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Abstract 

BACKGROUND: Berry pomace is a valuable but still little used by-product from juice 

manufacture. When processed to a stable fruit powder, the composition differs from 

that of the whole fruit. To facilitate the application in foods, detailed knowledge of 

its composition and physicochemical properties is essential.  

RESULTS: Blackcurrant, redcurrant, chokeberry, rowanberry and gooseberry were 

selected for analysis. All pomace powders had a high fibre content (>550 g kg-1) 

and a fat content of up to 200 g kg-1. Despite identical milling conditions, the 

particle sizes of the pomace powders varied. This can be traced back to seed 

content and brittleness, becoming also apparent in surface characteristics. 

Blackcurrant pomace powder differed from other varieties by its low water binding 

capacity (3.2 g g-1) and a moderate moisture uptake, whereas chokeberry pomace 

powder showed the highest polyphenol content and rowanberry pomace powder 

was rich in flavonols. 

CONCLUSION: The results obtained in this study give a comprehensive overview on 

the properties of berry pomace powder and allow drawing conclusions on their 

applicability for being used in complex food systems. 

 

INTRODUCTION 

The recommended daily dietary fibre intake of human adults is 25 g, and 70–80% 

of that amount should be insoluble.1,2 One prominent possibility to increase fibre 

content of the diet for enhancing the still-too-low intake is to supplement foods with 

fibre from cereal origin.3 Alternatively, increased fibre intake may be achieved by 

adding fruit processing by-products. A further use of, for instance, pomace adds 
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value to a material that is usually treated as waste, and therefore contributes to an 

improved sustainability of the agri-food processing chain. 

The composition of apple and citrus pomace powders has been widely 

studied, and respective fibre products are commercially available.2,4 These pomaces 

are especially interesting because of their high pectin content, but recent research 

also examined applications of apple and citrus fibre that are based on their 

chemical and technofunctional properties.5,6 Apart from dietary fibre, berry pressing 

residues contain high amounts of bioactive compounds  which may trigger health 

promoting effects once incorporated in the human diet,7 and therefore make them 

an interesting study subject. 

Water soluble antioxidant components located in the cell vacuole (for 

instance, chlorogenic acid) are released into the juice during pressing whereas 

compounds with low solubility (e.g., anthocyanins) that are associated with the cell 

wall remain in the pomace.8 It has been shown that the total dry matter (d.m.) 

related polyphenol content of chokeberry and blackcurrant press residues is 1.3-1.7 

times higher than that of the respective berries.9,10 Physiological functions of 

dietary fibre in human digestion derive from their physicochemical properties, 

including water and fat binding capacity, swelling ability, and rheological 

properties.11 In addition, quantification of the respective properties allows drawing 

conclusions on possible food applications. For instance, fibre with a high fat binding 

capacity might be best applied to stabilize fat in emulsion based products, whereas 

high water binding can be linked to decreasing syneresis in hydrogels, or altering 

food viscosity and texture.4,12 

Although it has been mentioned that pomace from pooled lots of berries 

from different producers may contain a large number of different pesticides,13 the 
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few studies available on the topic indicated that berries usually carry a low pesticide 

level, and that the pesticide level of pressing residues does not exceed that of fresh 

fruits.13,14,15 By taking these facts and the positive consumer image into account, 

by-products of berry juice production may serve as promising food ingredients with 

health promoting effects.7,16 Once processed into stable powder, a wide range of 

applications is possible. Prominent examples are baked or extruded cereal products 

where dried pomace may be used for partially replacing wheat, fat or sugar,17-19 or 

in meat or fish products for enhancing texture, and water and fat binding 

properties.12,20 

In industrial juice production berries are usually crushed or mashed, heated 

to 40-50 °C and treated with depectinising enzymes to disrupt the viscous gels 

formed during mashing so that extraction is facilitated.7,21 The remaining pomace is, 

because of its sugar content, highly susceptible to microbial spoilage22 so that 

immediate drying, accompanied by optimum milling, is necessary to control the fate 

of polyphenols and other heat-sensitive compounds.8 

Fortifying foods with ingredients with high fibre content often (e.g.12,17-20) 

results in an unfortunate alteration of product characteristics which, to some 

extent, may be counteracted by formulation or process adaptation.23 Knowledge of 

technofunctional properties in combination with physical characteristics and 

chemical composition is required to evaluate the potential for the application of 

dried berry pomace. The aim of the present study was to investigate composition, 

microbiological state, polyphenol content and physical properties of processed berry 

pomace, and to show similarities and differences among five different berry 

varieties. The information on the characteristics of berry pomace powder is helpful 

to facilitate its further application in foods. 
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MATERIALS AND METHODS 

Berry pomace as raw material and processing of pomace powder 

Berry pomace was collected from juice processors in the 2015 harvesting period on 

the day of pressing. Processed berry varieties were Ribes nigrum blackcurrant (BC, 

from Döhler GmbH, Neuenkirchen Hadeln, Germany), Aronia melanocarpa 

chokeberry (CB), R. rubrum redcurrant (RC) and R. uva-crispa gooseberry (GB) 

from Kelterei Walther GmbH, Arnsdorf, Germany, and Sorbus aucuparia rowanberry 

(RB, from Kelterei Kühne, Haselbachtal, Germany). The pomaces contained stems, 

seeds and skins and were stored at -20 °C in ziplock bags in 10–15 kg batches. 

