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Abstract: We consider a semi-infinite optimization problem in
Banach spaces, where both the objective functional and the con-
straint operator are compositions of convex nonsmooth mappings
and differentiable mappings. We derive necessary optimality con-
ditions for these problems. Finally, we apply these results to non-
convex stochastic optimization problems with stochastic dominance
constraints, generalizing earlier results.
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1. Introduction

Let X and Z be Banach spaces, Y be a separable Banach space, and let
T be a compact Hausdorff space. We consider the mappings: F : X → Z ,
ϕ : Z → R, H : X → Y and G : Y × T → R and a set X0 in X . We focus
on the optimization problem

min ϕ(F (x)) (1)

s.t. G(H(x), t) ≤ 0 for all t ∈ T, (2)

x ∈ X0. (3)

We assume that X0 is convex, ϕ is convex and continuous, F is continuously
Fréchet differentiable, G is continuous, G(·, t) is convex for all t ∈ T , and H is
continuously Fréchet differentiable.

∗This research was supported by the NSF awards DMS-0603728, DMS-0604060, DMI-

0354500 and DMI-0354678.
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Our objective is to develop necessary and sufficient conditions of optimality
for this problem.

Motivation for our research comes from stochastic optimization models with
stochastic dominance constraints, introduced in Dentcheva and Ruszczyński
(2003, 2004). In these problems, Y = L1(Ω,F , P ) for some probability space
(Ω,F , P ). The mapping H assigns to a decision vector x an integrable random
variable Y = H(x). The operator G is defined as follows:

G(Y, t) =

∫

Ω

max(0, t− Y (ω))P (dω) − v(t), t ∈ [a, b] ⊂ R, (4)

where v(·) is a given continuous function. In particular, we may use

v(t) =

∫

Ω

max(0, t− Y0(ω))P (dω)

for some benchmark random variable Y0 ∈ L1(Ω,F , P ). In this case, constraint
(2) takes on the form of the second order stochastic dominance relation:

∫

Ω

max(0, t− [H(x)](ω))P (dω) ≤

∫

Ω

max(0, t− Y0(ω))P (dω), t ∈ [a, b].

This relation plays a crucial role in modeling risk averse preferences. It can be
shown that it is equivalent to the following inequality:

E[u(H(x))] ≥ E[u(Y0)],

for all concave nondecreasing utility functions u : R → R, satisfying a lin-
ear growth condition. The symbol E[·] denotes the expected value, E[Y ] =
∫

Ω Y (ω)P (dω). For further details, see Dentcheva and Ruszczyński (2003) and
the references therein.

Problem (1)–(3) is related to two well-established structures in optimization
theory: semi-infinite optimization and composite optimization. In the analysis
of semi-infinite problems, it is usually assumed that the semi-infinite constraints
(2) are defined by a linear or continuously differentiable function G(·, t) and the
space X is finite dimensional (see, inter alia, Bonnans and Cominetti, 1996;
Bonnans and Shapiro, 2000, Section 5.4; Canovas et al., 2005; Goberna and
Lopez, 1998; and Klatte and Henrion, 1998). In our case, these assumptions are
not satisfied. The research on composite optimization focuses on the composite
structure of the objective functional, as in (1) (see, inter alia, Bonnans and
Shapiro, 2000, Section 3.4.1; Penot, 1994; Studniarski and Jeyakumar, 1995;
and Yang, 1998).

In our setting, the main difficulty is associated with the infinite system of
inequalities (2) of composite structure, which has not been investigated before.
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2. Optimality conditions. The convex case

In this section we assume that the mappings F and H are affine:

F (x) = Ax+ a, H(x) = Bx+ b,

with bounded linear operators A : X → Z and B : X → Y . This makes
problem (1)–(3) convex:

min ϕ(Ax + a) (5)

s.t. G(Bx + b, t) ≤ 0 for all t ∈ T, (6)

x ∈ X0. (7)

Denote by M (T ) the space of regular countably additive measures on T hav-
ing finite variation, and by M+(T ) its subset of nonnegative measures. Further-
more, we denote the adjoint operators of A and B by A∗ and B∗, respectively.
The distance of a point x ∈ X to a set X ⊂ X will be denoted by dist(x,X),
i.e.,

dist(x,X) = inf
y∈X

‖x− y‖.

