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ABSTRACT
We consider compositional properties of reactive systems
that are secure in a cryptographic sense. We follow the well-
known simulatability approach, i.e., the specification is an
ideal system and a real system should in some sense simulate
it. We recently presented the first detailed general definition
of this concept for reactive systems that allows abstraction
and enables proofs of efficient real-life systems like secure
channels or certified mail.

We prove two important properties of this definition,
preservation of integrity and secure composition: First, a
secure real system satisfies all integrity requirements (e.g.,
safety requirements expressed in temporal logic) that are
satisfied by the ideal system. Secondly, if a composed system
is designed using an ideal subsystem, it will remain secure
if a secure real subsystem is used instead. Such a property
was so far only known for non-reactive simulatability.

Both properties are important for putting formal verifi-
cation methods for systems using cryptography on a sound
basis.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; F.1.2 [Theory of Compu-
tation]: Computation by Abstract Devices, Modes of Com-
putation

General Terms
Security, Theory, Verification

Keywords
Cryptography, Simulatability

1. INTRODUCTION
Security proofs for systems involving cryptography are

getting increasing attention in theory and practice, and they
are used for increasingly large systems. While for some time
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most of the effort concentrated on primitives like encryption
and signature schemes, or authentication and key exchange,
currently work is under way on medium-sized systems like
secure channels, payment systems, and anonymity systems.
In the future, one might want to prove even larger systems
like entire electronic-commerce architectures or distributed
operating systems that use cryptography.

Both the cryptographic and the formal-methods commu-
nity are working on such proofs, and the techniques are
quite disjoint. One of our goals is to link them to get the
best overall results: proofs that allow abstraction and the
use of formal methods, but retain a sound cryptographic
semantics.

1.1 Abstracted Models
In the formal-methods community, one tries to use estab-

lished specification techniques to specify requirements and
actual protocols unambiguously and with a clear semantics.
Moreover, most work aims at proofs that are at least au-
tomatically verifiable. To make this possible, cryptographic
operations are almost always treated as an infinite term alge-
bra where only predefined equations hold (in other terminol-
ogy, the initial model of an abstract data type) as introduced
in [9]. For instance, there is a pair of operators EX and DX

for asymmetric en- and decryption with a key pair of a par-
ticipant X. Two encryptions of a message m from a basic
message space M do not yield another message from M , but
the term EX(EX(m)). The equation DX(EX(t)) = t for all
terms t is defined, and the proofs rely on the abstraction
that no equations hold unless they can be derived syntacti-
cally from the given ones. Early work using this approach
for tool-supported proofs was rather specific, e.g., [22, 20];
nowadays most work is based on standard languages and
general-purpose verification tools, as initiated, e.g., in [28,
18, 1].

A problem with these models is the lack of a link between
the chosen abstractions and the real cryptographic primi-
tives as defined and sometimes proven in cryptography. The
main issue is not even that one will somehow need to weaken
the statements to polynomial-time adversaries and allow er-
ror probabilities; the problem is that the cryptographic def-
initions say nothing about all equations. For instance, the
accepted cryptographic definition of secure asymmetric en-
cryption only requires that an adversary in a strong type of
attack cannot find out anything about the message (see [5,
8]), but nothing about possible relations on the ciphertexts.
One can construct examples, at least artificial ones, where



proofs made with the abstractions go wrong with encryption
schemes provably secure in the cryptographic sense [26].

1.2 Faithful Abstraction
The problem can be approached from both sides—

cryptography can try to offer stronger primitives closer to
the typical abstractions, or formal methods can be applied
based on weaker abstractions that are easier to fulfil by ac-
tual cryptography. (Our examples in [24, 25] belong to the
second approach.) Both approaches presuppose that one
defines what it means that some abstraction is fulfilled in
a cryptographic sense. Both also need proofs that working
with the abstractions leads to meaningful results in the real
cryptographic sense, i.e., the abstractions should be faith-
ful. This is illustrated in Figure 1. We will show how the
theorems proven in this paper help in this program.
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Figure 1: Goals of faithful abstraction. Bold arrows
should be defined once and for all, normal arrows
once per protocol. It should be proven that dashed
arrows follow automatically.

1.3 What does Cryptography Gain from Ab-
stractions?

Cryptographers may ask why one should bother with ab-
stractions: why not continue to make all proofs on the lower
layer of Figure 1, i.e., as reduction proofs if asymmetric
cryptography is involved? Indeed, abstractions and formal
methods neither increase the expressiveness nor make the
overall results more rigorous. However, one can hope that
the specifications get nicer, the proofs shorter, and tool sup-
port easier. (The large number of papers using unfaithful
abstractions indicates how alluring these arguments are.)
Indeed rigorous cryptographic definitions are long (always
involving details of the attack, error probabilities etc.), and
many had to be strengthened later. Similarly, most proofs
are currently only sketches, and some have contained gaps.
This will get worse with larger systems; just imagine prov-
ing an entire electronic-commerce framework by a reduction
only because it uses signatures in some places.

1.4 Related Literature
There are some approaches at expressing actual crypto-

graphic definitions in formal languages. This is almost or-
thogonal to our goal of providing abstractions with a crypto-
graphic semantics. As also none of them captures the entire
definitions yet, we do not duplicate the overview from [26].

The main abstraction approach in cryptography is sim-
ulatability: One specifies an ideal system that has all the
desired properties by construction, but typically makes the
unrealistic assumption that there is one machine trusted by
all parties (“trusted host”). A real system is defined to be
as secure as an ideal system if anything an adversary can

achieve can also be achieved by an adversary attacking the
ideal system.

