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Abstract

Several different methods are established for the analysis of gases, including optical
spectroscopy, photoacoustic spectroscopy as well as colorimetric and resistive sensing, the
measurements systems are either too complex or have limited sensitivity. In particular, when the
goal is to apply a large number of sensors in networks, it is highly desirable to have devices that
are simple, have low cost and energy consumption, yet sensitive and selective to monitor
analytes even in traces. Herein, we propose a new type of resistive sensor device based on a
composite of single-wall carbon nanotubes and an ion-in-conjugation polymer, poly(1,5-
diaminonaphthalene-squaraine), capable of detecting H2S and NH3 in air even at room
temperature with a theoretical concentration limit of ∼1 ppb and ∼7 ppb, respectively. Density
functional theory calculations revealed that H atoms of the analytes and O atoms of the polymer
chain interact and form hydrogen bonds, and the electron withdrawal from the gas molecules by
the polymer chain results in the change of its electrical conductivity. To demonstrate the
feasibility of the new nanocomposites in sensing, we show the devices for monitoring food
safety with good sensor stability of operation for at least 3 months of period of time.

Supplementary material for this article is available online

Keywords: H2S/NH3 gas sensors, ion-in-conjugation polymers, polysquaraine, tunneling
composites, food quality monitoring

(Some figures may appear in colour only in the online journal)

1. Introduction

H2S and NH3 are important reactants of chemical processes.
For instance, H2S is applied in large quantities in oil refinery
for catalyst regeneration in hydrodesulfurization, in Kraft

paper pulping process, and in mining industry for precipitat-
ing metal cations [1]; whereas NH3 is an indispensable plat-
form chemical used for the production of e.g. nitric acid,
fertilizers and organic amines [2]. On the other hand, these
gases are also unpleasant concomitants of microbial decom-
position of proteins, and are present in sewage systems,
biogas and waste management plants, farms, as well as in

Nanotechnology

Nanotechnology 32 (2021) 185502 (10pp) https://doi.org/10.1088/1361-6528/abdf06

∗ Authors to whom any correspondence should be addressed.

0957-4484/21/185502+10$33.00 © 2021 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-9256-748X
https://orcid.org/0000-0002-9256-748X
https://orcid.org/0000-0003-2870-3229
https://orcid.org/0000-0003-2870-3229
https://orcid.org/0000-0002-9406-8596
https://orcid.org/0000-0002-9406-8596
https://orcid.org/0000-0003-0716-9557
https://orcid.org/0000-0003-0716-9557
https://orcid.org/0000-0002-7331-1278
https://orcid.org/0000-0002-7331-1278
mailto:kakos@chem.u-szeged.hu
mailto:krisztian.kordas@oulu.fi
https://doi.org/10.1088/1361-6528/abdf06
https://doi.org/10.1088/1361-6528/abdf06
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/abdf06&domain=pdf&date_stamp=2021-02-12
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/abdf06&domain=pdf&date_stamp=2021-02-12


food processing and storage facilities [3–5]. Both gases are
corrosive, highly flammable, can irritate the eyes and the
respiratory system (at 2 ppm and >30 ppm), can be even
lethal (at >500 ppm and >2500 ppm, respectively) [6–12],
and their presence in foods (together with organic sulfides and
amines) can indicate spoilage. Therefore, detecting and
monitoring such analytes have great economic value and play
important role in environmental and health safety.