Recall that the Bouligand tangent cone to a set X ⊂ X at a point x0 ∈ X is
defined as follows:

TX(x0) =
{

d ∈ X : ∃ τn ↓ 0,
1

τn
dist(x0 + τnd,X) → 0 as n→ ∞

}

. (8)

The normal cone to X at x0, denoted by NX(x0), is defined as the polar of the
tangent cone:

NX(x0) =
{

s ∈ X
∗ : 〈s, d〉 ≤ 0, ∀d ∈ TX(x0)

}

.

In this formula, 〈·, ·〉 refers to the dual pairing. For a convex set X and x0 ∈ X ,
we have

NX(x0) =
{

s ∈ X
∗ : 〈s, y − x0〉 ≤ 0, ∀y ∈ X

}

.

By definition NX(x0) = ∅ if x0 6∈ X .

The following property plays the role of a constraint qualification condition.

Definition 1 Problem (5)–(7) satisfies the constraint qualification condition
if there exists a point x̃ ∈ X0 such that

max
t∈T

G(Bx̃ + b, t) < 0.
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We introduce the Lagrangian L : X × M+(T ) → R
L(x, µ) = ϕ(Ax+ a) +

∫

T

G(Bx + b, t)µ(dt).

It is well defined, because G(Bx + b, ·) is a continuous function.
We use the symbol ∂ϕ(y) to denote the subdifferential of a convex function

ϕ(·) at y. Similarly, ∂G(y, t) denotes the subdifferential of G(·, t) at y.

Theorem 1 Assume that the constraint qualification condition is satisfied. If
x̂ is an optimal solution of (5)–(7) then there exist a measure µ̂ ∈ M+(T ) such
that

0 ∈ A∗∂ϕ(Ax̂+ a) +B∗

∫

T

∂G(Bx̂+ b, t) µ̂(dt) +NX0
(x̂), (9)

∫

T

G(Bx̂ + b, t) µ̂(dt) = 0. (10)

Conversely, if for some measure µ̂ ∈ M+(T ) a point x̂ satisfies (6), (9) and
(10), then x̂ is an optimal solution of (5)–(7).

Proof. Define the operator Γ from X to the space of continuous functions C (T )
as follows:

[Γ(x)](t) = G(Bx+ b, t), t ∈ T.

It is convex with respect to the cone K of nonpositive functions in C (T ):

Γ(λx1 + (1 − λ)x2) − [λΓ(x1) + (1 − λ)Γ(x2)] ∈ K,

for all x1, x2 in X0 and all λ ∈ [0, 1].
The constraint (6) can be abstractly written as Γ(x) ∈ K. Let us observe that

the constraint qualification condition is equivalent to the following generalized
Slater condition: There exists a point x̃ ∈ X0 such that: Γ(x̃) ∈ intK. By Bon-
nans and Shapiro (2000, Proposition 2.106), this is equivalent to the regularity
condition: 0 ∈ int[Γ(X0)−K]. Therefore we can use the necessary and sufficient
conditions of optimality in Banach spaces (see, e.g., Bonnans and Shapiro 2000,
Theorem 3.4). We conclude that there exists a nonnegative measure µ̂ ∈ M+(T )
such that the following condition holds true:

L(x̂, µ̂) = min
x∈X0

L(x, µ̂), (11)

along with the complementarity condition (10). Since L(·, µ̂) is a continuous
convex functional, condition (11) is equivalent to the inclusion:

0 ∈ ∂L(x̂, µ̂) +NX0
(x̂). (12)
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We note that the subdifferential of L(·, µ̂) can be calculated as

∂L(x̂, µ̂) = ∂[ϕ(Ax̂ + a)] + ∂

∫

T

G(Bx̂ + b, t) µ̂(dt).