After thawing for 24 h at 8 °C berry pomace was dried in an ULE 400 

convection oven (Memmert GmbH & Co. KG, Schwabach, Germany) at 60 °C for 24 

h, sufficient to reach a moisture content below 60 g kg-1. The dried material was 

subsequently milled in a ZM 100 ultra-centrifugal mill, equipped with a 0.5 mm 

sieve (Retsch GmbH, Haan, Germany) at 14,000 rpm, and used for all subsequent 

analysis except for seed – and polyphenols content.  

For polyphenol analysis, fresh pomace was freeze-dried at -42 °C for 72 h in 

an Alpha 1-2 LDplus (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, 

Germany) and milled after lyophilisation, again by using the ZM 100 mill operating 

at conditions described above.  

 

Microbiological analysis 

Five grams of fresh berry pomace or dried berry pomace powder were suspended in 

45 mL sterile peptone water (1.0 g L-1 casein peptone, 8.5 g L-1 sodium chloride) 

and homogenized in a Stomacher 400 (Seward Ltd, Worthing, UK) for 5 min. The 
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solution was decimally diluted and pour-plated with plate count agar (incubation: 

30 °C, 48 h) for total mesophilic count and yeast extract glucose chloramphenicol 

agar (incubation: 25 °C, 72 h; both from Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany) for yeast and moulds.  

 

Proximate analysis 

Moisture content of fresh and dried berry pomace was determined by drying at 103 

°C to constant mass. Fat content was analysed by acid hydrolysis and subsequent 

Soxhlet extraction with petroleum ether, crude protein by the Kjeldahl procedure 

(conversion factor 5.3), and ash content after incineration in a muffle furnace (4 h, 

550 °C). Soluble (SDF) and insoluble dietary fibre (IDF) were analysed using the 

total dietary fibre kit (Megazyme u.c., Bray, Ireland) based on AOAC 991.43.24 The 

remaining difference to 100% was considered as being non-DF carbohydrates. Total 

acidity was determined as tartaric acid equivalent after titration of an aqueous 

pomace powder suspension (50 g L-1) with 0.1 mol L-1 sodium hydroxide. 

 

Extraction and HPLC-DAD-MS analysis of phenolic compounds 

Pomace samples were extracted using a pressurized hot water extraction method.25 

Briefly, 1 g of milled berry pomace was extracted with degassed Milli-Q water 

containing 50 mL L-1 ethanol and 10 mL L-1 formic acid in a 10.0 mL extraction cell 

using an ASE-350 system (DIONEX Softron GmbH, Germering, Germany). 

Extractions were performed at 99 °C with 5 min preheating and 1 min static 

extraction. After that, the sample was flushed with fresh solvent (50% of the vessel 

volume). Extracts were diluted to a final volume of 25 mL with the extraction liquid 
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(see above) and stored at -20 °C. Prior to analysis, the extracts were centrifuged 

for 5 min to remove any undissolved particles.  

HPLC-DAD analyses were performed on a Dionex UltiMate-3000 HPLC 

system equipped with an online degasser, a dual gradient solvent pump, a 

thermostatted autosampler, a column oven, and a Diode Array Detector (DAD). The 

system was controlled and data acquired using Chromeleon 6.80 software. 

Separations were performed by injecting 5 µL of the extract on a porous-shell fused 

core Ascentis Express C18 column (100 mm × 3.0 mm, 2.7 μm; Supelco, Bellefonte, 

PA). Column temperature and flow rate were set to 45 °C and 350 µL min-1, 

respectively. The mobile phase consisted of (A) water and (B) methanol, both 

containing 10 mL L-1 formic acid. The gradient starting with 5% (B) was kept 

constant for three min and then linearly increased to 80% (B) during 30 min. 

Chromatograms were recorded at 280 nm for total phenolics, at 350 nm for 

flavonoids and at 520 nm for anthocyanins. The mass spectrometer was scanning 

from 50 to 1100 m/z, the cone voltage was set to 35 V and the capillary voltage to 

2.5 and 3.0 kV for positive and negative ESI mode, respectively. The desolvation 

gas flow rate was 800 L h-1 at a temperature of 550 °C and the cone gas flow rate 

was 40 L h-1. The source temperature was 120 °C. MSE was performed with collision 

energy ramped from 15 to 50 eV. The system was controlled by and data acquired 

using MassLynx 4.1 (Waters MS Technologies, Sollentuna, Sweden). 

