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Abstract—The spontaneous phase coherent precession of magnetization, discovered in 1984 by Borovik-
Romanov, Bunkov, Dmitriev and Mukharskiy [1] in collaboration with Fomin [2], became now an important
experimental tool for study complicated topological objects in superfluid 3He.
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1. INTRODUCTION

Superfluid phases of 3He discovered in 1972 [3]
opened the new area of the application of topological
methods to condensed matter systems. Due to the
multi-component order parameter which character-
izes the broken SO(3) × SO(3) × U(1) symmetry in
these phases, there are many inhomogeneous
objects—textures and defects in the order parameter
field—which are protected by topology and are char-
acterized by topological quantum numbers. Among
them there are quantized vortices, skyrmions and
merons, solitons and vortex sheets, monopoles and
boojums, Alice strings, Kibble–Lazarides–Shafi walls
terminated by Alice strings, spin vortices with soliton
tails, etc. [4]. Most of them have been experimentally
identified and investigated using nuclear magnetic res-
onance (NMR) technique, and in particular the phase
coherent spin precession discovered in 1984 in 3He-B
by Borovik–Romanov, Bunkov, Dmitriev and
Mukharskiy [1, 5] in collaboration with Fomin [2].
Such precessing state, which has got the name Homo-
geneously Precessing Domain (HPD), is the sponta-
neously emerging steady state of precession, which
preserves the phase coherence across the whole sam-
ple even in the absence of energy pumping and even in
an inhomogeneous external magnetic field. This
spontaneous coherent precession has all the signatures
of the coherent superfluid Bose–Einstein condensate
of magnons (see review paper [6]).

The Bose condensation of magnons in superfluid
3He-B had many practical applications. In Helsinki,
owing to the extreme sensitivity of the Bose conden-
sate to textural inhomogeneity, the phenomenon of
Bose condensation has been applied to studies of
topological defects by the HPD spectroscopy.

2. SUPERFLUID PHASES OF LIQUID 3He

In bulk liquid 3He there are two topologically dif-
ferent superfluid phases, 3He-A and 3He-B [7]. One is
the chiral superfluid 3He-A with topologically pro-
tected Weyl points in the quasiparticle spectrum. In
the ground state of 3He-A the order parameter matrix
has the form

(1)

where  is the unit vector of the anisotropy in the spin
space due to spontaneous breaking of SO(3)S symme-

try of spin rotations;  and  are mutually orthogonal
unit vectors; and 1 is the unit vector of the anisotropy
in the orbital space due to spontaneous breaking of

orbital rotations SO(3)L symmetry. The -vector also
shows the direction of the orbital angular momentum
of the chiral superfluid, which emerges due to sponta-
neous breaking of time reversal symmetry. The chiral-
ity of 3He-A has been probed in several experiments
[8–10].

Another phase is the fully gapped time reversal
invariant superfluid 3He-B. In the ground state of
3He-B the order parameter matrix has the form

(2)

where Ri is the real matrix of rotation, RiRj = ij.
This phase has topologically protected gapless Majo-
rana fermions living on the surface (see reviews [11, 12]
on the momentum space topology in superfluid 3He).

In 3He confined in the nematically ordered aerogel
(nafen), new phase becomes stable - the polar phase of
3He [13, 14], with the order parameter
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where orbital vector  is fixed by the nafen strands.
The reason for the appearance of the polar phase in
nafen is the analog of the Anderson theorem applied
for the polar phase in the presence of the columnar
defects (nafen strands), see [15, 16]. While for all the
other phases of superfluid 3He the transition tempera-
ture is suppressed by these impurities.

The polar phase is the time reversal invariant
super-fluid, which contains Dirac nodal ring in the
fermionic spectrum [16, 17].

