
ARTICLE OPEN

Composition design of high-entropy alloys with deep sets
learning
Jie Zhang1,3, Chen Cai2,3, George Kim1, Yusu Wang2✉ and Wei Chen 1✉

High entropy alloys (HEAs) are an important material class in the development of next-generation structural materials, but the
astronomically large composition space cannot be efficiently explored by experiments or first-principles calculations. Machine
learning (ML) methods might address this challenge, but ML of HEAs has been hindered by the scarcity of HEA property data. In this
work, the EMTO-CPA method was used to generate a large HEA dataset (spanning a composition space of 14 elements) containing
7086 cubic HEA structures with structural properties, 1911 of which have the complete elastic tensor calculated. The elastic
property dataset was used to train a ML model with the Deep Sets architecture. The Deep Sets model has better predictive
performance and generalizability compared to other ML models. Association rule mining was applied to the model predictions to
describe the compositional dependence of HEA elastic properties and to demonstrate the potential for data-driven alloy design.
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INTRODUCTION
High-entropy alloys (HEA) are a new class of multi-principal
element materials with diverse and fascinating structure-property
relationships1. The term “high entropy” was coined based on the
idea that a single solid-solution phase can be stabilized with a
high configurational entropy associated with the random mixing
of multiple elements at similar atomic fractions2. Numerous
studies have revealed a wide variety of structural and functional
properties2–7 in this large space of materials, ranging from
cryogenic ductility8, high strength9,10, corrosion resistance11,12,
to excellent wear behavior13, and thermoelectric properties14.
High-entropy materials represent a fast-growing field in materials
research, covering both alloys and ceramics such as high-entropy
nitrides, carbides, and oxides15,16, and have many important
applications such as protective coatings and energy storage17.
Designing a HEA often involves painstaking experimental and

computational studies using a trial-and-error approach to explore
the astronomical composition space. The experimental approach
involves expensive and time-consuming processes of synthesis,
characterization, and analysis, which often studies only a few
candidate compositions at a time. Even with the explosive growth
of computing power, high-throughput density functional theory
(DFT) calculations are still incapable of computing the complete
multi-element alloy space. Empirical models that predict the
general trends in the multi-principal element space are instru-
mental in accelerating the exploration of the HEA composition
space. For example, Senkov et al. performed high-throughput
CALPHAD calculations and concluded that more elements do not
necessarily stabilize solid-solution phases in HEAs18. Lederer et al.
proposed the “LVTC” model that can accurately predict the
transition temperatures of solid solution HEAs19. By employing the
state-of-the-art machine learning (ML) algorithms, it is possible to
explore the high-dimensional composition space much more
efficiently20. However, the application of ML on HEA studies is
often hindered by the scarcity of HEA property data, especially
quality experimental data. Two recently compiled experimental
HEA datasets have the phase composition for 401 HEAs4 and

mechanical properties for 630 HEAs21. These datasets have
enabled the development of predictive models on the phase
selection rules by ML methods such as artificial neural network22

and Gaussian process classification23. Nonetheless, ML models
trained with small datasets usually do not generalize well. In many
cases, researchers have to limit the scope of their ML models to
specific alloy systems24,25.
The goal of this study is to integrate high-throughput first-

principles calculations and the Deep Sets architecture to under-
stand the effects of elemental combinations on the HEA proper-
ties over a broad composition space. We choose the elastic
properties of HEAs as a case study. Elasticity describes the
resistance for deformation between atoms before yielding,
providing a critical starting point to study the mechanical
properties of HEAs26. For instance, the ductility of an alloy can
be estimated using the Pugh’s ratio which can be tailored by
doping HEAs27. A perfect elastic isotropy has also been achieved
in HEAs by composition design with the aim of controlling the
deformation behavior28,29. First-principles DFT calculations are
predictive methods that can reliably compute the elastic constants
of the HEAs28,30–32. DFT calculations with coherent potential
approximation (CPA) and supercell methods usually give similar
results on the elastic moduli of disordered HEA sytems26. Our
recent study on the elasticity of Al0.3CoCrFeNi HEA also proved
that first-principles and ML methods can give accurate predictions
of HEA elasticity that are comparable to neutron diffraction
measurements. Owning to the rapid development of high-
throughput first-principles calculations33, accurate elasticity data
for ordered inorganic structures are readily available for data-
driven materials research34,35. However, similar datasets are not
available for HEAs yet. Many studies still rely on estimations with
the Vegard’s law to predict the HEA elastic modulus as a
compositionally weighted average of elemental properties36,37.
In this study, we quantitively map the elastic properties of a 14-

