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Composite Shaft Optimization Using Simulated
Annealing, Part I: Natural Frequency
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In this study a fiber-reinforced composite shaft design is
optimized. The optimization procedure is carried out in two
stages. First, the shaft natural frequency is maximized with
the constraint imposed on the shaft buckling torque and
torsional strength. In the second stage of optimization, shaft
weight is minimized with the constraint imposed on the
natural frequency obtained from the first stage, shaft
buckling torque and torsional strength. Shafts of uniform
layup and uniform wall thickness (UU), uniform fiber layup
and variable wall thickness (UV), variable fiber layup and
uniform wall thickness (VU) and variable fiber layup and
variable wall thickness (VV) have been considered. The shaft
is modelled as a simply supported Timoshenko beam in which
shear deformation, rotary inertia and gyroscopic effects are
included. Rayleigh-Ritz displacement are used for deriving
the solution equation. A Simulated Annealing (SA) global
optimization routine is used. Although this routine requires
large number of function evaluations to find the optimum
solution, it finds the global optimum with high probability
even for ill conditioning functions with numerous local
minima.

Keywords: Composite shafts; Optimization; Natural frequency; Shaft
weight; Simulated Annealing

The utilization of composite materials in structural appli-
cations has grown considerably in recent years. The major
advantage in wusing composite materials is their high
strength-to-weight ratio. One of the major applications of
composite materials is to composite drive shafts, where
high strength-to-weight and stiffness-to-weight ratios are
important. Composite drive shafts can be designed to have

Received 28 November 2000.
* E-mail: hason@mech.iitd.ernet.in
tCorresponding author. E-mail: kgupta@mech.iitd.ernet.in

275

greater unsupported shaft length than traditional metallic
shafts carrying the same load.

The applications of numerical optimization techniques
to the design of composite shafts has proved to be effective
in reducing shaft weight. In spite of the availability of
several optimization techniques, no single method yields
satisfactory performance across the spectrum of engineer-
ing design problems. Calculus-based search techniques
utilizing gradient information to guide the search work are
designed for optimization problem with continuous vari-
ables. These methods are inadequate for problems with
discrete/discrete-continuous variables, which appear due to
practical considerations such as the availability of compo-
nents in standard sizes, construction and manufacturing
practices. Therefore, efficient techniques for solving prob-
lems with discrete-continuous variables are needed. Simu-
lated Annealing (SA) is a search procedure based on
Monte-Carlo method used in statistical mechanics studies
of condensed system. Kirkpatrick et al. (1983) showed the
analog between simulating the annealing of solids as
proposed by Metropolis et al. (1983) and solving combi-
natorial optimization problems.

Optimization of composite drive shafts during past few
years using traditional methods was carried by (Kraus,
1988; Bauchau, 1983; Darlow & Creonte, 1995; Gubran,
1994; Gubran & Gupta, 1996; and Wettergren, 1997).
However in literature, there is no work on the optimization
of composite drive shafts using nontraditional methods. In
the present paper Simulated Annealing (SA) algorithm is
used to optimize composite shaft of uniform/variable-fiber
layup/wall thickness.

ANALYSIS

This paper deals with optimization of the natural frequency
of balanced laminate composite shafts of uniform/variable-
fibre layup/wall thickness, i.e., UU, UV, VU, and VV
cases. In axially variable fibre layup and (or) axially
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variable wall thickness, the axial symmetry about the shaft
mid-span is assumed.