This approach was primarily worked out for function eval-
uation, i.e., all parties make one input at the beginning and
get one output at the end [29, 12, 3, 21, 6]. For this case,
[6] contains a composition theorem. Our Section 4 can be
seen as an extension of this to reactive systems.

There are two main approaches at extending simulatabil-
ity to reactive systems, i.e., systems where users make inputs
and obtain outputs many times. The first, constructive, ap-
proach describes the ideal system as a global state-transition
machine and requires the global state to be shared among all
participants in the real system [14, 11]. This is not feasible
or desirable in scenarios like secure channels or payment sys-
tems, where many participants carry out many 2- or 3-party
subprotocol runs at different times.

The second, descriptive, approach only considers the “out-
side” behaviour of the system. Brief sketches have been
around for some time [27, 6]; three more detailed defini-
tions have been made [16, 17, 15, 24]. For none of them,
theorems about composition or the preservation of integrity
properties have been given yet, hence the current paper is
novel in any case. The main advantage of [16, 17] is a
formal language, π-calculus, as machine model. However,
it lacks abstraction: the specifications in both papers es-
sentially comprise the actual protocols and are specific to
certain cryptographic primitives used. Hence tool support
would also not be possible yet because even the specifica-
tions involve ad-hoc notation for generating random primes
etc. (Combining some of their language techniques with our
abstraction techniques looks promising.) In [15], a some-
what restricted class of systems is considered (straight-line
programs and information-theoretic security) because their
main goal was general constructions. Particular aspects of
[24] (also in comparison with other sketches) are a precise
timing model that exposes timing vulnerabilities, a precise
treatment of the interaction of users and adversaries, and a
very general trust model. The simulatability approach has
also been applied to specific reactive problems [10, 4, 7, 25],
but this has not much bearing on composition as studied
here.

A formal abstraction specifically for symmetric encryption
with cryptographic semantics has been described in [2]1, but
without considering its use within a system. An approach to
provide integrity properties with a cryptographic semantics
was first made in [23], but not as rigorously as here and
without a relation to simulatability definitions.

1.5 Organization of this Paper
In this paper, we investigate compositional properties of

systems that are secure in the sense of simulatability. We
repeat the model we use in Section 2. In Section 3 we define
what it means for a system to provide almost arbitrary in-
tegrity properties in a cryptographic sense. We then prove
that (a) proofs of such properties made for the ideal system
also hold for the real system and (b) logic derivations among
integrity properties are valid for the real system in the cryp-
tographic sense. In Section 4 we define the composition of

1They show that if two expressions of a certain class are
equivalent in a formal calculus for an adversary, and are
interpreted using a symmetric encryption scheme with some
special security properties, then the resulting two random
variables are computationally indistinguishable.



systems in our model. We then prove that the specification
of one system can be used in the design of another system
while preserving statements about the security of the overall
systems.

All the derivations mentioned can be abstract, unless the
higher layer in a composition uses cryptography itself. In
particular, the integrity properties in (a) are accessible to
model checkers, those in (b) to theorem provers.

2. SUMMARY OF THE DEFINITIONS
In this section, we repeat the definitions from [24] in

slightly abbreviated form. They are for a synchronous net-
work model, and the simulatability also includes the timing.
Hence security exposures via timing channels are captured.
To avoid that timing differences within a round leak, im-
plementations of synchronous machines have to ensure that
input reading and outputting are both clocked.

The machine model is probabilistic state-transition ma-
chines, similar to probabilistic I/O automata as sketched in
[19]. For clarity, one particular notation and semantics is
fixed.

Definition 1. (Machines and Ports) A name is a string
over a fixed alphabet Σ. A port p is a pair (namep, dirp) of a
name and a Boolean value called direction; we write namep?
and namep! for in- and output ports, respectively. We write
pc for the complement of a port p, i.e., namep!

c = namep?
and vice versa. For a set P of ports, let In(P) := {p ∈
P |dirp = ?} denote the input ports and similarly Out(P )
the output ports.

A machine M for a synchronous system is a tuple

M = (PortsM, δM, IniM,FM)

of a finite set of ports, a probabilistic state-transition func-
tion, and sets of initial and final states. The states are
strings s from Σ∗. The inputs are tuples I = (Ip)p∈In(PortsM)

of one input Ip ∈ Σ∗ per input port, and the outputs anal-
ogous tuples O. δM maps each such pair (s, I) to a finite
distribution over pairs (s′, O). For a set M of machines, let
ports(M ) :=

⋃
M∈M PortsM.

“Machine M1 has machine M2 as a (blackbox) subma-
chine” means that it has the state-transition function as
a blackbox. Hence M1 can “clock” M2, i.e., decide when to
cause state transitions. �

For computational aspects, each machine is regarded
as implemented by a probabilistic interactive Turing ma-
chine [13], and each port by a communication tape. The
complexity of a machine is measured in terms of the length
of the initial state, represented as initial worktape content
(often a security parameter).

Below, we distinguish correct machines, adversaries and
users in particular in how they are clocked, because one can-
not assume adversaries to adhere to synchronization rules.
As some proofs need different clocking schemes, general col-
lections of machines and their runs with a clocking scheme
are defined.

Definition 2. (Machine Collections, Runs and Views) A
collection C is a finite set of machines with pairwise disjoint
sets of ports. Each set of complementary ports c = {p, pc} ⊆
ports(C ) is called a connection and the set of these connec-
tions the connection graph G(C ). By free(C ) we denote the

free ports, i.e., p ∈ ports(C ) but pc 6∈ ports(C ). A collection
is closed if free(C ) = ∅.