Gas sensors are ubiquitous in health, environmental,
transport, infrastructure and industrial safety with continuously
growing number of devices due to the expansion of internet-of-
things. The ultimate gas sensors are sensitive, selective; and
preferably reversible, have long operation life, free of critical
elements, and recyclable or at least pose no risk when disposed
[13–15]. A large variety of gas sensors exist today including
for instance resistive, pellistor, chemical and photogated field-
effect transistor, gas ionization device, as well as infrared and
photoacoustic spectroscopy based measurement systems
among many others [16–20]. Each of these aforementioned
technologies has its benefits and disadvantages, however, when
it comes to low cost, simplicity, and feasibility to connecting
several devices into networks, probably resistive sensors are
the most promising candidates among all. Resistive chemical
sensing of H2S and NH3 has been studied for several materials
such as metal oxides [21–23], metal sulfides [24, 25], carbon
nanotubes [26, 27] and graphene [28–30]; however, CNTs and
graphene based sensors typically lack selectivity and good
recovery, whereas metal oxides work at elevated temperatures.
Although layered two-dimensional metal sulfide-based sensors
hold promise owing to their low temperature operation and
high sensitivity, the used transitional metals require proper
recovery after the end of life of the devices to maintain long
term sustainability and environmental safety.

In the recent years, organic semiconductor materials star-
ted to attract research interest in resistive gas sensing due to
their large molecular diversity, low cost, good mechanical
flexibility, potentially high chemical selectivity and operation
at room temperature. Although their versatile chemistry and
adjustable microstructure offer great freedoms to tune their
intrinsic electrical properties and selective interaction with
particular analytes [31–40], only very few materials families
have been reported so far. Like for other resistive gas sensors,
the sensing performance of organic materials depends largely
on the charge transfer from the interaction between analytes
and the polymer. The interactions may occur on the surfaces of
organic thin films but also in their bulk in case the polymer is
porous and/or easily permeable with the gas. The specificity
and strength of such noncovalent interactions (hydrogen
bonding, π–π stacking and van der Waals forces) determine the
variation of carrier density (and indirectly, the type of carrier
transport) in the polymer, and thus play critical role in gas
sensing [41, 42]. On the one hand, too weak dispersion forces
result in poor charge transfer and consequently poor sensitivity
and selectivity of the sensor. On the other hand, too strong
interactions limit desorption of analytes and can irreversibly
alter the chemical structure and electrical properties of the
polymer [40, 43, 44]. Therefore, a moderately strong reversible
bonding between the gas molecules and sensory materials is

critical for good sensing performance. In this regard, squaraines
that are resonance-stabilized zwitterionic (N+ and O−

) struc-
tures composed of a squaric ring and an arylamine can offer
ideal chemical sensing platforms. Such an ion-in-conjugation
structure can form hydrogen bonds but also ion-dipole inter-
actions of medium strength when exposed to target gases
[45–47]. Any charge transfer between the gas molecules and
the conjugated ion group of squaraine can modulate both the
electronic density and shape of the potential well populated by
the delocalized electrons thus influencing the local electrical
conductivity in nanoscopic volumes of the polymer. However,
as the major conduction mechanism in organic semiconductors
(and also in squaraine) is charge hopping, the conductivity of
the polymers is typically low, and the gas stimulus induced
change in the transport is quite limited [38]. To overcome
limitations of hopping based carrier transport, a plausible
approach is the application of conductive nanomaterial fillers
(e.g. metal nanowires, carbon nanotubes, graphene, MXenes)
in the polymer host to form composites. Furthermore, the
addition of fillers can increase the number of interacting sites
with the analytes, increase mobility of charge in organic
semiconductor or even enhance the affinity of the composite
for gas analytes [44, 48, 49].

Therefore, in this work, we synthesize and explore a new
polysquaraine (PDNS, poly(1,5-diaminonaphthalene-squar-
aine)) and its composites with single-wall carbon nanotubes
(SWCNTs) to detect gas analytes at room temperature in
chemiresistor-type sensing. The devices based on PDNS-
SWCNT composites with optimized composition were able to
detect H2S and NH3 at a calculated theoretical limit of ∼1 ppb
and ∼7 ppb, respectively, while showing no any response to
H2, CO and CH4, and only very small to NO. Devices tested
for over 3 months proved to have excellent gas response with
good repeatability and stability, and were shown to be fea-
sible for monitoring changes of food quality upon storage.
Furthermore, we performed simulations to reveal the inter-
action and charge transfer between the polymer and analytes.

