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Abstract

To estimate how extensively the ensemble of denatured-state conformations is constrained by local side-
chain–backbone interactions, propensities of each of the 20 amino acids to occur in mono- and dipeptides
mapped to discrete regions of the Ramachandran map are computed from proteins of known structure. In
addition, propensities are computed for the trans, gauche−, and gauche+ rotamers, with or without consid-
eration of the values of phi and psi. These propensities are used in scoring functions for fragment threading,
which estimates the energetic favorability of fragments of protein sequence to adopt the native conformation
as opposed to hundreds of thousands of incorrect conformations. As finer subdivisions of the Ramachandran
plot, neighboring residue phi/psi angles, and rotamers are incorporated, scoring functions become better at
ranking the native conformation as the most favorable. With the best composite propensity function, the
native structure can be distinguished from 300,000 incorrect structures for 71% of the 2130 arbitrary protein
segments of length 40, 48% of 2247 segments of length 30, and 20% of 2368 segments of length 20. A
majority of fragments of length 30–40 are estimated to be folded into the native conformation a substantial
fraction of the time. These data suggest that the variations observed in amino acid frequencies in different
phi/psi/chi1 environments in folded proteins reflect energetically important local side-chain–backbone
interactions, interactions that may severely restrict the ensemble of conformations populated in the dena-
tured state to a relatively small subset with nativelike structure.

Keywords: Amino acid propensities; rotamers; denatured state; side-chain–backbone interactions; Ram-
achandran plot; threading

The ensemble of conformations adopted by polymers in
solution is strongly influenced by interactions between ad-
jacent monomers (Flory 1969). These local interactions
were analyzed in proteins by Ramachandran and colleagues
(Ramachandran and Sasisekharan 1968), who mapped out
many of the steric clashes that restrict the backbone angles
of polypeptide chains. Their work accurately anticipated the
range of phi/psi values found in native structures by X-ray
crystallography. From simple-steric arguments, it is clear

that special consideration must be given to the amino acids
proline and glycine, whose side chains impose steric con-
straints quite different from those of the other 18 naturally
occurring amino acids. These constraints are clearly re-
flected in the patterns of phi/psi angles adopted by these two
residues in high-resolution structures (Richardson and
Richardson 1989).

Although much less dramatic than proline and glycine,
the other 18 amino acids also display nonuniform distribu-
tions in phi/psi angles, most easily seen in the three types of
local backbone structure: alpha helix, beta strand, and turn.
Chou and Fasman (1974) quantified these patterns by cal-
culating propensities for the amino acids to occur in these
three structures and found approximately two- to threefold
variations in their values between the nonglycine, nonpro-
line amino acids. With these propensities and a few simple
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rules, they were able to predict with modest accuracy the
secondary structure of protein segments from amino acid
sequence. More detailed examination of the distributions of
phi/psi angles, either in the context of repeating secondary
structure or not, has revealed variations in the propensities
of different amino acid types to occupy different subdivi-
sions within the large �-sheet region of the Ramachandran
map (Munoz and Serrano 1994; Swindells et al. 1995). Pre-
sumably these variations, like those observed in the alpha,
beta, and turn propensities, reflect relatively subtle interac-
tions between the side chain (the only variable from one
amino acid type to another) and the two peptide bonds that
flank it.

Considerable experimental and theoretical work since
Chou and Fasman has been directed toward more fully
quantifying the secondary structural propensities of the 20
amino acids and explaining their physical chemical origin.
Although a variety of chemical mechanisms have been em-
phasized over the years, there is general agreement that
structural propensities arise primarily from repulsive inter-
actions (i.e., avoidance of steric overlap [Creamer et al.
1995; Srinivasan and Rose 1999; Street and Mayo 1999),
with perhaps a smaller component due to attractive interac-
tions involving dispersion forces (Yang and Honig 1995a,b)
or burial of nonpolar surface (Blaber et al. 1993). As
pointed out by Creamer and Rose (1992), the backbone of a
polypeptide chain will adopt values of phi/psi that maximize
the configurational entropy of the side chains.

Although steric repulsion is probably the dominant inter-
atomic force shaping the structure of molecules, calculation
of the reduction in conformational entropy that arises from
clashes between neighboring monomers in a polymer chain
is an exceeding difficult problem (Flory 1969). Conse-
quently, there is no clear picture as to how great a role these
short-range interactions play in constraining the conforma-
tions accessible to a protein chain as it folds. The principal
question addressed here is, How severely is the ensemble of
denatured conformations restricted by local steric effects?
Recent work from this laboratory has shown the persistence
of nativelike long-range structure in a denatured protein in
8M urea (Shortle and Ackerman 2001), conditions that
greatly reduce hydrophobic interactions and increase the
exposure of the peptide backbone to solvent. These findings
raise the possibility that long-range structure may not de-
pend entirely on long-range interactions, but instead may
arise through the cumulative effects of many local interac-
tions between each amino acid and its immediate neighbors
(Pappu et al. 2000).

