
Composition Contracts for Service Interaction

Luı́s Filipe Andrade
(ATX Software S.A., Portugal

luis.andrade@atxsoftware.com)

José Luiz Fiadeiro
(University of Leicester, United Kingdom

jose@fiadeiro.org)

Abstract: In this paper, we address some of the challenges raised by the emerging service-
oriented computing paradigm in what concerns the ability to define dynamic interactions between
core services for flexible and agile business processes. We claim that, from this point of view,
service interaction and composition is well beyond the reach of object-oriented and component-
based techniques. We argue instead for the use of architectural modelling techniques that promote
the externalization of coordination mechanisms. We show how what we call composition laws
and interfaces can be used to define the coordination logic according to which the behavior of a
business process can be described in terms of interactions with given partners. These primitives
provide a business modelling level that can be mapped onto the specifications that are being
proposed for web services, e.g., BPEL, WS-Coordination or WS-Transaction.
Key Words: architectural connectors, composition, coordination, interaction, service-oriented
computing, software architecture, web services
Category: D.2, D.2.10, D.2.11

1 Introduction

In its edition of May 10th 2003, The Economist wrote:

Computing has certainly got faster, smarter and cheaper, but it has also become
much more complex. Ever since the orderly days of the mainframe, which al-
lowed tight control of IT, computer systems have become ever more distributed,
more heterogeneous and harder to manage. (. . . ) In the late 1990s, the Internet
and the emergence of e-commerce “broke IT’s back”. Integrating incompatible
systems, in particular, has become a big headache. A measure of this increasing
complexity is the rapid growth in the IT services industry. (. . . )

Computing is becoming a utility and software a service. This will profoundly
change the economics of the IT industry. (. . . ) For software truly to become a
service, something else has to happen: there has to be a wide deployment of
web services. (. . . ) Applications will no longer be a big chunk of software that
runs on a computer but a combination of web services; and the platform for
which developers write their programs will no longer be the operating system,
but application servers.

Journal of Universal Computer Science, vol. 10, no. 4 (2004), 375-390
submitted: 17/10/03, accepted: 2/2/04, appeared: 28/4/04 © J.UCS



The challenges raised by the emerging Service-Oriented Software Development
(SOSD) paradigm are, indeed, multiple and the fact that they make news in a jour-
nal like The Economist just means that key sectors of the economy and, indeed, the
society are feeling threatened. The functioning of the modern society is becoming ever
more dependent on the use of software systems. We are by now quite familiar with ex-
pressions such as e-Commerce, e-Government, e-Learning, e-Medicine, or e-Science.
Unfortunately, this multitude of expressions also reflects a multitude of approaches,
each of which tackles the challenges of developing e-services for its own particular
area and in its own ad hoc way. This fragmentation is real and raises the spectrum of
a society whose functioning relies on services that are either not compatible or put to-
gether in ways that lead to unpredictable interactions. Is there a justification for the
concerns expressed by The Economist? Are there reasons to feel threatened? What are
we, scientists, doing about it?

In the literature, web services are being promoted as a technology for dynamic busi-
ness, the next generation of the Internet culture in which a shift is made from B2C to
B2B [IBM, 2003b]. This shift puts an emphasis on program-to-program interaction,
which is quite different from the user-to-program interaction that characterized (thin)
clients interacting with business applications in the B2C model. In particular, initia-
tives that were typical of the user side, like searching, have now to be performed on the
business side, which means that they need to be supported by some software. Readings
on the technologies that have been made available normally emphasize this shift from
server-to-server, static, linear interaction to dynamic, mobile and unpredictable interac-
tions between machines operating on a network, and identify it as one of the challenges
that needs to be met in full for the architecture to impose itself in its full potential.

The models that have been proposed in the meanwhile, namely the service-oriented
architecture based on publishing, finding and binding, address these issues directly in
terms of technological solutions that can be supported immediately, at varying levels, by
XML, SOAP, WSDL, or UDDI. These efforts are not general enough and lack imagi-
nation in exploring the full potential of the service-oriented paradigm, of which web
services are only a manifestation. In order to understand what exactly is necessary
to support the engineering and deployment of services in general, and, hence, what
is still required in terms of research and development effort, we have to characterize
exactly what this new architecture is about and how it relates to the software devel-
opment (SD) methodologies and supporting technologies that are available, namely
Component-Based (CB) and Object-Oriented (OO) ones.