 

Determination of physical properties 

Particle size 

Particle size distribution of milled berry pomace was determined with a HELOS/KR-

H2487 laser diffraction spectrometer (Sympatec GmbH, Clausthal-Zellerfeld, 
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Germany). Before analysis at a dispersion pressure of 0.3 MPa the powder was 

passed through a 2000 µm sieve. Volume based median values x50 and x90, and 

specific surface area was calculated from the size distribution densities. 

 

Pomace seed content 

Dried pomace was ground for 3 min at maximum speed (level 10) in a berlinett 

CM5100 knife mill (VEB EMK, Berlin, Germany). It was verified in preliminary 

experiments using light microscopy that, under these conditions, only stems and 

skins were comminuted whereas seeds remained intact. Subsequently, the seeds 

were separated using an AS 200 vibratory sieve shaker (Retsch GmbH, Haan, 

Germany), weighed, and expressed as fraction of whole dried pomace.  

 

Microstructure  

Pomace powder was vacuum coated with platinum and observed under a field 

emission scanning electron microscope (model Ultra 55 FESEM, Zeiss, Oberkochen, 

Germany). Each sample was analysed in duplicate. 

A light microscope (Nikon Eclipse 80i, Nikon Co., Ltd., Tokyo, Japan) was 

used to study the structure of different pomaces according to Hernández-Carrión et 

al.26 The autofluorescence of the samples containing phenolic compounds was 

observed while using a mercury arc lamp with a TRITC filter (λex=543/22 nm, 

λem=593/40 nm) as excitation source. Samples were placed on a microscope slide, 

covered with a cover slip and observed at 200x magnification. The images were 

captured and stored at 1280 x 1024 pixels using the microscope software (NIS-

Elements F, Version 4.0, Nikon, Tokyo, Japan).  
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Colour 

Colour of berry pomace powder was measured in the CIE-Lab colour space with a 

Luci 100 spectral colorimeter (D65 Xenon lamp, 10° observer; Hach Lange, 

Düsseldorf, Germany). Lightness L*, hue angle hab and chroma C* were calculated 

from the colour primaries and used for further interpretation.27 

 

Determination of technofunctional properties 

Water activity and sorption isotherms 

Equilibrium water activity aW of the pomace powders was measured with a 

LabMaster-aw benchtop instrument (Novasina AG, Lachen, Switzerland). A Q5000 

SA dynamic vapour sorption analyser (TA Instruments, Eschborn, Germany) was 

used to analyse moisture sorption and desorption at 20 °C. After loading approx. 

5 mg sample, relative humidity RH was kept at 0% until mass change was less than 

0.001% within 5 min. RH was then increased to 90% in 10% steps and, finally, to 

95%; at each level, mass was continuously recorded until no further change was 

observed (<0.01% for 5 min), and desorption isotherms were recorded similarly.  

The Guggenheim-Anderson-DeBoer (GAB) model was applied for fitting 

isotherms, with x being the moisture load (g g-1) at a particular RH (= 100 aW), x0 

being the monolayer moisture load, and C and k referring to the monolayer and 

multilayer energy constants, respectively:28 

𝑥 =
𝑥0 𝐶 𝑘 𝑎𝑊 

(1 − 𝑘 𝑎𝑊)(1 − 𝑘 𝑎𝑊 + 𝐶 𝑘 𝑎𝑊)
 

 

Water- and oil binding capacity 

Water binding capacity (WBC) was determined according to Zahn et al. (2013).29 

One gram pomace powder was mixed with 30 mL deionised water, vigorously 
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agitated, and kept at 20 °C for 30 min. The samples were centrifuged at 2000xg for 

10 min. The supernatant was removed, weighed and subjected to dry matter 

determination (oven method). Initial powder moisture was considered in the 

calculation of water and dry matter content of the remaining sediment. WBC is 

defined as g water that is bound per g dry pomace powder under these conditions. 

For swelling capacity determination, 0.2 g berry pomace powder was weighed into a 

graduated tube. After adding 10 mL deionised water and mixing, the tubes were 

placed in a rack for 18 h at room temperature. The volume of the swollen pomace 

powder was read from the graduation, and swelling capacity is further expressed as 

mL per g d.m.30 

To determine the potential to absorb fat, 0.5 g dried pomace was mixed with 

10 mL canola oil and kept for 18 h at room temperature. The sample was 

centrifuged at 10,000xg for 30 min, the supernatant discarded and the mass of the 

pellet determined. In contrast to WBC measurements, where particles remaining in 

the supernatant were taken into account, the powder particles suspended in oil 

sedimented completely during centrifugation. Oil absorption capacity (OAC) is 

defined as g oil per g dried pomace powder.31 

 

Statistical analysis 

All experiments were carried out in triplicate except dietary fibre content 

determination (n=4), and total acidity and moisture sorption (n=2). Analysis of 

variance with subsequent Student-Newman-Keuls post hoc-testing at P≤0.05 was 

conducted with SAS University Edition 6p.2 (SAS Institute Inc., Cary, USA).  