Natural Frequency Analysis

The shaft is modeled as a simply supported Timoshenko
beam in which shear deformation, rotary inertia and
gyroscopic effects have been included. Rayleigh-Ritz dis-
placements are used for deriving the solution equation.
Referring to Figure 1, the displacement field is described by
the transverse displacements, w and v measured in the z
and y directions, the bending slopes o and 3 in the x-z and
x-y planes and ¢ is the shaft twist angle. The quantities
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FIGURE 1
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w, v, a, 3 and ¢ are assumed to be time dependent and can
be represented as

where € is the whirl frequency.
The strain energy of the shaft at any stressed state is
given by

U= 3 Uk:1 Y T {eX dv 2
>our=33 [ 2

(ov/ox — )

(a) Coordinate system of the rotor, (b) Displacement field in Cartesian coordinate.
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where the summation is taken over all the layers contained
in the laminate, and
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where oy and oy are in-plane normal stresses and 7y is the
in-plane shear stress, e and e, are the in-plane normal
strains and &y, is the in-plane shear strain. Q is the
transformed stiffness matrix of the kth layer. The strain
energy including bending in two planes, shear deformation
and torsion can be expressed as

o4 ol - ()
of(F-o) (3}
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The bending stiffness coefficient is given by
n
i ~(k 4
Ce = Z; Q§1)[R3(k) - Ri(k)]
and the torsional stiffness coefficient is
Z Q(k) R4

The shear stiffness coefficient is C;=KAGyy, where K is
the shear correction factor given by

l(k)]

-1
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The total kinetic energy is the sum of the kinetic energies of
the shaft and of the disks mounted on it. This can be
expressed as

1t .
T=2 / [PA(W? +¥)dx + pl(62 + 8)dx
0

+ ply? + 2pl, w aBldx
1 ND

+ E;[MDi(W(Xi)Z +9(x:)?)

+ Ipg (6(x:)* + B(x:)>) + Ippigp
+ 2pp; wé(x;) B(x;)] [5]

Here p is the mass density of the shaft material, A and I are
area and second area moment of shaft cross-section. Mp;,

IbTi and Ipp; are mass, lateral and polar mass moments of
inertia of the ith disc respectively. The rotational angular
speed of the shaft is w.

In the design of variable wall thickness and (or) variable
fibre layup, the shaft is divided into » number of segments
along the axial length and the axial symmetry about the
shaft mid-span is assumed. Rayleigh-Ritz procedure pres-
ented for the case of uniform shaft is used. The integration
is carried over each segment of uniform thickness, the local
stiffness and mass matrices are calculated for different
segments and put into the global stiffness and mass
matrices.

Solution Equations

The series solution functions are assumed for w, v, «a, 8,
and ¢ in the form

K

K
wix) = ansm = ZV,,Sin?

n=1 n=]

K K
a(x) = Z A cos m Z B, cos — it

n=1 n=
5(x) = zK:\II cos X 6]
7 - n=1 " £

where K is total number of terms in the series solutions.
The above functions satisfy geometric boundary conditions
at x=0 and x=/. The Lagrangian L is set up from strain
and kinetic energies and made stationary with respect to
the solution coefficients, i.e.,

AL oL AL

oW, 0, av. O IA, 0, 7
oL _, oL _,
8B, ' 8v,

The time dependence cancels out in all the terms and a set
of 5K simultaneous algebraic equations in the form of a
quadratic eigenvalue problem is obtained as

[-Q*M] +iQ[D] + [K]]{X} = {0} 8]
Here the matrix [D] involves the contribution due to
gyroscopic effect and is dependent on rotational speed. The
vector ‘X’ is given by

{X}:[lewz,-.-,wn Vi,Va,...,Vy

Ai,Ay,...,A, B1,By,...,B, 0,0, 00T [9]
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SIMULATED ANNEALING
ALGORITHM

Simulated annealing basics are in thermodynamics where
one studies the system thermal energy. A description of the
cooling of molten metal motivates this algorithm. At high
temperature, the atoms in the molten metal can move freely
with respect to each other but as the temperature is reduced,
the movement of the atoms gets restricted. The atoms start
to get ordered and finally form crystals having the minimum
possible energy. However, the formation of the crystal
mostly depends on the cooling rate. If the temperature is
reduced at a very fast rate, the crystalline state may not be
achieved at all, instead the system may end up in a
polycrystalline state. In the analogy, the different states of
the substance correspond to the different feasible solutions
of the combinatorial optimization problem, and the energy
of the system corresponds to the function to be minimized.