2. Materials and methods

Materials and characterization: Single wall carbon nanotubes
(SWCNTs), 1,5-diaminonaphthalene, squaric acid, n-butanol
and acetone were ordered from Sigma Aldrich. X-ray pho-
toelectron spectroscopy measurements were performed with a
Thermo Fisher Scientific Escalab 250 XI system with an Al
Kα source. Raman spectra was performed by Horiba Jobin-
Yvon Labram HR800 UV–vis μ-Raman instrument
(λ=448 nm excitaion). The thermal gravimetric analysis
(TGA, Setaram Labsys) was carried out with a 10 °Cmin−1

from room temperature to 800 °C. The microstructure of the
synthesized material was studied by field-emission scanning
electron microscopy (FESEM, Zeiss ULTRA plus). Infrared
spectra were recorded on a Bruker Vertex 70 FT-IR unit in
transmission mode. Samples were homogenized in KBr
matrix and measured against a pure KBr background.

Synthesis of poly(1,5-diaminonaphthalene-squaraine)
(PDNS): 1,5-diaminonaphthalene 790 mg (5 mmol) and
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squaric acid 570 mg (5 mmol) were dissolved in 35 ml
n-butanol in a flask. The mixture was then refluxed and stirred
at 120 °C for 16 h. After being cooled to room temperature,
the mixture was filtered and washed using acetone and
deionized water 10 times. The obtained PDNS was dried in an
oven at 80 °C for 24 h. The product was obtained as a dark
green powder.

Preparation of PDNS/SWCNT composites: SWCNT and
PDNS with mass ratios of 2, 5, 10, 20, 50 and 70 wt% (noted
as PDNS-1, PDNS-2, PDNS-3, PDNS-4, PDNS-5 and PDNS-
6 respectively) were dispersed in 5 ml ethanol separately
using ultrasonication for 1 h and then mixed and stirred for
another 1 h at room temperature. Finally, the composite was
collected by vacuum filtration.

Sensor preparation and measurements: 20 mg of com-
posite was mixed with 0.5 ml of absolute ethanol to form a
paste, which was then brush-coated onto an Al2O3 substrate
(14 mm×7 mm) printed with five pairs of Ag–Pd inter-
digitated electrodes (both electrode distance and width were
200 μm) to form a film, and dried at 70 °C for 2 h. The change
of sensor resistance was monitored in a Linkam THMS600
heating and freezing stage connected to an Agilent 3458 A
multimeter at 5 V of constant bias. Different concentrations of
H2S, NH3, NO, CH4, CO and H2 were set by LabView driven
mass flow controllers. Dry synthetic air (AGA, 20.9% O2 and
79.1% N2 at a purity of 5.0) was used as a carrier to dilute
these gasses to the desired concentrations and the operating
temperature was maintained at near room temperature
(30 °C). Exposure periods of 10 min gas pulses, and purging
for 30 min between each pulse were applied. The total gas
flow rate was set to 500 ml min−1 in each experiment. Sensor
response is calculated as ( – )/R R Rg 0 0×100%, where Rg and
R0 are the resistance of the sensors with and without gas
exposure.

Density functional theory calculations (DFT) were per-
formed based on GGA- UBLYP/DNP implemented in
DMol3 code. Intermolecular weak interactions were semi‐
empirically corrected by Tkatchenko–Scheffler scheme [50].
Different adsorption modes were optimized until converging
within a criteria of 1×10−5 eV in energy and 0.02 eV Å−1 in
residue force. The Hirshfeld partitioned scheme was applied
to analyze charge populations.

3. Results and discussion

3.1. Materials properties

PDNS was synthesized through the condensation between
squaric acid (SA) and 1,5-diaminonaphthalene in equimolar
ratio in n-butanol under reflux for 16 h [51]. The zwitterionic
resonance structure is shown in figure 1.

