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Composites with Imperfect Interface

By Robert Lipton and Bogdan Vernescu

Department of Mathematical Sciences, Worcester Polytechnic Institute,

100 Institute Rd., Worcester, MA 01609, U.S.A.

September 26, 1994

New variational principles are introduced, describing the e�ective conductivity tensor for anisotropic

two-phase heat conducting composites with interfacial surface resistance between phases. These prin-

ciples reduce to those of Hashin and Shtrikman in the limit of vanishing surface resistance. The new

principles allow for an unconstrained class of trial �elds.

New bounds are derived on the e�ective heat conductivity tensor for an anisotropic two-phase

composite with interfacial surface resistance between phases. The new upper bound is given in terms

of the two-point correlation function, component volume fractions and moment of inertia tensor for

the surface of each heterogeneity. The new lower bound is given in terms of the interfacial surface

area, component volume fractions and a scale free matrix of parameters. This matrix corresponds

to the e�ective conductivity associated with the same geometry but with nonconducting inclusions.

The bounds are applied to theoretically predict the occurence of size e�ect phenomena in the ef-

fective heat transport behaviour of two-phase suspensions with interfacial resistance between phases.

For monodisperse suspension of spheres a critical radius is found for which the e�ective heat con-

ductivity equals that of the matrix. For polydisperse suspensions of spheres it is shown that, when

the mean radius lies below the critical value, the e�ective conductivity lies below that of the matrix.

I Variational Principles

I.1 Introduction

Composites of technological and physical interest often exhibit imperfect contact be-

tween constituent phases. Here we address the problem of estimating the e�ective

thermal conductivity for composites with an interfacial resistance. Such resistance in
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composite materials may arise from the presence of impurities at phase boundaries.

These impurities are due to oxide �lms or bonding agents at the phase interface.

Starting with the e�orts of Maxwell (1904) and Rayleigh (1892) a great part of

the literature has focused on the idealized case of perfect contact. Here one assumes

the continuity of the temperature and heat ux across the phase interface. On the

other hand, imperfect interfaces are described by discontinuous temperature �elds.

The jump in temperature is assumed to be proportional to the heat ux across the

interface.

For composites with perfect contact, the variational description of e�ective prop-

erties have proved successful in the estimation of e�ective properties. One of the

best known are the Hashin-Shtrikman variational principles (1962). These principles

yield the celebrated Hashin-Shtrikman bounds for isotropic heat conducting com-

posites made from two heat conductors speci�ed by the conductivities �2 and �1 in

proportions �2 and �1. The Hashin-Shtrikman bounds are the best possible in that

they are attainable by special microgeometries, (see Hashin and Shtrikman, 1962).

For anisotropic composites the Hashin-Shtrikman variational principle yields bounds

in terms of the two point correlation functions, (see Willis (1982), Avellaneda and

Milton (1989)).

In this paper we treat two phase composites with interfacial barrier conductivity

speci�ed by �. We assume that the composite is made from isotropic conductors

speci�ed by �2 > �1 in the proportions �2; �1 respectively. Our tool is a new set of

variational principles describing the e�ective heat conducting properties of anisotropic

conductors with barrier resistance, see Section 2 equations (??) and (??).

We develop a systematic method that we refer to as the interface comparison

method, to obtain the new variational formulation for the e�ective conductivity. The

advantage of the new formulation is that the solution of the associated �eld equations

involves �elds that are not coupled at the two-phase boundary. Most importantly

the solution operators for these problems have an explicit form or can be written

in terms of solution operators for the perfect contact problem (see Section 2 of this

paper and Sections 2 and 3 of Part II). We apply these principles to obtain new upper

and lower bounds on the e�ective conductivity for anisotropic particulate composites

with interfacial barrier resistance. These bounds are derived and presented in the

second paper, see equations (II2.9) and (II3.35).

The lower bounds depend explicitly upon interfacial surface area, interfacial bar-

rier conductivity, component conductivities, and volume fraction. In addition the
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bound includes a scale-free matrix of parameters. This matrix corresponds to the

e�ective conductivity of a composite with nonconducting inclusions having the same

geometry as the original composite.

For isotropic particulate mixtures with barrier resistance we can say more. We

introduce the e�ective conductivity function associated with the same inclusion geom-

etry but with perfect contact between phases. The poles and zeros of this function are

con�ned to an interval [L1; L2] on the negative real axis, see Bergman (1978) Golden

and Papanicolaou (1983). Using the results of Bruno (1991) for the perfect contact

case we are able to write lower bounds on the e�ective conductivity for composites

with imperfect contact in terms of the data L1; L2, see II, Section 2.1, equation (??).

For isotropic monodisperse suspensions of spheres we show how to apply the es-

timates of Torquato and Rubinstein (1991) for the perfect contact case to obtain

lower bounds for imperfectly bonded conductors in terms of the nearest neighbor

distribution function, see II equation (??).

We present an upperbound for anisotropic composites in terms of volume fraction,

the two point correlation function and the moment of inertia tensors of the particle

surfaces, see II equation (3.35). For the special case of isotropic particulate composites

we display upper bounds for particles of conductivity �2 (or �1) in a matrix of �1 (or

�2). Our bounds are in terms of volume fraction and a parameter � given by the sum

of polar moments of inertia of the surface of each particle see (II3.37).

In Part III we consider the behavior of the bounds in the surface area s and

total polar moment of inertia of the interface �. We �nd that in the limits s !

1; � ! 0 that these bounds are linked to the e�ective properties of suspensions of

nonconducting inclusions (III, Section 3).

We consider monodisperse suspensions of spheres of conductivity �2 in a matrix

of �1 with �2 > �1. For this case we exhibit a critical radius,

Rcr = ��1�2�1(�2 � �1)
�1, for which the e�ective conductivity equals that of the

matrix, (III, Section 4). This is used to establish optimality of upper and lower

bounds on the e�ective conductivity for certain values of the geometric parameters s

and �, (III, Section 5). For polydisperse suspensions of spheres we use the bounds

to give new theoretical predictions of size e�ect phenomena. Indeed, it is shown that

if the average sphere radius hri is less than Rcr, then the e�ective conductivity lies

below the matrix, (see III, Theorem (6.1)). We consider suspensions of particles of

conductivity �2 in a matrix of �1 where �2 > �1. Noting that the lower bound is

monotone in the interfacial surface area at �xed volume fraction, we show that the
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e�ective conductivity is greater than the matrix provided the interfacial surface area

is less than the value d��12 Rcr, (see III Theorem 7.1) were d = 2; 3 and denotes the

dimension. We present a necessary condition for the optimal design of an isotropic

polydisperse suspension of spheres that maximizes the heat transport at �xed sphere

volume fraction, see Part III Theorem 7.2. For isotropic monodisperse suspensions of

spheres we can say more. Indeed, collecting our results (see III Sections 5,6, and 7)

we note that: (1) for spheres of radius less than Rcr the e�ective property lies below

that of the matrix. (2) For spheres of radius greater than Rcr the e�ective property

lies strictly above the matrix, see III, Theorem 7.3.

In Part III, Theorems 8.1, 8.2 and 8.3 we use the monotonicity of the upper

and lower bounds with respect to �; s; and � to obtain information on the compos-

ite geometry or interfacial surface resistance from measured values of the e�ective

conductivity.

In the present paper we introduce and apply the interface comparison method to

obtain new variational principles for composites with interfacial barrier resistance.

The advantage of these new principles are that no supplementary constraints are

imposed on the trial functions and that simple trial functions provide new bounds

that are in some cases optimal, see (III, Section 5).

The equations of equilibrium for composites with interfacial barrier resistance

as given in Section 2 (??- ??) involve the coupling of heat ux with a jump in

temperature across the phase interface. Our new principles are designed to encode

this coupling while at the same time allowing for an unconstrained class of trial �elds.

The choice of trials for this principle is a product space of �elds; given by the space of

periodic square integrable �elds over the domain and by the space of square integrable

functions de�ned on the phase boundary.

We conclude this part by illustrating the functional dependence of the e�ective

heat conductivity on the barrier conductivity �. We show that the e�ective conduc-

tivity is monotonic in � for �xed microgeometry. For �xed values of � the e�ective

conductivity is seen to be bounded above by that of a perfectly bonded composite

and below by a composite with nonconducting inclusions. In this way we show that

the e�ective conductivity for an isotropic mixture with interface resistance is bounded

above by the Hashin-Shtrikman bound for composites with perfect contact. In part

II we display bounds that improve upon these see (II, Section 4).

Lastly we note that the scope of this paper is not limited to the context of heat

conductivity. Indeed, this problem is mathematically analogous to the problems of es-
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timating e�ective di�usivity for multiphase composites separated by permeable mem-

branes (Latour et. al. (1994)) as well as electrostatic problems in composites with

interface resistance. We further remark that the techniques introduced here can read-

ily be applied to the context of two-phase elastic mixtures with interfacial slip, see

Lipton and Vernescu (1995).

I.2 Variational Principles for E�ective

Conductivity

I.2.1 Mathematical and Physical background and

Basic Variational Principles

For periodic heat conducting composites we may decompose the temperature �eld T

into two parts, a periodic uctuation ~� and a linear part � �� such that T = ~�+ � ��.

Following Benveniste and Miloh (1986) the average intensity hrT i seen by an \outside

observer" is

hrT i =
Z
@Q
(~�+ � � x)nds = �: (I.2.1)

Here Q is the unit cell occupied by the composite, @Q is the boundary of the cell and

n is the outward directed normal.

The cell Q is composed of two isotropic conducting materials occupying regions Y1

and Y2 separated by an interface denoted by �. The temperature inside the composite

satis�es:

r � (�i(r~�+ �)) = 0 in Yi; i = 1; 2; (I.2.2)

[�(x)(r~�+ �)] � n = 0 on �; (I.2.3)

and

�2(r~�+ �) � n = ��[ ~�]21; on �: (I.2.4)

Here n denotes the normal to � and points into the interior of phase-1 and (??)

is the continuity of the normal ux across �. Equation (??) represents the e�ect of

thermal surface resistance. The quantity �2(r~�+ �) � n in (??) is evaluated on the

phase-2 side of �. The solution of problem (??)-(??) is unique up to a constant; this

is an application of the Lax-Milgram lemma.
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The positive parameter ��1 represents the thermal barrier resistance. The � =1

limit corresponds to the case of perfect contact and condition (??) is replaced with

[~�] = 0. The � = 0 limit corresponds to a perfectly insulating surface and is usually

referred to as the \adiabatic" boundary condition.