 

RESULTS AND DISCUSSION 
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Composition of pomace and pomace powders 

The moisture content of fresh pomace ranged from 516.0–764.8 g kg-1 (Table 1), 

and was related to processing conditions. Vagiri & Jensen32 reported that it is 

especially thermal and enzymatic degradation of pectin that affect juice yield and 

the distribution of cell compounds between juice and pomace. The companies that 

manufactured juice from BC, RC and CB treated the respective mashes with 

pectinase at 50 °C before pressing. Rowanberry and gooseberry mashes were 

pressed at room temperature without prior enzymatic treatment so that moisture 

content was significantly higher (approx. 750 g kg-1). 

Moisture content of dried pomace, containing crushed skins, seeds and 

stems, was below approx. 50 g kg-1. The fat content ranged from 36.1-202.1 g kg-1 

d.m. and was highest for BC pomace. Pomace fat content largely depends on its 

seed content;33 the relative amount of seeds in the pomace was highest for 

blackcurrant and redcurrant pomace (61% and 40%, respectively), and lowest for 

chokeberry and rowanberry (20% and 8.4%, respectively). This is comparable to 

Sójka et al.34 who reported 21.1% seeds in CB pomace and 57.1 – 62.1% in BC 

pomace. Protein content ranged between 59.7 g kg-1 for chokeberry, and 157.1 g 

kg-1 for blackcurrant pomace. Literature data are scarce but are, in case of BC, 

given by 130 g kg-1 pomace.33,35 

The content of insoluble dietary fibre varied between approx. 500–600 g kg-1 

d.m., and that of SDF between approx. 40–70 g kg-1. As published by the Finnish 

National Institute for Health and Welfare,36 total fibre content of fresh berries 

increases in the order of GB<RC<BC<RB, which is in accordance with the pomace 

results (Table 1). The highest total dietary fibre content is evident for rowanberries 

(approx. 660 g kg-1), which might be caused by some remaining pectin due to the 
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lack of enzymatic mash treatment before pressing. The fact that the IDF content of 

skin powder from blackcurrant and chokeberry pomace was specified as being 601 

and 666 g kg-1 dry matter, respectively,37 indicates that skins can be considered as 

the main fibre sources in pomace. 

The acidity of dried pomace was, expressed as tartaric acid equivalents, 

highest for gooseberry (4.1 g kg-1), and lowest for chokeberry (1.1 g kg-1), and pH 

of the respective suspensions ranged from 3.32 (GB) to approx. 4.5 (BC). The fact 

that organic acids are transferred into the juice can be taken as explanation for the 

low acidity of pomace with low moisture (i.e., BC and CB). Residual carbohydrate 

concentration ranged from 22.0-288.8 g kg-1 d.m. The observed differences can be 

attributed to berry composition, the effectiveness of juice extraction, but also to low 

molecular mass fibre and trace amounts of starch that were not determined as SDF 

or IDF.  

Fresh berry pomace is highly susceptible to microbiological spoilage, and 

immediate processing is necessary for further use. Total aerobic viable count in 

fresh pomace ranged from 1.2x103–1.0x106 cfu g-1, and the yeast and mould count 

from 1.0x102–2.0x105 cfu g-1 (Table 2). The large differences can be attributed to 

different contamination levels, but also to different treatments during harvesting, 

transport and pressing. Since the bacterial count does not exceed 1.0x107 cfu g-1, 

the standard value of the German Society for Hygiene and Microbiology for cut 

fruits, all pomace samples can be considered as microbiologically safe.38 The 

recommended limit for yeasts and moulds of 1.0x105 cfu g-1 was, however, 

exceeded in fresh BC and CB pomace. The time/temperature profile applied during 

convective drying (60 °C for 24 h) decreased the yeasts and moulds count in all 

dried pomaces to below the limit of 1.0x104 cfu g-1.38 Depending on fruit variety 
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and initial moisture content, total viable count either decreased or increased by 

approx. one magnitude. For comparison, the acceptable viable count limit for dried 

sauces is given by 1.0x106 cfu g-1.38 Both product acidity and water activity (highest 

aW was 0.251 for RC; Table 3) imply that there is a low risk of microbiological and 

enzymatic activity,39,40 and that the powders can be considered as stable. 