Below is a preliminary attempt to utilize the nonuniform
distributions of phi/psi values of the 20 amino acids ob-
served in folded proteins to estimate the relative importance
of side-chain–backbone interactions in shaping protein
structure. Beginning with the Boltzmann hypothesis (Sippl
1993; Finkelstein et al. 1995) that these skewed distribu-

tions reflect the free energy of placing a side chain in a
specific backbone environment, statistical potentials are
generated from a large library of protein structures and used
to estimate the free-energy difference between native and
incorrect structures. By adding together several propensities
involving only one or two adjacent amino acid residues,
simple scoring functions can be constructed that, for frag-
ments of 40 residues, can correctly identify the one native
conformation out of a total of 300,000 conformations with
an accuracy of up to 70%.

Results

Calculation and use of composite propensity functions

To generate scoring functions for estimating the energetics
of side-chain–backbone interactions, several local structural
propensities are calculated. The only structural parameters
used to represent local interactions are the backbone dihe-
dral angles phi and psi and the side-chain dihedral angle
chi1. If X represents a discrete environment characterized by
one or more of these parameters and B a particular amino
acid type, a propensity P can be defined as

PB,X � (number of B with value X/number
of B)/(number of amino acids with
value X/number of amino acids).

Thus, the propensity is a measure of the likelihood that
amino acid B will be found in an environment described by
X. A propensity >1.0 indicates that B is favored relative to
the mean of all 20 amino acids; whereas a propensity <1.0
indicates it is disfavored. Inherent in its definition, a pro-
pensity is a relative measure of preference, and thus is al-
ways normalized to an average or mean residue type. A
probability, on the other hand, is a measure of the absolute
likelihood that an amino acid will adopt one out of a speci-
fied set of structures. A probability is not normalized to
other amino acids and can be defined as

pB(x) � number of B with value of X/number of B.

Note that a propensity is the ratio of two probabilities.
For phi/psi values, propensities are calculated for single-

residue positions assigned to discrete regions or states of the
Ramachandran plot, as shown in Figure 1. These propensi-
ties are designated by pN, where N is the number of discrete
phi/psi states employed. For adjacent pairs of residue posi-
tions or dipeptides, propensity pairs are also calculated us-
ing discrete states. These propensities are designated
pN1xN2, where N1 designates the number of discrete phi/psi
states describing residue i, and N2 the number of states
describing both i+1 and i-1.

Composites of local structural propensities
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For chi1 values, probabilities are calculated for the states
trans, gauche+, and gauche−, corresponding to values −120
to +120, 0 to +120, and 0 to −120, respectively. When
phi/psi angles are ignored, the resulting backbone-indepen-
dent rotamer probabilities are designated r0 and are found to
be in good agreement with those reported by Ponder and
Richards (1987). When the rotamer states are analyzed for
residues assigned to N discrete phi/psi states, backbone-
dependent rotamers (Dunbrack and Karplus 1993) are des-
ignated rN.

The propensity of each amino acid is treated as an equi-
librium constant for partitioning that side chain into the
corresponding local environment. Thus, the logarithm of the
propensity approximates the free energy of exchanging an
average side chain with a specific one. The free energy for
each residue position is assumed to be additive, so the score
for a sequence fragment is the sum of the log of the pro-
pensities at each position. In some cases, composite propen-
sities are used. Because these propensities can be viewed as
representing different steric interactions, the simple as-
sumption is made that these interactions are independent,
allowing logarithms of the propensities to be added to form
a composite.

The additional assumption is made that native structure of
each fragment corresponds to a global minimum in free
energy. Therefore, if the native structure achieves a better
score than all other conformations sampled for a sequence
fragment, it follows that the scoring function probably con-
tains important components of the true energy function. The
odds of identifying the native structure by chance should be
proportional to the inverse of the number of conformations
sampled. Thus, the initial focus of this work is to identify
the composite propensity function that most consistently
assigns the best score to the native conformation.

