different from the existing methods. Implementation of

the proposed method is simpler, because the continuous update

procedure can be done with forward integration.

The rest of the paper is organized as follows: The pre-

liminaries and problem formulation are given in Section II.

Before moving onto the design and analysis of the adaptation

law, the regressor filtering scheme is explained in Section III.

In Section IV, the new adaptation law is designed and its

stability is analyzed under the assumption of FE for the case

of structured uncertainty. In Section V, numerical simulations

are performed to verify the theoretical finding such as the

exponential convergence guarantee under FE. Conclusions are

summarized in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, the notation and the definitions on the

degree of signal excitation are given as preliminaries, and a

state feedback Model Reference Adaptive Control (MRAC)

problem is formulated.

A. Preliminaries

For the notation throughout this study, vectors and matri-

ces will be written in boldface. Also, ‖·‖ and ‖·‖F denote

the induced 2-norm and the Frobenius norm of a matrix,

respectively. In addition, ~(·), λmin (·), and λmax (·) denote the

columnwise vectorization, the minimum eigenvalue, and the

maximum eigenvalue of a matrix, respectively.

For convenience, the mathematical basics that are used

repeatedly throughout this study are summarized in Lemma

1.

Lemma 1 (Basic Facts about Matrix-Vector Algebra).

• For any matrix A ∈ R
n×m,

∥

∥

∥

~A
∥

∥

∥
= ‖A‖F (1)

• For any co-dimensional column vectors u,v ∈ R
n×1,

tr
(

uvT
)

= vTu (2)

• For any co-dimensional real symmetric matrices A,B ∈
R

n×n,

0 ≤ λmin (A) + λmin (B) ≤ λmin (A+B)

≤ λmax (A+B) ≤ λmax (A) + λmax (B)
(3)

• For any matrix B ∈ R
n×m and any positive (semi-

)definite matrix A ∈ R
n×n,

λmin (A) ‖B‖F
2
≤ tr

(

BTAB
)

≤ λmax (A) ‖B‖F
2

(4)

The significance and implication of PE in an adaptive

control is investigated in [2], [27]–[32]. The main objective of

this study is to relax the dependence of parameter convergence

on PE condition. Therefore, the degree of signal excitation

should be defined. The FE and the PE of a signal are defined

as in [33].

Definition 1 (Finite Excitation of a Signal).

A bounded vector signal v (t) has Finite Excitation (FE) over
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a finite time interval [ts, ts + T ], if there exist T > 0, ts ≥ t0,

and γ > 0 such that
∫ ts+T

ts

v (τ)vT (τ) dτ ≥ γI > 0 (5)

Definition 2 (Persistent Excitation of a Signal).

A bounded vector signal v (t) has Persistent Excitation (PE),

if there exist T > 0 and γ > 0 such that
∫ t+T

t

v (τ)vT (τ) dτ ≥ γI for ∀t ≥ t0 (6)

B. Problem Formulation

1) System Dynamics: Consider a class of Multi-Input

Multi-Output (MIMO) uncertain system given by

ẋp (t) = Apxp (t) +Bp (u (t) +∆ (xp (t)))

z (t) = Hpxp (t)
(7)

where xp (t) ∈ R
np×1 is the fully measureable state vector,

u (t) ∈ R
m×1 is the control input vector, z (t) ∈ Rm×1 is

the performance output vector, and ∆ (xp (t)) ∈ R
m×1 is the

state-dependent matched uncertainty. Also, Ap ∈ R
np×np ,

Bp ∈ R
np×m, and Hp ∈ R

m×np in Eq. (7) are known

constant matrices, and assume that (Ap,Bp) is controllable.

Moreover, assume that the columns of Bp are linearly inde-

pendent.

The objective is to design a control u (t) such that the

performance output z (t) tracks a given bounded piecewise

continuous command zcmd (t) ∈ R
m×1. For this purpose, the

integral feedback will be added in the design. Let ezI (t) ,
∫ t

t0
(z (τ)− zcmd (τ)) dτ denote the integrated output tracking

error. Augmenting Eq. (7) with the integrated output tracking

error yields the extended system as follows

ẋ (t) = Ax (t) +B (u (t) +∆ (xp (t))) +Brzcmd (t)

z (t) = Hx (t)
(8)

where x ,
[

xp, ezI
]T

∈ R
n×1 (n = np +m) is the extended

state vector and

A ,

[

Ap 0np×m

Hp 0m×m

]

∈ R
n×n, B ,

[

Bp

0m×m

]

∈ R
n×m

Br ,

[

0np×m

−Im×m

]

∈ R
n×m, H ,

[

Hp 0m×m

]

∈ R
m×n

(9)

Note that (A,B) is required to be controllable, and it

is the case if and only if (Ap,Bp) is controllable and

det

([

Ap Bp

Hp 0m×m

])

6= 0.