Fourier-transform infrared spectroscopy of the product and
the reactants in figure 2(a) shows the −NH2 and −OH stret-
ches of reactants disappear and new peaks of−NH− stretching
emerges in the product indicating the successful reaction of
1,5-diaminonaphthalene and squaric acid, i.e. the formation of
PDNS. The characteristic strong absorption peak at 1609 cm−1

in PDNS is a result of the zwitterionic resonance of the
cyclobutene 1,3-diolate anion moiety. The peak at 1544 cm−1

originates from the C=C stretching vibrations of four-mem-
bered ring. A small peak at 1791 cm−1 is assigned to the ring
breathing of the cyclobutene, and the peak at 1703 cm−1 means
the small amounts 1,2-squarate repeat unit in the polymer chain
[52, 53]. Since the intrinsic electrical conductivity of PDNS
was found rather small (out of the measurement limit of our
setup), we dispersed SWCNTs on the nanoplate shaped PDNS
particles (figure 2(b)) with different mass ratios from 2 to
70 wt% and then dispensed the powders onto ceramic chips
having printed Ag–Pd interdigital electrodes to form resistive
chemical sensor devices (figure 2(c)). According to the FT-IR
spectra, the addition of SWCNTs to PDNS does not change the
chemical structure.

X-ray photoelectron spectra reveal the N 1s of 1,5-diami-
nonaphthalene at 398.6 eV, which shifts to ∼400 eV and can be
resolved with two peaks at 399.8 and 400.2 eV after the reaction
with squaric acid indicating the presence of −NH− [54] and
−N+H=[55] groups in the polymer chain, respectively (figure
S1(a) (available online at stacks.iop.org/NANO/32/185502/
mmedia)). The Raman spectrum of PDNS lacks any peaks i.e.
the polymer is amorphous, whereas in the composite we find the
characteristic radial breathing mode as well as in-plane (G) and
out-of-plane (D) vibration modes of SWCNTs (figure S1(b)).
Thermogravimetric analysis (TGA) of the samples indicates
high thermal stability of both PDNS and the PDNS/SWCNT
composite with an onset of 5% weight loss at 272 °C and
262 °C, respectively (figure S1(c)). The SWCNTs are well

Figure 1. Synthetic route of PDNS, and the scheme of its zwitterionic resonance structure.

3

Nanotechnology 32 (2021) 185502 J Zhou et al

http://stacks.iop.org/NANO/32/185502/mmedia
http://stacks.iop.org/NANO/32/185502/mmedia


dispersed in the composite as illustrated by scanning and
transmission electron micographs shown in figure S2.

3.2. Gas sensing properties

Based on results of preliminary gas exposure experiments,
NH3 was found to induce the highest sensor response, thus we
selected this analyte to optimize the composition of the sen-
sing material. Composites of SWCNTs and PDNS with 6
different mass ratios (2, 5, 10, 20, 50 and 70 wt%, noted as
PDNS-1, PDNS-2, PDNS-3, PDNS-4, PDNS-5 and PDNS-6)
were prepared, and their sensing performance towards NH3

(from 500 ppb to 10 ppm) buffered in synthetic air were

measured. The resistance of composites increases as exposed
to NH3 suggesting p-type semiconducting behavior. The
response of sensors shown in figures 3(a)–(f), were found to
be the largest for PDNS-3 (1.2 to 2.1-fold compared to other
composites with different SWCNT concentrations, as dis-
played in figure S3) thus we continued our study using the
PDNS-3 composite. Screening of sensors to various analytes
showed high response for H2S and NH3, very moderate for
NO, and practically no any for H2, CO and CH4. The
increased resistance upon exposure to the reducing H2S with a
similar trend to the also reducing NH3, and decreased resist-
ance on the oxidizing NO gas confirming the p-type semi-
conducting behavior of the composite (figure 3(g)).