In simulated annealing, the problem starts at some initial
solution and a series of moves (changes in the values of
design variables) are made according to a user-defined
annealing schedule until either the optimal solution is
attained or the problem becomes frozen at a local optimum
for which it cannot improve. To avoid freezing at a local
optimum, the algorithm moves slowly (with respect to the
value of the objective) through the solution space. This
controlled improvement of the objective value is accom-
plished by accepting non-improving moves with a certain
probability (based on the resulting change in the objective
function value and the current temperature) which de-
creases as the algorithm progresses. The cooling phe-
nomenon is simulated by controlling a temperature-like
parameter introduced with the concept of the Boltzmann
probability distribution. According to the Boltzmann
probability distribution, a system in thermal equilibrium
at a temperature T has its energy distributed probabi-
listically according to p(E) =e"FKD  where K is the
Boltzmann constant. This expression suggests that a system
at a high temperature has almost uniform probability of
being at any energy state, but at low temperature it has a
small probability of being at a high energy state. Therefore,
by controlling the temperature T and assuming that the
search process follows the Boltzmann probability distribu-
tion, the convergence of an algorithm can be controlled.
For any instant ¢ at point x(t), the value of the function is
E(t) = f(x(t)). Using Metropolis algorithm, the probability
of the next point at x(t-+1) depends on the difference in the
function value at these points i.e., AE=E(t+1)—E(t), and
is calculated using the Boltzmann probability distribution
P(E(t+1)) =min [1, exp(— AE/kT)]. For AE <0, the prob-
ability is one and the new point is accepted. If AE >0 i.e.,
f(x(t+1)) > £(x(t)), the point is still accepted with some
finite probability. This is not the same in all solutions and
depends on relative magnitudes of AE and T.

The general procedure for implementing a simulated
annealing algorithm (as shown in Figure 2), is as follows,

Step I Select an initial temperature T, and initial solution
Xo. Let fy=1(Xo) denote the corresponding ob-
jective value. Set i=0 and go to Step 2.
Set i=i+1 and generate new solution,
(Xi’ = X;+r1-V;) where, r is random number and
V; is step length. Evaluate f/ = f(X{).
If ff <f;_,, go to Step 5, else accept f; as the
new solution with the probability e\~ 2EM) where
AE=f/—f;_, and go to Step 4.
If f; was rejected in Step 3, set f/ =f,_ ;. Go to Step
3.
If satisfied with the current objective value, f;, stop.
Otherwise, adjust the temperature (T'=T-ry)
where rr is temperature reduction rate and go to
Step 2.

Step 2

Step 3

Step 4

Step 5

The important parameters which govern the successful
working of the simulated annealing procedure are the

Set Initial : Temp. To, Xo, ..ctc.

v
Find fo = f(Xo),
Seti=0

v

Generate a cycle random moves
P Find X;'=Xi+rVr, fi=f(X9)

|<__.

REJECT
Find AE = f;' -f-1
N Accept with robability
P=exp(-AE/T)
YES
Accept Unconditionally |
ACCEPT

Adjust step size
Rest number of cycles to 0

Is number of step
Adjustment 2 1y ?

vooy

| Reduce temperature |

Converged solution
YES

STOP

FIGURE 2 Flowchart for simulated annealing algorithm.
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initial temperature T, temperature reduction rate rp and
the number of iterations n performed at a particular
temperature. If a large initial temperature T is chosen, it
requires a large number of iterations for convergence. On
the other hand, if a small initial temperature T is chosen,
the search is not adequate to thoroughly investigate the
search space before converging to the true optimum.

PROBLEM DESCRIPTION
AND OPTIMIZATION

The important problems in the design of high speed
rotating composite shaft of significant span are the lateral
stability and critical speed placement. Generally, with light
weight (Graphite/Epoxy) material, it is relatively easy to
meet the torsional strength. The optimal design of the com-
posite shafts is put as a nonlinear mathematical program-
ming problem. The objective function here is to have a
shaft with minimum weight and satisfy design requirements
of buckling torque, torsional strength and critical speed
placement.