2) Uncertainty Model: Uncertainty models can be distin-

guished by the presence or the lack of knowledge on the

parametric structure of the uncertainty ∆ (xp (t)). In this

study, the uncertainty considered is of a linearly parameterized

structure with a known nonlinear basis function vector. The

following is assumed for the structured uncertainty.

Assumption 1 (Structured Uncertainty).

The uncertainty ∆ (xp (t)) ∈ R
m×1 in the model of the system

dynamics can be linearly parameterized and structured, that

is, there exist a unique constant ideal parameter W∗ ∈ R
q×m

and a vector of continuously differentiable regressor functions

Φ (xp) =
[

φ1 (xp) · · · φq (xp)
]T

∈ R
q×1 such that

∆ (xp (t)) = W∗TΦ (xp (t)) (10)

3) Model Tracking Error Dynamics: The main strategy of

the MRAC design is to make the states of a system follow

those of a reference model system that characterizes the

desired closed-loop response. A reference model system can

be explained as the ideal closed-loop system obtainable with

the nominal control if there is no uncertainty in the system.

In this regard, it is first assumed that given a Hurwitz closed-

loop state matrix Ar, there exists a nominal baseline full-state

feedback control ubase = −Kx such that the gain K satisfies

Ar = A−BK. Then, the reference model can be represented

as,
ẋr (t) = Arxr (t) +Brzcmd (t)

zr (t) = Hxr (t)
(11)

Note that, given Ar is Hurwitz, for any positive definite

symmetric matrix Q ∈ R
n×n, there exists a positive definite

symmetric matrix P ∈ R
n×n satisfying the following Lya-

punov equation.

Ar
TP+PAr +Q = 0 (12)

Now, the control law for the uncertain system of Eq. (8)

can be designed as,

u = ubase − uad = −Kx− uad (13)

where ubase is the nominal baseline control, and uad is the

adaptive augmentation. Then, for the model tracking error

defined as e (t) , xr (t)− x (t), the tracking error dynamics

can be written as follows:

ė (t) = Are (t) +Bǫ (t) (14)

where ǫ (t) = uad (t)−∆ (xp (t)) ∈ R
m×1 is the adaptation

error. The purpose of introducing the adaptive augmentation

in the control law is to cancel out the effect of uncertainty

from the tracking error dynamics. The adaptive augmentation

can be designed as,

uad (t) = ∆̂ (xp (t)) = ŴT (t)Φ (xp (t)) (15)

where Ŵ is the estimate of the ideal parameter. To cancel out

the uncertainty as much as possible, it is desirable to design

the adaptive augmentation as the best possible approximation

of the uncertainty. In other words, the estimate Ŵ should

be as close as possible to the ideal value W∗. Let W̃ (t) ,
Ŵ (t)−W∗ denote the parameter estimation error, and note

that
˙̃
W =

˙̂
W. The model tracking error dynamics given in

Eq. (14) can be rewritten as follows:

ė (t) = Are (t) +BW̃T (t)Φ (xp (t)) (16)

It can be observed from Eq. (16) that the parameter estimation

error enters into the tracking error dynamics. It is obvious that

the ultimate objective for the design of an adaptation law is

to keep the parameter estimation error as small as possible, to

maintain the nominal control performance even under uncer-

tainty. This might imply that Ŵ must be optimally determined
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in the sense of the minimal mean-squared error or similar.

However, note that since the parameter estimation error has

its own dynamics which is determined by the adaptation law,

the transient behaviour of e and W̃ are coupled. Therefore,

they must be carefully addressed together.

III. FILTERED SYSTEM DYNAMICS

This section describes the regressor filtering scheme and the

resultant low-pass-filtered system dynamics before proceding

to the adaptation law design. The main purpose of the regressor

filtering is to avoid the usage of error derivative estimates

in parameter adaptation which could complicate the design

and implementation of the adaptive control system. It is more

advantageous than using a fixed-point/lag Kalman smoother

for error derivative estimation, in terms of the implementation

simplicity, the computational cost, and the rigor of further

analysis. The developments of this section is similar to the

regressor filtering scheme described in [16].