The library of protein structures used in this work con-
sists of 1700 protein structures from the VAST nonredun-
dant database (Madej et al. 1995). This combined set of
proteins is divided at random into a training set of 1579
structures (93%) for calculation of propensities/probabilities
and a test set of 121 structures (7%), listed in Materials and
Methods, for generating sequence fragments for analysis.
The training set provides structural information on a total of
332,768 amino acid positions.

Using all 121 proteins in the test set, four series of se-
quence fragments (lengths of 10, 20, 30, and 40 residues)
are constructed, starting with residue 3 and ending at or
before 3 residues prior to the carboxyl terminus. Succes-
sive fragments obtained from one protein overlap by 10
residues; so the first fragment begins at residue 3, the next
at residue 13, then residue 23, and so on, until no more of
that length can be generated. In this way, standard lists
of arbitrarily chosen fragments are produced from the
proteins in the test set, consisting of 2130 fragments of
length 40, 2247 of length 30, 2368 of length 20, and 2489
of length 10.

To evaluate the energetics of each sequence fragment
arranged in a large number of alternative conformations, it
is threaded through simplified linear representations of all
1700 proteins in the combined set. Thus, the set of nonna-
tive conformations sampled by each sequence fragment
consists of ∼300,000 structural fragments taken from known
proteins. Whereas this represents a small sample of confor-
mation space, it has the advantage of high computational
efficiency and provides a very broad, albeit coarse-grained
sampling over a substantial portion of conformation space.
During threading, a running collection is kept of the 300
best-scoring fragments, along with their proteins of origin
and their end points.

Fig. 1 .The major regions of the Ramachandran plot and the subdivisions used in this work. The p4 propensities used subdivisions
alpha, beta, L-helix, and � combined with other. The p6 propensities were B0, P0, alpha, L-helix, �, and other. The p9 propensities
were B1, B2, P1, P2, A1, A2, L-helix, �, and other. The p12 propensities were �1, �2, �3, p1, p2, p3, �1, �2, �3, L-helix, �, and
other. The p15 propensities were L1, L2, L3, m1, m2, m3, r1, r2, r3, �1, �2, �3, L-helix, �, and other.
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Single-peptide propensities

The two-dimensional space defined by angles phi and psi
(i.e., the Ramachandran plot) is partitioned into 10-degree-
by-10-degree squares and grouped into allowed regions us-
ing approximately the same boundaries employed by Swin-
dells et al. (1995). These regions are further subdivided as
shown in Figure 1 to represent the entire plot by 4, 6, 9, 12,
or 15 discrete states. The areas covered by these five rep-
resentations are given in the Figure 1 legend.

Propensities for each of the 20 amino acids are computed
from the training set. (The propensities for the 15-state rep-
resentation p15 are listed in Table 1.) For use in scoring
functions, propensities <0.03 are set to the value of 0.03
before taking the logarithm. All proteins in the combined set
are reduced to a one-dimensional vector, with each residue
position assigned a single numerical value based on the
region of the discrete Ramachandran plot to which it is
mapped. This value, plus the amino acid type, serve as
indices to recover the logarithm of the amino acid propen-
sity for scoring each residue position during threading.

The score of the native conformation is compared to the
scores for the incorrect conformations and its relative rank-
ing determined. The fraction of fragments of length 40 that
ranked as either the best 1 or within the top 0.1% (300 out
of 300,000) are shown in Figure 2 for the p4, p6, p9, p12,
and p15 propensities. Each increment in the number of dis-
crete states representing the Ramachandran plot yields a
scoring function that more consistently assigns the best
score to the native conformation. Although only 1.0% (21/
2130) of fragments are identified as having the most favor-

able score with the 4-state representation, this value in-
creases to 19.8% (421/2130) for the 15-state map. Similarly,
the percentage of fragments that rank within the top 0.1%
climbs from 20.8% to 61.7%.

A similar analysis for fragments of length 10, 20, and 30
residues is presented in Figure 2 and clearly shows that all
scoring functions become less discriminating with shorter
fragments. Presumably, scores for shorter fragments contain