Furthermore, we have ∂[ϕ(Ax̂ + a)] = A∗∂ϕ(Ax̂ + a). For every t ∈ T , the
function G(Bx+ b, t) is continuous and convex with respect to x, and its subd-
ifferential at x̂ is given by ∂[G(Bx + b, t)] = B∗∂G(Bx̂ + b, t). Using Castaing
and Valadier (1977, Theorem VII-16) we observe that for a separable Y ,

∂

∫

T

G(Bx̂ + b, t) µ̂(dt) = B∗

∫

T

∂G(Bx̂+ b, t) µ̂(dt).

Applying these calculations to condition (12), we obtain that (11) is equivalent
to (9).

Let us define the dual functional D : M+(T ) → R associated with problem
(5)–(7) as follows:

D(µ) = inf
x∈X0

L(x, µ). (13)

We also define the dual problem:

max
{

D(µ) : µ ∈ M+(T )
}

. (14)

As a direct consequence of Theorem 1, we obtain the duality theorem.

Theorem 2 Assume that the constraint qualification condition is satisfied. If
problem (5)–(7) has an optimal solution, then the dual problem (14) has an
optimal solution as well, and the optimal values of both problems coincide. Fur-
thermore, for every solution µ̂ of the dual problem, every point x̂ satisfying (6),
(9), and (10), is an optimal solution of the primal problem (5)–(7).

3. The nonconvex case

Now we return to problem (1)–(3). We denote the Fréchet derivatives of F and
H by F ′ and H ′, respectively. We also make an additional assumption that the
mapping G(·, t) is Lipschitz continuous with some constant κ, for all t ∈ T .

Define the set of feasible solutions:

X =
{

x ∈ X0 : G(H(x), t) ≤ 0, ∀ t ∈ T
}

.

Let

I0(x) =
{

t ∈ T : G(H(x), t) = 0
}

.
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Definition 2 The set X satisfies the differential constraint qualification con-
dition at the point x0 ∈ X if there exists a point xS ∈ X0 and a constant δ > 0
such that for all t ∈ I0(x0)

sup
λ∈∂G(H(x0),t)

〈

λ,H ′(x0)(xS − x0)
〉

≤ −δ. (15)

The above condition may be interpreted as a generalization to the nonsmooth
composite case of Robinson’s constraint qualification condition introduced in
Robinson (1976).

Now we can characterize the tangent cone TX(x0).

Theorem 3 Assume that the differential constraint qualification condition is
satisfied at the point x0 ∈ X. Then TX(x0) is the set of vectors d ∈ TX0

(x0)
satisfying the inequalities

〈λ,H ′(x0)d〉 ≤ 0, (16)

for all λ ∈ ∂G(H(x0), t) and all t ∈ I0(x0).

Proof. Suppose that d ∈ TX(x0). This means that there exists a sequence of
points xk ∈ X and scalars τk ↓ 0 such that:

lim
k→∞

1

τk
(xk − x0) = d. (17)

Consider λ(t) ∈ ∂G(H(x0), t), for t ∈ T . Using the feasibility of xk and convex-
ity of G(·, t) we obtain

0 ≥ G(H(xk), t) ≥ G(H(x0), t) + 〈λ(t), H(xk) −H(x0))〉

= G(H(x0), t) + 〈λ(t), H ′(x0)(xk − x0) + o(xk, x0)〉.
(18)

Here ‖o(xk, x0)‖/‖xk − x0‖ → 0, as k → ∞.
Consider t ∈ I0(x0). From (18) we obtain the inequality

0 ≥ 〈λ(t), H ′(x0)(xk − x0)〉 + 〈λ(t), o(xk , x0)〉.

Dividing by τk and passing to the limit we get

0 ≥ lim
k→∞

〈λ(t), H ′(x0)
xk − x0

τk
〉 + lim

k→∞
〈λ(t),

o(xk, x0)

τk
〉.