Since Bp is assumed to have linearly independent columns,

B has full column rank. Then, the following equation can be

obtained from Eq. (14)

uad (t)−B† [ė (t)−Are (t)] = ∆ (xp (t)) = W∗TΦ (xp (t))

(17)

where (·)
†

denotes the Moore-Penrose pseudoinverse so that

B† =
(

BTB
)−1

BT . Note that the pseudoinverse provides a

solution in least squares sense, when Eq. (14) is looked at as

a system of linear equations. Without loss of generality, the

initial tracking error e (t0) is set to be zero. Then, the Laplace

transform of Eq. (17) yields

uad (s)−B† (sIn×n −Ar) e (s) = ∆ (xp) = W∗TΦ (s)
(18)

Consider a stable linear first-order low-pass filter of which

the transfer function is given by F (s) = 1
τfs+1 where

τf > 0 is the time-constant of the filter. Note that sF (s) =
1
τf

(1− F (s)). Multiplying each side of Eq. (18) by F (s)
gives the filtered system dynamics of uncertainty in the s-

domain as follows

uadf (s)−B†

[

1

τf
e (s)−

(

1

τf
In×n +Ar

)

ef (s)

]

= ∆f (xp) = W∗TΦf (s)

(19)

where the subscript f is for a signal filtered by F (s), i.e.,

αf (s) = F (s)α (s). Therefore, the inverse Laplace trans-

form of Eq. (19) yields the filtered system dynamics in the

t-domain:

χ (t) , ξ (t)−
1

τf
B†e (t) = W∗Tη (t) (20)

ξ̇ (t) =
1

τf

[

uad (t) +B†

(

1

τf
In×n +Ar

)

e (t)− ξ (t)

]

(21)

η̇ (t) =
1

τf
(Φ (xp (t))− η (t)) (22)

where ξ (t0) = 0m×1 and η (t0) = 0q×1. The output χ (t)
can be computed at every time instance using the known

signals ξ (t) and e (t). The filtered regressor η (t) is also a

known signal. Therefore, from Eqs. (20)-(22), it is clear that

the unknown parameter can be estimated from the information

of the known signals as linear regression. Note that the signal

χ (t) will act as the measurement for parameter estimation

in the proposed adaptation law, since it contains information

about the ideal parameter.

For further development, following assumption on the de-

gree of excitation in the filtered regressor is required.

Assumption 2 (Finite Excitation of Filtered Regressor).

There exist ts ≥ t0 and te > ts such that filtered regressor

η (t) has FE over [ts, te].

The meaning of Assumption 2 will be discussed in the

following section.

IV. ADAPTATION LAW FOR PARAMETER CONVERGENCE

WITHOUT PERSISTENT EXCITATION

In this section, a new adaptation law is first proposed

for the case of structured uncertainty to improve parameter

convergence property without requiring persistent excitation.

Then, stability and performance analysis of the overall closed-

loop system with the proposed scheme is performed based on

Lyapunov stability theory.

A. Design of Adaptation Law

In this case where δ ≡ 0, the unknown parameter W∗ can

be estimated from the knowledge of the measurable signals

χ (t) and η (t). A continuous-time parameter estimation law

for linear regression generally takes the following form

˙̂
W (t) = −Γ (t)ϕ (t) = −Γ (t)Ω (t)W̃ (t) (23)

where Γ (t) is a square and positive gain matrix, ϕ (t) =
Ω (t)W̃ (t) is a residual matrix, and Ω (t) is a symmetric

information matrix. A natural observation from Eq. (23) is that

the convergence properties and the performance of a parameter

estimator significantly depend on two factors: how 1) the gain

matrix and 2) the residual matrix are designed.

A residual is the signal containing the information on

the parameter estimation error. There are various ways

to construct a residual. The simplest one is ϕ (t) ,

η (t)
[

ŴT (t)η (t)− χ (t)
]T

= η (t)ηT (t)W̃ (t). However,

the corresponding information matrix Ω (t) = η (t)ηT (t) is

always at most rank 1, and thus only positive semidefinite. The

rank deficiency of the information matrix in this case is the

fundamental cause of the PE requirement for the parameter

convergence. Therefore, to mitigate the PE requirement, the

corresponding information matrix of the residual should be

designed to possess full rank.

In this regard, a new way of residual design is proposed.

First, the information matrix Ω (t) and the auxiliary matrix

M (t) are designed as follows:

Ω̇ (t) = −k (t)Ω (t) + η (t)ηT (t) Ω (t0) = 0q×q

Ṁ (t) = −k (t)M (t) + η (t)χT (t) M (t0) = 0q×m

(24)
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where k (t) is a forgetting factor bounded by positive con-

stants, i.e., 0 < kL ≤ k (t) ≤ kU . Because k (t) is a scalar,

the solution of Eq. (24) can be written as

Ω (t) =

∫ t

t0

exp

(

−

∫ t

τ

k (ν) dν

)

η (τ)ηT (τ) dτ

M (t) =

∫ t

t0

exp

(

−

∫ t

τ

k (ν) dν

)

η (τ)χT (τ) dτ = Ω (t)W∗

(25)

Equation (25) shows that the rank of the information matrix

can be populated to the full rank over time, if the direction

of η (τ) varies sufficiently, not persistently. The information

matrix will have full rank after a certain moment, unless the

vector η (τ) lies on an affine hyperplane for entire time interval

[t0, t]. The sufficiency of finite direction change is the impli-

cation of Assumption 2, and having a full rank information

matrix relaxes the requirement for parameter convergence from

PE to FE.