Table 1. The p15 propensities for the 20 amino acids

Amino acid No. �1 �2 �3 L1 L2 L3 m1 m2 m3 r1 r2 r3 LH +� Other

ALA 27574 0.669 1.11 1.44 0.931 1.08 0.828 0.518 0.538 0.529 0.762 0.996 0.744 0.307 0.288 0.746
ARG 16858 1.04 1.03 1.2 0.88 1.24 0.968 0.85 0.882 0.921 0.578 0.846 0.812 0.582 0.256 0.996
ASN 15025 2.35 1.09 0.655 1.07 0.65 2.68 1.01 0.667 2 0.899 0.791 2.13 2.53 0.266 1.48
ASP 19487 2.06 1.16 0.881 0.822 0.469 2.07 0.926 0.537 2.01 1.25 1.05 2.51 1.17 0.321 1.19
CYS 5714 0.945 0.878 0.704 1.79 1.28 1.89 1.52 1.23 1.46 1.13 1.21 1.38 0.5 0.226 1.12
GLN 13183 1.07 1.15 1.26 0.64 1.06 1.12 0.876 0.84 0.847 0.609 0.783 0.778 0.655 0.176 0.9
GLU 21803 0.787 1.25 1.37 0.517 0.852 0.828 0.598 0.727 0.697 0.484 0.866 0.881 0.473 0.204 0.977
GLY 24889 0.621 0.482 0.432 1.75 0.388 0.284 1.52 0.206 0.184 1.73 0.297 0.395 7.07 10.9 1.91
HIS 7645 1.55 1.05 0.832 1.28 1.34 2.06 0.862 0.926 1.64 0.629 0.849 1.05 1.04 0.312 1.32
ILE 18776 0.511 0.561 1.09 0.487 1.21 0.747 0.747 2.19 1.59 0.237 0.873 0.795 0.049 0.0825 0.659
LEU 29746 0.885 1.07 1.29 0.299 0.673 0.619 0.781 1.29 1.03 0.521 0.945 0.879 0.198 0.124 0.712
LYS 20187 0.977 1.13 1.17 0.62 0.984 0.949 0.898 0.856 0.857 0.61 0.949 0.904 0.785 0.269 1.07
MET 6905 0.965 1.06 1.23 0.931 1.31 1.23 0.694 0.982 0.96 0.524 0.842 0.815 0.33 0.234 0.668
PHE 13109 1.2 0.772 0.952 1.65 1.42 1.14 1.06 1.44 1.5 0.465 0.829 0.841 0.465 0.143 0.841
PRO 15701 0.474 1.38 0.621 0.013 0.007 0.006 0.278 0.071 0.0997 4.38 3.82 2.4 0.006 0.0205 0.697
SER 20111 1.01 1.43 0.745 2.05 1.44 1.13 1.47 0.731 0.635 2 1.02 0.725 0.475 0.436 1.11
THR 19156 1.32 1.09 0.761 1.84 1.42 0.751 2.51 1.32 0.746 1.48 0.792 0.442 0.152 0.192 1.11
TRP 4725 1.02 1.04 1.08 1.44 1.05 1.16 0.941 1.21 1.09 0.542 1.02 0.828 0.277 0.15 0.639
TYR 11868 1.24 0.781 0.915 1.75 1.53 1.12 1.23 1.41 1.24 0.521 0.848 0.669 0.402 0.147 0.976
VAL 23464 0.421 0.572 0.955 0.74 1.57 0.789 0.895 2.28 1.37 0.275 0.887 0.73 0.065 0.0935 0.689

The column headings correspond to subdivisions of the Ramachandran plot shown in Figure 1.

Fig. 2. Fraction of 2140 sequence fragments of length 40 for which the
native conformation ranked (A) No. 1 (i.e., with the best score) or (B) in the
top 0.1% of conformations (300 per 299,779). The score consisted of the
sum of the logarithm of the single-peptide propensities, pN, where n � 4,
6, 9, 12, 15, or the Bryant and Lawrence (1993) empirical pair potential
score (energy).
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more statistical noise; whereas longer fragments, with the
summation of more terms, will more effectively average out
the noise. However, since the number of possible confor-
mations is smaller for short fragments, threading through a
fixed set of proteins will generate a more complete sampling
for these sequences.

Although there is no rigorous way to quantify the contri-
bution of long-range, as opposed to short-range, interac-
tions, empirical potentials for pairs of amino acids separated
by varying distances have been shown to be effective in fold
recognition (Moult 1997; Vajda et al. 1997) and are used
extensively for ab initio folding (Bonneau and Baker 2001).
When the same series of 40-residue fragments are evaluated
using the distance-dependent potentials of Bryant and
Lawrence (1993), the scores of the native conformations are
seldom the best (0.42%), although there is a modest ability
to assign them to the top 0.1% (13.6%).