The question of determining how exactly object-oriented techniques can contribute
to the engineering of services is a fair one. It reflects a (legitimate) concern for the
investments that have been made already on object-oriented technologies. It must be
made clear to people and, especially, to the companies that want to be part of the “new
economy”, what kind of investments this new generation of architectures for the web
requires before it becomes obsolete. This is particularly important because web services

376 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



are often presented as a logical evolution of, on the one hand, object-oriented analysis
and design and, on the other hand, of components as geared to the deployment of e-
business solutions [Yang, 2003].

In this paper, we would like to disagree with this evolutionary view and put for-
ward the case for a new generation of methods and modelling techniques that are
interaction-centric and address run-time service composition. We believe that the move
from object- to service-oriented systems is a true shift of paradigms; service-oriented
computing needs to be fully and formally characterized as a paradigm so that method-
ologies and supporting technologies can be developed to take maximum profit of its
potential. In particular, we shall discuss the role of the notion of contract as an abstrac-
tion for the modelling of interconnections. Whereas design-by-contract [Meyer, 1992]
supports compile-time object-oriented interactions, i.e., clientship, we propose a notion
of composition contract that supports run-time integration of services.

We illustrate the role that architectural primitives based on the separation of coordi-
nation from computation can play in tackling some of the challenges raised by SOSD,
namely for representing the business processes according to which dynamic interactions
are required to be established and evolved. Proposals such as BizTalk [Microsoft, 2000]
build on calculi and algebras for concurrency to promote the separation of the defini-
tion of business interactions from their implementation. In this respect, we take one step
further. It consists of adopting a layer of representation in which interactions become
first-class entities and can be modelled in more abstract terms instead of being hard-
coded. Finally, we identify the need for further technologies that can complement what
coordination and architectures can provide today, namely in what concerns binding and
transaction protocols.

The rest of the paper is organized as follows: we first argue on the reasons why we
think that service composition is more than object-oriented composition [see Section 2];
we then report on how to use business rules to describe web services compositions [see
Section 3]; later, we report on how orchestration can be achieved through binding [see
Section 4]; finally, we present our main conclusions [see Section 5].

2 Why Service Composition is Beyond Object-Orientation

The main reason for our disagreement to what is generally perceived as an evolution
of object-oriented and component-based software development is precisely the fact that
the shift from objects/components to services is reflected fundamentally on the interac-
tions through which services can be composed. Web services have been often character-
ized as “self-contained, modular applications that can be described, published, located,
and invoked over a network, generally the web” [IBM, 2003b]. Building applications is
a dynamic process that consists of locating services that provide the basic functional-
ities that are required, and orchestrating them, i.e. establishing collaborations between
them, so that the desired global properties of the application can emerge from their joint
behavior.

377Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



Integration is another key word in this process, and it is often found in conjunction
with orchestration or marshalling: application building in service-oriented architectures
is based on the composition of services that have to be discovered and marshalled dy-
namically. Therefore, one of the features of the service-oriented paradigm is, precisely,
the ability that it requires for interconnections to be established and revised dynam-
ically, at run time, without having to suspend execution, i.e., without interruption of
service. This is what is usually called late or just-in-time integration, as opposed to
compile- or design-time integration.

Therefore, SOSD requires flexible composition mechanisms that are able to make
the resulting systems amenable to changes at run time. For this purpose, interactions
cannot be hardwired in the code that implements the services, which would lead to sys-
tems that are too tightly coupled for the kind of dynamics required by services. Systems
need to be in a continuous process of reconfiguration due to the fact that services need
to establish, dynamically, the collaborations that allow them to provide the function-
alities that are being requested by some other service. If such collaborations are not
modelled directly as first-class entities that can be manipulated by a process of dynamic
reconfiguration, the overhead that just-in-time integration and other operational aspects
of this new architecture represent will not lead to the levels of agility that are required
for the paradigm to impose itself.

However, traditionally, interactions in the object-oriented paradigm are based on
identities [Kent, 1993], in the sense that, through clientship, objects interact by invoking
the methods of specific objects (instances) to get something specific done. This implies
that any unanticipated change on the collaborations that an object maintains with other
objects needs to be performed at the level of the code that implements that object and,
possibly, of the objects with which the new collaborations are established [Shaw, 1996].

On the contrary, interactions in the service-oriented approach should be based on the
design of what needs to be done, thus decoupling the what one wants to be done from
who does it. This leads directly to the familiar characterisation of web services as late
binding or, better, just-in-time binding. It is as if collaborations in the object-oriented
paradigm where shifted from instance-to-instance to instance-to-interface, albeit with a
more expressive notion of interface. This is why, in our opinion, web services are, in-
deed, beyond object-oriented methodology and technology, especially in what concerns
the support that needs to be provided for establishing and managing interactions.