The forgetting term in Eq. (24) is to prevent the degeneration

of information update in some direction by putting more

weight on the recent data, and also to make the information

matrix be upper bounded in its norm. In addition, it is

advantageous to increase the weight on the data that contain

richer information by increasing k (t). This can be done by

putting a larger weight for the data comes from faster variation

in η. Hence, this paper proposes a sigmoidal design:

k (t) = kL + (kU − kL) tanh (ϑ ‖η̇‖) (26)

where ϑ > 0 is a constant design parameter, and η̇ is of Eq.

(22).

Next, the proposed method utilizes the accumulated infor-

mation in a selective manner. The information matrix at a time

instance t is a weighted accumulation of all incoming data

from t0 up to t. However, if the excitation in η is only finite,

the information matrix will diminish after the end of excitation,

due to the forgetting design. This implies degradation of the

information quality. Therefore, in the case of FE, using whole

information of the entire time interval is not preferred for

good and consistent parameter estimation performance. To this

end, the adequate information matrix Ωa (t) and the adequate

auxiliary matrix Ma (t) are designed as follows:

ta , max

{

argmax
τ∈[t0,t]

F (Ω (τ))

}

Ωa (t) , Ω (ta) , Ma (t) , M (ta)

(27)

where F (·) is a measure for the quality of information.

It can be inferred from Eq. (27) that
dF(Ωa(t))

dt
≥ 0 for

∀t ≥ t0. The choice of the information measure F (·) will

determine the update direction of Ωa. At this point, suppose

that F (·) = λmin (·) for simplicity of analysis. Note that the

minimum eigenvalue λmin (Ω) is an indicator for the evenness

of excitation over all eigenvectors of Ω. It is obvious from Eqs.

(25) and (27) that

Ma (t) = Ωa (t)W
∗ (28)

Finally, this paper proposes a new adaptation law as

˙̂
W (t) = −Γw

[

Φ (xp (t)) e
T (t)PB+R

(

Ωa (t)Ŵ (t)−Ma (t)
)]

(29)

where Γw > 0 is a constant adaptation gain matrix, R > 0
is a scalar relative weight on the parameter-estimation-based

modification term, and P = PT > 0 is the solution of Eq.

(12) for a given Q = QT > 0. Note that a constant adaptation

gain is used in the proposed method to make the overall

control performance adjustable by gain tuning and to reduce

the computational load resulting from gain calculation.

B. Stability and Performance Analysis

From Eqs. (16), (28), and (29), the closed-loop system

dynamics of the tracking error e and the parameter estimation

error W̃ can be written as

ė = Are+BW̃TΦ (xp) , e (t0) = 0

˙̃
W = −Γw

[

Φ (xp) e
TPB+RΩaW̃

] (30)

The equilibrium point of Eq. (30) is
(

e,
~̃
W

)

= (0,0).

In Lemma 2, the adequate information matrix is shown to

be positive definite after FE. Using this result, the stability of

the equilibrium point is shown in Theorem 1, and the transient

performance guarantee is given in Corollary 1.

Lemma 2 (Positive Definiteness and Minimum Eigenvalue of

Adequate Information Matrix).

With the FE condition as stated in Assumption 2 and the choice

of F (·) by λmin (·),

• Ωa (t) ≥ 0 for ∀t ≥ t0.

• Ωa(t) > 0 for ∀t ≥ te.

• λmin (Ωa (t)) ≥ λmin (Ωa (te)) > 0 for ∀t ≥ te.

Proof: Consider the following quadratic form related to

the real symmetric Ω (t) given in Eq. (25)

vTΩ (t)v = vT

∫ t

t0

K (t, τ)η (τ)ηT (τ) dτv

=

∫ t

t0

[

√

K (t, τ)v · η (τ)
]2

dτ

(31)

where v ∈ R
q×1 and 0 < K (t, τ) = exp

(

−
∫ t

τ
k (ν) dν

)

≤

1. It is obvious that Ω (t) ≥ 0 for ∀t ≥ t0, because

vTΩ (t)v ≥ 0 for ∀v and ∀t ≥ t0. Therefore, Ωa (t) ≥ 0
for ∀t ≥ t0.

If η has FE as stated in Assumption 2, then
∫ te

ts
η (τ)ηT (τ) dτ > 0. According to Eq. (3), if

∫ te

ts
η (τ)ηT (τ) dτ > 0, then

∫ t

t0
η (τ)ηT (τ) dτ > 0

for ∀t ≥ te. This is equivalent to the nonexistence of v 6= 0

such that v · η (τ) ≡ 0 for ∀τ ∈ [t0, t] where t ≥ te.