A clocking scheme is a mapping κ (also written as a tuple)
from a set {1, . . . , n} to the powerset of C , i.e., it assigns
each number a subset of the machines. Given C and κ and
a tuple ini ∈ Ini := ×

M∈C
IniM of initial states, runs (or

“executions” or “traces”) are defined: Each global round i
has n subrounds. In Subround [i.j], all machines M ∈ κ(j)
switch simultaneously, i.e., each state-transition function δM

is applied to M’s current inputs and state and yields a new
state and output (probabilistically). The output at a port
p! is available as input at p? until the machine with port p?
is clocked next. If several inputs arrive until that time, they
are concatenated. This gives a family of random variables

runC = (runC ,ini)ini∈Ini .

More precisely, each run is a function mapping each triple
(M, i, j) ∈ C × N × {1, . . . , n} to a quadruple (s, I, s′, O)
of the old state, inputs, new state, and outputs of ma-
chine M in subround [i.j], with a symbol ε if M not clocked
in this subround. For a number l ∈ N of rounds, l-
round prefixes runC ,ini,l of runs are defined in the obvi-
ous way. For a function l : Ini → N, this gives a family
runC ,l = (runC ,ini,l(ini))ini∈Ini .

The view of a subset M of a closed collection C in a run
r is the restriction of r to M × N × {1, . . . , n}.2 This gives
a family of random variables

viewC (M ) = (viewC ,ini(M ))ini∈Ini ,

and similarly for l-round prefixes.
For a run r and a set P of ports, let rdP denote its re-

striction to these ports. This notation is carried over to the
random variables. �

Now we define specific collections for security purposes,
first the system part and then the environment, i.e., users
and adversaries. Typically, a cryptographic system is de-
scribed by an intended structure, and the actual structures
are derived using a trust model : the adversary replaces some
machines and taps or completely controls some channels. A
concrete derivation is defined in [24]. However, as a wide
range of trust models is possible, it is useful to keep the re-
maining definitions independent of them by a general system
definition.

Definition 3. (Structures and Systems) A structure is a
pair struc = (M ,S) where M is a collection of machines
called correct machines, and S ⊆ free(M ) is called specified
ports. Let S̄ := free(M )\S and forb(M ,S) := ports(M )∪S̄ c.
A system Sys is a set of structures. �

The separation of the free ports into specified ports and
others is an important feature of this particular reactive sim-
ulatability definition. The specified ports are those where a
certain service is guaranteed. Typical examples of inputs at
specified ports are “send message m to id” for a message
transmission system or “pay amount x to id” for a payment
system. The ports in S̄ are additionally available for the
adversary. The ports in forb(M ,S) will therefore be forbid-
den or at least unusual for an honest user to have. In the

2For the view of a polynomial-time Turing machine in in-
teraction with unrestricted machines, inputs are only con-
sidered as far as the machine read them.



simulatability definition below, only the events at specified
ports have to be simulated one by one. This allows abstract
specification of systems with tolerable imperfections. For in-
stance, if the traffic pattern is not hidden (as in almost all
cryptographic protocols for efficiency reasons), one can ab-
stractly specify this by giving the adversary one busy-bit
per message in transit in the ideal system. Even better, he
should only get one busy-bit per subprotocol run (e.g., a
payment) and the internal message pattern of the subproto-
col should not tell him more. Detailed examples and more
motivation are given in [24, 25].

The following definition contains another important as-
pect: Both honest users and an adversary are modeled as
stateful machines H and A apart from the system. First,
honest users should not be modeled as part of the ma-
chines in M because they are arbitrary, while the machines
have prescribed programs. Secondly, they should not be re-
placed by a quantifier over input sequences, because they
may have arbitrary strategies which message to input next
to the system after obtaining certain outputs. They may
even be influenced in these choices by the adversary, e.g., in
chosen-message attacks on a signature scheme; thus H and A

may communicate. At least in the computational case, arbi-
trary strategies (i.e., adaptive attacks) are not known to be
replaceable by arbitrary input sequences. Thirdly, honest
users are not a natural part of the adversary because they
are supposed to be protected from the adversary. In par-
ticular, they may have secrets and we want to define that
the adversary learns nothing about those except what he
learns “legitimately” from the system (this depends on the
specification) or what the user tells him directly.

Definition 4. (Configuration) A configuration conf of a
system Sys is a tuple (M ,S , H, A) where (M ,S) ∈ Sys is a
structure and C = M ∪ {H, A} a closed collection.

The set of configurations is written Conf(Sys), and those
with polynomial-time user and adversary Confpoly(Sys).
“poly” is omitted if it is clear from the context.

Runs and views of a configuration are given by Definition 2
with the clocking scheme (M ∪ {H}, {A}, {H}, {A}), except
that we end a run if H and A have reached finite state.
Typically, the initial states of all machines are only a security
parameter k (in unary representation). Then one considers
the families of runs and views restricted to the subset Ini ′ =
{(1k)M∈C |k ∈ N} of Ini , and writes runconf and viewconf (M )
for runC and viewC (M ) restricted to Ini ′, and similar for l-
round prefixes. Furthermore, Ini ′ is identified with N; hence
one can write runconf ,k etc. �

Clocking the adversary between the correct machines is
the well-known model of “rushing adversaries”. The given
clocking of users is as powerful as clocking them in an arbi-
trary unsynchronized way [24].

In the simulatability definition, one only wants to compare
each structure of Sys1 with certain corresponding structures
in Sys2. An almost arbitrary mapping f is allowed as speci-
fication of “corresponding”, only certain conventions on the
naming of ports are necessary. An instantiation is usually
derived from the trust model, and usually only structures
with the same set of specified ports are corresponding.