Using (17) we obtain (16).
To prove the converse implication, define d0 = xS −x0. Consider a direction

d ∈ TX0
(x0) satisfying (16). We shall prove that d ∈ TX(x0). As d is tangent

to the convex set X0, for every t > 0 we can find ̺(t) ∈ X such that

x0 + td+ ̺(t) ∈ X0 and lim
t↓0

1

t
̺(t) = 0.
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Choose α ∈ (0, 1). By taking the convex combination of the above point and of
x0 + td0 with coefficients 1 − α and α, respectively, we obtain the point

x(t) = x0 + (1 − α)td+ (1 − α)̺(t) + αtd0.

By convexity of X0 the point x(t) belongs to X0. Let τk ↓ 0 and let tk =
τk/(1 − α), ε = α/(1 − α). The last formula defines a sequence of points

xk = x0 + τkd+ ̺k + ετkd0,

with ̺k = (1 − α)̺(tk). Clearly, ‖̺k‖/τk → 0, as k → ∞. Our aim is to show
that for all sufficiently large k the points xk belong to the set X , provided that
ε is sufficiently small.

By the differentiability of H and by the fact that ‖̺k‖ is infinitely smaller
than τk we have

‖H(xk) −H(x0) − τkH
′(x0)(d+ εd0)‖ ≤ o(τk).

Then, using Lipschitz continuity of G(·, t) with a constant κ, we get

G(H(xk), t) −G(H(x0) + τkH
′(x0)(d+ εd0)), t)

≤ κ
∥

∥H(xk) −H(x0) − τkH
′(x0)(d + εd0))

∥

∥ ≤ κo(τk).

Taking the maximum over t ∈ T we conclude that

max
t∈T

G(H(xk), t) ≤ max
t∈T

G(H(x0) + τkH
′(x0)(d+ εd0), t) + κo(τk). (19)

Define the function ψ : Y → R as follows:

ψ(y) = max
t∈T

G(H(x0) + y, t).

It is convex and continuous, and, therefore, directionally differentiable. Inequal-
ity (19) implies that

max
t∈T

G(H(xk), t) ≤ ψ(τkH
′(x0)(d+ εd0)) + κo(τk)

≤ ψ(0) + τkψ
′(0;H ′(x0)(d+ εd0)) + o1(τk), (20)

with ψ′(0; y) denoting the directional derivative of ψ at 0 in the direction y.
Obviously, o1(τk)/τk → 0, as τk ↓ 0.

Observe that

ψ(0) = max
t∈T

G(H(x0), t) ≤ 0, (21)

because the point x0 is feasible. If ψ(0) < 0, then the feasibility of xk for large
k is obvious. It remains to consider the case of ψ(0) = 0. In this case, the
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maximum in (21) is attained on the set I0(x0). The directional derivative has
the form (see Levin, 1985, Theorem 1.6):

ψ′(0; y) = sup
t∈I0(x0)

sup
λ∈∂G(H(x0),t)

〈λ, y〉.

Our estimate (20) can thus be continued as follows:

max
t∈T

G(H(xk), t) ≤ τk sup
t∈I0(x0)

sup
λ∈∂G(H(x0),t)

〈λ,H ′(x0)(d+ εd0)〉 + o1(τk).

Using (16) and (15) in the last inequality, we obtain

max
t∈T

G(H(xk), t) ≤ −τkεδ + o1(τk).

For k large enough, ε ≥ o1(τk)/(τkδ). Therefore, we have

G(H(xk), t) ≤ 0 for all t ∈ T.

We conclude that for all ε > 0 there exists k̄(ε) such that for all k ≥ k̄(ε) the
points xk are elements of X . We fix a sequence εi → 0, define ki = k̄(εi) and
consider points

xki
= z0 + τki

d+ ̺ki
+ εiτki

d0,

They are feasible by construction. Moreover,

xki
− x0

τki

= d+ εid0 +
1

τki

̺ki
→ d as i→ ∞.

Consequently, d is indeed a tangent direction to X .

Observe that our characterization of the tangent cone involves only the deriv-
ative of the mapping H . This allows us to work with a convex approximation
Xc(x0) of the feasible set X , obtained by replacing H(x) with its linearization
H(x0) +H ′(x0)(x− x0). It is defined as follows:

Xc(x0) =
{

x ∈ X0 : G(H(x0) +H ′(x0)(x − x0)), t) ≤ 0, ∀ t ∈ T
}

.