Consequently, Eq. (31) implies that Ω(t) > 0 for ∀t ≥ te,

because
√

K (t, τ) is a strictly positive scalar. If F (·) in

Eq. (27) is chosen by λmin (·), Ωa (t) will be updated at

least once at some t ∈ [t0, te] to have nonzero minimum

eigenvalue. Also, Ωa (t) will be updated only if there is any

chance of increase in λmin (Ω (t)). Therefore, Ωa(t) > 0 for

∀t ≥ te, and λmin (Ωa (t)) ≥ λmin (Ωa (te)) > 0 for ∀t ≥ te.

Theorem 1 (Global Exponential Stability for the Case of

Structured Uncertainty).
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With the control law given by Eqs. (13) and (15), the adapta-

tion law given by Eq. (29), and the FE condition as stated in

Assumption 2,

• The trajectory e (t) and
~̃
W (t) are bounded for ∀t ≥ t0:

• The equilibrium point
(

e,
~̃
W

)

≡ (0,0) is globally

exponentially stable for ∀t ≥ te.

Proof: Consider the following positive definite and radi-

ally unbounded Lyapunov candidate function.

V
(

e,W̃
)

=
1

2
eTPe+

1

2
tr
(

W̃TΓw
−1W̃

)

(32)

Note that V (0,0) = 0, and V
(

e,W̃
)

> 0 for ∀
(

e,W̃
)

6=

(0,0). Let ξ ,

[

eT
~̃
W

T
]T

, then the Lyapunov candidate

function given by Eq. (32) is bounded from below and above

as follows:

1

2
min

{

λmin (P) , λmin

(

Γw
−1

)}

‖ξ‖
2
≤ V

(

e,W̃
)

≤
1

2
max

{

λmax (P) , λmax

(

Γw
−1

)}

‖ξ‖
2

(33)

Using Eqs. (2), (12), and (30), the time derivative of Eq. (32)

of the closed-loop system along the trajectory can be obtained

as follows:

V̇
(

e,W̃
)

= eTP
(

Are+BW̃TΦ (xp)
)

− tr
(

W̃T
[

Φ (xp) e
TPB+RΩaW̃

])

= −
1

2
eTQe−R tr

(

W̃TΩaW̃
)

(34)

From Eq. (34), V̇
(

e,W̃
)

≤ 0 for ∀t ≥ t0, because Ωa (t) ≥

0 for ∀t ≥ t0. Therefore, e (t) and
~̃
W (t) are bounded for all

t ≥ t0.

Next, suppose that the FE condition of Assumption 2 is met

and F (·) = λmin (·). Then, the following inequality can be

obtained from Eq. (34) using Eqs. (1), (4), and Lemma 2.

V̇
(

e,W̃
)

≤ −
1

2
λmin (Q) ‖e‖

2
−Rλmin (Ωa (te))

∥

∥

∥

~̃
W

∥

∥

∥

2

≤ −
1

2
min {λmin (Q) , 2Rλmin (Ωa (te))} ‖ξ‖

2
(35)

From Eqs. (33) and (35), we have

V̇
(

e,W̃
)

≤ −αV
(

e,W̃
)

(36)

where α ,
min{λmin(Q),2Rλmin(Ωa(te))}

max{λmax(P),λmax(Γw
−1)}

> 0. By the compari-

son lemma, it can be concluded that V → 0 uniformly expo-

nentially fast, and therefore the equilibrium point
(

e,
~̃
W

)

≡

(0,0) is globally exponentially stable.

Corollary 1 (Performance Guarantee for the Case of Struc-

tured Uncertainty).

The bounds for the tracking error and the parameter estima-

tion error can be derived as follows:

‖e (t)‖ ≤























√

λmax

(

Γw
−1

)

λmin (P)

∥

∥

∥
W̃ (t0)

∥

∥

∥

F
for t0 ≤ t ≤ te

√

λmax

(

Γw
−1

)

λmin (P)
exp (−α (t− te))

∥

∥

∥
W̃ (t0)

∥

∥

∥

F
for t ≥ te

∥

∥

∥
W̃ (t)

∥

∥

∥

F
≤























√

λmax

(

Γw
−1

)

λmin

(

Γw
−1

)

∥

∥

∥
W̃ (t0)

∥

∥

∥

F
for t0 ≤ t ≤ te

√

λmax

(

Γw
−1

)

λmin

(

Γw
−1

) exp (−α (t− te))
∥

∥

∥
W̃ (t0)

∥

∥

∥

F
for t ≥ te

(37)

Proof: For simplicity of writing, let V (t) denotes

V
(

e (t) ,W̃ (t)
)

. First of all, the following is true about the

Lyapunov function defined in Eq. (32) for all t ≥ t0.