Figure 2. (a) FT-IR spectra of reactants, PDNS and the composite of PDNS/SWCNT. (b) SEM image of the composite and (c) optical picture
of the sensor chip with brush coated composite.

Figure 3. Transient responses curve of sensors based on PDNS-SWCNT composites with SWCNT concentrations of (a) 2 wt%, (b) 5 wt%,
(c) 10 wt%, (d) 20 wt%, (e) 50 wt.% and (f) 70 wt% measured for NH3 at concentrations of 500 ppb, 1 ppm, 5 ppm, and 10 ppm. (g) Gas
response of PDNS-3 composite (10 wt% SWCNT) to various analytes in air buffer.
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Because of the high response to H2S and NH3, we ela-
borated the measurements using these gases at concentration
from 25 ppb to 1 ppm and from 500 ppb and 10 ppm,
respectively. The change of sensor resistance upon the gas
pulses in air buffer at the applied analyte concentrations (i.e.
the R(c) curves) are well defined as shown in figures 4(a) and
(d). Based on these R(c) curves, we calculate the responses of
the sensors using two methods (figure S4). In the first, we use
the initial sensor resistance R0 to normalize the change of
resistance, i.e. (Rg–R0)/R0, whereas in the other, we consider
also the background drift (Rg–R0

*
)/R0

*
. Now, by plotting both

types of response data for both H2S and NH3 as a function of
analyte concentrations, we find the obtained calibration
curves are nonlinear and follow power functions with frac-
tional exponents similar to those for heterogeneous adsorption
(Freundlich model) as displayed in figures 4(b) and (e).
Accordingly, the highest sensitivity values appear at low
analyte concentrations, and are 1.3% ppm−1 for NH3 and
8.2% ppm−1 for H2S. Experiments with gas mixtures show
that analytes inducing small sensor response (H2, CO or CH4)

are not influencing the response either when introduced in the
gas chamber simultaneously with H2S or NH3. On the other
hand, NO that causes small but opposite sensor response as
compared to the other analytes in single analyte experiments,
changes the sensor response considerably, when introduced
together with H2S or NH3. We hypothesize that NO having
oxidizing character, reacts with or helps in repelling the
adsorbed H2S or NH3 from the surface thus resetting the
sensor. It is also interesting to note that adding a short pulse of
1 ppm NH3 to a long pulse of 1 ppm H2S (or vice versa) the
responses are superposed on each other (both gases increase

resistance in a similar degree), which means that the com-
posite cannot distinguish these two gases from each other
(figure S5).

Reproducibility is a critical key performance indicator of
gas sensor operation. As shown in figures 4(c) and (f) (and in
figures S6 and S7), repeated gas pulses produce nearly
identical responses. The slight baseline drift and not entirely
complete recovery of the sensors within the time periods
(30 min) between subsequent pulses can be improved by
increasing the operating temperature (figure S8) or by
applying higher flow rates of the flushing gas after the analyte
pulses (figure S9) [56]. The noise of the R(c) curves is visibly
low, which is due to the improved conductivity of the com-
posite. Consequently, the theoretical limit of detection, which
is calculated from the root mean square deviation of base line
data and the sensitivity of the sensor (figure S10), as low as
7.4 ppb for NH3 and 0.8 ppb for H2S [57]. Such values are
lower than those reported for most other sensing materials as
listed in the Tables S1 and S2.