Dipeptide propensities

Propensities for single-residue positions can only capture
side-chain interactions with the two nearest peptide groups.
To include interactions with the two next-nearest groups,
which belong to the preceding and following residues, pro-
pensities are calculated for dipeptide pairs, using the amino
acid type and discrete Ramachandran plots for residue i. For
residues i+1 and i-1 residue, the amino acid type is not
considered, only its phi/psi values. Rather than deal with
tripeptides and the small number of examples available in
the structural library, the assumption is made that the i-1 to
i and i to i+1 interactions are independent. Therefore, sepa-
rate propensity tables are calculated for each of these two
dipeptides and residue positions in the protein library are
now described by two environments. On scoring a sequence
fragment, an individual residue is assigned the average of
the logarithms of these two propensities.

There is no requirement that the number of discrete phi/
psi states be the same for residue i as for its neighbors; so
several compatible combinations are calculated. These
pN1xN2 composite propensities, where N1 is the number of
states for residue i and N2 the number for both residues i-1
and i+1, are calculated from the set of training structures
and used in scoring functions. The results of threading the
test set of length 40 fragments for 10 different dipeptide
propensities are given in Figure 3A, which shows the in-
crease in fraction of fragments for which the native confor-
mation receives the best score, as a function of the number
of states N2.

For each of the five representations of residue i, there is
a modest improvement when the single-peptide propensity
pN score is changed to a dipeptide form, suggesting that
side-chain interactions with the two next-nearest peptide
groups do contribute to the overall energetics. Although
performance of the scoring function initially improves with

increasing N2, this improvement appears to plateau around
N2 � 6.

Rotamer probabilities

The single and dipeptide propensities described above ig-
nore the chi1 angles of the side chains. Although the trans,
gauche+, and gauche− rotamers could be used to further
subdivide the N1xN2 phi/psi states for calculation of pro-
pensities, this would triple the number of bins for distrib-
uting the data, leading to increased noise due to small
sample size. Instead, the assumption is made that rotation
about each side chain’s chi1 angle is an independent vari-
able that can be restored to the description of the averaged
structure described by the phi/psi propensity by simply add-
ing the logarithm of its probability. Although this assump-
tion is unlikely to be strictly true, it is made as a first
approximation.

The side-chain–backbone interactions that arise through
the discrete values of chi1 (trans, gauche−, and gauche+) at
position i are converted to either backbone-independent (r0)
or backbone-dependent (rN) probabilities, where N is the
number of discrete states representing the Ramachandran
plot. In both cases, the frequency of occurrence of each
rotamer is normalized so the sum of all probabilities equal
one. To give equal weight to the rotamer state in a compos-
ite propensity function, the probabilities for each of the
three rotamers are multiplied by 3.0 before taking the loga-
rithm. Positions either in the protein structure or in the
sequence being threaded involving alanine and glycine
(which have no value of chi1) are given no score. These

Fig. 3. Fraction of 2140 sequence fragments of length 40 for which the
native conformation had the best score (i.e., ranked No. 1). (A) As a
function of the number of N2 states used to represent residues i−1 and i+1
in dipeptide propensities. (B) As a function of rotamer probability used in
combination with single peptide propensities. (C) As a function of rotamer
probability used in combination with dipeptide propensities.
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composite propensities are designated by appending the ro-
tamer probability name to the backbone propensity name.

As shown in Figure 3B, the addition of a rotamer prob-
ability term to each of the single-peptide propensities sig-
nificantly improves the scoring function. Similarly, inclu-
sion of the rotamer probability score improves the perfor-
mance of three different dipeptide propensities: p9x9,
p12x12, and p15x6 (Fig. 3C). Although for p9x9 there is
very little difference between r0 and r9, both p12x12 and
p15x6 score higher with the backbone-dependent rotamer
probabilities. p15x6-r15 gives the best score of any com-
posite propensity reported here: 71.2% of all fragments of
length 40 give the best score with the native conformation
and 95.6% of fragments score in the top 0.1%. The values
with this propensity function for shorter fragments are as
follows: length 30–48.2% and 89.3%, length 20–20.4% and
70.9%, and length 10–2.9% and 31.3%.

Estimation of conformational stability

To estimate the energetic significance of the local side-
chain–backbone interactions that underlie the propensity-
based scores presented above, the scores for individual se-
quence fragments can be converted into the probability that
the native conformation will be populated out of all confor-
mations in the ensemble. From statistical mechanics, this
probability p(native) is

p(native) = e−�Gnative�RT��e−�Gconf�RT,

where the denominator is the sum overall conformations
(i.e., the partition function). Because

−�Gconf �RT = ln Keq,

the probability can be rewritten as

p(native) = Keq(native)��Keq(conf�

where the denominator is again the sum over all allowed
conformations.