1

2
λmin (P) ‖e (t)‖

2
≤

1

2
eTPe ≤ V (t)

1

2
λmin

(

Γw
−1

)

∥

∥

∥
W̃ (t)

∥

∥

∥

F

2

≤
1

2
tr
(

W̃TΓw
−1W̃

)

≤ V (t)
(38)

Note that λmin (P) > 0 and λmin

(

Γw
−1

)

> 0, since P and

Γw are positive definite. Rewriting Eq. (38) yields

‖e (t)‖ ≤

√

2V (t)

λmin (P)
,

∥

∥

∥
W̃ (t)

∥

∥

∥

F
≤

√

2V (t)

λmin

(

Γw
−1

)

(39)

Consider first the time interval in which Ωa is rank deficient,

namely t ∈ [t0, te]. Because V̇ (t) ≤ 0 as shown in Eq. (34)

regardless of whether rank (Ωa) is full or not, we have

V (te) ≤ V (t) ≤ V (t0) =
1

2
tr
(

W̃T (t0)Γw
−1W̃ (t0)

)

≤
1

2
λmax

(

Γw
−1

)

∥

∥

∥
W̃ (t0)

∥

∥

∥

F

2 (40)

Therefore, Eq. (37) for t0 ≤ t ≤ te can be obtained from Eqs.

(39) and (40).

Next, consider the right-infinite time interval in which Ωa

is full rank, namely t ≥ te. In this case, V̇ (t) ≤ −αV (t) as

shown in Eq. (36). By the comparison lemma and Eq. (40),

we have

V (t) ≤ V (te) exp (−α (t− te)) ≤ V (t0) exp (−α (t− te))

=
1

2
tr
(

W̃T (t0)Γw
−1W̃ (t0)

)

exp (−α (t− te))

≤
1

2
λmax

(

Γw
−1

)

∥

∥

∥
W̃ (t0)

∥

∥

∥

F

2

exp (−α (t− te))

(41)

Therefore, Eq. (37) for t ≥ te can be obtained from Eqs. (39)

and (41).

Remark 1 (Interpretation of Corollary 1).

Generally, it is hard to predict the exact time when the

information matrix will be full rank (and thus positive definite)

in practice, and therefore the time instance te is difficult to

be known a priori. Nevertheless, Corollary 1 guarantees the

boundedness of the tracking error and the parameter estima-

tion error during the transition, and exponential convergence

to zero after once the information matrix becomes full rank.

Remark 2 (Relation Between Transient Performance and

Adaptation Gain).

It can be concluded from Eq. (37) that a higher adaptation

gain results in a smaller upper bound of the tracking error.



7

However, this is an ideal statement without considering any

extra disturbance, noise, and time delay in the system. In a

real system, there is a tradeoff between the tracking error

performance and the robustness.

Remark 3 (Discussions on Adequate Information Matrix

Update).

The procedure of Eq. (27) can be implemented as a simple

comparison of the current information measure and the pre-

vious one. If the current one is better than the previous one

with respect to a chosen information measure, then update Ωa

by the current one, otherwise keep the previous one. Thus, the

update direction is determined by types of information quality

measure F (·).
In the previous section, the minimum eigenvalue was chosen

as the measure of information quality for the simplicity of

stability analysis. Other choices such as the determinant,

trace, or reciprocal of condition number are available as the

options for F (·). If the determinant or the trace is used, then

Ωa will be updated if the ‘volume’ of Ω increases in any

eigen-direction. If the reciprocal of condition number is used,

then Ωa will be updated if the ‘uniformity’ of Ω over all

eigenvectors is improved. It is hard to quantitatively analyze

the effect of different choices of F (·) on the convergence

characteristics.

C. Comparison with Existing Adaptation Schemes

1) Comparison with the Simple Direct Adaptation Law:

The simple direct adaptation law was proposed as follows:

˙̂
W (t) = −ΓwΦ (xp (t)) e

T (t)PB (42)

The control law of Eqs. (13) and (15) together with the adapta-

tion law of Eq. (42) guarantees the asymptotic stability of the

tracking error. However, there is no guarantee on parameter

convergence. It is because the simple direct adaptation law

only performs canceling of the coupling between the tracking

error dynamics and the parameter estimation error dynamics.

On the other hand, the proposed adaptation law of Eq. (29) is a

composite adaptation law consisting of the direct adaptive term

and the parameter-estimation-based modification term. After

FE, the proposed adaptation law can guarantee exponential

stability of both tracking error and parameter estimation error.