Definition 5. (Valid Mapping, Suitable Configuration) A
function f from a system Sys1 to the powerset of a system

Sys2 is called a valid mapping if

pc ∈ free(M1) ⇒ p 6∈ forb(M2,S2) ∧

pc ∈ S2 ⇒ p 6∈ forb(M1,S1).

for all structures with (M2,S2) ∈ f(M1,S1).
Given Sys2 and f , the set Conff (Sys1) ⊆ Conf(Sys1)

of suitable configurations contains all those configurations
(M1,S1, H, A1) where H has no ports from forb(M2, S2) for
any (M2, S2) ∈ f(M1,S1). �

The restriction to suitable configurations Conff (Sys1) serves
two purposes in simulatability: First it excludes users that
are incompatible with (M2,S2) simply because of name
clashes. Secondly, it excludes that H connects to unspeci-
fied free ports of (M2,S2). This is necessary for the abstract
specification of tolerable imperfections. Recall the example
of an ideal system that gives the adversary one busy-bit per
subprotocol run. Clearly there is no such bit in the real
system; we only need it to capture that whatever the adver-
sary learns in the real system is not more than this bit. As
we will require indistinguishability of the views of H, these
unspecified ports must only be used by the adversary.

As the definition of computational indistinguishability
(originally from [30]) is essential for the simulatability defi-
nition, we also present it here.

Definition 6. (Indistinguishability) Two families
(vark)k∈N and (var′k)k∈N of random variables (or prob-
ability distributions) are called

a) perfectly indistinguishable (“=”) if for each k, the two
distributions are identical;

b) statistically indistinguishable (“≈SMALL”) for a class
SMALL of functions from N to R≥0 if the distributions
are discrete and their statistical distances

∆(vark, var′k)

=
1

2

∑

d∈Dk

|P (vark = d) − P (var′k = d)| ∈ SMALL

(as a function of k). SMALL should be closed un-
der addition, and with a function g also contain ev-
ery function g′ ≤ g. Typical classes are EXPSMALL
containing all functions bounded by Q(k) · 2−k for a
polynomial Q, and the (larger) class NEGL as in Part
c).

c) computationally indistinguishable (“≈poly”) if for every
algorithm Dis (the distinguisher) that is probabilistic
polynomial-time in its first input,

|P (Dis(1k, vark) = 1)−P (Dis(1k, var′k) = 1)| ≤
1

poly(k)
.

(Intuitively, Dis, given the security parameter and an
element chosen according to either vark or var′k, tries to
guess which distribution the element came from.) The
notation g(k) ≤ 1/poly(k), equivalently g ∈ NEGL,
means that for all positive polynomials Q, ∃k0∀k ≥
k0 : g(k) ≤ 1/Q(k).

We write ≈ if we want to treat all cases together. �



The following definition captures that whatever an adver-
sary can achieve in the real system against certain honest
users, another adversary can achieve against the same hon-
est users in the ideal system. Adding an adversary output
in the comparison does not make the definition stricter, nor
do auxiliary inputs [24].

Definition 7. (Simulatability) Let systems Sys1 and Sys2

with a valid mapping f be given.

a) We say Sys1 ≥f,perf
sec Sys2 (perfectly at least as secure

as for f) if for every suitable configuration conf 1 =
(M1,S1, H, A1) ∈ Conff (Sys1), there exists a config-
uration conf 2 = (M2,S2, H, A2) ∈ Conf(Sys2) with
(M2,S2) ∈ f(M1,S1) (and the same H) such that

viewconf 1
(H) = viewconf 2

(H).

b) We say Sys1 ≥f,SMALL
sec Sys2 (statistically at least as

secure as) for a class SMALL if the same as in a)
holds with statistical indistinguishability of all families
viewconf 1,l(H) and viewconf 2,l(H) of l-round prefixes of
the views for polynomials l.

c) We say Sys1 ≥f,poly
sec Sys2 (computationally at least as

secure as) if the same as in a) holds with configura-

tions from Conf
f

poly(Sys1) and Confpoly(Sys2) and com-
putational indistinguishability of the families of views.

In all cases, we call conf 2 an indistinguishable configuration
for conf 1. Where the difference between the types of security
is irrelevant, we simply write ≥f

sec, and we omit the indices
f and sec if they are clear from the context. �

Definition 8. (Blackbox and Universal Simulatability)
Universal simulatability means that A2 in Definition 7 does
not depend on H (only on M1, S1, and A1). Blackbox sim-
ulatability means that additionally, A2 (given M1, S1) is a
fixed simulator Sim with A1 as a blackbox submachine. �

We need the following lemmas (the first is well-known and
easily proved, the other two are from [24]).

Lemma 1 (Indistinguishability).
Indistinguishability of two families of random variables
implies indistinguishability of every function φ of them (in
particular restrictions). For the computational case, φ must
be polynomial-time computable.

A step in the proof that we also need separately is that the
statistical distance ∆(φ(vark), φ(var′k)) between a function of
two random variables is at most ∆(vark, var′k). �

Lemma 2 (Combination of Machines). The open
and hiding combinations, Do and Dh, of a subset D ⊆ C
of a collection are machines with all the original machines
as submachines. While PortsDo = ports(D), in Dh internal
connections are hidden, i.e., PortsDh

= free(D). Both are
clocked whenever a machine from D is. The transition
function is defined by switching the submachines in the
same subrounds where they would be clocked externally, and
in Dh also the internal connections.

In the resulting collection C ∗ = C \ D ∪ {Dx}, where x ∈
{o, h}, the restriction of the runs to every tuple of original
machines or ports is the same as in C .