At least four assumptions must be made before this cal-
culation can be justified. (1) The frequencies of protein
structural features describe an equilibrium ensemble at a
temperature close to physiological. The validity of this as-
sumption has been extensively debated in the literature
(Sippl et al. 1996; Thomas and Dill 1996). Simply for the
sake of evaluating its consequences, this assumption is
made. (2) Each conformation is treated as a representative
example of many closely related conformations. Just as the
single native conformation represents a large number of
slightly altered conformations accessible by thermal mo-
tions, each nonnative conformation acts as an average sur-

rogate for a small family of closely related conformations.
Then the assumption must be made that the 300,000 con-
formations are a relatively complete coarse-grained sample
of conformation space. Although there is no good way to
assess the reasonableness of this assumption, it becomes a
better approximation of reality when rotamer states are ig-
nored or when sequence fragments are shorter. (3) The log
of the probability for a conformation of a particular frag-
ment can be approximated by the sum of the logarithms of
the propensities at every residue position. (4) For a com-
posite propensity function, the logarithms of the individual
propensities and probabilities describing a single residue
position can be added. It should be noted that for each
function, only one side-chain substitution event is allowed .
Thus, for the dipeptide propensities, the average of two
events is taken; whereas with rotamers, the use of probabili-
ties instead of propensities implies the side chain has been
specified previously.

The probability that the native conformation is populated
is then calculated by

p(native) � antilog(native fragment
score)/�antilog(all fragment scores).

In Figure 4, histograms display the calculated range of
probabilities for occupying the native conformation using
four different propensity functions, two that do not include
rotamers, p15 and p15x6, plus these same two combined
with the r15 rotamer probabilities. The results are surpris-
ing. With backbone information alone, the p15 and p15x6
results suggest that 35%–50% of all sequence fragments of
length 40 will occupy the native conformation with a prob-
ability >0.01 and 5%–11% of all fragments will occupy the
native conformation >80% of the time.

The estimated stabilities of native conformations become
much greater when rotamer states are included, with the
p15x6-r15 function suggesting that >50% of fragments will
occupy the native conformation >95% of the time. The frac-
tion of sequence fragments that are mostly native declines
with decreasing fragment length, but the p15x6-r15 function
estimates that ∼50% of 20mers will be native >1% of the
time.

These percentages should be considered as very crude
estimates based on patently optimistic assumptions about
the completeness of sampling and the additivity of the prob-
abilities involved. The exact number of conformations
sampled by fragment threading are quite small: 297,779 for
length 40; 314,070 for length 30; 330,997 for length 20; and
347,987 for length 10. For a fragment of length 40, there
could be as many as 340 or 1019 different rotamer combi-
nations. Therefore, the only safe conclusion that can be
drawn is a simple one: These propensities must reflect un-
derlying physical interactions that encode structure at dis-
tances beyond the one or two residues involved in the in-
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teraction, perhaps a dominant role, perhaps only a modest
role.

A totally independent line of empirical evidence support-
ing this inference would be welcome. If these local inter-
actions are important, it would be expected that for some
proteins, a greater level of stability to unfolding might be
attained through optimization of these interactions, a situa-
tion reflected in higher propensity scores. Therefore, 23
homologous protein pairs (Kannan and Vishveshwara
2000), one from a thermophilic organism and the other from
a mesophile, are evaluated with the p15x6-r15 function. As
shown in Figure 5, the results are somewhat suggestive that
thermophilic proteins, on average, may have higher scores.
Of the 23 pairs, in only 5 cases does the mesophilic protein
score higher than its thermophilic homolog, and in all but 1
instance (No. 4) by <2 log units per 100 residues. On the
other hand, 18/23 pairs have the thermophilic protein scor-
ing higher, in 10 instances by more than 4 units per residue.
Although not compelling, these data suggest that there may
be a significant bias toward more favorable side-chain–
backbone interactions in proteins from thermophilic organ-
isms, a feature that could contribute to thermostability by
enhancing nativelike structure in the denatured state (Wrabl
and Shortle 1996).