3. STRINGS WITH SOLITONIC TAIL

3.1. HPD and Combined Spin-Mass Vortices
with Solitonic Tail

There are different types of the topological defects
in the 3He-B. Among them there are the conventional
mass vortices with the  winding number of the phase
, and the Z2 spin vortex—the nontrivial winding of
the matrix Ri. Due to spin-orbit coupling the spin
vortex serves as the termination line of the topological
soliton wall. Because of the soliton tension the spin
vortex moves to the wall of the vessel and escapes the
observation. However, the help comes from the mass
vortices. The mass and spin vortices are formed by dif-
ferent fields. They do not interact since they “live in
different worlds”. The only instance, where the spin
and mass vortices interact, arises when the cores of a
spin and a mass vortex happen to get close to each

m̂

1

other and it becomes energetically preferable for them
to form a common core. Thus by trapping the spin vor-
tex on a mass vortex the combined core energy is
reduced and a composite object Z2-string + soliton +
mass vortex, or spin-mass vortex is formed. This object
is stabilized near the edge of the vortex cluster in the
rotating cryostat (see Fig. 1).

These combined objects have been observed and
studied using HPD spectroscopy [18, 19]. The addi-
tional absorption observed in the homogeneously pre-
cessing domain (HPD) is proportional to the soliton
area A = lh, where h is the height of the container, and
l is the length of the cross-section of the soliton. In the
rotating container the length l is given by the width of
the counterflow vortex-free zone, which is regulated
by changing the angular velocity of rotation  at fixed
number  of vortices in the cell:

(4)

Here R is the radius of the cylindrical container, and
V(N) is the angular velocity in the state in the rotating
container with equilibrium number of vortices N =
2R2V(N)/. The equilibrium state is obtained by
cooling through Tc under rotation, and then we
increase the angular velocity of rotation,  > V(N).
The new vortices are not created because of high
energy barrier, and as a result the counterflow region
appears. The dependence of the attenuation of the
HPD state follows Eq. (4) [18, 19].

3.2. Alice Strings with and without Solitonic Tail

The half-quantum vortices (HQVs) were originally
suggested to exist in the chiral superfluid 3He-A [20].
The half-quantum vortex represents the condensed
matter analog of the Alice string in particle physics.
[21] The HQV is the vortex with fractional circulation
of superfluid velocity,  = 1/2. It is topologically con-

fined with the fractional spin vortex, in which 
changes sign when circling around the vortex:

(5)

when the azimuthal coordinate  changes from 0 to 2
along the circle around this object, the vector ( )
changes sign and simultaneously the phase  changes
by , giving rise to  = 1/2. The order parameter (5)
remains continuous along the circle. While a particle
that moves around an Alice string f lips its charge, the
quasiparticle moving around the half-quantum vortex
flips its spin quantum number. This gives rise to the
Aharnov-Bohm effect for spin waves in NMR experi-
ments [22].

However, before being experimentally observed in
3He-A, the HQVs were first observed in another topo-
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Fig. 1. (right) Vortex cluster in rotating container with the
vortex free region outside the cluster. Vortex cluster is
formed when starting with the equilibrium vortex state in
the rotating container the angular velocity of rotation is
increased. The new vortices are not formed if the counter-
flow in the vortex region does not exceed the critical veloc-
ity for vortex formation. (left) The spin-mass vortex finds
its equilibrium position on the periphery of the vortex clus-
ter, where the soliton tension is compensated by the Mag-
nus force acting on the mass vortex part of the composite
object. The size of the soliton is given by Eq. (4), and this
dependence on the angular velocity of rotation is con-
firmed by the HPD spectroscopy. (bottom) The combined
object with  = 2 quanta of circulation: spin-mass vortex
+ soliton + spin-mass vortex.
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logical phase of 3He—the polar phase [23]. The reason
for that is that in 3He-A the spin-orbit interaction

chooses the preferrable orientation for the vector 
describing the spin degrees of freedom of the order
parameter. This leads to formation of a soliton inter-

polating between two degenerate vacua with  =  and

 = – . The energy of soliton prevents the nucleation
of the Alice strings in 3He-A.