If only Dx is clocked in a continuous range of subrounds,
one can derive a machine D′

x clocked only once in these sub-
rounds (internally it calls the transition functions of its sub-
machines in the right order) such that the restriction of the
runs to every tuple of original machines or ports is still un-
changed except for this subround renaming. �

Lemma 3 (Transitivity). If Sys1 ≥f1 Sys2 and Sys2

≥f2 Sys3, then Sys1 ≥f3 Sys3, unless f3 is not a valid
mapping. Here f3 := f2 ◦ f1 is defined in a natural way:
f3(M1,S1) is the union of the sets f2(M2,S2) with (M2, S2) ∈
f1(M1,S1). This holds for perfect, statistical and compu-
tational security. It also holds for universal and blackbox
simulatability. �

3. INTEGRITY REQUIREMENTS
In this section, we show how the relation “at least as se-

cure as” relates to explicit properties required of a system,
e.g., safety requirements expressed in temporal logic.

In a modular design approach, one regards the trusted
host, i.e., the ideal system used as the specification in sim-
ulatability, as a refinement of these properties. Hence one
verifies these properties for the trusted host. This may be
done by formal and even automatic model checking if the
trusted host is simple enough. (The trusted hosts in our
two larger examples in [24, 25] are indeed without proba-
bilistic and computational aspects or cryptographic oper-
ations.) Now we want to show that the real system also
fulfills these requirements in a certain cryptographic sense,
i.e., even if parts of the system are under control of an adver-
sary, but possibly only for polynomial-time adversaries and
negligible error probabilities. This approach corresponds to
the right half of Figure 1: the integrity properties serve as
abstract goals, the ideal system as an abstract protocol, and
the real system fulfils generally defined concrete versions of
these goals.

Clearly this can only hold for requirements formulated in
terms of in- and outputs of the trusted host at the specified
ports, because the simulatability definition only means that
the real and the ideal system interact with their users in an
indistinguishable way.

As a rather general version of integrity requirements, inde-
pendent of the concrete formal language, we consider those
that have a linear-time semantics, i.e., that correspond to a
set of allowed traces of in- and outputs. We allow different
requirements for different sets of specified ports, because
requirements of various parties in cryptography are often
made for different trust assumptions (typically, every party
is assumed to trust only their own computer). To make the
translation between the two systems meaningful, we only
consider mappings f that keep S constant.

Definition 9. (Integrity Requirements) An integrity re-
quirement Req for a system Sys is a function that as-
signs a set of traces at the ports in S to each set S with
(M ,S) ∈ Sys. More precisely, such a trace contains one
value vp ∈ Σ∗ for each port p ∈ S and round i, correspond-
ing to the in- or output of the correct machine in Subround
[i.1]. For the computational and statistical case, the traces
must be finite. We say that Sys fulfills Req

a) perfectly (written Sys |=perf Req) if for every config-
uration conf = (M ,S , H, A) ∈ Conf(Sys), the restric-
tions rdS of all runs of this configuration to the speci-
fied ports lie in Req(S). In formulas, [(runconf ,kdS )] ⊆



Req(S) for all k, where [·] denotes the carrier set of a
probability distribution.

b) statistically for a class SMALL (Sys |=SMALL Req)
if for every configuration conf = (M ,S , H, A) ∈
Conf(Sys), the probability that Req(S) is not fulfilled
is small, i.e., for all polynomials l (and as a function
of k),

P (runconf ,k,l(k)dS 6∈ Req(S)) ∈ SMALL.

c) computationally (Sys |=poly Req) if for every configu-
ration conf = (M ,S , H, A) ∈ Confpoly(Sys), the proba-
bility that Req(S) is not fulfilled is negligible, i.e.,

P (runconf ,kdS 6∈ Req(S)) ∈ NEGL.

Note that a) is normal fulfillment. We write “|=” if we want
to treat all three cases together.

Theorem 1 (Integrity Properties). Let a system
Sys2 be given that fulfills an integrity requirement Req, and
let Sys1 ≥f Sys2 for a valid mapping f with S1 = S2 when-
ever (M2,S2) ∈ f(M1, S1). Then also Sys1 |= Req.

This holds in the perfect and statistical sense, and in the
computational sense if membership in the set Req(S) is de-
cidable in polynomial time for all S . �

Proof. We first show that Req is defined on Sys1 un-
der the preconditions: Simulatability implies that for each
(M1,S1) ∈ Sys1, there exists (M2,S2) ∈ f(M1,S1). Then
S1 = S2 by the precondition, and thus Req(S1) is defined.
The idea for the rest of the proof is that if Sys1 did not
fulfill the requirement while Sys2 does, this would offer a
possibility to distinguish the systems.

Assume that a configuration conf 1 = (M1,S1, H, A1) ∈
Conf(Sys1) contradicts the theorem. Let Hh be the hid-
ing combination of H and A1.

3 By Lemma 2, this does
not change the probability of the runs restricted to S1.
As all other machines are in M1 and clocked only in Sub-
round 1, we can even clock Hh in Subround 3 only and
the runs change only by subround renaming. In particu-
lar, the traces at the ports in S1 as considered in the the-
orem remain the same. We now add an adversary Anull

without ports (and doing nothing) to obtain a configura-
tion conf h,1 = (M1,S1, Hh, Anull) ∈ Conf(Sys1). We then
have runconf h,1

dS1= runconf 1
dS1 , and thus conf h,1 also con-

tradicts the theorem.
Moreover, conf h,1 is a suitable configuration, i.e., Hh has

no ports from forb(M2,S2) for any (M2,S2) ∈ f(M1,S1) be-
cause PortsHh

= free(M1)
c (as the collection is closed and

Hh has no self-connections by construction) and Condition
1 on valid mappings.

Hence there exists an indistinguishable configura-
tion conf h,2 = (M2,S2, Hh, Ah,2) ∈ Conf(Sys2), i.e.,
viewconf h,1

(Hh) ≈ viewconf h,2
(Hh). By the precondition, the

requirement is fulfilled for this configuration (perfectly, sta-
tistically, or computationally). Furthermore, the view of Hh

in both configurations contains the trace at S := S1 = S2,
i.e., the trace is a function dS of the view.