We observe that the tangent cones toX andXc(x0) at the point x0 are identical.

Corollary 1 Assume the conditions of Theorem 3. Then

TX(x0) = TXc(x0)(x0).

We can also characterize the cone of descent directions of the composition
f = ϕ ◦ F . Under our assumptions, f is directionally differentiable in every
direction d. Its directional derivative f ′(x0; d) has the form:

f ′(x0; d) = ϕ′(F (x0);F
′(x0)d)

= max
s∈∂ϕ(F (x0))

〈s, F ′(x0)d〉 = max
s∈∂ϕ(F (x0))

〈[F ′(x0)]
∗s, d〉.
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Using the directional derivative we can characterize the cone of directions of
descent as follows:

K(x0) =
{

d ∈ X : f ′(x0; d) < 0
}

=
{

d ∈ X : 〈[F ′(x0)]
∗s, d〉 < 0 for all s ∈ ∂ϕ(F (x0))

}

.

Denoting by Kc(x0) the cone of directions of descent of the convex function

f c(x) = ϕ
(

F (x0) + F ′(x0)(x− x0)
)

we note that K(x0) = Kc(x0).
Let x̂ be a local minimum of the nonconvex problem (1)–(3). Our idea is to

use the optimality conditions for the convex problem

min ϕ
(

F (x̂) + F ′(x̂)(x − x̂)
)

(22)

s.t. G(H(x̂) +H ′(x̂)(x − x̂)), t) ≤ 0 for all t ∈ T, (23)

x ∈ X0. (24)

We can now use the results of Section 2 to characterize the local minimum x̂.
We introduce the functional Lc : X ×M+(T ) → R associated with problem

(22)-(24):

Lc(x, µ; x̂) = ϕ
(

F (x̂) + F ′(x̂)(x − x̂)
)

+

∫

T

G(H(x̂) +H ′(x̂)(x− x̂)), t)µ(dt).

Theorem 4 Assume that the point x̂ is a local minimum of (1)–(3) and the
differential constraint qualification condition is satisfied at x̂. Then there exist
a measure µ̂ ∈ M+(T ) such that

0 ∈ [F ′(x̂)]∗∂ϕ(F (x̂)) + [H ′(x̂)]∗
∫

T

∂G(H(x̂), t) µ̂(dt) +NX0
(x̂), (25)

∫

T

G(H(x̂), t) µ̂(dt) = 0. (26)

Proof. If x̂ is a local minimum of problem (1)–(3), then f ′(x̂; d) ≥ 0 for all
d ∈ TX(x̂). Thus, x̂ is also a global minimum of problem (22)–(24).

We shall verify the constraint qualification condition for problem (22)–(24),
according to Definition 1. It follows from Definition 2 that there exists a point
xS ∈ X0 such that

sup
λ∈∂G(H(x̂)),t)

〈λ,H ′(x̂)(xS − x̂)〉 ≤ −δ,

for all t ∈ I0(x̂).
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Consider the convex continuous function

ψ(y) = max
t∈T

G(H(x̂) + y), t).

Observe that its value at 0 is nonpositive, because x̂ is feasible for (22)-(24). If
ψ(0) < 0, the uniform dominance condition of Definition 1 is satisfied at x̂.

If ψ(0) = 0, the active set of parameters t in the calculation of ψ(0) is exactly
I0(x̂). Therefore the directional derivative at 0 in the direction H ′(x̂)(xS − x̂)
has the form (see Levin, 1985, Theorem 1.6):

ψ′(0;H ′(x̂)(xS − x̂)) = sup
t∈I0(x̂)

sup
λ∈∂G(H(x̂),t)

〈λ,H ′(x̂)(xS − x̂)〉.

It follows from the differential constraint qualification condition that

ψ′(0;H ′(x̂)(xS − x̂)) ≤ −δ < 0.