In contrast, in the polar phase the spin-orbit inter-
action can be controlled not prohibit the formation of
HQVs. In the absence of magnetic field, or if the field
is along the nafen strands the spin-orbit interaction
does not lead to formation of the solitons attached to
the spin vortices. As a result the half-quantum vortices
become energetically favorable and appear in the
rotating cryostat if the sample is cooled down from the
normal state under rotation.

Nevertheless the solitons help to observe the Alice
string first in polar phase and after that in the polar
distorted A-phase. In the polar phase, when the orien-
tation of the magnetic field is tilted with respect to
aerogel strands, the spin-orbit interaction generates
the solitons between the half-quantum vortices. But
the Alice strings are strongly pinned by the nafen
strands, and the soliton cannot shrink (see Fig. 2). The
HQVs are identified due to peculiar dependence of the
NMR frequency shift on the tilting angle of magnetic
field [23]. The NMR experiments also allow measure
the density of the Alicie string by measuring the soliton
density.

Due to the strong pinning, the Alice strings formed
in the polar phase by rotation of the superfluid or by
the Kibble-Zurek mechanism, survive the transition
to the 3He-A (actually to the distorted A-phase) [24].

4. HPD AND KLS WALL BETWEEN
ALICE STRINGS

4.1. Nonaxisymmetric Vortex in 3He-B as KLS Wall 
Bounded by Alice Strings

The mass vortices in 3He-B are presented in several
forms. In particular, a pair of spin-mass vortices may
form a molecule, where the soliton serves as chemical
bond. As a result one obtains the doubly quantized
vortex, i.e. with  = 2 circulation quanta (see Fig. 1).
Such vortex molecules have been also identified in
HPD spectroscopy [18, 19].

The “conventional”  = 1 vortex has also an
unusual structure in 3He-B. Already in the first exper-
iments with rotating 3He-B the first order phase tran-
sition has been observed, which has been associated
with the transition inside the vortex core [25]. It was
suggested that at the transition the vortex core
becomes non-axisymmetric, i.e. the axial symmetry of
the vortex is spontaneously broken in the vortex core
[26, 27]. This was confirmed in the further experi-

2 d̂

3 d̂ l̂

d̂ l̂

1

1

ments where the coherently precessing magnetization
was used [28].

In the weak coupling BCS theory, which is applica-
ble at low pressure, such vortex can be considered as
splitted into two half-quantum vortices connected by
the domain wall [29, 30], which is the analog of the
Kibble–Lazarides–Shafi wall bounded by cosmic
strings [31]. The separation between the half-quantum
vortices increases with decreasing pressure.

The phenomenon of the additional symmetry
breaking in the core of the topological defect has been
also discussed for cosmic strings [32]. The sponta-
neous breaking of the electromagnetic U(1) symmetry
in the core of the cosmic string has been considered,
due to which the core becomes superconducting.

For the 3He-B vortices, the spontaneous breaking
of the SO(2) symmetry in the core leads to the Gold-
stone bosons—the modes in which the degeneracy
parameter, the axis of anisotropy b of the vortex core,
is oscillating. The homogeneous magnon condensate,
the HPD state, has been used to study the structure
and twisting dynamics of this non-axisymmetric core.
The coherent precession of magnetization excites the
vibrational Goldstone mode via spin-orbit interaction.
Moreover, due to spin-orbit interaction the precessing
magnetization rotates the core around its axis with
constant angular velocity. In addition, since the core
was pinned on the top and the bottom of the container,
it was possible even to screw the core (see Figs. 3

Fig. 2. Illustration of the lattice of solitons emerging
between the Alice strings (half-quantum vortices) in the

polar phase if 3He, when the magnetic field is tilted with
respect of the aerogel strands. The half quantum vortices
survive the soliton tension because they are pinned by the
strands. The NMR measurements give information on the
total length of the soliton and thus on the number of the
Alice strings in the cell.

volovik
Sticky Note
preferable

volovik
Sticky Note
this is correct

volovik
Sticky Note
of



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 131  No. 1  2020

COMPOSITE TOPOLOGICAL OBJECTS 15

and 4). Such a twisted core corresponds to the Witten
superconducting string with the electric supercurrent
along the core. The rigidity of twisted core differs from
that of the straight core, which is clearly seen in HPD
experiments (see Fig. 4).