The e�ective conductivity tensor for the composite is de�ned by

�e� =
Z
Q
�(x)(r~�+ �)dx (I.2.5)

The e�ective conductivity admits two variational formulations analogous to the Dirich-

let and Thompson variational principles for the case of perfect contact. The �rst is:

�e� � � = min
�2V

�Z
Q
�(x)(r�+ �)2dx+ �

Z
�
([�])2ds

�
(I.2.6)

where the space V consists of all square integrable, Q-periodic functions � such that

r� is square integrable in each phase. We note that the space V allows for �elds �

that are discontinuous across �.

The second variational principle is:

(�e)�1�� � �� = min
��W

(Z
Q
��1(x)j(� + �� )j2dx+

1

�

Z
�
((� + �� ) � n)2ds

)
(I.2.7)

where the space W is the in�nite dimensional space of all Q periodic square integrable

�elds � (x) characterized by

r � � = 0;
Z
Q
�dx = 0; and [� ] � n = 0 on �; (I.2.8)

and �� is any constant vector. For similar variational principles for e�ective tensors

of heterogeneous elastic materials with imperfect interface, see Lene and Leguillon

(1982) and Hashin (1992).

I.2.2 Interface Comparison Method Variational Principles

We present two new variational principles describing the e�ective conductivity tensor.

Before stating the �rst variational principle we introduce a comparison material

with conductivity  < �1 and formulate two auxiliary conductivity problems. For a

square integrable Q-periodic �eld p, the potential �p is a solution of:

��p = �divp in Yi; i = 1; 2; (I.2.9)

[p+ r�p] � n = 0 on �; (I.2.10)
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and

(p + r�p) � n = 0 on �: (I.2.11)

For a square integrable function v de�ned on � the potential �v is a solution of

��v = 0 in Yi; i = 1; 2; (I.2.12)

[r�v] � n = 0; on �; (I.2.13)

and

r�v � n = �v on �: (I.2.14)

We observe that the boundary value problems given by (??) - (??) and (??) - (??)

can be separately solved in each phase region.

Introducing the linear operators M and R given by

Mp = r�p in Y1 [ Y2 (I.2.15)

and

Rv = r�v in Y1 [ Y2 (I.2.16)

one has the new variational principle given by:

(P1) : (�e � I +
2

�

Z
�
n
 n)� � � = max

(p;v)�P
f2L(�; p; v)�Q(p; v)g (I.2.17)

where the space P de�nes a couple (p; v) of admissible bulk and surface polarizations

(p; v) where p is square integrable and Q-periodic and v is square integrable on �.

The linear form L(�; p; v) is de�ned by

L(�; p; v) =


�

Z
�
v� � nds+

Z
Q
(p � �)dx: (I.2.18)

The quadratic form Q(p; v) is given by

Q(p; v) =
Z
Q
(� � )�1 j p j2 dx+

1

�

Z
�
v2ds + 

Z
Q
jMp +Rv j2 dx (I.2.19)

For the second new variational principle we introduce a comparison material with

conductivity  > �2 and formulate two auxiliary conductivity problems. For a square

integrable Q-periodic �eld p the potential  p is a solution of

� p = divp in Y1 [ Y2 (I.2.20)

[r p� p] � n = 0 on � (I.2.21)
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and

[ p] = 0 on � (I.2.22)

For a square integrable function v de�ned on �, the potential  v is a solution of

� v = 0 in Y1 [ Y2; (I.2.23)

[@n 
v] = 0 on �; (I.2.24)

and

[ �] = �v on �: (I.2.25)

Introducing the linear operators N and S de�ned by

Np = r p in Q; (I.2.26)

and

Sv = r v in Y1 [ Y2; (I.2.27)

one has:

(P2) : (�e
�1

� �1I)�� � �� = max
(p;v)�P

f2�L(�� ; p; v)� �Q(p; v)g; (I.2.28)

Here the linear form �L(�� ; p; v) is de�ned by

�L(�� ; p; v) =
Z
Q
p � �� +

Z
�
(�� � n)vds (I.2.29)

and the quadratic form �Q is given by

�Q(p; v) =
Z
Q
(��1 � �1)�1 j p j2 dx+ �

Z
�
j v j2 ds

+ 

Z
Q
j(Np+ Sv � p) �

Z
Q
(Np+ Sv � p)dyj2dx: (I.2.30)

Here we remark that the operator N can be identi�ed with the projection of square

integrable periodic �elds onto Q periodic curl-free �elds.

The right hand sides of (??) and (??) can be written alternatively as min max

principles for appropriately chosen lagrangians. Doing so yields the following charac-

terizations of the e�ective conductivity tensor:

(�e � I +
2

�

Z
�
n
 nds)� � � = max

(p;v)�P
min
��V

L(p; v; �)

= min
��V

max
(p;v)�P

L(p; v; �) (I.2.31)
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(�e
�1

� �1I)�� � �� = max
(p;v)�P

min
��W

�L(p; v; � )

= min
��W

max
(p;v)�P

�L(p; v; � ); (I.2.32)

where the convex-concave lagrangians L and �L are given by

L(p; v; �) � 2
Z
Q
p � �dx + 2



�

Z
�
v� � nds�

Z
Q
(� � )�1 j p j2 dx�

1

�

Z
v2ds

+ 2
Z
Q
p � r�dx+ 2

Z
�
v[�]ds+ 

Z
Q
j r� j2 dx; (I.2.33)

and

�L(p; v; � ) = 2
Z
Q
p � ��dx+ 2

Z
�
v(�� � n)ds �

Z
Q
(��1 � �1)�1 j p j2 dx � �

Z
�
v2ds

+ 2
Z
Q
p � �dx+ 2

Z
�
(� � n)vds+ �1

Z
Q
j � j2 dx: (I.2.34)

We recall that the limit � !1 corresponds physically to the perfect contact case

in which there is no surface resistance. For this case the new variational principles

(??) and (??) reduce to the well known Hashin-Shtrikman variational principles

(Hashin and Shtrikman 1962) for conductors with perfect contact.

To show that (??) reduces to the lower Hashin-Shtrikman principle as � !1 we

appeal to the equivalent saddle formulation (??). Passing to the limit � =1 in (??)

yields

(�e � I)� � � = min
��V

max
(p;v)�P

�
2
Z
Q
p � �dx �

Z
Q
(� � )�1 j p j2 dx

+ 2
Z
Q
p � r�dx+ 2

Z
�
v[�]ds+ 

Z
Q
j r� j2 dx

�
: (I.2.35)

We observe from the (??) that the minimum is obtained for [�] = 0. Switching the

order of max and min leaves the righthand side of (??) unchanged and one obtains:

(�e � I)� � � = max
p
f2

Z
Q
p � �dx �

Z
Q
(� � ) j p j2 dx

+ min
��V

[�]=0

f2
Z
Q
p � r�dx+ 

Z
Q
(r�)2dxgg (I.2.36)

for  < �1 which is the lower Hashin-Shtrikman variational principle for two-phase

conductors with perfect contact. Passing to the � = 1 limit in (??) forces v = 0

and we obtain:

(�e
�1

� �1I)�� � �� = max
p
f2

Z
Q
p � �� �

Z
Q
(��1 � �1)�1 j p j2 dx

+ �1
Z
Q
j(Np� p) �

Z
Q
(Np� p)dyj2dxg (I.2.37)
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for  > �2 which is the upper Hashin-Shtrikman variational principle for the case

of perfect contact. We note that the above statements can be made rigorous by

appealing to the theory of epi/hypo-convergence introduced by Attouch and Wets

(1983)

I.3 Derivation of the variational principles

I.3.1 Lower variational principle by the interface comparison method

In this section we derive the lower variational principle (P1) for the choice of isotropic

comparison material with conductivity  < �1. The sequence of steps outlined below

comprise the interface comparison method. We begin with the variational principle

(??). Noting that the solution ~� of (??)-(??) is the minimizer of (??) we write:

�e� � � =
Z
Q
�(x)jr~�+ �j2dx+ �

Z
�
([~�])2ds: (I.3.1)

Adding and subtracting the reference energy jr~�+�j2 to the right-hand side of (??)

and rearrangement gives:

(�e � )� � � =
Z
Q
(�(x)� )jr~�+ �j2dx+ 

Z
Q
jr~� j2 dx

+ 2
Z
Q
r~� � �dx + �

Z
�
([~�])2ds: (I.3.2)

Integrating by parts, one obtains

2
Z
Q
r~� � �dx = 2

Z
�
[ ~�]n � �ds: (I.3.3)

Applying (??) and completing the square in the last two terms of (??) gives

(�e � I +
2

�

Z
�
n
 nds)� � � =

Z
Q
(�(x)� )jr~�+ �j2dx+ 

Z
Q
jr~�j2dx

+ �

Z
�
([~�]+



�
� � n)2ds: (I.3.4)

Introducing the bulk and surface polarizations p and v one has the elementary

estimates:

�

Z
�
([~�] +



�
� � n)2ds �

Z
�
2v([~�] +



�
� � n)ds �

1

�

Z
�
v2ds (I.3.5)

andZ
Q
(�(x)� )jr~�+ �j2dx � 2

Z
Q
p � (r~�+ �)dx �

Z
Q
(�(x)� )�1jpj2dx; (I.3.6)
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for any square integrable and Q-periodic �eld p and any function v square integrable

on �. We denote the set of all pairs (p; v) by P. Applying estimates (??) and (??)

to (??) we obtain

(�e � I +
2

�

Z
�
n
 nds)� � � � L(p; v; ~�) (I.3.7)

where L is de�ned by (??). Next we observe

(�e � I +
2

�

Z
�
n
 nds)� � � � L(p; v; ~�) � inf

��V
L(p; v; �) = L(p; v;

�

�) (I.3.8)

where
�

� is the minimizer of:

inf
��V

f2
Z
Q
r� � pdx + 2

Z
�
v[�] + 

Z
Q
jr�j2dxg (I.3.9)

and satis�es

� �
�

�= divp in Y1 [ Y2; (I.3.10)

[r
�

� +p] � n = 0 on �; (I.3.11)

and

(r
�

� +p) � n = �v on �: (I.3.12)

Observing that
�

� is linear in the data (p; v) we write
�

�= �p + �v where �p and �v

solve problems (??)-(??) and (??)-(??) respectively. Recalling the de�nitions of the

operators M and R given by (??) and (??), inequality (??) can be written as the

variational inequality:

(�e � I +
2

�

Z
�
n 
 nds)� � � � 2L(�; p; v)�Q(p; v) (I.3.13)

One observes for the choice of bulk and surface polarizations, consistent with the

actual potential inside the composite, i.e.,

p = (� � )(r~�+ �) and v = �([~�] +


�
� � n) (I.3.14)

that (??) holds with equality. Thus we have established (P1). Additionally it follows

from (??) and the previous observation that

(�e � I +
2

�

Z
�
n
 nds)� � � = max

(p;v)�P
min
��V

L(p; v; �) (I.3.15)

and equation (??) follows.
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I.3.2 Upper variational principle by the interface comparison method

Here we establish (P2) for the choice of isotropic comparison material with conduc-

tivity  > �2. We consider the variational principle (??) and denote the minimizer

by ~� . The e�ective energy is written:

(�e)�1�� � �� =
Z
Q
��1(x)j~� + �� j2dx+

1

�

Z
�
((~� + ��) � n)2ds: (I.3.16)

Adding and subtracting the reference energy �1 j ~� + �� j2 to the right-hand side of

(??) yields:

(�e
�1

��1)�� ��� =
Z
Q
(��1(x)��1) j ~�+�� j2 dx+

Z
Q
�1 j ~� j2 dx+

1

�

Z
�
((~�+��)�n)2ds:

(I.3.17)

One has the elementary estimates:Z
Q
(��1(x)� �1)j~� + �� j2dx � 2

Z
Q
p � (~� + ��)dx�

Z
Q
(��1(x)� �1)�1jpj2dx (I.3.18)

and
1

�

Z
�
((~� + �� ) � n)2ds � 2

Z
�
(~� + �� ) � nvds�

Z
�
�v2ds; (I.3.19)

for any square integrable Q-periodic �eld p and any square integrable function v on

�.

Application of the estimates to (??) yield:

(�e
�1

� �1)�� � �� � �L(p; v; ~�); (I.3.20)

where �L is de�ned by (??). Now we observe that

(�e
�1

� �1)�� � �� � �L(p; v; ~�) � inf
��W

�L(p; v; � ) = �L(p; v;
�
� ); (I.3.21)

where
�
� is the minimizer of:

inf
��W

�
2
Z
Q
p � �dx+ 2

Z
�
� � nvds+ �1

Z
Q
j� j2dx

�
(I.3.22)

Calculation shows that
�
� is given by

�
�= 

�
r

�

 �p�
Z
Q
(r

�

 �p)dx
�

(I.3.23)

where
�

 is the solution of:

�
�

 = divp in Y1 [ Y2; (I.3.24)
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[r
�

 �p] � n = 0 on �; (I.3.25)

and

[
�

 ] = �v on �: (I.3.26)

Noting that
�

 is linear in the data (p; v) we write
�

 =  p +  v where  p and  v

solve problems (??) - (??) and (??) - (??) respectively. Recalling the de�nition for

the operators N and S given by (??) and (??), inequality (??) can be written as the

variational inequality.

(�e
�1

� �1)�� � �� � 2�L(�� ; p; v)� �Q(p; v): (I.3.27)

For the choice of bulk and surface polarizations, consistent with the actual heat ux

~� + �� inside the composite, i.e.,

p = (��1(x)� �1)(~� + ��); v =
1

�
(~� + �� ) � n (I.3.28)

one observes that (??) holds with equality. In this way we arrive at (P2). Additionally

it follows from (??) and the previous observation that

(�e
�1

� �1)�� � �� = max
(p;v)�P

min
��W

�L(p; v; � ); (I.3.29)

and equation (??) follows.

I.4 Dependence of the e�ective properties on the interfacial

barrier resistance

The e�ective conductivity is easily seen to be monotonic decreasing as a function

of the interfacial barrier resistance ��1. To reect the dependence of the e�ective

conductivity on the barrier resistance we denote the e�ective conductivity tensor of

a possibly anisotropic composite by �e(�). For particulate composites we let �e(0)

denote the e�ective conductivity for particles made of nonconducting material, and

�e(1) denote the e�ective conductivity of a perfectly bonded composite with no

interface resistance. For a �xed particle geometry we have the estimate

�e(0) � �e(�) � �e(1): (I.4.1)

For anisotropic composites the estimate holds in the sense of quadratic forms. With

out loss of generality we suppose that the particle phase is occupied by material-2

and the matrix by material-1. We now establish this estimate.
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We start by showing �e(0) � �e(�). Denoting the lagrangian on the righthand

side of (??) by G(�; �) we have

�e(�)� � � = inf
��V

G(�; �): (I.4.2)

From monotonicity we have:

inf
��V

G(0; �) � �e(�)� � �: (I.4.3)

Next we show that �e(0)� � � = inf
��V

G(0; �).

We have:

inf
��V

G(0; �) = inf
��V

Z
Q
�(x) j r�+ � j2 dx: (I.4.4)

The associated Euler equations are:

�� = 0 in Y1 [ Y2 (I.4.5)

�1(r�+ �)1 � n = 0 on � (I.4.6)

�2(r�+ �)2 � n = 0 on � (I.4.7)

For the particle phase we �nd from (??) and (??) that � = �� � x in Y2 thus

r�+ � = 0 identically in the particle. Equations (??) and (??) are those associated

with heat conductivity exterior to a nonconducting inclusion and

inf
��V

G(0; �) = inf
��V

Z
Y1

�1 j r�+ � j2 dx = �e(0)� � �: (I.4.8)

Regarding the upper bound in (??), from monotonicity we have

�e(�)� � � � inf
��V

G(1; �) (I.4.9)

where G(1; �) is given by

G(1; �) =
Z
Q
�(x) j r�+ � j2 dx+

8<
: 0; [�] = 0

1; [�] 6= 0:
(I.4.10)

Now we show that �e(1)� � � = inf
��V

G(1; �). From (??) we see that the in�mum is

carried out over all functions continuous across the phase interface, i.e.,

inf
��V

G(1; �) = inf
��V

[�]=0

G(1; �): (I.4.11)
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The resulting Euler equations are those for no thermal interface resistance, and are

given by

�i�� = 0 in Yi; i = 1; 2 (I.4.12)

[�(r�+ �)] � n = 0 on � (I.4.13)

and

[�] = 0: (I.4.14)

Thus

inf
��V

G(1; �) = �e(1)� � �: (I.4.15)

We conclude by showing that the bounds in (??) are obtained by �e(�) in the

limits � & 0 and � % 1 respectively. Indeed, we show lim
�&0

�e(�) = �e(0). First

monotonicity gives:

�e(0) � lim
�&0

�e(�) (I.4.16)

On the other hand we have the estimate

lim
�&0

�e(�) = lim
�&0

inf
�
G(�; �) � inf

�
G(0; �) = �e(0); (I.4.17)

and the claim follows immediately from estimates (??) and (??). To show

lim
�%1

�e(�) = �e(1) we utilize the complementary principle (??). We write (??) as

�e
�1

(�)� � � = inf
��W

F (�; � ): (I.4.18)

For the choice � =1 it is easily seen using standard arguments, (c.f. Kohn, Milton

(1988)) that

inf
��W

F (1; � ) = �e
�1

(1)�� � �� : (I.4.19)

Monotonicity gives:

�e
�1

(1) � lim
�%1

�e
�1

(�): (I.4.20)

One also has the estimate:

lim
�%1

�e
�1

(�)�� � �� = lim
�%1

inf
��W

F (�; � ) � inf
��W

F (1; � ) = �e
�1

(1)�� � �� ; (I.4.21)

and from estimates (??) and (??) we obtain

lim
�%1

�e�1(�) = �e
�1

(1) (I.4.22)

or equivalently lim
�%1

�e(�) = �e(1).
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We denote the Hashin-Shtrikman second order upper bounds (see, Kohn and

Milton (1988)), anisotropic composites at �xed volume fraction by HS+. Thus

�e(1) � HS+ and we have the elementary bounds on �e(�) at �xed volume fraction

given by

�e(0) � �e(�) � HS+ (I.4.23)

In Part II we apply the variational principles to obtain new bounds improving

on those appearing in (??). The reader is referred to equations (II4.4), (II4.5), and

(II4.6) in Section 4.

II Bounds

II.1 Introduction

Here, we make use of the new variational principles derived in Part I to obtain new

bounds for the e�ective conductivity �e of a composite with interfacial surface resis-

tance.

We consider composites in <d(d = 2; 3) made from two isotropic heat conductors

with conductivities speci�ed by �1; �2 where without loss of generality we take �2 >

�1. The interfacial barrier is characterized by the thermal surface conductivity �. The

interfacial surface area is denoted by s and the volume fractions of the two conductors

are denoted by �1 and �2(�1 + �2 = 1).

Bounds that use reduced microstructural information can be obtained from the

basic variational principles given by eqs. (I2.6) and (I2.7) of Part I. Indeed choosing

constant trial �elds in (I2.6) and (I2.7) yields:

 
�1

�1
+

�2

�2
+

s

d�

!�1
I � �e � (�1�1 + �2�2)I: (II.1.24)

Non-constant trial �elds that encode microstructural information naturally lead

to more re�ned bounds. For the case of a monodisperse suspension of spheres of

radius \a" and conductivity �2 in a matrix of conductivity �1, we choose trial �elds

of the form:

� =

8<
: 0 in the matrix

ym � � in the mth sphere ;
(II.1.25)
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here ym equals x � rm, with rm being the center of the mth sphere. Restriction of

trial �elds in (I2.6) to the class given above and subsequent optimization over � gives

the upper bound:

�e �

"
�1�1 + �2�2

 
1�

1

1 + �a

�2

!#
I: (II.1.26)

Phase interchange yields the upper bound for monodisperse suspension of spheres of

conductivity �1 in a matrix of �2. We remark that trial �elds of the type given by

(??) were previously introduced in the context of two-phase elastic composites with

interfacial slip by Hahsin (1992).

Here we will present bounds that improve on (??) and (??) as well as the bounds

given in Section 4 of Part I, see equation (I4.23). For certain parameter values we

show that our bounds are optimal (see Part III, Section 5).

For anisotropic particulate composites we exhibit lower bounds in terms of volume

fraction, interfacial surface area and a scale-free matrix of parameters. This matrix

corresponds to the e�ective conductivity associated with the same particle geometry

but with non-conducting particles (see (??)).