3Note that we have not required that every user H connects
to all ports from S1, but we need all these ports to be in a
user view for exploiting simulatability.

In the perfect case, the distribution of the views is
identical. This immediately contradicts the assumption
that [(runconf h,1,kdS )] 6⊆ Req(S) while [(runconf h,2,kdS )] ⊆
Req(S).

In the statistical case, let an arbitrary polynomial l
be given. The statistical distance ∆(viewconf h,1,k,l(k)(Hh),

viewconf h,2,k,l(k)(Hh)) is a function g(k) ∈ SMALL. We ap-
ply Lemma 1 to the characteristic function 1vdS 6∈Req(S) on
such views v. This gives |P (runconf h,1,k,l(k)dS 6∈ Req(S))

− P (runconf h,2,k,l(k)dS 6∈ Req(S))| ≤ g(k). As SMALL is
closed under addition and under making functions smaller,
this gives the desired contradiction.

In the computational case, we define a distinguisher Dis:
Given a view of machine Hh, it extracts the run restricted
to S and verifies if the result lies in Req(S). If yes, it
outputs 0, otherwise 1. This distinguisher is polynomial-
time (in the security parameter k) because the view of
Hh is of polynomial length, and membership in Req(S)
was required to be polynomial-time decidable. Its advan-
tage in distinguishing is |P (Dis(1k, viewconf h,1,k) = 1) −

P (Dis(1k, view conf h,2,k) = 1)| = |P (runconf h,1,kdS 6∈ Req(S))
− P (runconf h,2,kdS 6∈ Req(S))|. If this difference were neg-
ligible, then so would the first term be because the second
term is and NEGL is closed under addition. Again this is
the desired contradiction.

We now show that, if integrity requirements are formu-
lated in a logic (e.g., temporal logic, or first-order logic with
round numbers), abstract derivations in the logic are valid
in the cryptographic sense. As our definitions are not based
on a specific logic, but on the linear-time semantics, the
following theorem represents this (see below).

Theorem 2 (Modus ponens).

a) If Sys |= Req1 and Req1 ⊆ Req2, then also Sys |=
Req2.

b) If Sys |= Req1 and Sys |= Req2, then also Sys |=
Req1 ∩ Req2.

Here “⊆” and “‘∩” are interpreted pointwise, i.e., for each
S. This holds in the perfect and statistical sense, and in
the computational sense if for a) membership in Req2(S) is
decidable in polynomial time for all S . �

Proof. Part a) is trivially fulfilled in all three cases. Part
b) is trivial in the perfect case. For the statistical case and
every conf = (M ,S , H, A) ∈ Conf(Sys),

P (runconf ,k,l(k)dS 6∈ (Req1(S) ∩ Req2(S))

≤ P (runconf ,k,l(k)dS 6∈ Req1(S))

+P (runconf ,k,l(k)dS 6∈ Req2(S))

∈ SMALL

because both summands are in SMALL, which is closed un-
der addition. The computational case holds analogously be-
cause NEGL is closed under addition.

For applying this theorem to concrete logics, the main rule
to consider is usually modus ponens, i.e., if one has derived
that a and a → b are valid in a given model, then b is also
valid in this model. If Reqa etc. denote the semantics of the



formulas, i.e., the trace sets they represent, we have to show
that

(Sys |= Reqa ∧ Sys |= Reqa→b) ⇒ Sys |= Reqb .

This follows directly from the theorem with Reqa∩Reqa→b =
Reqa∧b ⊆ Reqb .

4. COMPOSITION
In this section, we show that the relation “at least as se-

cure as” is consistent with the composition of systems. The
basic idea is the following: Assume that we have proven that
a system Sys0 is as secure as another system Sys ′

0 (typically
an ideal system used as a specification). Now we would like
to use Sys0 as a secure replacement for Sys ′

0, i.e., as an
implementation of the specification Sys ′

0.
Usually, replacing Sys ′

0 means that we have another sys-
tem Sys1 that uses Sys ′

0; we call this composition Sys∗. In-
side Sys∗ we want to use Sys0 instead, which gives a compo-
sition Sys#. Hence Sys# is typically a completely real sys-
tem, while Sys∗ is partly ideal. Intuitively we expect Sys#

to be at least as secure as Sys∗. The situation is shown in
the left and middle part of Figure 2.

Sys
0

≥f#Sys
1

Sys#

Sys'
0

Sys
1

Sys*

≥f1 Sys'

≥f0

≥f

Figure 2: Composition theorem and its use in a
modular proof: The left and middle part show the
statement of Theorem 3, the right part Corollary 1.

In terms of Figure 1, once we have proven Sys0, it serves
as a concrete primitive and Sys ′0 as the abstract primitive.
The abstract protocol is Sys1 or, considered together with
the abstract primitive, Sys∗. The concrete protocol is again
Sys1 or, together with the concrete primitive, Sys#. In The-
orem 3, we show that the arrow “abstraction” in the middle
of Figure 1 is correct. (Here “≥” is the concrete version of
“abstraction”.) Thus we can continue the modular design
with Sys∗ as an abstract primitive for larger systems. Corol-
lary 1 adds the right part of the figure for the case where the
abstract goals are given by a specification Sys ′, i.e., “fulfils”
is then also “≥”, and the abstract and concrete goals are
the same.

We first have to define composition. We do it immedi-
ately for n systems Sys1, . . . ,Sysn. We do not provide a
composition operator that takes the individual systems and
produces one specific composition. The reason is that one
typically does not want to compose every structure of one
system with every structure of the others, but only with cer-
tain matching ones. E.g., if the individual machines of M1

are implemented on the same physical devices as those of
M0, as usual with a layered distributed system, we might
only want to compose structures corresponding to the same
trust model. However, this is not the only conceivable situ-
ation. Hence we allow many different compositions.