Oscillations of the vortex core under coherent spin
precession also lead to the observed radiation of
acoustic magnon modes [33].

4.2. Alice Strings with KLS Wall
in Polar distorted B-Phase

In the vortices with asymmetric cores the equilib-
rium distance between the Alice strings is rather small.
The essentially larger KLS walls between the strings
have been observed in the B-phase in nafen [24] (see
Fig. 5). It appeared that the Alice strings formed in the
polar phase by rotation of the superfluid or by the Kib-
ble–Zurek mechanism, survive the transition to the
3He-B (actually to the distorted B-phase). They
remain pinned, in spite of the formation of the KLS
walls between them.

This allows us to study the unque properties of the
KLS wall. In particular, the KLS wall separates two
degenerate cvacua with different signs of the tetrad
determinant, and thus between the “spacetime” and
“antispacetime” [34].

5. COMBINED OBJECTS TO BE OBSERVED

5.1. Multi-Quantum Vortex as Closed Vortex Sheet

In the chiral superfluid, the superfluid velocity vs of
the chiral condensate is determined not only by the
condensate phase but also by the orbital triad , 

and :

(6)
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where m is the mass of the 3He atom. As distinct form
the non-chiral superfluids, where the vorticity is pre-
sented in terms of the quantized singular vortices with
the phase winding  = 2N around the vortex core,
in 3He-A the vorticity can be continuous. The contin-

Fig. 3. The vortex in 3He-B with the non-axisymmetric
core as a pair of Alice strings connected by Kibble–
Lazarides–Shafi wall. The HPD with its coherent preces-
sion of magnetization is used to twist the core. The vortex
with twisted core is analogous to Witten superconducting
string with the electric current along the string core [32].

Fig. 4. HPD absorbtion as the function of the tilting angle
 of magnetic field in case of the Witten strings with
twisted core (filled circles) and strings with untwisted core
(open circles). The estimated critical angle at which the
tilted field prevents twisting by HPD is in agreement with
experiment.

Fig. 5. The Alice string terminating the Kibble–
Lazarides–Shafi wall in the polar distorted B-phase in
nematical aerogel. Due to the pinning of Alice string by the
aerogel strands the KLS wall can be arbitrarily long: the
wall tension is unable to unpin the string. In addition to the
KLS wall there is also the soliton tail of the string. As a
result one has the triple object: KLS wall + Alice string +
soliton.
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uous vorticity is represented by the texture of the unit

vector  according to the Mermi-Ho relation [35]:

(7)

Experimentally the continuous vorticity is typically
observed in terms of skyrmions (or the Anderson–
Toulouse–Chechetkin vortices [36, 37]), see the
upper part of Fig. 8. Each skyrmion has  = 2 quanta
of circulation of superfluid velocity. The skyrmion can
be also presented as the combination of two merons
with  = 1 each.

In 1994 a new type of continuous vorticity has been
observed in 3He-A—the vortex texture in the form of
the vortex sheets [38–40], see Fig. 6 top with a single
vortex sheet in container. Vortex sheet is the topologi-
cal soliton with kinks, each kink representing the con-
tinuous Mermin-Ho vortex with  = 1 circulation of
superfluid velocity (Fig. 6 bottom).

In principle, using the vortex sheet one may con-
struct the continuous vortices with arbitrary even
number  = 2k circulation quanta. This is the soliton
forming the closed cylindrical surface, which contains

l̂
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 “quarks”—merons [41, 42] (see Fig. 7 left for
= 6). However, such multi-quantum vortices are

still waiting for their observation.