For a small τ > 0 we define the point x(τ) = (1 − τ)x̂+ τxS and obtain

max
t∈T

G(H(x̂) +H ′(x̂)(x(τ) − x̂)), t) = ψ(H ′(x̂)(x(τ) − x̂))

= ψ(τH ′(x̂)(xS − x̂)) < 0,

provided τ > 0 is sufficiently small. Consequently, the point x(τ) satisfies the
uniform dominance condition of Definition 1 for problem (22)–(24).

We can thus apply Theorem 1 to problem (22)–(24) and obtain the state-
ment of the theorem.

Let us introduce the Lagrangian functional for the nonconvex problem (1)–
(3), L : X × M+(T ) → R:

L(x, µ) = ϕ(F (x)) +

∫

T

G(H(x), t)µ(dt). (27)

The functional L(·, µ) is Lipschitz continuous and, therefore, we can use the
Mordukhovich calculus. Using Mordukhovich (2006, Proposition 1.112) we ob-
serve that the Mordukhovich subdifferential of L(·, µ̂) evaluated at x̂ equals

∂̂L(x̂, µ̂) = [F ′(x̂)]∗∂ϕ(F (x̂)) + [H ′(x̂)]∗
∫

T

∂G(H(x̂), t) µ̂(dt).

Therefore, condition (25) can be equivalently stated as

0 ∈ ∂̂L(x̂, µ̂) +NX0
(x̂).

If F and H are linear, then L(·, µ̂) is convex and achieves its minimum at x̂ over
x ∈ X0.
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4. Application to optimization problems with stochastic

dominance constraints

Let us return to the stochastic optimization problem with stochastic dominance
constraints, mentioned in the introduction.

In this problem, Y = L1(Ω,F , P ), T = [a, b] ⊂ R, and the operator G is
defined as follows:

G(Y, t)=

∫

Ω

max(0, t−Y (ω))P (dω)−

∫

Ω

max(0, t−Y0(ω))P (dω), t ∈ [a, b]. (28)

For all t, the function G(·, t) is convex and Lipschitz continuous with constant
κ = 1. The operator H : X → L1(Ω,F , P ) is assumed to be continuously
Fréchet differentiable. Its derivative H ′(x) is a continuous linear operator from
X to L1(Ω,F , P ). For d ∈ X , the value of H ′(x)d at ω ∈ Ω is denoted by
[H ′(x)d](ω).

The optimization problem takes on the form

min ϕ(F (x)) (29)

s.t.

∫

Ω

max(0, t− [H(x)](ω))P (dω) ≤

∫

Ω

max(0, t− Y0(ω))P (dω), ∀ t ∈ T, (30)

x ∈ X0. (31)

In particular, we may have here F (x) = H(x) and ϕ(Y ) = −
∫

Y (ω) P (dω).
Then, problem (29)–(31) can be interpreted as the maximization of the ex-
pected value E[H(x)], under the condition that H(x) stochastically dominates
the benchmark Y0.

In order to obtain a more explicit formulation of the optimality conditions,
we calculate the subdifferential of the operator G(·, t) in (28). To this end we
define the multifunction DG : L1(Ω,F , P ) × [a, b] ×Ω ⇉ R as follows:

DG(Y, t, ω) =











{−1} if Y (ω) < t,

[−1, 0] if Y (ω) = t,

{0} if Y (ω) > t.

For a fixed t, the mapping Y →
∫

Ω
max(0, t− Y (ω))P (dω) is a convex integral

functional on L1(Ω,F , P ), with the convex normal integrand y → max(0, t−y).
Using Castaing and Valadier (1977, Theorem VII-7) we see that the subdiffer-
ential of G with respect to the first argument at the point Y ∈ L1(Ω,F , P ),
∂G(Y, t), is the collection of all measurable selections λ(·) ofDG(Y, t, ·). Observe
that each λ ∈ L∞(Ω,F , P ) = Y ∗.
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Using the explicit form of ∂G(·, t), we can calculate the supremum in the
constraint qualification condition (15) as follows:

sup
λ∈∂G(H(x0),t)

〈

λ,H ′(x0)(xS − x0)
〉

= sup
λ∈∂G(H(x0),t)

∫

Ω

λ(ω)[H ′(x0)(xS − x0)](ω) P (dω)

=

∫

Ω

sup
λ(ω)∈DG(H(x0),t,ω)

λ(ω)[H ′(x0)(xS − x0)](ω) P (dω)

= −

∫

{H(x0)<t}

[H ′(x0)(xS − x0)](ω) P (dω)

+

∫

{H(x0)=t}

max
(

0,−[H ′(x0)(xS − x0)](ω)
)

P (dω).