We specialize to isotropic suspensions of particles in a matrix phase. For suspen-

sions of particles of conductivity �1 (or �2) in a matrix of �2 (or �1) we exhibit new

bounds (see, (??) and (??)) that are strictly better than the lower bound in (??)

as well as those presented in Section 4 of Part I, see equation (I4.23). These new

bounds ((??) and (??)) provide the means to estimate the e�ective properties for

composites with imperfect interface in terms of the e�ective conductivity function

associated with perfectly bonded composites having no interfacial barrier resistance.

It is well known that the poles and zeroes of this function are con�ned to the negative

seal axis, see, Bergman (1978). When the poles and zeros are con�ned to an interval

[L1; L2] Bruno (1991) has derived lower bounds on the e�ective conductivity for the

perfect contact case in terms of L1 and L2. We indicate how to use our new bounds

and Bruno's estimates to recover a new lower bound for the e�ective conductivity for

composites with interfacial surface resistance, in terms of the parameters L1; L2, (see

eq. (??).

On the other hand, for a monodisperse distribution of spheres we apply the meth-

ods of Torquato and Rubinstein (1991) to bound the scale-free part of our bounds

(??), (??) in terms of the nearest neighbor distribution function. This yields a new

lower bound for monodisperse suspensions of spheres in the presence of interfacial

surface resistance, see Section 2 equation (??).
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In Section 3 we present an upper bound for anisotropic composites in terms of

volume fraction, the two point correlation function, and the moment of inertia tensors

of the particle surfaces. To illustrate our method we focus on isotropic particulate

composites and display upper bounds for particles of conductivity �2 (or �1) in a

matrix of �1 (or �2). Our estimates are in terms of volume fraction and a parameter

� given by the sum of polar moments of intertia of the surface of each particle, see

(??).

For monodisperse suspensions of spheres of conductivity �2 in a matrix of �1 our

new upper bound is always tighter than the upper bound given by (??), see Section

4. We illustrate the relation between the new bounds derived in Section 3 with those

obtained from simpler variational principles.

We remark that the new upper and lower bounds are sensitive to size e�ects. We

postpone a full analysis of the size e�ect phenomena predicted by the upper and lower

bounds until the third part.

II.2 New lower bounds on the e�ective conductivity

We apply variational principles developed in Part I to obtain lower bounds on the

e�ective conductivity tensor. Here we obtain lower bounds on the e�ective conduc-

tivity for particulate composites in terms of volume fraction, surface area, and a scale

free matrix of parameters. This matrix is the e�ective conductivity of a composite

with the same microgeometry but non-conducting inclusions.

II.2.1 Particles of high conductivity in a low conductivity matrix

We consider particles of phase 2 embedded in a matrix of phase 1 with �2 > �1. We

suppose that none of the inclusions intersect the period cell boundary.

To obtain new lower bounds we make the speci�c choice of surface and bulk

polarization �elds, in the variational principle (P1) (equation I2.17) given by

p = �2�; v = r � n (II.2.1)

where �, and r are vectors in <d and n is the normal pointing into phase 1. The

associated bound is given by

(�e � I+
2

�

Z
�
n
 n)� � � � max

��<d

r�<d

f2L(�; �2�; r � n)�Q(�2�; r � n)g: (II.2.2)
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We now set the comparison conductivity  to �1 and present the explicit form of L

and Q:

L =
�1

�

Z
�
n
 nds � � r + �2� � � (II.2.3)

Q = �2(�2 � �1)
�1 j � j2 +

1

�

Z
�
n
 nds r � r

+ ��11 (�2 j � j
2 +2�2� � r + (I�m0)r � r) (II.2.4)

Here the symmetric d � d tensor m0 is the e�ective conductivity tensor of a com-

posite with non-conducting particles having the same microgeometry as the original

composite. The region Y1 is assumed to be composed of an isotropic conductor with

unit conductivity and Y2 is �lled with a perfect insulator. For any constant electric

�eld � the possibly anisotropic e�ective conductivity is de�ned by:

m0� � � = inf
��H1

per

Z
Y1

j r�+ � j2 dx: (II.2.5)

We observe that equation (??) for L and the �rst two terms in (??) follow directly

upon substitution of the polarizations into (P1)(of I). The last three terms in (??)

follow from solution of the comparison problems (I2.9)-(I2.11) and (I2.12)-(I2.14) and

evaluation of the non-local term in (I2.19). Indeed, we have the;

Lemma II.2.1 For the choice p = �2� and v = r � n, the nonlocal termR
Q jMp +Rv j2 dx in (I2.19) is given by

��21 (�2 j � j
2 +2�2� � r + (I�m0)r � r)

Proof. For the choice p = �2�, solution of (I2.9)-(I2.11), yieldsM�2� = ���11 �2�,

and therefore: Z
Q
jMp j2 dx = �2�

�2
1 j � j2 :

Solution of (I2.12)-(I2.14) provides us with the relation R(r � n) = ���11 r in region-2

and so

2
Z
Q
Mp �Rvdx = 2�2�

�2
1 r � �:

Last in region-1 we have that R(r � n) is given by r�r �
dX

i=1

rir~�i where ~�i is a

solution of

�~�i = 0 in Y1 (II.2.6)
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(r~�i + ��11 ei) � n = 0 on � (II.2.7)

and ~�i periodic on Q. In this way we see that ~�i is the periodic uctuation in

the potential for a composite made from pure insulator in region-2 and an isotropic

conductor in region-1. Here the composite is subject to a constant gradient ��11 ei. The

vector ei denotes the unit vector in the i-th coordinate direction. Indeed, integration

by parts and application of (??) and (??) yieldsZ
Y1

j r�r j2 dx+ ��11

Z
Y1

r�r � rdx = 0:

Completing squares gives:

��21 m0r � r �
Z
Y1

j r�r + ��11 r j2 dx = ��21 �1 j r j
2 �

Z
Y1

j r�r j2 dx: (II.2.8)

We observe for the choice v = r � n, the term
R
Q j Rv j

2 dx is given by:

Z
Y2

j Rv j2 dx+
Z
Y1

j Rv j2 dx = �2�
�2
1 j r j2 +

Z
Y1

j r�r j2 dx:

Finally application of (??) givesZ
Q
j Rv j2 dx = ��21 j r j2 ���21 m0r � r:

2

Now we set 1
�

R
� n
nds = B and maximize (??) over � and r in <d to obtain the

lower bound on the e�ective conductivity given by:

(�e � �1I+ �21B)� � � �

0
BB@

�2
�2
�1
(�2 � �1)

�1I �2�
�1
1 I

�2�
�1
1 I B+ ��11 (I�m0)

1
CCA
�1

(II.2.9)

0
@ �2�

�1B�

1
A �

0
@ �2�

�1B�

1
A

This bound holds for all choices of constant temperature gradients � in <d. For

isotropic mixtures the tensor B reduces to:

B =
s

d�
I; d = 2; 3;

and inequality (??) becomes the lower bound on the e�ective conductivity for

isotropic particulate composites given by:

�e � �1 � �1
�
(1 �m0)

�1 + (�1�2c)
�1
��1

(II.2.10)

20



where c represents the characteristic combination

c =
s

d�2�
�

�2 � �1

�1�2
: (II.2.11)

and m0 is the scalar e�ective conductivity of a composite with the same geometry

but with nonconducting inclusions in a matrix of unit conductivity.

We denote the lower bound on the right hand side of (??) by ICL12(m0; �).

Elementary Wiener bounds on m0 show that this parameter is restricted to the in-

terval [0; �1]. Analysis shows that for m0 �xed, 0 < m0 � �1, and � � 0, one has

ICL12(m0; �) monotone increasing in � and

�e � ICL12(m0; �) � ICL12(m0; 0) = �1m0:

Here for � = 0 the bound reduces to �1m0. From Bergman (1978) it is known that the

e�ective conductivity is a homogeneous function of the component conductivities and

so the quantity �1m0 is precisely the e�ective conductivity for a matrix of conductivity

�1 with insulating inclusions. On the other hand the bound ICL12(m0; �) is found

to be monotone increasing in m0 for � � 0, and

�e � ICL12(m0; �) � ICL12(0; �) =

 
�1

�1
+

�2

�2
+

s

d�

!�1
:

Here ICL12(0; �) is the analogue of the Wiener lower bound for the case of per-

fect conductivity. The bound ICL12(0; �) may be obtained directly from variational

principle (I2.7).

It is shown in the work of Bruno (1991) that e�ective transport properties for

composites with nonconducting inclusions can be characterized in terms of the singu-

larities and zeros of the e�ective conductivity function for perfectly bonded conduc-

tors. These zeroes and singularities are known to be con�ned to an interval on the

negative real axis, see Bergman (1978). For composites with singularities and zeros

lying inside an interval [L1; L2] on the negative real axis we set:

sm =
1

1� L1

and Sm =
1

1 � L2

:

From the work of Bruno (1991) it follows that the conductivity m0 is bounded below

by

m0 � K(sm; Sm; �2) (II.2.12)

where

K(sm; Sm; �2) =
1 � Sm

1� sm

0
@1 + (1� �2=�)

2�
1� �2

�

� �
1�Sm
�

�
+ �2

�2

�
�1
d
� sm

�
1
A ; (II.2.13)
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and � = Sm�sm. Here equation (??) is Bruno's lower bound for insulating inclusions

in a matrix of unit conductivity. Collecting our results we display a lower bound on

the e�ective conductivity of an imperfectly bonded composite that is a function of

volume fraction, interfacial surface area, and the spectral parameters sm; Sm. The

bound is given by

�e � �1 � �1((1 �K(sm; Sm; �2))
�1 + (�1�2c)

�1)�1 (II.2.14)

Thus we are able to bound the e�ective transport properties for composites with

imperfect interfaces in terms of the zeros and singularities of the e�ective conductivity

function for composites with perfect contact between phases!

If the composite is made up of spherical inclusions then one can estimate sm and

Sm using the procedure of Bruno.