To study the effect of operating temperature on the
sensing performance, we analyze the response for 1 ppm H2S
and also for 1 ppm NH3 up to 150 °C [figure 5(a)]. The
response of the sensors slightly improves with the increase of
the working temperature and after an optimum at 70 °C it
decreases. The presence of an optimum operation temperature
indicates that several events compete with each other and
influence the mechanism of sensing. Usually, increased
temperatures cause higher charge transfer efficiency at inter-
faces, and also help gas molecules diffusing deeper into the
bulk of the sensing material [58, 59] thus influencing the
sensor response/operation. On the other hand, too high

Figure 4. Transient gas response curves of PDNS-3 for the detection of (a) H2S from 50 ppb to 1 ppm, and (d) NH3 from 500 ppb to 10 ppm
with their corresponding plots of the responses and calibration curves in panels (b) and (e). Repeatability of response curves measured for (c)
25 ppb H2S and (f) 500 ppb NH3.
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temperatures may compromise adsorption of analytes and
interaction of the active sites with those thus reducing the
sensitivity [60]. Besides, the recovery of the sensor at 70 °C is
better than that at 30 °C and 50 °C, which is reasonable
considering the favored analyte desorption process upon
flushing with the carrier gas [61]. Furthermore, as shown in
figures 5(b) and (c), the sensors have good long term stability
measured for over 3 months periods indicating the feasibility
of the devices for practical applications.

3.3. Mechanism of sensing

To study the mechanism of sensing with our composite, we
assessed the adsorption sites, binding positions and energies
of analytes on PDNS (employed by using one repeat unit in
PDNS chain) using DFT calculations, and then estimated the
degree of the eventual charge by applying the Hirshfeld
scheme. Several different adsorption models of H2S and NH3

on PDNS chain were surveyed and listed in figures 6(a), (b)
and S11. According to the various possible adsorption modes,
the ones with hydrogen bonding were showing the largest
binding energies with 0.53 eV for H2S and 0.71 eV for NH3.
Therefore, we may assume that upon exposure of PDNS to
H2S or NH3, the O and H atoms of the amide in the polymer
chain act as active sites, which form double hydrogen bonds
with H and S atoms of H2S (or sulfide) or with N and H atoms
of NH3 (or amine). The moderate adsorption energy of NO
(0.34 eV) and the very weak binding with H2 (0.05 eV), CO
(0.12 eV) and with CH4 (0.07 eV) seem to correlate reason-
ably well with the observed experimental sensor response to
these gases (table 1). It is worth noting here that NO forms a
single H-bond, which can also explain the moderate sensor
response to this analyte. Furthermore, one may speculate that
the Lewis acid/base character of the reactants plays a role in
the sensing mechanism viz. both H2S or NH3 can be con-
sidered as Lewis bases donating their dative electron pairs to
the polymer, whereas NO as an acid acts oppositely in qua-
litative agreement with the sensor response data.

Apart from the intrinsic gas sensing behavior of the
polymer, carbon nanotubes present in the composites can also
contribute to sensing in several ways. Firstly, CNTs them-
selves can detect NH3 [62] and somewhat H2S [63] and NO
[64]. Secondly, in the PDNS-SWCNT composite, the nano-
tubes can extend the local electric field induced by the

adsorbed analytes in the polymer. Thirdly, electrical transport
across the tunneling junctions between adjacent SWCNTs in
the percolating network may be influenced by the adsorbed
moieties on the polymers. In a simplified picture, the tun-
neling barrier for electrons depends on the position of the
LUMO (and for holes on the HOMO) level of the polymer,
which shifts upon gas adsorption, consequently changes the
tunneling probability. This effect can be significant, since the
probability of tunneling [65] through the junction (P) is an
exponential function of the barrier height (Ф) as

Ф /= - P e ,d m2 2 where d is the width of junction and m is
the mass of electrons [66–69].

It is important to note here, that SWCNTs added in too
high concentration in the composite reduce the gas sensitivity
of the sensors (in our case, above 10 wt%), since direct
electronic transport is enabled through well-percolated three-
dimensional networks of highly conductive metallic nano-
tubes, which practically shunt the highly resistive tunneling
junctions. In such composites, the sensing behavior is limited,
and the mechanism is expected to be close to those in pristine
and polymer decorated or functionalized CNT networks. To
demonstrate the extreme condition, we measure sensing with
sensors based on purely SWCNT networks (figure S12),
whose gas response is clearly inferior compared to the PDNS-
SWCNT composites.