What is, perhaps, more interesting, is the fact that these limitations can be witnessed
in the methodological principles that these paradigms usually subsume. Clientship as
in OO/CBSD allows us to decompose the global behavior of a system in a way that
mimics typical ways in which people organize themselves in society: by purchasing
products directly from the providers. In the context of this societal metaphor the shift
from object- to service-oriented interactions mirrors what has been happening already
in human society: more and more, business relationships are established in terms of
acquisition of services, e.g. 1000 Watts of lighting for www.welightyourlife.

378 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



com, instead of products, e.g., 10 lamps of 100 Watts each from www.BulbsRUs.

com.
Obviously, object-oriented technology does not prevent at all such flexible modes of

interconnections to be implemented. Design mechanisms, making use of event publish-
ing/subscription through brokers and other well-known patterns [Gamma, 1995], have
already found their way into commercially available products that support implicit in-
vocation [Notkin et al., 1993] instead of feature calling (explicit invocation). However,
solutions based on the use of design patterns are not at the level of abstraction in which
the need for integration arises and needs to be managed. Being mechanisms that operate
at the design level, there is a wide gap that separates them from the business modelling
levels at which orchestration is better perceived and managed.

Indeed, there is a big gap between the high-level specification of interactions and
their implementation in any particular technology. This gap is currently being filled
by the code of the fine-grain parts that have to glue the domain components with the
architectural framework provided by the underlying technology, e.g., CORBA, J2EE,
or .NET. Even when using design patterns to structure the code, the final result is a
full mix between the code that implements the domain logic and the infra-structural
glue code. The lack of a clear separation results in component interactions that are
very difficult to maintain and evolve. In summary, design patterns are not first-class
citizens as run-time software components, which means that they cannot be taken as
structures over which orchestration can be addressed. That is to say, the processes that
they represent are not available, a point that has being progressively stressed in the
literature [Microsoft, 2000]:

With the integration and communication infrastructures complete, our applica-
tions can now “speak” to other applications over the Internet, but we do not
have a good mechanism for telling them when and how to say it. We have no
way of representing the process. Today the process is spread throughout the
implementation code of every participant involved in the process. This mech-
anism for representing the process of business interactions is fragile, prone to
ambiguities, does not cross organizational boundaries well, and does not scale.
The larger the process gets and the more participants that are involved, the more
static the process is and the harder it is to propagate changes and new players
into the process.

In summary, as a paradigm, SOSD is based on interaction and composition prin-
ciples that require a fundamental research effort for their full characterisation. Science
has to face that a new reality is there as far as software development is concerned,
which requires a fresh approach that can meet the challenges that it raises from first
principles. OO and CBSD were proposed for controlling the complexity of building big
chunks of software, as the article in The Economist says; SOSD will have to control the
complexity of managing evolving interactions in large systems.

379Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



In this paper, we put an emphasis on the service composition layer of service-
oriented architectures, i.e., the level at which business processes can be put together
from elementary services. This area has become the realm of recent specifications
such as WS-Coordination [IBM, 2003c], WS-Transaction [IBM, 2003d], or the Busi-
ness Process Execution Language for Web Services (BPEL4WS or BPEL for short)
[IBM, 2003a]. The WS jargon is also evolving accordingly. There is now a new termi-
nology that, in some cases, intersects other areas of Computer Science and Software
Engineering, which can be a source of confusion. We have tried to avoid these risks
by adapting the terminology that we have used in the past to today’s WS-audience, but
there are cases in which it is difficult to conciliate established practices. This is the case
of coordination which, in the literature, became associated in the late 80s with a well-
identified area of Computer Science [Gelernter and Carriero, 1992], and is now in the
name of a very precise aspect of web services, i.e., WS-Coordination [IBM, 2003c].
The two areas are not unrelated, but WS-Coordination is a very concrete framework
that is far from capturing the richness made available through common coordination
languages and models.

Therefore, we want to make clear that our purpose is not to provide semantics for
specifications such as BPEL, WS-Coordination or WS-Transaction. This is because, on
the one hand, such specifications have not stabilized to a point where standards can be
meaningfully assigned; they are still very much a moving target, and for very good rea-
sons. On the other hand, and in spite of providing a much needed move beyond the basic
framework of SOAP/WSDL/UDDI technologies for publishing, finding, and binding,
they are still far from providing the semantic primitives that can address business mod-
elling at a higher-enough level of abstraction. Hence, we would like to persuade the
reader to approach the rest of this paper with an open mind and seek inspiration rather
than solutions to problems of specific technologies of today.