One also can appeal to the work of Torquato and Rubinstein (1991) to bound

m0 below for suspensions of spheres of diameter \g00. Their lower bound is given by

m0 � J(�2;H(x)) where

J(�2;H) = 1 + �2g

Z
1

1

3

2
x3=(x3 � 1)H(x)dx: (II.2.15)

Equation (??) is the lower bound of Torquato and Rubinstein and H is the nearest

neighbor distribution function for spherical inclusions of diameter g. The quantity

H(r)dr is the probability that given a sphere of diameter g at the origin, the center

of the nearest neighbor lies at a distance between r and r + dr. In (??), x = r=g

represents dimensionless distance. Thus we are able to display an alternative lower

bound on the e�ective conductivity for an imperfectly bonded composite that is deter-

mined by volume fraction, interfacial surface area, and nearest neighbor distribution

function:

�e � �1 � �1((1 � J(�2;H))�1 + (�1�2c)
�1)�1: (II.2.16)

We now consider the behavior of the bounds in the extreme cases � = 1 and

� = 0. For � =1 the lower bound becomes:

�e � �1 � �1

 
(1�K(sm; Sm; �2)

�1 �
�2

�2(�2 � �1)

!�1
(II.2.17)

From the work of Bruno one has that the parameters sm and Sm satisfy sm � �1=d

and Sm � �1=d + �2. For the choice, sm = �1=d and Sm = �1=d + �2 the lower bound

(??) reduces to the Hashin-Shtrikman lower bound for perfectly conducting isotropic

composites in d = 2; 3.
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The case � = 0 corresponds to a perfectly insulating interfacial surface. In this

limit the bound (??) reduces to �1m0. On the other hand one expects that this case

is physically equivalent to a composite with insulating inclusions. Such composites

have e�ective conductivity given precisely by �1m0. Indeed, one observes that the

objective function in the variational principle (I2.7) is monotone increasing in 1=�.

Thus it follows from our earlier observations in I Section 4 that �e = �1m0 for � = 0.

Therefore in the regime � << 1, the lower bound (??) provides a good estimate on

the e�ective conductivity.

II.2.2 Particles of low conductivity in a high conductivity

matrix

For the case of inclusions of conductivity �1 embedded in a matrix of conductivity

(�2 > �1); we proceed as in the last section to obtain the lower bound for isotropic

suspensions given by:

�e � ICL21(m0; �); (II.2.18)

where,

ICL21(m0; �) = �1 +

+ �1

2
4 m0

h
s

d�
(1 + �2�2

�2��1
)� �22�

�1
1

i
� s

d�

�2�2
�2��1

+ �22�
�1
1

m0

h
(�2 � �1)�

�1
1 � s

d�
� �2�2

�1(�2��1)

i
+ s

d�

�2�2
�2��1

+ �2�2
�1(�2��1)

� �22�
�1
1

3
5 :(II.2.19)

For this geometry elementary Wiener bounds on m0 give 0 � m0 � �2. Analysis

shows that for 0 � m0 � �2 and � > 0, one has ICL21(m0; �) monotone increasing

in � and

�e � ICL21(m0; �) � ICL21(m0; 0) = �1

 
1

1
m0
� �2��1

�2�2

!
� �1m0: (II.2.20)

On the other hand ICL21(m0; �) is found to be monotone increasing in m0 for

� � 0 and

�e � ICL21(m0; �) � ICL21(0; �) =

 
s

d�
+

�1

�1

+
�2

�2

!�1
: (II.2.21)

In view of the monotonicity of ICL21(m0; �) in m0 we are able to use bounds

on m0 for composites with insulating inclusions to obtain bounds on �e. Indeed if
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we know the interval [L1; L2] for the poles and zeroes of the e�ective conductivity

function for perfect contact one has from (Bruno 1991)

m0 � K(sm; Sm; �1) (II.2.22)

where sm = 1
1�L1

and Sm = 1
1�L2

and K is as given in (??). Substitution of the bound

K for m0 in (??) yields a lower bound on the e�ective conductivity in terms of the

spectral parameters sm; Sm, the volume fraction, and the interfacial surface area.

For the case of mondisperse suspensions of spheres the work of Torquato and

Rubinstein (1991) allows one to bound m0 below by

m0 � J(�1;H(x)) (II.2.23)

Here J is given by (??) and is in terms of the nearest neighbor distribution function.

Substitution of J for m0 in (??) yields a lower bound on the e�ective conductivity in

terms of nearest neighbor distribution function.

II.3 New upper bounds on the e�ective

conductivity

Here we apply the upper variational principle (P2) of part I to obtain an upper bound

on the e�ective conductivity. This bound incorporates partial geometric information

on the composite geometry. In addition to volume fraction, the bound contains

statistical information in terms of two point correlations and the moment of inertia

tensors of the particle surfaces.

II.3.1 Particles of high conductivity in a low conductivity

matrix

We consider particulate inclusions of conductivity �2 in a matrix of �1. We denote

the region occupied by the mth particle by Ym and its boundary by @Ym. To obtain

the upper bound we make a suitable choice of bulk and surface polarization �elds in

the variational principle (P2) of part I. We choose polarizations of the form

p(x) = �1� and v(x) = r � ym on @Ym: (II.3.1)

Here � and r can be any vectors in <d; d = 2; 3 and ym = x � rm where x lies on

the surface of the mth particle and rm is a reference point inside the particle. Upon
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substitution into the upper variational principle (P2) and choosing  = �2, we obtain

the upper bound:

(�e
�1

� ��12 )�� � �� � max
�2<d

max
r2<d

f2�L(�; r)� �Q(�; r)g (II.3.2)

where,

�L(�; r) = �1� � �� +
NX

m=1

Z
@Ym

n 
 ymdsr � �� (II.3.3)

�Q(�; r) = �1� j � j2 +�
NX

m=1

Z
@Ym

ym 
 ymds r � r

+ �2(�1�2I�T)(�� r) � (�� r); (II.3.4)

Here

� = (��11 � ��12 )�1 and T =
Z
Q
�1N�1dx; (II.3.5)

where N is the projection onto periodic mean-zero curl-free �elds introduced in

(I2.26). We observe that the equation (??) for �L and the �rst two terms in (??)

follow directly upon substitution of the polarizations into (P2) of I. The last term

appearing in (??) follows from substitution in the last term in (I 2.30). This sub-

stitution is nontrivial and requires proof. To facilitate the proof we require explicit

formulas for the integral operators N and S de�ned in Part I, Section 2. We provide

such formulas in the following Lemma.

Theorem II.3.1 The operator N is the projection of any square integrable, periodic

bulk polarization p onto the space of mean zero gradients of periodic temperature �elds

and is de�ned locally in Fourier space by:

Np =
X
k 6=0

e2�ik�x
k 
 k

j k j2
p̂(k); (II.3.6)

The operator S transforms square integrable �elds v on � into gradients de�ned on

the region Y1 [ Y2 and is represented locally in Fourier space by:

Sv =
X
k 6=0

e2�ik�x
 
k 
 k

j k j2
� I

!Z
�
e�2�ik�yvndsy �

Z
�
vndsy: (II.3.7)

Proof.

The explicit formulas and properties for the operator N follows immediately from

solution of the comparison problem (I2.20)-(I2.22) using Fourier expansions. This op-

erator is well-known and forms the basis of the anisotropic Hashin Shtrikman bounds

for composites with perfect interfaces given by Milton and Kohn (1988).
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To obtain the representation of the S operator given by (??) we extend the

function v de�ned on � into region-1. Where region-1 has a common boundary with

the period cell we require the extension to be periodic there. It may be assumed

that the extension of v has a square integrable gradient in region-1. Denoting the

extension of v also by v we introduce the auxiliary problem: for a periodic potential

w given by:

�w = div(�1rv) in Y1 [ Y2; (II.3.8)

[rw� �1rv] � n = 0 on �; (II.3.9)

and

[w] = 0 on � (II.3.10)

It is evident from (??)-(??), that (rw � �1rv) is orthogonal to the subspace of

all Q-periodic polarizations that can be written as gradients of periodic temperature

�elds, i.e., Z
Q
(rw � �1rv) � r�dx = 0: (II.3.11)

Here � is a Q-periodic vector �eld. Since N is the projection onto the subspace of

�elds that can be written as gradients of potentials we have:

N(rw � �1rv) = 0: (II.3.12)

In addition from (??)-(??) it follows that, N(rw) = rw, thus we obtain:

rw = N(�1rv): (II.3.13)

From (??)-(??) we observe that the function de�ned by

� = w � v; in Y1 (II.3.14)

� = w; in Y2 (II.3.15)

is a solution of the comparison problem (I2.23)-(I2.25). Since the solution �v of the

comparison problem is unique up to a constant we may take �v to be represented by

(??) and (??). It now follows from (??)-(??) that

Sv = r�v = rw � �1rv in Y1 [ Y2: (II.3.16)

Denoting the identity operator by I we have from (??):

Sv = (N � I)�1rv in Y1 [ Y2: (II.3.17)
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In view of (??) equation (??) can be written as:

Sv =
X
k 6=0

 
e2�ik�x

 
k 
 k

j k j2
� I

! d�1rv(k)

!
� d�1rv(0) (II.3.18)

From the divergence theorem we may write:

d�1rv(k) =
Z
�
e�2�ik�yvndsy + (2�i)k

Z
Q
e�2�ik�y�ivdy: (II.3.19)

Lastly noting that ((k 
 k)= j k j2 �I)k = 0 we obtain the desired representation

(??). 2

Next the formula for the last term in (??) follows from the:

Theorem II.3.2 For the choice p = �1� and v = ~v(x) where ~v = r � ym on @Ym, the

nonlocal term Z
Q
j (Np + Sv � p) �

Z
Q
(Np+ Sv � p)dx j2 dx (II.3.20)

in (I(2.30)) is given by:

(�1�2I�T)(�� r) � (�� r): (II.3.21)

Proof. Substitution of p = �1� and v = ~v into (??) gives the expression:Z
Q
�1N�1dx� � � +

Z
Q
j S~v j2 dx + �1 j � j

2

� 2

�Z
Q
�1N�1dx� � �+

Z
Q
�1S~vdx � �

�

�

�
j
Z
Q
S~vdx j2 +�21 j � j

2 �2�1

Z
Q
S~vdx � �

�
: (II.3.22)

2

For the choice v = ~v we appeal to Theorem 3.1 to �nd formulas for the termsR
Q j S~v j2;

R
Q(S~v) � �1�dx, and j

R
Q S~v j2. Indeed Theorem 3.1 equation (??) yields

S~v =
X
k 6=0

"
e2�ik�x

 
k 
 k

j k j2
� I

! X
m

Z
@Ym

e�2�ik�y(r � ym)nds

!#

�
X
m

Z
@Ym

(r � ym)nds: (II.3.23)

We integrate by parts to �nd:Z
@Ym

e�2�ik�y(r � ym)nds

=

�Z
Ym

e�2�ik�ydy

�
r � 2�ik

Z
Ym

e�2�ik�yr � ymdy: (II.3.24)
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Noting that:

X
m

Z
Y m

e�2�ik�ydy =

8<
: �̂2(k) = ��̂1(k); k 6= 0

�2; k = 0
(II.3.25)

and
�
k
k
jkj2

� I
�
k = 0 it follows from (??), (??) and (??) that:

S~v = �
X
k 6=v

e2�ik�x�̂1(k)

 
k 
 k

j k j2
� I

!
r � �2r: (II.3.26)

Appealing to the explicit formula for the operator N given in Theorem 3.1 it is evident

from (??) that

S~v = (T �N)�1r � �2r (II.3.27)

where T is the projection onto periodic square integrable mean-zero vector �elds.