The design variables are the orientation of different ply
angles, the thickness of each ply and the stacking sequence
of different ply angles. Ply orientation can vary over a wide
range. However limiting this variation within a consider-
able range (0° to 45°), helps in increasing the robustness of
the procedures used.

The optimization procedure consists of two steps. In the
first step, maximization of shaft natural frequency was
carried out under the constraints of buckling torque and
shear strength requirements. This procedure is defined as
natural frequency maximization. In the second procedure,
shaft weight is minimized under the constraints of critical
speed obtained from the first procedure, the buckling
torque and shear strength requirements. Mathematically,
the formulation can be written as:

Step 1 (Natural Frequency Maximization)

Maximize fy [10]

Subjected to:
Tpy > F.05 xT [11]
TU][ZI.SXTZI.SXW [12]
Tinner < R [13]

0° < 6 <45° (to include balanced laminate conditions).
Equation [10] represents maximization of the natural
frequency while Eq. [11] represents the buckling torque
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constraint which implies that final design of the shaft
should have a buckling torque capacity which is greater or
equal to the transmitted torque multiplied by factor of
safety (F.O.S) taken here as 2.25. Equation [12] represents
the constraint on the shear stress induced in the shaft.
However, Eq. [13] represents geometrical constraint im-
posed on shaft inner radius.

Step 2 (Weight Minimization)

minimize W = 27t pl [14]
Subjected to:
f=r [15]
Tpye > F.OS. xT [16]
= 1.5x7=15x% Ty (17]
Tinner < R [18]

0° < # < 45° (to include balanced laminate condition).

Here f;; is the maximized natural frequency calculated
from Step 1. It is to be noted that if the natural frequency
calculated from Eq. [15] is close to one of the shaft critical
speeds, then a margin of 20% of shaft operating speed
below or above the operating speed has to be considered.
In this case, the constraint of Eq. [15] is modified as

f) <0.8N [15a]

f; > 12N [15D]
where N is the shaft operating speed. Equation [15a]
ensures that the first natural frequency is 20% below the
operating speed and Eq. [15b] ensures that the second
natural frequency is 20% above the operating speed.

RESULTS AND DISCUSSION

In this study two shafts of different length were taken. The
first shaft is 1 m long and the inner radius is limited to a
maximum value R of 0.05m. The second shaft is 6 m long
and the inner radius is limited to a maximum value of
0.06 m. By convention, ply angles are considered to be
between 0° and 90°. As ply angle increases, the axial
modulus of the shaft, which governs the bending stiffness,
decreases. The upper limit on ply angle of 45° is considered
here. The material properties of both shafts are same as
that given in Table I. To achieve a closed loop analysis, the
optimization subroutines were linked with the main
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TABLE I Shaft material properties

Major Elastic Modulus, E; (Gpa) 130
Minor Flastic Modulus, E; (Gpa) 10
Major Poisson ratio, v 0.25
Shear Moduli, G = G3 (Gpa) 7
Density p, kg/m® 1500

subroutines which calculate natural frequencies, torsional
strength and buckling load. As shown in Figure 3, the
optimization process begins by initialization with some
starting values for different design parameters in the
optimization subroutine. Accordingly the shaft model is
constructed in the main subroutine and natural frequen-
cies, torsional strength and buckling torque are calculated.
These are transferred again to the optimization subroutine
and checked for convergence. If the design is not feasible
or convergence criteria is not achieved, the optimization
algorithm searches for a feasible design point and new
model is created and the process is repeated till the
convergence is achieved.

Set initial fibre

STOP angle, ply thick

Yes

No
Is solution converged?

Generate new —»
solution

Input shaft length and
material properties.
Construct shaft model

'

Calculate natural freq.,
buckling torq. and torsional
strength

FIGURE 3 Design and optimization procedure.

To have a realistic value of torque T, reference has been
made to an earlier study by Gubran and Gupta (1996)
on helicopter tail rotor shaft transmitting 400kw at
4500 RPM. Assuming a factor of safety of 2.25, the
transmitting torque works out to 1910 Nm.