3 Composing Services According to Business Rules

Services can be seen as granular software components that can be used as building
blocks for distributed applications or for the assembly of business processes. They
reflect a new architectural approach based on the notion of building applications by
discovering and orchestrating network-available services, or just-in-time integration of
applications. With SOSD, application design becomes a matter of describing the capa-
bilities of network services to offer certain functionalities through their computational
capabilities, and describing the orchestration of these collaborators in terms of mecha-
nisms that coordinate their joint behavior. At run time, application execution is a mat-
ter of translating the collaborator requirements into input for a discovery mechanism,
locating a collaborator capable of providing the right service, and superposing the co-
ordination mechanisms that will orchestrate the required interactions.

This informal design makes clear that the algebraic methodology that we have been
developing around architectural principles in general [Fiadeiro et al., 2003] plays a fun-

380 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



damental role in enabling service-oriented architectures. This methodology is based on
the separation between what is concerned with the computations that are responsible for
the functionality of the services that they offer and the mechanisms that coordinate the
way components interact, a paradigm that has been developed in the context of so-called
coordination languages and models [Gelernter and Carriero, 1992].

Our previous work has brought together concepts and techniques from software ar-
chitectures, e.g., the notion of connector [Allen and Garlan, 1997], parallel program de-
sign, e.g., the notion of superposition [Katz, 1993], and distributed systems, e.g., tech-
niques to support the dynamic reconfiguration of a system [Magee and Kramer, 1996].
They are now being integrated as a collection of semantic primitives that support the
modelling of interactions that are flexible and more amenable to changes at run time
[Andrade and Fiadeiro, 2003a]. These primitives allow for the kind of just-in-time bind-
ing required for service-oriented computing.

The underlying methodology of coordination-based development is also essential
for service-oriented systems since it externalizes interactions as connectors that can
aggregate simpler services dynamically, and encourages developers to identify depen-
dencies between activities in terms of services instead of identities. The identification of
the partners to which coordination contracts are applicable is made through interfaces
that identify the properties that they need to exhibit rather than the classes to which they
have to belong.

Our emphasis in this paper is on the composition aspects that subsume what has
been called composition logic in the literature [Yang, 2003], i.e., the way composite
services are constructed in terms of constituent services to fulfil specific business goals,
or business protocols and processes [Curbera et al., 2003], i.e., the definition of pro-
cesses or workflows that interact with sets of web services to achieve certain goals in
terms of abstract service descriptions, separately from specific deployments.

BPEL puts an emphasis on the definition of service compositions in terms of pro-
cesses that interact with partners that are external to the composition itself and are
identified in terms of abstract interfaces only. This is particularly close to the approach
based on coordination contracts and laws that we have been promoting recently for
service-oriented business information systems [Andrade and Fiadeiro, 2003b]. Indeed,
it is particularly important that we are able to separate the definition of the composition
logic, what we would call coordination laws, that capture the business rules according
to which complex business activities are put together from more basic services, from the
run-time composition of specific services as part of a process that is being executed to
fulfil a specific business goal. The purpose of this section is to focus on a coordination
model for composing abstract services according to business rules.

To illustrate the kind of approach that we outlined, consider the example of a bank
that, on the one hand, wishes to make its financial deals available as services that it
publishes on the web and, on the other hand, adopts an internal software development
approach based on services that it can rapidly integrate into new applications and, thus,

381Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



optimize time-to-market.
One of the services that financial institutions have been making available in recent

times is what we could call a flexible package, i.e., the ability to coordinate deposits and
debits between two accounts, typically a checking and a savings account, so that the
balance of one of the accounts is maintained between an agreed minimal and maximal
amount by making automatic transfers to and from the other account. The service that
is offered is the detection of the situations in which the transfers are required and their
execution in transactional mode. Because this behavior should be published as a service
that customer applications looking for flexible account management should be able to
bind to, the following aspects should be ensured: first, the service cannot be offered for
specific accounts. It is the binding process that should be responsible for instantiating
the service to the relevant components at execution time. Nor should it be offered for
specific object classes: the service itself should be able to be described independently
from the technology used by the components to which it will be bound. Instead, it is
the find/bind process that should be able to make the adaptation that is needed between
the technologies used for implementing the service and the ones used by the compo-
nents to which it is going to be bound. This adaptation can itself be the subject of an
independent publish/find/bind process that takes place at another level of abstraction,
or be offered for default combinations by the service itself. This is important to enable
the implementation of the service itself to evolve, say in order to take advantage of new
technologies, without compromising the bindings that have been made.