The total polyphenol content can be analysed by relatively simple methods 

such as the Folin Ciocalteau assay,41 or by considering peak areas identified by 

HPLC-DAD.42 In this study, we combined qualitative analysis of MS with total peak 

areas obtained by DAD. Supporting Information shows representative 

chromatograms of the extracts at the respective wavelengths (Figure S1). In 

general, the chromatographic profiles obtained in this study are in agreement with 

literature data for chokeberry,43 redcurrant and blackcurrant,44 gooseberry45 and 

rowanberry.46 Tentative identification of the individual compounds (Table S1) was 

based on a combination of the obtained exact mass (m/z), MS fragmentation 

pattern and the retention time of the respective peaks. 

As shown in Figure 1, chokeberry has the highest total phenolic content as 

measured at 280 nm, which is because of the high content of anthocyanins. The 

anthocyanin content is approx. five times higher than that of blackcurrant pomace, 

which showed the second-highest values. Compounds detected at 520 nm (Figure 

1S: peaks 11, 12, 15 and 29) were identified as cyanidin 3-galactoside, cyanidin 3-

glucoside, cyanidin 3-arabinoside and cyanidin 3-xyloside (Table S1).47,48 

Chlorogenic acid and chlorogenic acid derivates (m/z 353) were detected in high 

intensities (peaks 1 and 5 in Figure S1). At 520 nm, nine peaks were detected in 

blackcurrant extract compared to four peaks in redcurrant which explains the 

intense colour of blackcurrant. Free and glycoside forms of quercetin and 
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kaempferol (Table S1) are the main flavonoids detected in blackcurrant and 

redcurrant.44,49 Gooseberry has a variety of flavonoids and anthocyanins; however, 

their abundance is low compared to other berries (see total peak area at 280 nm). 

Although the colour of gooseberry is orange, ten peaks were detected at 520 nm 

representing anthocyanins and confirmed by the exact m/z and previous studies.45 

In contrast, in rowanberry one peak only was detected at 520 nm with m/z 449, 

identified as cyanidin-3-galactoside. On the other hand, rowanberry is rich in 

chlorogenic acid and its derivates (peaks 1, 5, 6 and 33). Proanthocyanins in 

dimeric or trimeric form generally show low peak intensities. To overcome this 

drawback, ion chromatograms were used to detect this group of compounds using 

the exact masses of m/z 577.134 and 865.198 for dimers and trimers, respectively. 

Few peaks (peaks 4, 26, 30 and 41) where detected at low intensity compared to 

flavonoids and anthocyanins. 

 

Physical and technofunctional properties 

Despite similar milling conditions, the particle size median differed significantly 

(Table 3) with x50 values ranging between 86.4 µm (CB) and 112.7 µm (BC). CB 

and RB are Rosaceae whereas BC, RC and GB of the Grossulariaceae genus Ribes 

are botanically classified as berries. It can be presumed that Ribes seeds are less 

susceptible to fracture so that higher stresses are needed to obtain a comparable 

particle size. With regard to the x90 percentile, between-variety differences were 

less prominent.  

Colour of the pomace powders ranged from dark purple (CB) to dark yellow 

(RB), depending on berry colour (Figure 2). It is the anthocyanins with their 

antioxidant activity that are mainly responsible for the colour of berries.50 In 
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blackcurrant, for example, the main anthocyanins are delphinidin-3-glucoside, 

delphinidin-3-rutinoside, cyanidine-3-glucoside and cyanidin-3-rutinoside.9 The hue 

angle was in the red domain for CB (hab=20.1°) and increased up to hab=69.2° for 

RB pomace; colour saturation ranged from C*=8.3 (CB) to 31.5 (RB). 

 As can be seen from the FESEM pictures (Figure 3), the pomace powders 

RC and GB contain particles that still show the cellular structure of the original fruit. 

Specifically, in RC pomace powder particles, even a high degree of cellular turgor 

was observed, which could be related to the significantly higher moisture content. 

On the other hand, the particles of RB and CB, which had a low moisture content, 

appeared unstructured without exhibiting a well-defined cellular structure. The BC 

particles had an intermediate structural integrity; the presence of cells or cellular 

structures can be hardly observed in this powder. 

 In addition, the BC particles showed a cohesive and fused network 

structure. This structure is in line with compositional results since this pomace 

powder had the highest protein and fat content. Thus, the presence of protein 

seems to favour the structural network organization of the particles, while the fat 

would be acting as a binder that prevents fracture of the particles into smaller 

pieces. This could be the reason for their significantly larger size if compared to the 

other pomace powders, as it is summarized in Table 3. On the other hand, the 

pomace powder particles of RB and CB did not show a network structure but 

seemed to be built by small and unstructured pieces, superimposed one on the 

other. This lack of cohesive structure can be related to the significantly lower 

contents of protein and fat that were evident for these pomace powders. 