Observing that

Z
Q
�1T �1rdx =

Z
Q
�1(�1 � �1)rdx = �1�2r (II.3.28)

it follows from (??) and (??) that

Z
Q
j S~v j2 dx = (�1�2I�T)r � r + �22 j r j

2; (II.3.29)

Z
Q
(S~v) � �1�dx = �Tr � �; (II.3.30)

and

j
Z
Q
S~vdx j2= ��2 j r j

2 : (II.3.31)

Formula (??) follows immediately upon substitution of (??) and (??) through (??)

into (??).

The tensor T de�ned by (??) is well-known and appears in bounds on the e�ective

conductivity for the perfect contact case, see Kohn and Milton(1988). This tensor T

contains two-point correlation information on the composite microstructure. Indeed

T can be written as

Ti` =
X
k 6=0

kik`

j k j2

Z
Q
e2�ik�tcbb(t)dt; (II.3.32)

where cbb(t) is the two-point correlation:

cbb(t) =
Z
Q
�1(x+ t)�1(x)dx: (II.3.33)
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This function gives the probability that the ends of a rod of length and orientation

described by the vector t lies in both phases. This representation for T is easy to

establish. Indeed from (??) and the formula for the operator N given by (??) we

can write

Ti` =
X
k 6=0

kik`

j k j2
j �̂1(k) j

2 : (II.3.34)

Noting that j �̂1(k) j
2= d�1 � �1(k) we see that j �̂1(k) j

2 is simply the Fourier trans-

form of cbb(t) de�ned by (??). The relation between geometric tensors of the type

given above and two-point correlations was observed in Willis (1982) and in the works

of Avellaneda and Milton (1989).

We are now in a position to display new upper bounds on the e�ective conduc-

tivity for anisotropic composites in terms of second order geometric parameters. We

introduce the tensors

R =
X
m

Z
@Ym

n
 ymds; M =
X
m

Z
@Ym

ym 
 ymds

and carry out the optimization implied by (??) to obtain the upper bound: For any

constant current �eld �� one has,

(�e�1 � ��12 I)�� � �� �

0
@ �1�I +A �A

�A �M+A

1
A
�1 0
@ �1��

R��

1
A �

0
@ �1��

R��

1
A ; (II.3.35)

with A = �2(�1�2I�T).

We note thatM =
X
m

�
1

2
(trJm)I� Jm

�
where Jm is the moment of inertia tensor

for the surface of the mth particle. The two point correlation information enters the

bound through the tensor T. When the composite is statistically isotropic the tensor

T is given by T = �1�2
d
I (d = 2; 3), and the tensor M = d�1�I, where, � = trM. It

follows from the relation

� = trM =
X
m

Z
@Ym

j ym j2 ds (II.3.36)

that the parameter � is equal to the sum of the polar moments of inertia of the

surfaces @Y m with respect to the reference points rm. For this case the bound given

by (??) reduces to:

�e � ICU12(�; �) (II.3.37)

where

ICU12(�; �) =

 
��12 +

�1�d
�1�+ �22� + �2�2d

�1(d� 1)

��d�1� + �1�2d�1(d� 1)��2 + �2d�2(d � 1)�2��

!�1

(II.3.38)
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It is easily seen that ICU12 is monotone increasing in the variables � and �. In view

of this we may choose the reference points rm so as to minimize � to obtain the

tightest bound. A straight forward calculation shows the best rm is given by

rm = (j @Y m j)�1
Z
@YM

yds; (II.3.39)

where j @Y m j is the surface area of the m-th particle. For perfectly bonded conductors

� =1; passing to the � =1 limit in the upper bound (??) we recover the Hashin-

Shtrikman (1962) upper bound for isotropic two phase composites. Denoting the

Hashin Shtrikman upper bound by HS+ we have from monotonicity

ICU12(�; �) � HS+: (II.3.40)

In the limit � = 0 the upper bound becomes

ICU12(�; 0) = �1�1

 
1� d�1

1 � (1� �2
�1
�2
)d�1

!
: (II.3.41)

Noting that �2 > �1 implies (1 � �2�1=�2) > 1� �2 = �1 we see that:

ICU12(�; 0) � �1�1

 
1 � d�1

1 � �1d�1

!
: (II.3.42)

Here the right-hand side is the upper bound derived by Bruno (1991) for a composite

with a matrix of �1 in the volume fraction �1 �lled with nonconducting material with

volume fraction �2.

II.3.2 Particles of low conductivity in a high conductivity matrix

For the case of inclusions of conductivity �1 embedded in a matrix of conductivity �2

we proceed as in the last section to obtain the upper bound for isotropic suspensions

given by

�e � ICU21(�; �); (II.3.43)

where

ICU21(�; �) =

 
��12 +

�1�d
�1� + �21�

��d�1� + �1�2d�1(d� 1)��2 + �2d�2(d � 1)�2��

!�1

(II.3.44)

This bound is monotone increasing in the parameters � and � and one has:

�2

 
1� d�1

1� �2d�1

!
= ICU21(�; 0) � ICU21(�; �) � ICU21(�;1) = HS+: (II.3.45)
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The left hand side of the inequality (??) is precisely the upper bound derived by

Bruno (1991) for a composite with a matrix of �2 in the volume fraction �2 �lled with

nonconducting particles in the volume fraction �1

II.4 Concluding Remarks

For isotropic particulate suspensions we have found new upper bounds depending

upon the parameter �, de�ned as the sum of polar moments of inertia of the parti-

cle surfaces with respect to their centroids given in (??) and volume fraction. Our

new lower bounds depend upon surface area, volume fraction and the e�ective con-

ductivity of a particulate composite with unit conductivity in the matrix phase and

nonconducting particles having the same geometry as the imperfectly bonded com-

posite.

The bounds presented in this paper were obtained from the new variational prin-

ciples introduced in Part I. We observe that when trial �elds of the type used in

Section 3 are substituted into the basic variational principle (??) of Part I we obtain

upper bounds that are not as tight as those given by ICU12(�; �) derived in the last

section (see equation (??) ).

Indeed, for isotropic particulate suspensions of �2 in a matrix of �1 the best choice

of trial �elds is given by:

� =

8<
: 0 in the matrix

(x� rm) � � in the mth particle
(II.4.1)

in (??) yields the upper bound U12(�; �):

U12(�; �) = �1�1 + �2�2

0
@1 � 1

1 + ��

d�2�2

1
A : (II.4.2)

Direct calculation shows that ICU12 is tighter than U12, i.e.,

�e(�) � ICU12(�; �) � U12(�; �): (II.4.3)

We summarize the principal results in the following inequalities: For isotropic par-

ticulate composites with matrix phase conductivity �1 and particle phase conductivity

�2 we have,

�1m0 � ICL12(m0; �) � �e(�) � ICU12(�; �) � U12(�; �) (II.4.4)
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Figure 1: Interface comparison method upper bound ICU and lower bound ICL

compared with the elementary upper bound (1.3) and the lower bound in (1.1)

for periodic 2-d monodisperse suspensions of diamonds in a ZnS matrix with

�1 = 17:4W=(mK); �2 = 1000W=(mK); �2 = :2; � = 6�1108W=(m2K), and radii

a � 10�m. Here sm = (1 � 4�=�2)=2; Sm = (1 + 4�=�2)=2 and the elementary upper

and lower bounds are denoted by U and L respectively.

and

 
�1

�1
+
�2

�2
+

s

d�

!�1
� ICL12(m0; �) � �e(�) � ICU12(�; �) � HS+: (II.4.5)

When the phases are interchanged we have:

 
�1

�1
+
�2

�2
+

s

d�

!�1
� ICL21(m0; �) � �e(�) � ICU21(�; �) � HS+: (II.4.6)

To �x ideas we plot in Figure 1 the interface comparison upper bound (3.38) and

lower bound (2.14) for periodic monodisperse suspensions of spheres. In the �gure

these upper and lower bounds are referred to as ICU and ICL, respectively.

In the next sections we analyze the behavior of the bounds ICL12; ICL21 at �xed

volume fraction when the interfacial surface area is allowed to become in�nite. We
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also present inequalities relating the geometric parameter � to interfacial surface area

and analyze the behavior of ICU12; ICU21 in � for �xed volume fraction.

The analysis done in Part III yields new theoretical predictions of size e�ect phe-

nomena for polydisperse suspensions of particles, (see Sections 6 and 7 of Part III).

III Size E�ects and Extremal Microgeometries

III.1 Introduction

In the previous sections we derived bounds on the e�ective conductivity for isotropic

two phase particulate heat conductors with interfacial barrier resistance ��1. These

bounds depend upon component volume fractions �1; �2 interfacial surface area s, and

the parameter � de�ned by:

� =
X
m

Z
@Ym

j ym j2 ds; (III.1.7)

where @Y m is the mth particle boundary, ym = x� rm; rm =j @Y m j�1
R
@Ym yds;R

@Ym j ym j2 ds is the polar moment of inertia of the surface @Y m, and � is the

total polar moment of the inertia of interface. Here we display these bounds for

particulate composites as functions of the geometric parameters. These bounds are

compared with experimental results. For monodisperse suspensions of spheres of

high conductivity �2 in a matrix of low conductivity �1 the parameter � is given

by d�2r, where r is the sphere radius. For this case we exhibit a critical radius

Rcr = ��1�2�1(�2 � �1)
�1, for which the e�ective conductivity equals that of the

matrix. Our result is rigorous and follows from an exact analytical calculation of

the temperature gradient in the composite. Using this result we are able to establish

optimality of our bounds for certain values of interfacial surface area, total moment

of inertia of the interface � and component volume fractions �1; �2.