The parameter estimation error dynamics under the simple

direct adaptation law is a pure integrator. Given a high

adaptation gain, if the uncertainty is significant or there is

an abrupt change in the plant, then the parameter estimation

error may violently oscillate due to the gradient nature of the

simple direct adaptation law. High-frequency oscillations in

the parameter estimation error lead to high-frequency oscilla-

tions in the control input. Subsequently, violent oscillations in

the control input could degrade stability of the overall system

and induce unwanted high-frequency excitation of unmodelled

dynamics. On the contrary, the parameter estimation error

dynamics under the proposed adaptation law has a low-pass

filter form as can be seen in Eq. (30). Therefore, a higher

adaptation gain could be used in the proposed adaptation law

with less sacrifice of robustness, compared with the simple

direct adaptation law.

2) Comparison with the Weighted Least Squares

Estimation-based Composite Adaptation Law: In [15],

[34], various online parameter estimators for composite

adaptive control were proposed, and their characteristics were

compared. The Weighted Least Squares (WLS) estimator was

derived by minimizing the following L2 regression error

J =

∫ t

t0

exp

(

−

∫ t

τ

k (ν) dν

)

∥

∥

∥
χ (τ)− ŴT (t)η (τ)

∥

∥

∥

2

dτ

(43)

with respect to Ŵ (t). The WLS-estimation-based composite

adaptation law can be written as follows

˙̂
W = −Γw (t)

[

Φ (xp (t)) e
T (t)PB+Rη (t)

(

ηT (t)Ŵ (t)− χT (t)
)]

Γ̇w (t) = k (t)Γw (t)− Γw (t)η (t)ηT (t)Γw (t)

(44)

The proposed method of Eq. (29) and the WLS method of

Eq. (44) have similar structure. In the weighted least squares

method, the data from the past to the present is reflected into

the time-varying adaptation gain and the information matrix is

at most rank 1. For this reason, the PE condition is required

for parameter convergence in the WLS-estimation-based com-

posite adaptation law. In comparison, in the proposed method,

the data from the past to the present is reflected into the rank-

populating information matrix and the constant gain is used.

These differences make the proposed method more practical

from the perspective that considers control as the primary

objective, because the PE is not required and the overall

performance can be adjusted by the designer.

3) Comparison with Concurrent Learning Adaptation Law:

In [25], the concurrent learning adaptation law was proposed

as follows:

˙̂
W = −Γw

[

Φ (xp (t)) e
T (t)PB+

h
∑

i=1

Φ (xp (ti))ρi
T (t)

]

(45)

where ρi (t) = ŴT (t)Φ (xp (ti))−
{

ŴT (ti)Φ (xp (ti))−

B† [ė (ti)−Are (ti)]
}

, ti is the time instance when the i-

th data point is stored, and h ≥ q is the size of history

stack. In both concurrent learning and proposed scheme, the

information matrix can have full rank after sufficient finite

excitation, and therefore, the PE requirement for parameter

convergence can be relaxed. However, the concurrent learning

method utilizes a different way of constructing the residual

signal. Unlike the proposed adaptation scheme which accumu-

lates all incoming data, the concurrent learning method picks

and stores only a prespecified number of data. A new data can

be incorporated into the history stack of a finite size only if

the quality of information matrix can be improved with that

data.

The concurrent learning adaptation requires knowledge

about ė. All the theoretical analysis such as stability is

performed under the assumption of perfect knowledge of ė

in the concurrent learning adaptation. Since ė cannot be per-

fectly known or measured in practice, the concurrent learning

adaptation obtains its estimate, ˆ̇e (ti), using the Kalman fixed-

point smoother. This is disadvantageous in terms of rigor

of analysis, simplicity of implementation, and computational

load. In contrast, the proposed adaptation scheme adopted
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regressor filtering to remove the need for derivative estimation,

and therefore it requires only forward integration. In this

way, the stability and performance of the proposed adaptive

control system can be theoretically investigated without any

assumption on the perfect knowledge of ė, unlike in the

concurrent learning. Also, the adequate information matrix

update is based on a simple comparison between the current

step and the previous step, whereas the data quality test

performed at every step in the concurrent learning adaptation

can be exhaustive.

V. NUMERICAL SIMULATION

This section presents numerical simulation results to demon-

strate the performance of the proposed method compared to

the standard direct adaptation law.

A virtual-control-augmented model for the wing-rock phe-

nomenon in the roll motion of slender delta wings studied

in [35] is used for numerical simulation in this study. In this

study, we multiplied 1000 to the value of ideal parameters

given in [35] intentionally to increase the amount of uncer-

tainty effect. Note that the time t, state x, and control u of

the model are nondimensional. The simulation model is given

by
[

ẋp1

ẋp2

]

=

[

0 1
0 0

] [

xp1

xp2

]

+

[

0
1

]

(u+∆ (xp))

z = xp1

(46)

where xp1
is the roll angle, xp2

is the roll rate, u is a virtual

control input, and ∆ (xp) = W∗TΦ (xp) is a structured un-

certainty. By multiplying 1000 to the specific model obtained

at the angle of attack of 25deg in [35], the ideal parameter

and basis of the uncertainty are given by

W∗ =













−18.59521
15.162375
−62.45153
9.54708
21.45291













, Φ (xp) =













xp1

xp2

|xp1
|xp2

|xp2
|xp2

xp1

3













(47)

The nominal baseline controller K is designed by the

infinite-horizon linear quadratic regulator which minimizes the

following performance index.