Discussion

Several patterns in the data are consistent with a physical
basis for the side-chain–backbone propensities reported
above. (1) As more discrete states are used to describe phi/
psi angles, single-peptide propensities calculated from a li-
brary of structures become increasingly more accurate in

identifying the native conformation of long sequence frag-
ments. (2) Dipeptide propensities, which are expected to
capture the steric effects of the second nearest pair of pep-
tide groups, give rise to small but consistent improvements
in scores. However, use of more than six states to describe
the phi/psi angles of the neighboring residue appears to have

Fig. 5. Composite propensity function scores (p15x6-r15) per 100 residues
for 23 homologous pairs of proteins, one from a thermophilic organism and
the other from a mesophilic organism. Their Protein Data Bank designa-
tions are as follows: 1:1thl/1npc, 2:1ldn/1ldm, 3:3pfk/2pfk, 4: 1ril/2rn2,
5:1bmd/4mdh, 6:2prd/1ino, 7:1php/3pgk, 8:1thm/1st3, 9:1ebd/1lvl, 10:
1btm/1tim, 11:2fxb/1dur, 12:1yna/1xyn, 13:1xyz/2exo, 14:1caa/6rxn, 15:
1gd1/1gdp, 16:1tib/1lgy, 17:1zip/1ak2, 18:2prd/1obw, 19:1ais/1vol, 20:
1ffh/1fts, 21:1pcz/1vok, 22:1obr/2ctc, and 23:1phn/1cpc. This set of pro-
teins is from Kannan and Vishveshwara (2000).

Fig. 4. Histograms of estimated probabilities that sequence fragments occupy the native conformation, as opposed to 300,000 incorrect
conformations, as a function of length and composite propensity function. Fragment length and propensity function used in threading
are given in the panel. The ranges of probabilities are listed below each column of the histograms.
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little effect. (3) Inclusion of the rotameric state of the side
chain leads to substantially better scoring functions, with
the backbone-dependent rotamer probabilities being consis-
tently better than probabilities that ignore the residue’s phi/
psi angles.

The principle assumption on which this work is based is
the Boltzmann hypothesis, by which the biases observed in
the distribution of local structure features in folded proteins
can be treated as equivalent to a partitioning reaction at
equilibrium. The frequency of occurrence of an amino acid
within a local structure reflects the free energy of exchang-
ing it for an average side chain. This hypothesis (Pohl 1971;
Finkelstein et al. 1995) has been used for estimating the free
energy of a number of structural features observed in pro-
teins: side-chain hydrophobicity (Rose et al. 1985; Miller et
al. 1987), energies of mean pair-wise interactions among
side chains (Miyazawa and Jernigan 1985; Sippl 1993), in-
ternal cavities (Rashin et al. 1997), cis/trans isomers of
proline (MacArthur and Thornton 1991), and so on. When
the free energies estimated from propensities have been
compared to data measured by conventional physical meth-
ods, often surprisingly good agreement has been found. As
has been argued by several investigators (Jones and Thorn-
ton 1996; Moult 1997), one need make no assumptions to
justify the summation of logarithms of propensities as a
scoring function. Instead, construction of such functions can
be viewed as a practical exercise, justified by the utility of
the results. Still, the Boltzmann hypothesis provides a con-
crete conceptual framework for interpretation of propensi-
ties and thus it has been used here.

Although the estimated stabilities of fragments of length
30 and 40 are not reliable, it seems highly probable that the
propensity scores on which they are based represent an un-
derestimate of their free-energy contributions. First of all,
the binning of data for large regions of the Ramachandran
plot, like any type of averaging over an interval, replaces
local maxima and minima across the interval with a mean
value that lies between the extrema. Secondly, the choice of
intervals used here was arbitrary, and the data suggest that
additional subdivisions of the beta region may yield still
better scoring functions. Finally, only the chi1 angle is
treated in this work. In effect, the side chain beyond the CG
atom has been ignored, even though its steric consequences
are likely to be large.

Several features of composite propensity functions may
make them well-suited for sequence-structure compatibility
comparisons. Because they are normalized to an average
amino acid as a reference state, their values correspond to
differences, not absolute values normalized to an external
standard. Individual component propensities contribute to
the final score in proportion to the magnitude of the varia-
tion in frequency of occurrence of a structural feature. In
effect, insignificant variations, on average, will contribute
little to the final score, and to the extent the Boltzmann

hypothesis applies, logarithms of propensities correspond to
the thermodynamic potential that governs the details of
structure—free energy, not internal energy. Both the en-
tropic and energetic components are included in these po-
tentials of mean force.