We employ the upper bounds (II 3.38) to obtain new theoretical predictions of size

e�ect phenomena for polydisperse suspensions of spherical conductors in a matrix of

lesser conductivity. Here the spherical particles are of conductivity �2 and the matrix

is of conductivity �1 with �2 > �1. For this type of suspension the parameter �

reduces to

� = d�2hri (III.1.8)
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where hri is the \phase-2 volume averaged" or mean radius given by

hri =
NX

m=1

j Ym j

�2
rm; (III.1.9)

here j Ym j is the volume of the mth sphere.

We apply our new upper bound (II3.38) to show that when the mean radius of

the suspension lies below the critical value Rcr the e�ective conductivity lies below

that of the matrix, (see Theorem 6.1).

This prediction is rigorous and exact. Previous size e�ect predictions have been

limited to monodisperse suspensions of spheres based upon approximate phenomeno-

logical models and low volume fraction expansions. Indeed, using the approach of

Rayleigh and Maxwell, Hasselman and Johnson (1987) develop an e�ective medium

theory. Using this model they are able to give the estimate �1=� for the critical ra-

dius of a monodisperse suspension of spheres. Every et.al. (1992) also obtained the

same estimate for a monodisperse suspension of spheres using a Di�erential E�ective

Medium Theory. It follows from our result (see Section 4,(??)) that their estimate

is asymptotically correct in the limit �2 >> �1. For monodisperse dilute suspensions

Chiew and Glandt (1987) show that �e < �1 for spherical particles of radius less than

Rcr and �e > �1 for particle radii greater than Rcr.

The result given in this paper is, to the best of our knowledge the �rst theoretical

size e�ect prediction for polydisperse suspensions of spheres at high concentration.

In Section 7 we investigate the general question of optimal design of isotropic

particulate suspensions of conducting particles in a matrix of lesser conductivity at

�xed volume fraction. In this context we apply the monotonicity of the lower bound

(II 1.1) to show that the e�ective conductivity is greater than the matrix provided

the interfacial surface area is less than the value d�2R
�1
cr see (Theorem 7.1).

Next we consider the problem of the optimal isotropic distribution of conducting

spheres of di�erent radii in a matrix of lesser conductivity. For �xed volume fraction

of spherical particles, the objective is to �nd the optimal distribution of spheres that

give the best e�ective heat transport properties in all directions, (i.e., maximize the

e�ective conductivity). We employ Theorem 6.1 and Theorem 7.1 to show that any

polydisperse distribution with mean radius less than Rcr is suboptimal. Thus we see

that the scale of the heterogeneties has an e�ect on the optimality of a particular

design. This is in striking contrast to optimal layout problems with perfect heat

transmission between phases where scale plays no role in the optimal design, see
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Lurie and Cherkaev (1986), Murat and Tartar (1985).

For isotropic monodisperse suspensions of spheres we can say more. Indeed The-

orems 6.1 and 7.1 imply that:

1. For spheres of radius less than Rcr the e�ective property lies below that of the

matrix.

2. For spheres of radius greater than Rcr the e�ective property lies strictly above

that of the matrix (see Theorem 7.3).

These results constitute the �rst rigorous proof of size e�ect phenomena for monodis-

perse suspensions at high volume fraction.

We may also apply the monotonicity of the upper and lower bounds in the geomet-

ric parameters, s and � to solve inverse problems. Indeed, for an isotropic particulate

suspension of isotropic conductors in a matrix of lesser conductivity we show that:

when the e�ective conductivity is greater than that of the matrix then the total mo-

ment of inertia of the interface is greater than d�2Rcr, (see Theorem 8.1). For the

special case of polydisperse suspensions of spheres one has a similar result in terms of

the mean radius, (see Corollary 8.1). We �nd that when the e�ective property is less

than the matrix the ratio of particle volume to interfacial surface �2=s is less than

Rcr, (see Theorem 8.2).

Lastly we use monotonicity of the bounds in � to recover estimates for interface

resistivity from measured values of the e�ective conductivity, see Theorem 8.3.

III.2 Inequalities between geometric parameters

The bounds derived in the previous article (Part II) were in terms of the geometric

parameters, s; �, and the component volume fractions �1; �2(�1+�2 = 1). For isotropic

suspension of particles of conductivity �2 in a matrix of conductivity �1 the parameters

satisfy the following inequality:

d2�2

 
�2

s

!
� � (III.2.1)

Inequality (??) follows from two applications of Cauchy's inequality. To see this we

derive the preliminary inequality:

d2
 X

m

j Y m j

 
j Y m j

j @Y m j

!!
� �: (III.2.2)
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Inequality (??) follows immediately from the de�nition of � and the term by term

estimate, �Z
@Ym

ym � nds

�2

�j @Y m j
Z
@Ym

j ym j2 ds; (III.2.3)

where n is the unit outward directed normal to the mth particle surface @Y m. Inte-

gration by parts on the left hand side of (??) yields:

d2 j Y m j2�j @Y m j
Z
@Ym

j ym j2 ds (III.2.4)

and (??) follows. We apply Cauchy's inequality to obtain:

d2
(
P
j Y m j)

2P
j @Y m j

� d2
 X

m

j Y m j
j Y m j

j @Y m j

!
; (III.2.5)

Noting that �2 =
P

j Y m j and s =
P

j @Y m j inequality (??) follows immediately

from (??).

III.3 Asymptotic behavior of the bounds with

respect to geometric parameters

We consider the behavior of the lower bound as we increase interfacial surface while

keeping the particulate volume fraction �xed. We also study the upper bound when

we allow the total polar moment of inertia of the interface \�", to decrease to zero.

It follows from (??) that the limit � ! 0 implies that interfacial surface area tends

to in�nity. It is interesting to note that all bounds in these limits reduce to bounds

on the e�ective conductivity associated with composites formed from nonconducting

inclusions.

III.3.1 Particles of high-conductivity in a low conductivity

matrix

For isotropic particulate composites with particles of �2 in a matrix of lesser con-

ductivity �1 we have the lower bound as given by equation (II 2.10). We �x volume

fractions and pass to the in�nite interfacial surface area limit to �nd that the lower

bound becomes exactly �1m0 where �1m0 is the conductivity associated with the

same microgeometry but with nonconducting particles and a matrix of conductivity

�1.
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The upper bound for such composites at �xed volume fraction depends upon the

� parameter and is given by (II 3.38). Passing to the � = 0 limit the bound becomes:

�1�1

 
1 � d�1

1� (1� �2
�1
�2
)d�1

!
(III.3.1)

Since (1 � �2�1=�2) > 1� �2 = �1 it follows that the above limit is larger than:

�1�1

 
1 � d�1

1 � �1d�1

!
: (III.3.2)

Here formula (??) is precisely the upper bound on composites of matrix conductivity

�1 with insulating inclusions given by Bruno (1991).

III.3.2 Particles of low conductivity in a high conducting

matrix

In the case of particulate composites with particles of conductivity �1 in a matrix of

higher conductivity �2. The lower bound is given by (II 2.19). By �xing the volume

fractions and considering the limit as the interfacial surface area tends to in�nity, the

lower bound becomes:

�2m0

�
m0

�2
+

�
1�

m0

�2

�
�2

�1

��1
(III.3.3)

Sincem0 < �2 the convex combination above lies between 1 and �2
�1
> 1. Therefore

the limit in (??) is less than �2m0, which represents the e�ective conductivity of a

composite with the same microgeometry but with nonconducting particles in a �2

conductivity matrix.

The upper bound for this case is given in (II 3.44). When � tends to zero the

bound becomes:

�2�2

 
1 � d�1

1� �2d�1

!
(III.3.4)

which represents the upper bound for composites of conductivity �2 with insulating

inclusions (see Bruno (1991)).

III.4 E�ective behavior for monodisperse suspensions

of spheres at critical particle size

It is known from experiment that particle size a�ects the overall thermal transport

properties of composites, see (c.f., Garret and Rosenberg (1974), Every et. al. (1992)).
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In this section we consider a monodisperse suspension of spheres of good conductor

�2 embedded in a matrix of conductivity �1. For prescribed barrier resistance ��1,

we exhibit a critical particle radius Rcr for which the e�ective transport properties

are identical to the conductivity of the matrix material. At this critical size the e�ect

of the interface resistance is balanced by the higher conductivity of the particles.

Denoting the critical radius by Rcr we have:

Rcr = ��1�2�1(�2 � �1)
�1: (III.4.1)

We begin with the obvious remark that for composites occupying the unit cube

we only consider parameter values �; �2; �1 for which the right hand side of (??) is

less than 1=2.

To establish our formula for the critical radius we consider a dispersion of N

spheres of common radius \a00 with centers denoted by the vectors ri. We assume all

spheres are contained in the unit cube and do not touch. We show that for a = Rcr

there exists a periodic piecewise a�ne solution to the problem (I2.2)-(I2.3) of the

form:

�+ � � x =

8<
: � � x in the matrix

�1
�2
� � x�

�
1� �2

�1

�
�1
�2
� � ri; in the ith particle

(III.4.2)

For this choice of temperature �eld the e�ective conductivity given by (I2.5) re-

duces to �e = �1.

We look for a solution of the form:

�+ � � x =

8<
: �A � x in the matrix

�B � x+ ci in the ith particle:
(III.4.3)

From (I2.1), (I2.3), and (I2.4) it follows that:

� +
Z
�
[�]nds = �1�A + �2�B; (III.4.4)

�1�A � n = �2�B � n (III.4.5)

and

�2�B � n = ��f(�B � �A) � x+ cig: (III.4.6)

From (??) we may conclude that �2
�1
�B = �A. On the surface of the ith sphere the

unit normal is written n = (x� ri)=a, thus x = an+ ri on the surface and (??) can

be written as

�B � n

�
�2 + �a

�
1 �

�2

�1

��
= ��

��
1 �

�2

�1

�
�B � ri + ci

�
(III.4.7)
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It is seen from (??) that both sides must equal zero thus:

�B

�
�2 + �a

�
1 �

�2

�1

��
= 0 (III.4.8)

�
1�

�2

�1

�
�B � ri + ci = 0: (III.4.9)

We observe from (I2.4) that

[�] = �
�2

�
�B � n = �

�2

�
�B �

x� ri

a
(III.4.10)

and (??) becomes:

�B =

 
�1
�2

�1
+ �2 +

�2�2

�a

!�1
�: (III.4.11)

It is evident from (??) that either

�B = 0 (III.4.12)

or,

�2 + �a

�
1�

�2

�1

�
= 0 (III.4.13)

For �nite values of �; �2; �1 we may rule out the case �B = 0 as this implies � = 0

from (??).