Therefore, the description of the partners to which a business process can be bound
is made of a coordination interface [Andrade and Fiadeiro, 2003b] in our approach;
however, we call it composition interface to avoid confusion with WS-terminology. For
instance, in the case of the flexible package, two composition interfaces are required:
one catering for the account whose balance is going to be managed, typically a checking
account, and the other for the savings account. The trigger/reaction mode of coordina-
tion that our approach supports requires that each composition interface identifies which
events produced at execution time are required to be detected as triggers for the process
to react, and which basic services must be made available for the reaction to superpose
the required effects. Notice that this separation is supported in BPEL processes by dis-
tinguishing between different kinds of activities that implement interactions between
the process and its partners.

The two composition interfaces that we have in mind can be described as follows:

composition interface savings-account
import types money;
services

balance(): money;
debit(a: money) post balance(a) = old balance() - a
credit(a: money) post balance(a) = old balance() + a

end

Notice how the properties of the elementary services that are required are specified

382 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



in an abstract way in terms of pre- and post-conditions.

composition interface checking-account
import types money;
events balance(): money;
services

balance(): money;
debit(a:money) post balance(a) = old balance() - a
credit(a:money) post balance(a) = old balance() + a

end

The difference between the two interfaces lies in the inclusion of the event in the
checking-account. This is because the activities that are required to be observed in order
to react by activating an interaction rule are the changes on the balance of the checking
account. More specifically, we are requiring from any partner that may be bound to this
interface to make changes in the balance available to the flexible-package service.

The second important requirement is that the composite service itself must be de-
scribed on the basis of these composition interfaces only. This is what, in BPEL, would
be called the state and logic necessary for coordinating the interactions between the pro-
cess and the partners. This composition or coordination logic can be made in terms of
what we call a composition law (coordination law in [Andrade and Fiadeiro, 2003b]):

composition law flexible-package
interfaces c: checking-account, s: savings-account
attributes minimum, maximum: money
interaction rules

when c.balance() < minimum
do s.debit(min(s.balance(), maximum - c.balance())

and c.credit(min(s.balance(), maximum - c.balance())
when c.balance() > maximum
do c.debit(c.balance() - maximum)

and s.credit(c.balance() - maximum)
end law

Besides identifying the composition interfaces, a composition law specifies the rules
that define the behavior of the service. Such interaction rules are of the form:

when condition
with condition
do set of services

Each interaction rule in the when clause identifies a trigger to which the process
will react, e.g., a change in the balance of the checking-account that takes it out of the
bounds. The trigger can be just an event observed directly over one of the partners or a
more complex condition built from one or more events. In the with clause, we include
conditions (guards) that should be observed for the reaction to be performed. If any of
the conditions fails, the reaction is not performed and the occurrence of the trigger fails.
Failure is handled through whatever mechanisms are provided by the implementation
language.

383Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



The reaction to be performed by the service is described as a set of elementary
activities in the do clause. This set may include calls to services provided by one or
more of the partners as well as activities that are internal to the coordination logic of the
process itself. The whole interaction is handled as a single transaction, i.e., it consists
of an atomic event in the sense that the trigger reports a success only if all the activities
identified in the reaction execute successfully and the conditions identified in the with
clause are satisfied.

In what concerns the language in which the reactions are defined, we normally use
an abstract notation for defining the synchronisation set as above. This is important
for bringing to a more abstract modelling level the definitions of business processes
that recent languages for orchestration promote in terms of algebras and models for
concurrency, e.g., BizTalk [Microsoft, 2000]. Our opinion and experience is that the
architectural modelling level at which we promote the representation of business inter-
actions makes it easier to bridge the gap from the more organisational high-level goals
and policies that dictate how business should be run to the choice of particular control
and synchronisation structures that can make specific processes run.

When the interfaces are bound to specific partners, their behavior is coordinated
by an instance of the law, which establishes at run time what we call a coordination
contract [Andrade and Fiadeiro, 1999]. The behavior specified through the rules is su-
perposed on the behavior of the partners without requiring the code that implements
them to be changed.

Let us consider another example. Assume that the bank is interested in being able
to compute the average balance of given accounts from given dates. This is a service
that the bank should be able to bind, at any time, to any given account for monitoring
purposes. This service requires the ability to observe the balance of an account, which
corresponds to the following composition interface:

composition interface account-balance
import types money;
services

balance(): money
end

The corresponding law is:

composition law average-balance
interfaces a: account-balance
attributes sum: money; days: nat
activities

report(): money post report = sum / days
reset() post sum = a.balance() and days = 1

interaction rules
when end-of-day
do sum = old sum + a.balance(), days = old days + 1

end law

384 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



We are assuming that end-of-day is a global trigger that the service is able to
detect in the system through some calendar mechanism that we take for granted. Oth-
erwise, we could define an interface that would need to be instantiated by a specific
clock.