In this study, the improvement in the dynamic perfor-
mance of two composite shafts of different lengths is
studied. Different optimized design alternatives of uniform/
variable fiber layup/wall thickness have been considered.
The convergence and sensitivity to different starting values
on the performance of simulated annealing algorithms were
tested for uniform fibre layup and wall thickness shafts.

Optimization of Uniform Fiber Layup/Uniform
Wall Thickness (UU) Shaft

Analysis has been carried out on two shafts of 1 m and 6m
length. For each shaft, the two phases of optimization
described earlier are applied. The natural frequency of the
shaft was maximized in the first phase of the design where
the constraints were imposed on the buckling torque and
torsional strength. In the next phase, optimization is
sought to minimize the shaft weight with the constraints
on the natural frequency and buckling torque. Observa-
tions made from the results show that, reducing shaft
weight (i.e., shaft wall thickness) had minimum effect on
the natural frequency. The torsional strength in every case
was lower than or equal to the ultimate torsional strength
of the shaft. Results presented in Table II show that the
optimal design parameters (i.c., ply angles) obtained for
different starting points are almost the same. However ply
thickness are different for different starting ply angles. This
can be explained as follows. For the case of Im length the
optimized ply angles for the prescribed constraints are
found to be same (between 10.5° to 10.8°). This can be
considered simply a shaft with single ply angle, therefore
individual ply thickness has no effect in this case. The
ruling factor in this case will be the total thickness obtained
for different starting values as this will define shaft mean
radius. However, it is clear from the results presented in

TABLE II Effect of starting values on the performance of SA algorithms for uniform fiber layup and uniform wall thickness shafts (UU) (rr=0.2,

To=100)

Shaft Starting values Optimal solution obtained

length, (Angles, Ply angles, Ply thickness, Inner radius Freq., Buc. torq., Weight,

m Degrees) Degrees mm (m) Hz Nm kg

1 (5/—5) (10.66/ —10.52), (0.225/0.0283), 0.05 439.5 1910 0.2399
(15/=15), (10.64/ —10.66); (0.0911/0.163), 0.05 439.5 1910 0.2399
(30/—30), (10.53/—10.78), (0.145/0.108), 0.05 439.5 1910 0.24

6 5/-5) (0.0/0.0), (0.112/0.249), 0.06 17.17 1910 2.471
(15/—15) (0.0/0.0) (0.219/0.122), 0.06 17.17 1910 2471
(30/ —30), (0.0/0.0) (0.1916/0.171), 0.06 17.17 1910 2.471



Monica Stephens
 


COMPOSITE SHAFT OPTIMIZATION, PART [ 281

Table 11, that for different starting values the total weight
of the shaft is same. This implies that the total thickness is
kept the same for different cases.

To check the sensitivity of the optimized results, three
different starting values (distributed along the solution
space) have been taken. Optimized results obtained for
different starting solutions are almost the same for both
shafts. This is clear from the exact matching of the values
of the buckling torque and natural frequency obtained for
different starting solutions for both shafts. Optimal ply
angles obtained for different starting values for both shafts
are same.

Optimization of Uniform Fiber Layup/Variable
Wall Thickness (UV) Shaft

In variable wall thickness shaft, the shaft is divided into five
segments and the axial symmetry about the mid-plane is
assumed. The number of plies at each section are kept as 4,
however ply thicknesses are allowed to vary. Analysis of
uniform layup variable wall thickness shafts of 1 m and 6m
are presented in Table III. Results show that, for the 1 m
long variable wall thickness shaft, the natural frequency
can go up to 485Hz, which is higher by about 10%
compared to that of the uniform wall thickness shaft for
the same buckling torque constraint. There is also a
reduction in the shaft weight by about 30% (i.e., from
0.239 kg to 0.167 kg). Results for the 6 m long variable wall
thickness shaft show an increase in the natural frequency
by about 0.8% and a reduction in the shaft weight by
about 21% (i.e., from 2.471 kg to 1.962kg). Results show
that the optimally designed shafts are having different
thickness at different locations. The middle Section (3) as
obtained from both shafts is having maximum thickness.
This can be explained as follows. For simply supported
shaft, the deflection (for first mode) is maximum at the
middle section. Providing maximum thickness at this
section leads to an increase in the shaft stiffness at this
section and therefore a reduction in the shaft maximum
deflection. This leads to an increase.in the shaft first natural
frequency. Darlow and Creonte (1995) observed similar

behaviour for torsional buckling torque. However, in the
present study the buckling torque is kept the same for
uniform and variable wall thickness shafts.