Definition 10. (Composition) The composition of struc-
tures and of systems is defined as follows:

1. We call structures (M1,S1), . . . , (Mn,Sn) composable if
ports(Mi)∩ports(Mj) = ∅ for all i 6= j. We then define
their composition as

(M1,S1)|| . . . ||(Mn,Sn) := (M ,S)

with M = M1 ∪ . . . ∪ Mn and S = (S1 ∪ . . . ∪ Sn) ∩
free(M ). Clearly, (M ,S) is again a structure.

2. We call a system Sys a composition of systems
Sys1, . . . ,Sysn and write

Sys ∈ Sys1 × · · · × Sysn

if each structure (M ,S) ∈ Sys has a unique represen-
tation (M ,S) = (M1,S1)|| . . . ||(Mn,Sn) with compos-
able structures (Mi,Si) ∈ Sysi for i = 1, . . . , n.

3. Under the conditions of 2., we call (Mi,Si) the re-
striction of (M ,S) to Sys i and write (Mi,Si) =
(M ,S)dSysi

.

Remark 1. As compositions are again systems and struc-
tures, all further definitions (configurations, runs etc.) apply
to them.

Remark 2. Restriction is defined relative to all n systems,
i.e., uniqueness is only guaranteed if one knows them all. In
most cases, however, it is unique even if one only knows
(M ,S) and Sys i, e.g., if the n systems have disjoint sets of
machines and each set Mi occurs in at most one structure
of Sysi.

The following theorem shows that modular proofs as
sketched in the introduction to this section are indeed possi-
ble. Recall that the situation is shown in the left and middle
part of Figure 2. The main issue in formulating the theorem
is to characterize Sys#, i.e., to formulate what it means that
Sys0 replaces Sys ′

0.

Theorem 3 (Secure Two-System Composition).
Let systems Sys0, Sys ′

0, Sys1 and a valid mapping f0 be
given with

Sys0 ≥f0 Sys ′
0.

Let compositions Sys# ∈ Sys0×Sys1 and Sys∗ ∈ Sys ′
0×Sys1

be given that fulfil the following structural conditions:

1. For each structure (M #,S#) ∈ Sys# with restric-
tions (Mi,Si) = (M #, S#)dSysi

, all compositions
(M ′

0,S
′
0)||(M1,S1) with (M ′

0,S
′
0) ∈ f0(M0, S0) exist and

lie in Sys∗.

Let f# denote the function that maps each (M #,S#)
to the set of these compositions.

2. If (M1,S1) ∈ Sys1 then ports(M1) ∩ forb(M ′
0, S

′
0) = ∅.

Then we have

Sys# ≥f#

Sys∗.

This holds for perfect, statistical and computational security,
and also for the universal and blackbox definitions.

�

Remark 3. Condition (2) implies that the machines in
M1 can be considered part of the user for every structure
(M ′

0,S
′
0). We could weaken the condition by only compar-

ing structures (M1,S1) = (M #,S#)dSys1 with structures



(M ′
0,S

′
0) ∈ f0((M

#,S#)dSys0). The simpler but stronger
condition is intuitively w.l.o.g.: The only ports that really
need to have the same names in different systems are the
specified ones. All others can be given a specific prefix for
each system.

Proof. (Of Theorem 3.) Let a configuration conf # =

(M #,S#, H, A#) ∈ Conff#

(Sys#) be given and (Mi,Si) :=
(M #,S#)dSysi

for i = 0, 1. We have to show that there is
an indistinguishable configuration conf ∗ ∈ Conf(Sys∗). The
outline of the proof is as follows; it is illustrated in Figure 3.

A0

= A#

M0

A*

≈ A'0

M'0

M1 A#

M0

H0

Define

H0, A0

Sys0 ≥f0 Sys'0

Define

M*, A*

M1
H0

H

M#

M*

conf #

conf*

conf
0

conf'
0

M1

H

M1

A'0

M'0

H

H

S'0

S*

Figure 3: Configurations in the composition theo-
rem. Dashed machines are internal submachines.
(The connections drawn inside H0 are not dashed
because the combination is open.)

1. We combine H and M1 into a user H0 to obtain a con-
figuration conf 0 = (M0,S0, H, A0) ∈ Conf(Sys0) where
the view of H as a submachine of H0 is the same as
that in conf #.

2. We show that conf 0 ∈ Conff0(Sys0). Then by the
precondition Sys0 ≥f0 Sys ′0, there is a configuration
conf ′

0 = (M ′
0, S

′
0, H0, A

′
0) ∈ Conf(Sys ′

0) with (M ′
0,S

′
0) ∈

f0(M0,S0) where the view of H0 is indistinguishable
from that in conf 0.

3. We decompose H0 into H and M1 again and derive a
configuration conf ∗ = (M ∗,S∗, H, A∗) ∈ Conf(Sys∗)
where the view of H equals that of H as a submachine
of H0 in conf ′

0.

4. We conclude that conf ∗ is an indistinguishable config-
uration for conf #.

We now present the four steps in detail.

Step 1: The precise definition of conf 0 = (M0,S0, H, A0) is
that (M0,S0) = (M #, S#)dSys0 , that H0 is the open combi-

nation of M1 ∪ {H} as in Lemma 2, and A0 := A#. This is
a valid configuration from Conf(Sys0):

• (M0,S0) = (M #,S#)dSys0
is a valid structure by the

definition of a composition.

• Closed collection: The overall set of ports is the same
as in conf #. Hence the machines still have pairwise
disjoint port sets, and all ports still have complements
in the set.