5.2. Monopoles, Necklaces and Monopole
Lattices with Alice Strings

Another object which is waiting for its observation
in 3He-A is the vortex terminated by hedgehog [44,
45]. This is the condensed matter analog of the elec-
troweak magnetic monopole and the other monopoles
connected by strings [46]. The hedgehog-monopole,
which terminates the vortex, exists in particular at the
interface between 3He-A and 3He-B. The topological
defects living on the surface of the condensed matter
system or at the interfaces are called boojums [47].
They are classified in terms of relative homotopy
groups [48]. Boojums terminate the 3He-B vortex-

1

1

Fig. 6. (top) Typical vortex sheet in 3He-A in rotating con-
tainer. It mimics the system of the equidistant cylindrical
vortex sheets suggested by Landau and Lifshitz for the
descrption of the rotating superfluid [43]. (bottom) The

element of the vortex sheet in 3He-A. The vortex sheet is
the soliton, which contains kinks in terms of merons. Each
meron has circulation quantum  = 1. There are different
scenarios in which the vortex sheets with different geome-
tries are prepared in the experiments (see [40]).

vS

vS

N = 1 N = 1 N = 1 N = 1 N = 1

1

Fig. 7. (left) The multi-quantized vortex can be stabilized
as the closed vortex sheet: cylindrical soliton with merons
[41]. The tension of the soliton is compensated by repul-
sion of vortices (merons). (right) The cosmic analog of this
composite object: cosmic necklace [53]. Monopoles
and/or antimonopoles are joined together by f lux tubes.

 

 l-field: N = 1 N = 1

N = 1

N = 1 N = 1

N = 1

Fig. 8. Skyrmion in the A-phase splits into two merons.
Each meron is terminated by boojum—the point topolog-
ical objects, which lives at the interface between A-phase
and B-phase. Boojum also plays the role of the Nambu
monopole, which terminates the string—the  = 1 vortex
on the B-side of the interface.

1
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strings with  = 1. The boojums do certainly exist on
the surface of rotating 3He-A and at the interface
between the rotating 3He-A and 3He-B [49] (see
Fig. 8). However, at the moment their NMR signa-
tures are too weak to be resolved in NMR experiments
in 3He. But the vortex terminated by the hedgehog-
monopole was observed in cold gases [50].

The HPD state has its own topological defects [51],
and among them are the spin and orbital monopoles
connected by string in Fig. 9.

In particle physics the monopoles terminating
strings are called Nambu monopoles [52]. Several
monopoles connected by strings may form the multi-
monopole objects, such as necklace in Fig. 7 (right)
[53]. This is similar to the vortex sheet necklace in
Fig. 7 (left).

In 3He-A the analogs of Nambu monopoles and
Alice strings may form the more complex combina-
tions. This is because the monopole serves as a source
or sink of  = 2 circulation quanta, and thus can be
the termination point of 4 Alice strings with  = 1/2
each. This in particular allows construct the 2D and
3D lattices of monopoles, in Fig. 10 and in Fig. 11 cor-
respondingly.

6. CONCLUSIONS

Here we considered several types of the topological
confinement. The composite topological objects were
experimentally observed in superfluid 3He by using
the unique phenomenon of HPD—the spontaneously
formed coherent precession of magnetization discov-
ered by the Borovik-Romanov group in Kapitza Insti-
tute. With HPD spectroscopy, two key objects have
been identified in 3He-B: spin-mass vortex [Z2 spin
vortex + soliton + mass vortex] and non-axisymmetric
vortex [Alice string + Kibble–Lazarides–Shafi wall +
Alice string]. One may expect the other more compli-
cated examples of the topological confinement of the
objects of different dimensions. The complicated
composite objects, such as nexus, live also in the
momentum space of topological materials [54].

1

1

1

Fig. 9. Spin and orbital hedgehogs connected by string in
magnon BEC (HPD), from [51].

 string

S L

    spin
hedgehog

  orbital
hedgehog

Fig. 10. Two dimensional lattice of monopoles (hedgeh-

gogs in the -field) joined together by Alice strings (half-
quantum vortices). Each monopole is the source or sink of
4 strings.

1

l̂

Fig. 11. Three dimensional lattice of monopoles (on sites
A) and anti-monopoles (on sites B), which are joined
together by Alice strings (half-quantum vortices).
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