Optimization of Variable Fiber Layup/Uniform
Wall Thickness (VU) Shaft

Another case considered for optimization is variable layup
and uniform wall thickness in which the shaft is allowed to
have different ply angles at different axial position along the
shaft axial length. Five sections are assumed along the shaft
length and the axial symmetry about the mid-plane is
assumed. The analysis has been performed for the same
shafts discussed in previous sections, i.e., shafts with I m and
6 m lengths. Results are presented in Table IV. For 1 m long
shaft, optimized results show an increase in the natural
frequency by about 9.3% compared to that of UU, which is
slightly less than that obtained by varying shaft wall
thickness keeping same layup throughout the shaft axial
length, i.e., UV. Results also show that there is no significant
gains in reducing the shaft weight, which is about 5% (i.c.,
from 0.239 kg to 0.227 kg) less than that of uniform layup/
uniform wall thickness shaft. Results for 6 m long shaft of
the variable layup uniform wall thickness are almost the
same as that of the uniform layup/uniform wall thickness
shaft. The explanation for the above results is as follows.
For 1m long shaft, first phase of optimization, i.e.,
maximization of the natural frequency was performed
successfully. However, the second phase, i.e., minimization
of shaft weight, which is mainly achieved by manipulating
thickness of different plies, is difficult to achieve due to
constraint of having uniform wall thickness. Also the
constraint of having uniform thickness, makes the end
sections of the shaft (i.e., 1 and 5) almost redundant. This is
clear from the higher ply angle values obtained. In fact,
increasing the first natural frequency for the present case of
simply supported shaft requires decreasing the maximum
deflection of the shaft which is normally achieved by
increasing the thickness of the shaft at middle section.
Thickness of the shaft at end segments at which shaft
deflection is minimum can be reduced without much

TABLE IIT Optimized results for uniform fiber layup and variable wall thickness (UV) shafts (rr=0.2 Ty = 100)

Shaft Starting values Optimal solution obtained
length, (Angles, Ply angles, Ply thickness, Inner radius Freq., Buc. torq., Weight,
m Degrees) Degrees mm (m) Hz Nm kg
1 (30/—30), (0/0), (0.010/0.010), 0.05 485.09 1910 0.1677
(0.010/0.010),
(0.0504/0.361),
6 (30/ —30), (0/0), (0.010/0.010), 0.06 17.2 1910 1.9629

(0.010/0.010),
(0.578/0.010)>
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TABLE IV Optimized results for variable fiber layup uniform thickness (VU) shafts (ry=0.2 To=100)

Shaft Starting values Optimal solution obtained
length, (Angles, Ply angles, Ply thickness, Inner radius Freq., Buc. torq., Weight,
m Degrees) Degrees mm (m) Hz Nm kg
(40/—40), (41.75/—41.75) (0.228/0.1204) 0.05 481.47 1910 0.228
1 (30/ =30, (0/0)2
{10/ —10), (0/0).
6 (40/ — 40), (1.640/0.0)> (0.088/0.274), 0.06 17.17 1910 2.472
(30/—30), 0/0),
(10/—10), (0/0)
TABLE V Optimized results for variable fiber layup variable wall thickness (VV) shafts (rr=0.2 To=100)
Shaft Starting values Optimal solution obtained
length, (Angles, Ply angles, Ply thickness, Inner radius Freq., Buc. torq., Weight,
m Degrees) Degrees mm (m) Hz Nm kg
1 (40/ — 40) (42.03/ —42.13), 0.171/0.010), 0.05 485.11 1910 0.1671
(30/ —30), (5.31/0), (0.010/0.010),
(10/—10) (0/0), (0.365/0.138),
6 (40/ — 40), (42.03/ —41.59), (0.0191/0.010), 0.06 17.2 1910 1.962
30/ —30) (0.0/0.0), (0.0102/0.010),
10/ - 10)2 (0.0/0.0), (0.269/0.318),
effecting the performance of the shaft, however keeping in  CONCLUSION