Hence Lemma 2 implies viewconf 0
(H) = viewconf #(H).

Step 2: We now show that conf 0 ∈ Conff0(Sys0), i.e., H0

has no ports from forb(M ′
0,S

′
0) = ports(M ′

0) ∪ S̄ ′
0

c for any
structure (M ′

0,S
′
0) ∈ f0(M0,S0).

Assume that it had such a port p. By construction of H0,
p is also a port of M1 or H. The first case is excluded in Pre-
condition 2 of the theorem. Thus p ∈ PortsH. We use that
conf # is suitable, i.e., H has no ports from forb(M ∗,S∗) =
ports(M ∗) ∪ S̄∗c for any (M ∗,S∗) ∈ f#(M #,S#). By Pre-
condition (1) of the Theorem, (M ′

0,S
′
0)||(M1,S1) exists and

lies in f#(M #,S#), hence we use this as (M ∗,S∗).
Then M ′

0 ⊆ M ∗ implies p 6∈ ports(M ′
0). Thus only pc ∈ S̄ ′

0

remains, and we want to show that it contradicts pc 6∈ S̄∗.
We first show pc ∈ free(M ∗): We have pc ∈ S̄ ′

0 ⊆ ports(M ′
0),

and thus p 6∈ ports(M ′
0), and we have shown above that

p 6∈ ports(M1). Secondly, disjointness of the part names of
M ′

0 and M1 implies pc 6∈ S1. Hence pc ∈ free(M ∗) \ (S ′
0 ∪

S1) = S̄∗. This is the desired contradiction.
Hence conf 0 is indeed a suitable configuration. Thus

Sys0 ≥f0 Sys ′0 implies that there is a configuration
conf ′

0 = (M ′
0,S

′
0, H0, A

′
0) ∈ Conf(Sys ′0) with (M ′

0,S
′
0) ∈

f0(M0,S0) and viewconf ′
0
(H0) ≈ viewconf 0(H0). This implies

viewconf ′
0
(H) ≈ viewconf 0

(H) because the view of a subma-

chine is a function of the larger view (Lemmas 1 and 2).

Step 3: We define conf ∗ = (M ∗,S∗, H, A∗) by reversing
the combination of H and M1 into H0: The structure is
(M ∗,S∗) := (M ′

0,S
′
0)||(M1,S1), the user the original H, and

A∗ := A′
0. We show that conf ∗ ∈ Conf(Sys∗).

• Structure: (M ∗,S∗) ∈ Sys∗ follows immediately from
Precondition 1 of the theorem.

• Closed collection: The ports of H and the machines
in M1 are disjoint because so they were in conf #, and
those of all other pairs of machines because so they
were in conf ′

0.
4 As the set of ports is the same as in

conf ′
0, they also still all have complements in the set.

We can now see conf ′
0 as derived from conf ∗ by taking the

open combination of M1∪{H}. Hence Lemma 2 applies, and
we obtain viewconf ∗(H) = viewconf ′

0
(H).

Step 4: We have shown that conf ∗ ∈ Conf(Sys∗). We also
have (M ∗,S∗) ∈ f#(M #,S#) by the construction of f#.
The results about views in Steps 1 to 3 and transitivity
(Lemma 3) imply that viewconf ∗(H) ≈ viewconf #(H). Hence

conf ∗ is indeed an indistinguishable configuration for conf #.

Universal and blackbox: For the universal case, note that
A0 = A# does not depend on H. Then A′

0 only depends on
(M0,S0) and A0, and thus also A∗ = A′

0. For the blackbox
case, A′

0 additionally consists of a simulator Sim with A0 =
A# as a blackbox, and thus so does A∗.

The following corollary finishes the formalization and
proof of the situation shown in Figure 2: We now assume
that there is also a specification Sys ′ for the system Sys∗,
as shown in the left part of the figure.
4Recall that PortsH0

= ports(M1∪{H}); here we exploit that
we did not hide internal connections in the combination.



Corollary 1. Consider five systems satisfying the pre-
conditions of Theorem 3, and a sixth one, Sys′, with
Sys∗ ≥f1 Sys ′. Then

Sys# ≥f Sys ′

where f := f1 ◦ f# as in the transitivity lemma, except if f
is not a valid mapping.

The restriction that f must be a valid mapping is not seri-
ous (as for transitivity generally); it means that the naming
conventions must be fulfilled for the two systems Sys# and
Sys ′ that we finally want to compare.

Proof. Theorem 3 implies that Sys# ≥f#

Sys∗. Then
we immediately obtain Sys# ≥f Sys ′ using transitivity
(Lemma 3).

Remark 4. An alternative to the corollary would be to
consider two specifications Sys ′

0 and Sys ′1 for the two real
systems Sys0 and Sys1, and to show that Sys# ∈ Sys0×Sys1

is as secure as some Sys ′ ∈ Sys ′0 × Sys ′
1. For this, our com-

position theorem could be applied to internally structured
systems Sys ′. However, typically a specification should not
prescribe that the implementation must have two subsys-
tems; e.g., in specifying a payment system it should be ir-
relevant whether the implementation uses secret channels
as a subsystem. Hence the overall specification Sys ′ will
typically be monolithic as in Figure 2.

5. OUTLOOK
We have proven two important properties of a simulata-

bility definition for reactive cryptographic systems, compos-
ability and preservation of integrity properties. There are
many possible next steps. One is to apply the composi-
tion theorem to concrete systems, e.g., systems using secure
channels based on the specification used in [24]. For actual
tool support, the specifications should be translated from
our I/O automata to a concrete formal language, i.e., a re-
stricted syntax. Preservation of privacy properties is also
desirable; a general class (besides simulatability) is harder
to define, but we have sketches that simple properties like
non-interference are preserved.
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