Equation (??) provides the relation de�ning the critical radius Rcr and is equiv-

alent to (??). For the choice of \a" given by (??) we �nd:

�B =
�1

�2
�: (III.4.14)

Last we deduce from (I2.5) that

�e� = �1�1�A + �2�2�B (III.4.15)

and from the relation �A = �2
�1
�B and (??) it follows that �e� = �1� for any choice of

�. Formula (??) follows from (??) and the above remarks.

The above analysis shows that at the critical radius the overall heat conductance

remains that of the matrix irrespective of the location and number of particles.

We point out that the Di�erential E�ective Medium Model introduced by Every

et.al. (1992) predicts that �e = �1 for spherical particles with radius �1=�. We

remark that in light of our exact calculation their result provides only an estimate of

the critical radius. However for large values of the particle conductivity their estimate

approaches the exact value given by (??).
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III.5 Critical values of the geometric parameters and opti-

mality

We examine the behavior of the bounds (II2.10) and (II3.38) in the parameters � and

s for suspensions of particles with conductivity �2 in a matrix of �1 with �2 > �1.

Indeed, when the total surface moment of inertia � = �2dRcr the upper bound given

by (II3.38) reduces to:

ICU12(�2dRcr; �) = �1: (III.5.1)

Similarly when the surface area s = d�2R
�1
cr then the lower bound given by (II2.10)

becomes:

ICL12(m0; �) = �1 (III.5.2)

Now we show for the choice � = �2dRcr and s = d�2R
�1
cr that the upper and lower

bounds are optimal. We observe from the results of previous section that for a

monodisperse suspension of spheres of critical radius \Rcr" of conductivity �2 in

a matrix of �1 that:

�e = �1 (III.5.3)

Moreover, for this suspension the associated geometric parameters � and s are given

by:

� = �2dRcr; s = �2dR
�1
cr (III.5.4)

Thus the bounds (??) and (??) are simultaneously obtained by a monodisperse

suspension of spheres of critical radius Rcr. To �x ideas we plot in Figure 1 the upper

and lower bounds (II(3.38)) and (II2.14)) for monodisperse periodic suspensions in

the d = 2 case. We also compare these to the simpler bounds given by (II1.3) and

(II1.1).

III.6 Size e�ect phenomena for polydisperse suspensions of

spheres

For polydisperse suspensions of spheres the parameter � = d�2hri, (c.f. (??)) where

hri is the mean radius of the spherical inclusions given by (??) . For spheres of �2 in

a matrix of �1 the upper bound (II3.38) becomes:

ICU12(d�2hri; �) =

 
��11 +

�1�2�hri + �22�+ �2�2d
�1(d� 1)

�2��d�1hri + �1�2d�1(d � 1)��2 + �22d(d � 1)�2�hri

!�1
;

(III.6.1)
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Figure 2: Interface comparison method upper and lower bounds for periodic 2-d

monodisperse suspensions of diamonds in a ZnS matrix with �1 = 17:4W=(mK); �2 =

1000W=(mK); �2 = :2; � = 6�1108W=(m2K), and radii a � 10�m (here sm = (1 �

4�=�2)=2; Sm = (1 + 4�=�2)=2).

where � = �1�2(�2 � �1)
�1.

This bound is strictly monotone increasing in hri and for hri = Rcr

ICU12(d�2Rcr; �) = �1: (III.6.2)

From monotonicity and (??) we have the:

Theorem III.6.1 (Size E�ect Theorem): For polydisperse suspensions of spheres of

�2 in a matrix �1 with �2 > �1 and any prescribed volume fraction �2, if hri � Rcr

then:

�e � �1: (III.6.3)

One has equality in (??) only if:

hri = Rcr: (III.6.4)
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III.7 Necessary conditions of optimal design

We consider suspensions of a �2 particles in a matrix of �1 with volume fractions

�1; �2 of the constituent materials �xed. We recall the lower bound (II 1.1) is given

by:

�e �

 
�1

�1
+

�2

�2
+

s

d�

!�1
= (III.7.1)

= �1

0
@1� �1�2�

�1
�

s

d�2
�R�1cr

�
1 + �1�2��1

�
s

d�2
�R�1cr

�
1
A : (III.7.2)

From (??) we see the lower bound equals �1 for s = d�2R
�1
cr . It is evident from (??)

that the lower bound is strictly monotone decreasing in the total interfacial surface

area s. We collect these observations and state the following theorem:

Theorem III.7.1 For an isotropic suspension of �2 conducting particles in a matrix

of �1 conductivity with �2 > �1 and any prescribed volume fraction �2, if the total

interfacial surface is bounded above by d�2R
�1
cr then:

�e > �1: (III.7.3)

We now consider the problem of the best isotropic distribution of good and bad

conductors in the unit cell Q. Here the best distribution is the one giving the best

e�ective heat transport in all directions, (i.e., the largest value of the e�ective con-

ductivity). It is assumed that the volume fraction of good conductor �2 is �xed at

�2.

In what follows we investigate the e�ect of scale in problems of optimal design.

To �x ideas we suppose that the volume fraction of the good conductor satis�es the

inequality:

�2 <
2(d� 1)

d
�2�d; d = 2; 3: (III.7.4)

That is the volume fraction is less than that of a sphere (circle) of radius 1=2 inscribed

within the unit cell. Moreover we restrict the parameters �; �1; �2 so that the critical

radius Rcr satis�es the constraint:

2(d � 1)

d
�Rd

cr < �2; d = 2; 3: (III.7.5)

The above states that we consider only cases where the volume of a single sphere of

critical radius is strictly less than the volume fraction �2 occupied by the polydisperse

suspension.
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We consider the best distribution of an isotropic, polydisperse, suspension of

spheres of good conductor �2 in a matrix of �1, for �2 prescribed and the given

constraints (??) and (??). We have the following theorem characterizing the optimal

design:

Theorem III.7.2 (Optimal Design-Necessary Condition)

The mean radius of the optimal distribution of spheres maximizing the e�ective

conductivity is greater than Rcr.

Proof. From Theorem 6.1 we know that if the mean radius lies below Rcr then

�e � �1. So to establish the theorem we construct a polydisperse suspension of

spheres with mean radius greater than Rcr such that the e�ective conductivity lies

above �1. The construction is trivial in view of (??) and (??). Indeed take a

suspension consisting of a single sphere of radius r such that:

2(d � 1)

d
�rd = �2: (III.7.6)

Then for this suspension
s

d�2
=

1

r
: (III.7.7)

From (??) and (??) we see that

r�1 < R�1cr ; (III.7.8)

therefore

s < d�2R
�1
cr : (III.7.9)

We conclude from (??) and Theorem 7.1 that the e�ective conductivity for this

suspension lies above �1 and the Theorem is established. 2

We conclude this section by making an observation for isotropic monodisperse

suspensions of spheres of radius r. For this case � = d�2r and s = d�2r
�1. Thus we

may apply Theorems 6.1 and 7.1 to obtain:

Theorem III.7.3 For isotropic monodisperse suspensions of spheres of radius r at

prescribed volume fraction:

�e > �1 if r > Rcr (III.7.10)

and

�e < �1 if r < Rcr
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Such a behavior is illustrated for ZnS-Diamond composites in Figure 1.

We consider the e�ect of varying the volume fraction at a �xed particle size for

isotropic composites. The bounds on the e�ective conductivity given by (II3.38)

and (II2.14) are plotted in Figure 2 for a periodic suspension of Diamonds in a ZnS

matrix. We observe that the upper and lower bounds are increasing functions in

volume fraction for a particle of size 2�m, larger than Rcr = 1:06�m, and that the

bounds are decreasing functions in volume fraction for a particle size of :25�m. For

a = Rcr = 1:06�m the upper and lower bound are both equal to �1. These bounds

predict the same behavior seen in the experimental results of Every et. al. (1992).

           µ

         µ

      µ
σ     /σ          1

a=.25    m

   e

a=1.06    m

a=2   m

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3
θ2

ZnS-Diamond composites for 2 , 1.06 and .25 microns

Figure 3: Interface comparison method upper and lower bounds for ZnS-Diamond

composites as a function of the volume fraction of the diamond, for di�erent diamond

particle sizes: a = 2:�m; a = Rcr = 1:06�m; a = :25�m.

Lastly we plot the interface comparison method bounds given by (II3.38) and

(II2.14) for a periodic suspension of diamonds in a matrix of ZnS as a function of

particle radius and volume fraction in Figure 3.
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Figure 4: Interface comparison method upper and lower bounds for monodisperse

suspensions of diamond in a ZnS matrix as functions of volume fraction �2 and particle

radius a.

III.8 Inverse Problems

The upper and lower bounds (II2.10) and (II3.38) are monotonic in the parameters

s; � and �. We use this property to gather information on the composite geome-

try from measured values of the e�ective conductivity. We limit the scope of our

discussion to isotropic particulate composites of conductors in a matrix of lesser con-

ductivity, i.e., particles of conductivity �2 in a matrix of �1 with �2 > �1.

We shall assume that the volume fractions �2 and �1 are known as well as the

values �2; �1 and � and bound the geometric parameters s and � from measured

values of the e�ective conductivity �e. The upper bound (II3.38) is easily seen to be

monotonically increasing in �, thus from (??) we have the following:

Theorem III.8.1 If �e > �1 then the total moment of inertia of the interface \�"

satis�es:

� > d�2Rcr: (III.8.1)

For isotropic polydisperse suspensions with mean radius hri as de�ned by (??) we
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have the:

Corollary III.8.1 If �e > �1 then hri > Rcr.

On the other hand the lower bound is monotonically decreasing in the interfacial

surface area thus from (??) it follows that:

Theorem III.8.2 If �e < �1 then the particle volume to interfacial surface area ratio

satis�es:

�2=s < Rcr: (III.8.2)

Using monotonicity of the bounds in the parameter � for �xed component volume

fraction and surface area, we obtain bounds on the surface conductivity in terms of

measured values of the e�ective property.

Theorem III.8.3 For given values of the geometric parameters �; s; �2 and for given

e�ective conductivity �e

� < � < ��

where � and �� are the unique solutions of:

ICU12(�; �) = �e; ICL12(m0; ��) = �e:
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