 Bright field microscopic images of BC powder pomace (Figure 4, left) 

showed cohesive particles forming a network structure, as it was also observed by 
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FESEM. Small particles seem to be joined intimately to form larger particles. 

However, in CB pomace powder, small isolated particles of different shape and size 

are evident, with the reddish coloration being due to their content in 

anthocyanidins. Although information is scarce, it is known that the derivatives of 

the cyanidins are fluorescent.51 In this sense, it was observed that CB pomace 

powder (Figure 4, right) exhibited a higher fluorescence intensity than BC pomace 

powder. This is in agreement with the results obtained for polyphenol content 

(Figure 1), which showed significantly higher contents for CB pomace powder. 

Blackcurrant pomace exhibited the lowest water binding capacity (3.2 g g-1 

d.m.), most likely because of degraded pectin and high fat content,52 and similar 

water binding capacities are reported in the literature.53 RB and GB that were not 

enzymatically treated before pressing showed significantly higher WBCs (approx. 

4.7 g g-1). Furthermore, the hydration properties of fibres with a high content of 

primary cell wall components (hemicellulose, pectin) are enhanced compared to 

fibre with a high content of secondary cell wall components (cellulose, lignin) that 

are mainly present in seeds and stems.54 According to Rosell et al.55 a low particle 

size is responsible for low WBC, which is true for chokeberry with its low water 

binding capacity (3.85 g g-1 d.m.). In contrast larger surface areas favour water 

adsorption, as can be seen from the comparatively high swelling capacity of this 

variety (6.7 ml g-1 d.m.). Swelling capacity of other pomace powders decreased in 

the same order as WBC. Oil absorption capacity is a measure of oil retention in 

foods, and rather depends on particle porosity than on chemical composition or 

molecular affinity to oil.52,56 Among the pomace varieties OAC did not differ 

significantly but ranged from 1.91-2.27 g g-1 d.m., a similar range as observed for 

pineapple pomace (2.01 g g-1).57 For comparison, wheat flour (0.85 g g-1) and citrus 
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fibres (1.2 – 1.8 g g-1) show lower, mango peels and apple fibres higher oil 

absorption capacities (2.7 and 3.36 g g-1, respectively).58,59 

As stated by Chen et al. 60 the WBC, determined by the centrifugation 

method, is appropriate to characterise foods with aW >0.98 but sorption isotherms 

are recommended as source of supplementary information concerning water 

retention. Moisture adsorption and desorption isotherms (Figure 5) show a 

moderate uptake of moisture for up to 60% RH, resulting in respective equilibrium 

moisture loads of below 100 g kg-1. It can be assumed that chemisorption plays a 

minor role whereas capillary and swelling effects, that mean moisture binding in 

small and subsequently in larger pores, predominate. The pronounced increase of 

moisture adsorption above 80% RH can be attributed to sugar crystals that start to 

dissolve at this humidity. Differences in moisture uptake between berry varieties 

become pronounced at high relative humidity. However, the impact of particle size 

of the powders is less prominent as can be seen from black currant (Supporting 

information, Figure S2). Doubling the x50 (112.7 µm to 243.2 µm) and x90 (271.3 

µm to 563.3 µm) showed no significant differences in moisture adsorption below 

30% RH and above 80% RH.  

The application of mathematical models to isotherms may help detecting 

details about interactions between moisture and sorbent. GAB modelling resulted in 

R2>0.997 for adsorption (A) and >0.992 for desorption (D), with excellent 

approximation up to 90% RH (Table 4). Except for BC (Typ II, C k>2), the 

adsorption follows Typ III isotherms (C k<2) of Brunauer's classification while all 

desorption curves showed sigmoidal shape.61 The hysteresis areas indicate that, for 

drying processes, either lower RH or higher temperatures are essential to gain 

comparable residual moisture. Moisture load at monolayer adsorption x0 was lowest 
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for BC (42.29 g kg-1) and highest for CB (65.74 g kg-1) which can be linked to 

volume-based specific surface areas that increased in the same order (Table 3). 