Our last example consists of a process that the bank can use to monitor how long
the balance of a given account has exceeded a given threshold since it was last reset. For
that purpose, and instead of making the calculations at the end of the day, we are going
to make the process aware of the debits and credits that are performed in the account:

composition interface debits&credits
import types money;
events

debit(a: money);
credit(a: money)

services
balance(): money

end

The corresponding law is:

composition law counting-excess
interfaces a: debits&credits
parameter min: money
attributes nb-days: nat; last-day: date
activities

report(): nat post report = nb-days
reset() post nb-days = 0 and last-day = today()

interaction rules
when a.credit(n) or a.debit(n)
do if a.balance() = min then {

nb-days = old nb-days + (today() - old last-day)
and last-day = today()}

end law

We are assuming, again, that today() is a service that the process is able to use
from the system’s calendar.

4 Orchestration Through Binding

Laws and interfaces can be used to define the coordination or composition logic ac-
cording to which the behavior of a business process can be described in terms of in-
teractions with given partners [Yang, 2003]. These define composition types or proto-
cols [Curbera et al., 2003] in the sense that only abstract interfaces are used to identify
the partners that can become involved in the process. They do not prescribe when and
to which partners services should be bound.

Run-time aspects of interactions need to be subject to rules that aim at enforcing
given policies of organisations over the way they wish or are required to see their busi-
nesses conducted, e.g., through legislation. For this purpose, we provide a modelling

385Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



primitive called composition processes by means of which reconfiguration capabilities
can be automated for dynamic integration, both in terms of ad hoc and programmed
bindings through which the run-time orchestration of services can be specified as a
means of achieving specific operational business goals. For instance, the bank may wish
to offer VIP clients the possibility of having interests awarded on the average balance
for the number of days the account has been above an agreed threshold. This can be
achieved by composing the services that we described in the previous paragraph.

process interest-on-average(a: account, c: customer)
attributes interest: rate; performance: nat
activities
subscribe (r: rate, m: money):

pre: c.owns(a) & isVIP(c)
do: bind av: average-balance->a,

bind ct: counting-excess->a,
av.reset(),
ct.reset(),
ct.min = m,
interest = r,
performance = 0

earn:
do: a.credit(r * ct.report() / 365 * av.report()),

av.reset(),
ct.reset(),
performance = old performance + ct.report()

re-rate(r: rate):
pre: performance > 100
do: earn,

interest = r,
performance = 0

re-min(m: money):
do: earn,

ct.min = m
rules

yearly: when end-of-year do earn
end process

Such a process defines a set of activities through which services can be bound to
given partners in the system and their activities orchestrated to define required business
activities such as renegotiating rates (re-rate) or crediting earned interest (earn).
Rules can also be defined that capture autonomous behavior such as automatically cred-
iting earned interest at the end of the year (yearly).

It is important to draw attention to the bind instructions. The emphasis that we put
on the role of composition interfaces in the previous section should have made clear how
important the binding process is for our approach. Indeed, our answer to the challenges
raised by SOSD is based on an architecture and development process that promotes the
separation of the key factors that drive integration and the need for orchestration [see
Figure 1]:

1. Separation of the coordination mechanisms that regulate the way basic services in-

386 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



�����������	
���	����

�������������

���������	����
���


������	���	���������
��	�
�����
���


����
�������

�	�������	���
�

�����������	�
���


����������	�
��
����

�	������	���
��
��

����������	
�	������

��	��	����	����

����������	���	����

Figure 1: Separating business process configuration, coordination/composition logic,
and core service computation

teract to enforce current business rules and activities, from the computations that
realize the functionalities that are offered by core business services, i.e., coordina-
tion/composition technologies.

2. Separation of the business architecture according to which an application is struc-
tured from the particular partners and interconnections that constitute the run-time
configuration over which it is implemented, i.e., binding technologies.

In both cases, the separation leads to the definition of explicit primitives whose in-
stances can be superposed dynamically to support just-in-time integration, i.e., compo-
sition contracts and binding contracts, respectively. Composition contracts are instances
of composition laws which represent the business rules that are embodied in a service;
composition contracts superpose interconnections among a set of partners regulated ac-
cording to a set of trigger/reaction rules specified in the law from which the contract
derives.

The level of insulation between the business model (where the law resides) and the
implementation level (where the contract resides) is achieved by (i) defining the law
independently from the partners to which it can be applied by identifying the features
and properties that partners need to exhibit to become coordinated according to that
law; (ii) using binding contracts to instantiate composition interfaces and rules of given
laws with partners discovered in given locations of the net and interconnections that

387Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



reflect the properties of the distribution network. Hence, the use of binding contracts
makes it possible for partners and contracts to be replaced in order to reflect mobility
without interfering with the business architecture. This ensures agility for operating in
web-based environments (just-in-time integration). These binding technologies are not
yet developed at the same level as the coordination technologies. As far as our work is
concerned, they are still in their infancy.