The second equation is due to Rockafellar and Wets (1998, Theorem 14.60), and
the last one follows from the structure of the multifunction DG.

The constraint qualification condition can now be written as follows:

Definition 3 The set X satisfies the differential constraint qualification con-
dition at the point x0 ∈ X if there exists a point xS ∈ X0 and a constant δ > 0
such that for all t ∈ I0(x0)

∫

{H(x0)<t}

[H ′(x0)(xS − x0)](ω) P (dω)

≥

∫

{H(x0)=t}

max
(

0,−[H ′(x0)(xS − x0)](ω)
)

P (dω) + δ. (32)

The Lagrangian (27) associated with problem (29)-(31) takes on the form:

L(x, µ) = ϕ(F (x)) +

∫

T

∫

Ω

max(0, t− [H(x)](ω))P (dω)µ(dt)

−

∫

T

∫

Ω

max(0, t− Y0(ω))P (dω)µ(dt).

(33)

The specific form of the Lagrangian allows us to represent it in a more trans-
parent way.

We define the set U of functions u(·) satisfying the following conditions:

u(·) is concave and nondecreasing;

u(t) = 0 for all t ≥ b;

u(t) = u(a) + c(t− a), with some c > 0, for all t ≤ a.
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It is evident that U is a convex cone. Moreover, the subgradients of each
function u ∈ U are bounded for all t ∈ R.

Every measure µ on [a, b] can be extended to the whole real line by assigning
measure 0 to Borel sets not intersecting [a, b]. A function u : R → R can be
associated with every nonnegative measure µ as follows:

u(t) =







−

∫ b

t

µ([τ, b]) dτ t < b,

0 t ≥ b.

Since µ ≥ 0, the function µ([·, b]) is nonnegative and nonincreasing, which im-
plies that u(·) is nondecreasing and concave.

Conversely, if u ∈ U then the left derivative of u,

u′−(t) = lim
τ↑t

[u(t) − u(τ)]/(t− τ),

is well-defined, nonincreasing and continuous from the left. By Billingsley (1995,
Theorem 12.4), after an obvious adaptation, there exists a unique regular non-
negative measure µ satisfying µ([t, b]) = u′−(t). Thus, the correspondence be-
tween nonnegative measures in M ([a, b]) and functions in U is a bijection.

In Dentcheva and Ruszczyński (2003), we have proved that for every random
variable Y ,

∫

T

∫

Ω

max(0, t− Y (ω))P (dω)µ(dt) = −

∫

Ω

u(Y )P (dω),

where u(·) is derived from µ in the way described above.
This correspondence entails a correspondence of the Lagrangian (33) to an-

other functional Λ : X × U → R defined as follows:

Λ(x, u) = ϕ(F (x)) −

∫

Ω

u(H(x))P (dω) +

∫

Ω

u(Y0)P (dω).

Using Theorem 4, we obtain the following optimality conditions for problem
(29)–(31).

Theorem 5 Assume that the point x̂ is a local minimum of (29)–(31) and the
differential constraint qualification condition (32) is satisfied at x̂. Then, there
exists a function û ∈ U such that

0 ∈ [F ′(x̂)]∗∂ϕ(F (x̂)) − [H ′(x̂)]∗
∫

Ω

∂u(H(x̂))P (dω) +NX0
(x̂),

∫

Ω

u(H(x̂))P (dω) =

∫

Ω

u(Y0)P (dω).
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The integral
∫

Ω
∂u(Y )P (dω) is understood as a collection of integrals of all

measurable selections of the multifunction ω → ∂u(Y (ω)).
Theorem 5 generalizes to the nonconvex case the optimality conditions of

Dentcheva and Ruszczyński (2004, Theorem 2).
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