mind the torsional strength requirement. Reducing shaft
thickness at the end segments leads to a reduction in the
total shaft weight which is not possible in the present VU
case.

Optimization of Variable Fiber Layup/Variable
Wall Thickness (VV) Shaft

In further step of optimization, the constraint imposed
either on shaft layup or shaft thickness along different axial
position of the shaft length are relaxed. In this, a variable
fiber layup and variable wall thickness shaft optimization is
carried. The two different shaft lengths, i.e., Im and 6m
have been analyzed. Optimized results presented in Table V
are similar to that presented in Table IIT for the UV case.
This clearly indicates that the improvement achieved in VV
case is primarily due to variable wall thickness and not
because of variable fiber layup. Results also show that, the
middle section of both shafts have high stiffness. This
is clear from 0° ply angles having maximum thickness
assigned for mid-section obtained in the optimized result
leading to higher stiffness at the section and thereby
increasing the shaft natural frequency.

In this study, Simulated Annealing algorithm is used for
shaft optimization. In the optimization procedure, the shaft
weight is minimized while the shaft natural frequencies are
either maximized or properly placed in respect to operating
speed. Constraints are imposed on the torsional buckling
torque and torsional strength. Shaft individual ply angles,
their stacking sequences and thicknesses along the axial
length are kept as design variables, which have been
optimized. Different design alternatives (UU, UV, VU, and
VV) have been considered. Results obtained clearly show a
significant improvement in the dynamic performance of the
shaft by extending the design of uniform fiber ply angle and
uniform wall thickness (UU) to a variable fiber ply angle
and variable wall thickness (VV) case. Results also show
that for simply supported shaft of maximum first natural
frequency, the shaft stiffness has to be maximum at the
middle segments of the shaft. This has been obtained here
by placing ply angles of lower angles and maximum
thickness at the middle segments of the shaft. Results also
clearly show that the optimized results obtained by using
Simulated Annealing algorithm are independent of the
starting values as in the case of traditional methods of
optimization. Results show that UV and VV cases provide
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the most effective and optimum design as compared to the
other cases.

NOMENCLATURE
A Cross-sectional area of the shaft
Ay Elements in the extensional stiffness matrix A

of the laminate
Bending, torsional, and bending-twisting
stiffness coefficients

Gyy Shear modulus

I Second area moment of shaft cross-
section

Ipus Ippi Lateral and polar mass moments of inertia

of ith disk respectively
/ Shaft length, m

[M], [K], [G] Shaft mass, stiffness and gyroscopic matrices
Mp; Mass of ith disk
5 Elements in the stiffness matrix of the kth

ply

I'm Mean radius of the shaft, m

t, t Thickness of the ith lamina, total thick-
ness

U, T Strain and kinetic energies of the shaft

W, V Deflections in Cartesian coordinates

{X} Solution vector which represents system
response

7y Distance to the kth lamina from the mid-
plane, m

o, B Rotations due to bending in x-z and y-z
planes respectively

v Shaft major Poisson’s ratio

® Shaft twist angle

Exx> €00 Normal strains in the lamina in x and @

directions

Txo> Exo Shear stress and strain in the lamina in x-6
plane

Oxxs 080 Normal stresses in the lamina in x and 6
directions

v, ¢ The bending and rotational slopes respec-
tively

Q Whirl frequency

w Shaft rotational speed of the shaft

p Shaft material density, kg/m?

Subscript

) denotes differentiation with respect to x or
8.

Superscript

“r denotes differentiation with respect to time.
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