One should mention, however, related programming paradigms that promote the
separation of concerns and automated generation of code, e.g., generative programming.
For instance, Aspect-Oriented Programming (AOP) [Elrad et al., 2001] encompasses a
wide range of programming techniques to enable the separation of cross-cutting con-
cerns that do not conveniently fit into the dominant hierarchy, e.g., objects or compo-
nents. Languages such as Xerox PARC’s AspectJ and IBM’s Hyper/J are now widely
used and have been extensively tested on large-scale complex systems with very posi-
tive results. The code they produce is structured cleanly, has minimal duplication, and
can be maintained easily. Given the nature of web services, it is inevitable that such
techniques will have a significant part to play in SOSD [Corchuelo et al., 2003]. The
customized services must be able to adapt to, and interwork with other services or
service components. The elegant structuring mechanisms afforded by techniques like
AOP can be used to facilitate this adaptation and interworking. It should be noted that
the main focus of these studies has been AspectJ, due to its high level of maturity and
excellent tool support. However, the nature of AspectJ is, at present, largely static, in
notable contrast to the highly dynamic nature of web services.

The Model Driven Architecture (MDA) initiative [Kleppe et al., 2003] proposed by
the OMG is based on the separation of the specification of system functionality from
the specification of the implementation of that functionality on a specific platform. It
aims at making the software assets more resilient to changes caused by the emerging
technologies and makes the role of modelling and models in the current software devel-
opment much more important. However, it still has to prove that the model supports the
just-in-time generation of code required by SOSD.

5 Concluding Remarks

We are well aware that this paper started with strong claims about the need for Science
to respond to the challenge presented by SOSD as a new paradigm and, so far, not a sin-
gle formula was shown. This is because the main aims of the paper are, on the one hand,
to demonstrate that SOSD cannot be dismissed as just an evolution of OO/CBSD since
it requires a completely different approach to interactions, and, on the other hand, that
some of the challenges that it raises can be met using architectural modelling principles
and techniques based on coordination technologies.

As far as foundations and semantics are concerned, the concepts and techniques
that we presented are firmly grounded on mathematics. Indeed, we have already shown

388 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



elsewhere how the key separation between composition interfaces and laws, and the
mechanisms through which bindings can be formalized, can be captured in an algebraic
framework consisting of [Fiadeiro et al., 2003]:

1. A category ��� of designs in which systems of interconnected components are
modelled through diagrams and colimits capture emergent behavior.

2. A functor ������� � ��� that maps (service) designs onto (composition) in-
terfaces, forgetting their computational aspects, satisfying the following key prop-
erties: ��� is faithful, lifts colimits of well-formed configurations, and has discrete
structures.

3. A category �-��� with the same objects as ��� (designs) but whose morphisms
support binding through refinement relations.

This formalisation relates directly to the semantics of so-called architectural con-
nectors [Allen and Garlan, 1997] and the notion of superposition [Katz, 1993] since
they have been used to express incremental evolution of systems. There is no space
left in this paper for showing how this semantics applies directly to SOSD but, by now,
the reader will have acquired the motivation that can guide him or her through our
publications on the subject, which can be found at http://www.fiadeiro.org/
jose/CommUnity.

This semantics has also been used for showing how the proposed separation of con-
cerns and the dynamic superposition of composition contracts can be implemented in
Java-based platforms [Andrade et al., 2002]. One of the aspects that still require further
work are the binding technologies and their use in composition contexts. This is an area
of current research. As far as our work is concerned, work on publishing technologies
is lagging even further behind. Finally, we should also mention the opportunities that
we see in exploring other transaction protocols [Little, 2003] in the definition of our
interaction rules.

Acknowledgements

This work was partially supported by the Marie-Curie TOK-IAP scheme under contract
3169 Leg�net.

References

[Allen and Garlan, 1997] Allen, R. and Garlan, D. (1997). A formal basis for architectural con-
nectors. ACM TOSEM, 6(3):213–249.

[Andrade and Fiadeiro, 1999] Andrade, L. and Fiadeiro, J. (1999). Interconnecting objects via
contracts. In France, R. and Rumpe, B., editors, Proc. of UML’99 - Beyond the Standard,
number 1723 in LNCS, pages 566–583. Springer.

389Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction



[Andrade and Fiadeiro, 2003a] Andrade, L. and Fiadeiro, J. (2003a). Architecture based evolu-
tion of software systems. In Bernardo, M. and Inverardi, P., editors, Proc. of Formal Methods
for Software Architectures, number 2804 in LNCS, pages 148–181. Springer.

[Andrade and Fiadeiro, 2003b] Andrade, L. and Fiadeiro, J. (2003b). Service-oriented business
and system specification: Beyond object-orientation. In Kilov, H. and Baclwaski, K., editors,
Practical Foundations of Business and System Specifications, pages 1–23. Kluwer Academic
Publishers.

[Andrade et al., 2002] Andrade, L., Fiadeiro, J., Gouveia, J., Koutsoukos, G., and Wermelinger,
M. (2002). Coordination for orchestration. In Arbab, F. and Talcott, C., editors, Proc. of
COORDINATION’02, number 2315 in LNCS, pages 5–13. Springer.

[Corchuelo et al., 2003] Corchuelo, R., Pérez, J., and Ruiz-Cortés, A. (2003). Aspect-oriented
interaction in multi-organizational web-based systems. Computer Networks, 41(4):385–406.

[Curbera et al., 2003] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerewarana, S. (2003).
The next step in web services. Communications of the ACM, 46(10):41–47.

[Elrad et al., 2001] Elrad, T., Filman, R., and Bader, A. (2001). Special issue on aspect oriented
programming. Communications of the ACM, 44(10).

[Fiadeiro et al., 2003] Fiadeiro, J., Lopes, A., and Wermelinger, M. (2003). A mathematical
semantics for architectural connectors. In Backhouse, R. and Gibbons, J., editors, Generic
Programming, number 2793 in LNCS, pages 190–234. Springer.

[Gamma, 1995] Gamma, E. (1995). Design patterns: elements of reusable object–oriented soft-
ware. Addison-Wesley professional computing series. Addison-Wesley.

[Gelernter and Carriero, 1992] Gelernter, D. and Carriero, N. (1992). Coordination languages
and their significance. Communications ACM, 35(2):97–107.

[IBM, 2003a] IBM (2003a). Business process execution language for web services, version 1.1.
http://www.ibm.com/developerworks/web/library/ws-bpel/.

[IBM, 2003b] IBM (2003b). Web services architecture overview: the next stage of evolution for
e-business. http://www.ibm.com/developerworks/web/library/w-ovr/.

[IBM, 2003c] IBM (2003c). Web services coordination, version 1.0. http://www.ibm.
com/developerworks/web/library/ws-coor/.

[IBM, 2003d] IBM (2003d). Web services transaction, version 1.0. http://www.ibm.
com/developerworks/web/library/ws-transpec/.

[Katz, 1993] Katz, S. (1993). A superimposition control construct for distributed systems. ACM
Transactions on Programming Languages and Systems, 15(2):337–356.

[Kent, 1993] Kent, W. (1993). Participants and performers: A basis for classifying object mod-
els. In Proc. of OOPSLA 1993 Workshop on Specification of Behavioral Semantics in Object-
Oriented Information Modeling.

[Kleppe et al., 2003] Kleppe, Z., Warmer, J., and Bast, W. (2003). MDA Explained: The Model
Driven Architecture —Practice and Promise. Addison-Wesley.

[Little, 2003] Little, M. (2003). Transactions and web services. Communications of the ACM,
46(10):49–54.

[Magee and Kramer, 1996] Magee, J. and Kramer, J. (1996). Dynamic structure in software
architectures. In Proc. of the 4th Symposium on Foundations of Software Engineering, pages
3–14. ACM Press.

[Meyer, 1992] Meyer, B. (1992). Applying design by contract. IEEE Computer, 25(10):40–51.
[Microsoft, 2000] Microsoft (2000). BizTalk Orchestration —a new technology for orchestrat-

ing business interactions. Microsoft Press.
[Notkin et al., 1993] Notkin, D., Garlan, D., Griswold, W., and Sullivan, K. (1993). Adding

implicit invocation to languages: Three approaches. In Nishio, S. and Yonezawa, A., editors,
Object Technologies for Advanced Software, number 742 in LNCS, pages 489–510. Springer.

[Shaw, 1996] Shaw, M. (1996). Procedure calls are the assembly language of software intercon-
nection: Connectors deserve first-class status. In Lamb, D., editor, Studies of Software Design,
number 1078 in LNCS. Springer.

[Yang, 2003] Yang, J. (2003). Web service componentization. Communications of the ACM,
46(10):35–40.

390 Andrade L.F., Fiadeiro J.L.: Composition Contracts for Service Interaction