Differences between A and D isotherms become apparent for the monolayer 

enthalpy constant C (monolayer binding forces during desorption are many times 

higher than during adsorption; GB 3.7 fold, RC 17 fold), whereas variations of berry 

variety are negligible. The transition of mono- to multilayer adsorption is unincisive 

(except for BC), which becomes apparent from the low C and the absent bend of 

the sorption isotherms at 10% RH. k which points on multilayer interactions 

between moisture and sorbent is lower during adsorption, indicating weaker binding 

forces. BC shows however an inverse behaviour, with k differing significantly from 

those of other powders. Besides surface characteristics (less porous surface area), 

a reduced moisture sorption can be linked to low carbohydrate contents. As 

described by Witczak et al. 62 sugar fortified orange peel showed a sharp increase of 

moisture uptake above 60% RH, and significantly more moisture was adsorbed 

than by dried peels. WBC of fruits is mainly determined by sugar content and 

surface characteristics, whereby it turned out that convective drying resulted in 

minor porosity and hygroscopicity than other drying methods.63 Compared to other 

fruits and their by-products, powders from berry pomace adsorb less moisture at 

20/25 °C, due to processing and compositional properties.62,64,65 As regards 

presumptive applications of dried berry pomace as food ingredient, a wide range of 

food systems is possible, particularly sweet or savoury baked products. Depending 

on berry variety and substitution level, the powders will have an impact on colour, 

rheological properties, texture and nutritional value.17,18,66  

 

CONCLUSIONS 
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Drying and subsequent milling of berry pomace resulted in colour-intense fruit 

powders with considerable amounts of polyphenols. Pomaces of Ribes genus (BC, 

RC, GB) were found to contain more protein, and higher amounts of seeds and 

therefore fat compared to chokeberry and rowanberry. These properties are 

important for interpreting differences in particle size. As observed by FESEM and 

laser diffraction, powder particles with a less intact cellular structure showed high 

specific surface areas. Moisture sorption was dominated by capillary effects, but 

was also influenced by the content of carbohydrates. As particle size seems to have 

a significant impact on hydration properties, further studies that show how 

processing conditions influence pomace powder characteristics would be valuable.  
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Table 1. Proximate composition of berry pomace powder.  

Parameter Blackcurrant Redcurrant Gooseberry Rowanberry Chokeberry 

Pomace moisture (g kg-1) 516.0 ± 0.8e 621.5 ± 6.9c 748.2 ± 8.3b 764.8 ± 7.2a 549.8 ± 3.2d 

Powder moisture (g kg-1) 34.3 ± 0.1c 51.8 ± 0.2a 50.5 ± 0.4b 26.9 ± 0.1d 27.2 ± 0.2d 

Fat (g kg-1)* 202.1 ± 2.2a 142.3 ± 3.5b 109.3 ± 0.2c 39.7 ± 1.3d 36.1 ± 1.1d 

Protein (g kg-1)* 157.1 ± 0.6a 117.6 ± 2.7c 124.0 ± 0.4b 70.9 ± 0.8d 59.7 ± 1.1e 

Ash (g kg-1)* 26.6 ± 0.3d 30.0 ± 0.6b 34.0 ± 0.2a 28.4 ± 0.6c 19.2 ± 0.0e 

SDF (g kg-1)* 39.7 ± 2.9b 70.0 ± 2.9a 70.4 ± 3.7a 76.8 ± 7.3a 70.4 ± 13.5a 

IDF (g kg-1)* 551.6 ± 16.5b 510.8 ± 8.1cd 495.6 ± 9.4d 594.9 ± 15.3a 524.6 ± 11.0c 

Titratable acid (g kg-1)* 0.9 ± 0.0e 2.8 ± 0.1b 4.1 ± 0.1a 2.3 ± 0.0c 1.2 ± 0.0d 

Carbohydrates (g kg-1)* 22.0 126.5 162.6 187.1 288.8 

Mean values (± standard deviation, n=3) in a row with different superscripts differ significantly 
(P<0.05). *, dry matter related content. SDF – soluble dietary fibre, IDF – insoluble dietary fibre 
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Table 2. Microbial counts of fresh and dried berry pomace.  

Berry pomace 
variety 

Total viable count (cfu g-1)  Yeasts and moulds (cfu g-1) 

Fresh pomace Dried pomace  Fresh pomace Dried pomace 

Blackcurrant 1.0 ∙ 106 1.6 ∙ 103  1.7 ∙ 105 1.2 ∙ 103 

Redcurrant 1.2 ∙ 103 6.1 ∙ 104  2.3 ∙ 102 2.9 ∙ 102 

Gooseberry 1.3 ∙ 103 8.8 ∙ 104  1.0 ∙ 102 1.0 ∙ 102 

Rowanberry 2.0 ∙ 105 6.3 ∙ 105  1.1 ∙ 102 1.0 ∙ 102 

Chokeberry 2.0 ∙ 105 2.1 ∙ 104  2.0 ∙ 105 2.3 ∙ 102 
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Table 3. Physical and technofunctional properties of berry pomace powder.  