J =

∫ ∞

0

(

xTQbasex+ uTRbaseu
)

dτ (48)

The forgetting factor proposed in Eq. (26) is used. Simulation

parameters and initial conditions are summarized in Table I.

Note that the proposed adaptation law of Eq. (29) with R = 0
is identical to the standard direct adaptation law of Eq. (42),

and a high adaptation gain is used in both cases namely R = 0
and R = 1.

The output and control response of the closed-loop system,

the tracking error and parameter estimation error history, and

the Lyapunov function and information measure history are

shown in Fig. 1. The performance of the standard direct

adaptation law and the proposed method are summarized

in Table II in terms of average tracking error and average

parameter estimation error.

Figure 1(a) shows that the undesirable high-frequency os-

cillation in state and control response of the standard direct

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

x (t0), xr (t0)
[

0.3 0 0
]T

Q I3×3

Ŵ (t0) 05×1 kL 0.1
Qbase diag (2800, 1, 15000) kU 10
Rbase 50 ϑ 0.1

zcmd (t)











1 10 ≤ t ≤ 17

−1 25 ≤ t ≤ 32

0 else

R 0, 1
Γw 104

τf 10−4

F (·) λmin (·)

0 5 10 15 20 25 30 35 40

-1

0

1

0 5 10 15 20 25 30 35 40

-1

0

1

0 5 10 15 20 25 30 35 40

-20

0

20

25.2 25.6 26 26.4

-30

-20

-10

0

25.2 25.6 26 26.4

-1

-0.8

-0.6

-0.4

-0.2

(a) Output and Control Response

0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40

0

50

100

25.2 25.6 26 26.4

0.1

0.2

0.3

(b) Tracking Error and Parameter Estimation Error History

0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5
10

-3

(c) Lyapunov Function and Information Measure History

Fig. 1. Numerical Simulation Result
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TABLE II
PERFORMANCE COMPARISON

Parameter 1

tf−t0

∫ tf
t0

‖e‖ dτ 1

tf−t0

∫ tf
t0

∥

∥

∥
W̃

∥

∥

∥
dτ

R
0 0.0185 68.7379
1 0.0107 6.2735

adaptation law is avoided in the proposed adaptation law.

Unlike the existing method, parameter estimation error W̃

converges to zero without persistently exciting external com-

mand zcmd (t) with the proposed method as shown in Fig.

1(b). The plot of ‖e‖ for the proposed method shows that the

peak values diminish. That is, the tracking error performance

is gradually improved as the parameter estimation error con-

verges to zero after several changes in the external command.

This is consistent with Corollary 1. Figure 1(c) confirms that

the Lyapunov function V monotonically decreases toward zero

with the proposed adaptation law. In the initial transient phase

and in the intermediate transient phases after each external step

command, the information measure increases. This implies

that alteration of external command induces more excitation,

and it increases the chance of updating the adequate informa-

tion matrix Ωa. Also, the rate of convergence of V is improved

as Ωa is updated. Table II also shows that both tracking error

and parameter estimation error are reduced in the proposed

adaptation law. In summary, the proposed adaptation law can

achieve improved parameter estimation accuracy and tracking

error performance under a finite amount of excitation without

inducing oscillatory behaviour in the control response.

VI. CONCLUSIONS

A new parameter-estimation-based adaptation law for a

model reference adaptive control system is proposed to im-

prove convergence of uncertain parameters without requiring

persistent excitation. For this purpose, a novel method of

constructing a parameter estimation residual is designed con-

sidering the linear-in-parameter structure of uncertainty. The

residual can be represented as the product of a real symmet-

ric matrix called adequate information matrix and parameter

estimation error. The adequate information matrix is formed

using weighted accumulation of data to have full rank after

finite amount of signal excitation. The proposed composite

adaptation law is established by augmenting the standard

gradient-based direct adaptation term with the constructed

residual.

The exponential stability after finite excitation for the struc-

tured uncertainty case is guaranteed by closed-loop stability

analysis. Numerical simulation result confirmed the analytical

findings and showed convergence of both tracking error and

parameter estimation error. In the proposed framework, param-

eter estimation error converges without persistent excitation.

The tracking error and control response can be improved with

better parameter estimate while avoiding persistent oscillatory

behaviour of the system. Therefore, the proposed composite

model reference adaptive control framework can achieve a

balance between parameter estimation accuracy, tracking error

performance, and control response characteristics.
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