At least two previous studies of phi/psi propensities for
scoring sequence-structure compatibility reported findings
less impressive than those above. Matsuo and Nishikawa
(1993) employed a five-state representation of the Ramach-
andran plot and used their propensities as one of four energy
components; details were not given. Bahar et al. (1997)
employed a two-state representation, alpha and beta, and
showed by ungapped protein threading that their propensity-
derived terms could recognize a significant majority of full-
length proteins. It would appear from the data reported
above that some of the information in phi/psi propensities
may have been missed in earlier analyses because partition-
ing of the Ramachandran plot into a number of subregions
is required to reveal the full extent of the nonrandom phi/psi
distributions of the 20 amino acids. As seen in Table 1,
serine and threonine display a two- to threefold preference
for the upper reaches of the beta region, and aspartate, as-
paragine, and histidine have a similar preference for the
lower reaches. Alanine and arginine, on the other hand, have
a slight preference for the middle. Similar patterns can be
found for the three subdivisions of the alpha helical region.
Presumably, a combination of steric clashes and attractive
interactions—dispersion forces plus hydrogen bonds/elec-
trostatic interactions—account for these variations. Al-
though modest in size, the cumulative effect of these local
side-chain–backbone interactions may severely restrict the
conformations accessible to a polypeptide chain.

The remarkable ability of composite propensity functions
to identify the native conformation for fragments of length
40 suggests they will prove useful in scoring functions for
fold recognition. Because identification of the native con-
formation improves with chain length, they may outperform
the more commonly used empirical pair potentials. A more
practical application might be in optimizing the alignment
of distant sequence homologs with proteins of known struc-
ture, although success will depend on how extensively local
backbone geometry is conserved among homologs. For ab
initio structure prediction methods that use simplified rep-
resentations of protein chains (Bonneau and Baker 2001),
composite propensity functions may provide a convenient
way to estimate the steric plausibility of a conformation
when physically important atoms have been omitted. Per-
haps reasonable models of the denatured state can be gen-
erated by splicing together several overlapping fragments of
length 10–30 residues that satisfy local steric restraints. In
subsequent steps, by essentially recapitulating the folding
process, conformations with few long-range steric clashes
could be selected and further refined for compactness and
hydrophobic burial in a search for the native state.

Composites of local structural propensities
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Materials and methods

Protein structural library

VAST database was obtained from http://www.ncbi.nlm.nih.gov/
Structure/VAST/nrpdb.html in December 2000. Of these 1926
structures with BLAST p values of less than 10e-7, only 1700
could be read. The randomly selected subset of 121 used for testing
the propensity functions consisted of members from each of the
SCOP classification of fold classes. All alpha were 1afr, 1akh,
1an2, 1ax8, 1b0n, 1ba5, 1bsm, 1c3d, 1cd3, 1ctj, 1ddf, 1dn1, 1ebm,
1eh2, 1ery, 1gah, 1lre, 1qa6, 1qgk, 1qj2, 1qla, 1qq8, 1rep, 1ryt,
1tf4, 1vls, 1xpa, 1zym, 2lef, 2occ, 2prg, 2spc, and 3ygs. All beta
were 1a1x, 1ahj, 1as7, 1b35, 1bdo, 1bhe, 1bmv, 1bpv, 1bw3, 1cfb,
1cn3, 1d5r, 1dab, 1ewi, 1fmt, 1gpc, 1hsq, 1icm, 1ndh, 1pdk, 1pse,
1qun, 1rmg, 1shc, 1sox, 1tsr, 1ubp, 1vcb, 1wpo, 2bbv, 2ncm, and
3msi. Alpha/beta included 1a7a, 1a9n, 1auz, 1b4v, 1cz3, 1d2r,
1dfm, 1din, 1dpg, 1hjr, 1iow, 1jfr, 1kas, 1mee, 1mug, 1ofg, 1poy,
1tkb, 1yts, 2cmd, 2ebn, 3chy, 5p21, and 8atc. Alpha plus beta were
1e01, 1a5r, 1aor, 1b87, 1bkc, 1byl, 1cjw, 1drm, 1el6, 1fug, 1gyf,
1kp6, 1mol, 1nmt, 1otf, 1plq, 1qs2, 1t1d, and 2gls. Others were
1ad2, 1dkx, 1lbe, 1bgk, 1qdp, 1cq0, 1fdm, 1c94, 1dvo, 1eej, 1ezw,
1f5x, and 1fjg. Coordinate files were obtained from the Protein
Data Bank.

Computer software

All programs were written by the author in C++ using Microsoft
Visual C++ version 6, plus the RogueWave Class/Template librar-
ies Tools.h++ and Math.h++. Programs were executed on a work-
station with two Pentium III Xeon 1GHz processors running under
the Windows NT 4.0 operating system.

Propensities

Most of the tables of propensities are too large to include in this
paper. An ASCII table of the p15x6 and the r15 propensities are
available from the author via e-mail request.
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