Parameter Blackcurrant Redcurrant Gooseberry Rowanberry Chokeberry 

Relative seed 
content (%) 

  61.0 ± 1.0a   40.4 ± 5.3b   34.2 ± 1.4c     8.4 ± 0.2e 22.1 ± 0.1d 

Particle size (µm)      

x50 112.7 ± 2.4a 107.2 ± 2.6b 095.4 ± 2.9c 095.1 ± 1.6c 86.4 ± 1.1d 

x90 271.3 ± 9.9a 262.7 ± 14.4a 244.1 ± 2.6b 263.1 ± 5.3a 239.9 ± 2.5b 

Specific surface 
area (m2 mL) 

0.08 ± 0.01 0.09 ± 0.00 0.14 ± 0.04 0.24 ± 0.00 0.28 ± 0.01 

Water activity (-) 0.100 ± 0.001d 0.251 ± 0.001a 0.169 ± 0.001b 0.112 ± 0.002c 0.091 ± 0.001e 

Water binding 
capacity (g g-1 dry 
matter) 

03.20 ± 0.20c 04.06 ± 0.08b 04.65 ± 0.18a 04.74 ± 0.61a 3.85 ± 0.06b 

Swelling capacity  
(mL g-1 dry matter) 

05.50 ± 0.15c 06.12 ± 0.39bc 06.14 ± 0.17bc 07.09 ± 0.19a 6.70 ± 0.43ab 

Fat absorption 
capacity (g g-1 dry 
matter) 

02.00 ± 0.09a 01.94 ± 0.15a 02.06 ± 0.17a 02.27 ± 0.13a 1.91 ± 0.12a 

Mean values (± standard deviation, n=3) in a row with different superscripts differ significantly 
(P<0.05). 
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Table 4. GAB Coefficients of fitted sorption isotherms of berry pomace powder. 

Parameter  Blackcurrant Redcurrant Gooseberry Rowanberry Chokeberry 

x0  
(g kg-1) 

A* 42.29 ± 0.86c 52.69 ± 2.45b 55.77 ± 3.16b 54.20 ± 2.63b 65.74 ± 1.32a 

D 47.82 ± 0.96ab 44.98 ± 1.52bc 42.58 ± 0.03c 47.47 ± 1.04ab 51.66 ± 0.02a 

k A 0.886 ± 0.002c 0.914 ± 0.002ab 0.935 ± 0.007a 0.920 ± 0.007ab 0.909 ± 0.002b 

D 0.860 ± 0.003c 0.929 ± 0.004b 0.968 ± 0.001a 0.935 ± 0.002b 0.934 ± 0.000b 

C A* 03.75 ± 0.01a 01.62 ± 0.34b 01.49 ± 0.19b 01.90 ± 0.04b 01.28 ± 0.04b 

D 16.03 ± 0.62ab 27.63 ± 7.45a 05.51 ± 0.55b 11.04 ± 2.42b 08.76 ± 0.21b 

R2 A 0.997 0.999 0.999 0.999 0.999 

D 0.997 0.992 0.999 0.997 0.997 

Model ranges are 10≤RH (%)≤90, A – Adsorption, D – Desorption, x0 – monolayer moisture load, C – 
monolayer energy constant, k –multilayer energy constant. 
* Adsorption isotherms differ significantly from Desorption isotherms (P<0.05). Mean values (± 
deviation, n=2) in a row with different superscripts differ significantly (P<0.05).  
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Figure captions 
 
Figure 1. Polyphenol content of freeze-dried berry pomace, representing total 

polyphenols at 280 nm, flavonols at 350 nm, anthocyanins at 520 nm (n=3).  

 Ribes nigrum (blackcurrant),  Ribes rubrum (redcurrant),  Ribes uva-crispa 

(gooseberry),  Sorbus aucuparia (rowanberry),  Aronia melanocarpa 

(chokeberry) 

  
Figure 2. CIE-Lab colour coordinates for berry pomace powder. BC - Ribes nigrum 

(black currant), RC – Ribes rubrum (red currant), GB – Ribes uva-crispa 

(gooseberry), RB – Sorbus aucuparia (rowanberry), CB – Aronia melanocarpa 

(chokeberry).  

 

Figure 3. FESEM images of dried and milled pomace particles. BC - Ribes nigrum 

(black currant), RC – Ribes rubrum (red currant), GB – Ribes uva-crispa 

(gooseberry), RB – Sorbus aucuparia (rowanberry), CB – Aronia melanocarpa 

(chokeberry).  

 
Figure 4. Light microscopy images of dried and milled pomace particles. BC – 

Ribes nigrum (black currant), CB – Aronia melanocarpa (chokeberry). Left column: 

bright field, right column: fluorescence.  

 

Figure 5. Water vapour sorption isotherms of berry pomace powder at 20 °C 

left:  Ribes nigrum (blackcurrant),  Ribes rubrum (redcurrant),  Ribes uva-

crispa (gooseberry); right:  Sorbus aucuparia (rowanberry),  Aronia 

melanocarpa (chokeberry); Adsorption – full line, Desorption – dotted line; error 

bars represent deviation (n=2) 
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