3.4. Sensor application

The freshness of foods with protein content may be monitored
by analyzing their decomposition products such as volatile
amines and sulfides in the headspace of packaging. Since our
sensors have proven to be suitable for detecting NH3 and H2S
in minute concentrations, we assess whether or not any sensor
response would be visible upon measuring the headspace of
containers having meat in those (figure S13). Since our sensor
material detects both NH3 and H2S, which are expected to
coexist upon meat degradation, the headspace of the container
we apply desiccants to eliminate either of the decomposition
products. Namely, to detect NH3 (and amines) pastilles of
NaOH are applied to adsorb and react with H2S, whereas for
the detection of H2S (and sulfides) powder of P2O5 is used to
eliminate NH3. Sensor response data collected for 4 d are
compared to the corresponding calibration curves shown in

Figure 5. (a) The temperature effect on the sensing response (%). (b) Sensor response for H2S, and (c) repeated measurement after 3 months
of storage in air.
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figure 4 to estimate the concentrations of the decomposition
products (figure 7). The results suggest that after closing the
container, a stabilization period of 12 h is needed, after which
the resistance is gradually increasing. After 48 h, the increase
of sensor response is pronounced for both types of setups,
which indicates that the concentrations of both NH3 (and
amines) and H2S (and sulfides) have become significantly
elevated from 0.8 to 2.2 ppm per gram meat for NH3, and
2.1–8.3 ppm per gram meat for H2S. After 4 d, the con-
centration of NH3 and H2S are 70 times and 163 times of that
compared to the 0 d, respectively.

4. Conclusions

A new polysquaraine, poly(1,5-diaminonaphthalene-squar-
aine) was synthesized and compounded with single-wall
carbon nanotubes to explore its resistive gas sensing proper-
ties. Sensors with optimized polymer to nanotube ratio were
found to be highly sensitive H2S and NH3 with a theoretical
limit of detection of ∼1 ppb and ∼7 ppb, respectively, while
showing practically no any response to H2, CO and CH4, and
only very small to NO. The experimental results are sup-
ported well with DFT simulation data suggesting double
hydrogen bonding formation between the polymer chain and
NH3 or H2S. The demonstrated devices showed good stability
for at least 3 months of testing period, and proved to be
suitable for monitoring the decomposition products of pro-
teins in food packages upon storage.

Our results support previous findings [45–47, 70] on the
highly sensitive nature of polysquaraines, and prompts the
design of new polymers having ion-in-conjugation structure.
Our work also indicates that the addition of conductive fillers
(here SWCNTs) can sufficiently improve electrical transport
thus making an even poorly condicting polymer a sensing
material of practical relevance.

Figure 6. Simulated adsorption of (a) H2S, (b) NH3 (c) H2, (d) CO, (e) CH4 and (f) NO on PDNS.

Table 1. The bonding length, binding energies and charge transfer of
different analytes adsorbed on PDNS.

Analyte
Bonding
length (Å)

Binding
energy (eV)

Charge transfer
(e−)

H2S 1.96/2.31 0.53 0.03
NH3 1.89/1.94 0.71 0.08
H2 2.30 0.05 0.05
CO 2.56 0.12 0.02
CH4 2.18 0.07 0.07
NO 2.10 0.34 0.05
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Furthermore, preliminary measurements in gas mixtures
show that H2, CO or CH4 are not affecting the sensor
response to H2S or NH3. When NO is added to H2S or to NH3

it resets the sensor. On the other hand, the response to NH3

added to H2S (or other way around) superposes on the other
response thus it is not possible to distinguish these two gases
in their mixtures. Accordingly, to fully exploit the advanta-
geous sensing propeties of the reported composites, further
exploration of sensing in analyte mixtures is needed, and
should be combined with systematic data processing e.g.
principal and multi-component analyses, pattern recognition
and machine learning [71–74].
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