element HEA space with the integration of high-throughput first-
principles calculations, deep learning, and association-rule analysis
(Fig. 1). We generate a dataset of 3579 quaternary HEA
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compositions from high-throughput DFT calculations with the
exact muffin-tin orbitals and coherent potential approximation
(EMTO-CPA) method38,39. Recent progress in graph representation
learning40–44 for link prediction45, graph classification46, physics
simulation47, and combinatorial optimization48,49, has produced a
growing body of literature applying graph neural networks on
property prediction for materials50,51 and molecules52,53. One
notable challenge when applying graph representation learning
to HEAs is that they usually contain simple geometrical lattice but
randomness in the elemental site occupancy. Representing HEAs
as neighborhood graphs50 is inefficient because the final
representation will be the specific instantiation of the underlying
random configurations. Conventional ML architectures use either
engineered elemental properties (e.g., different types of means) or
compound properties as features. Directly using elemental
properties as features introduces permutation variance in the
model making predictions dependent on the specific order of the
elements in the feature vector. The feature engineering of
elemental properties can also be tedious and inefficient. If there
were data for a very large number of HEA configurations, a neural
network would theoretically be able to capture the permutation
invariance of elements. However, the amount of available material
property data is often insufficient in reality.
To overcome this problem, we represent HEAs as sets of

elements and employ the Deep Sets54 architecture for predicting
elastic properties. Deep Sets is a recently developed deep learning
architecture that can represent any invariant function over a set.
Compared with other ML models, our Deep Sets models show
superior predictive performance in the broad HEA space. We
further perform association-rule analysis to understand the trends
of elemental effects on the elastic properties of HEAs and leverage
these insights on the composition design of HEAs with targeted
properties. Our study showcases an efficient, accurate, and
generalizable approach to study multi-element materials systems.

RESULTS
Validations of HEA property predictions from EMTO-CPA
calculations
In total, the equation of state (EOS) and bulk modulus (B) of 7086
cubic quaternary HEA phases were successfully calculated,
corresponding to 3579 compositions, 75 of which contained Ta.
Due to the lack of enough Ta containing compositions being
successfully calculated, Ta containing compositions were not used
in the training of the Deep Sets model. Of the 996 equimolar
compositions completed, 962 were more stable in the body-
centered cubic (BCC) phase. The elastic properties of all 996
compositions were calculated using the stable phase for each
composition. It should be noted that there are 1001 possible
quaternary equimolar compositions given 14 elements, but the
following compositions AlCuMnNi, CoCuNiZr, AlCrMoV, CoCrNbNi,
and CoCuFeHf are missing from the dataset due to convergence
issues. Of the 2508 non-equimolar compositions that were
completed, 2331 compositions were more stable in the BCC
phase. The cubic elastic constants were calculated for 840 non-
equimolar compositions whose formation energy is lower than
0.15 eV/atom. To our knowledge, this is the largest dataset of HEA
structures with calculated stability and elastic property informa-
tion with 7086 structures and over 3579 compositions. Addition-
ally, a set of 264 structures (132 compositions) were separately
calculated for validation. The elastic property, crystal structure
information, and total energy of each structure is organized into
JSON files using key-value pairs; Supplementary Table 1 shows the
labels used as keys, and a description of the values.
The high-throughput EMTO-CPA results were validated by

comparing with reported experimental and computational results
in literature. As shown in Supplementary Table 2, the EMTO-CPA
predicted preferred cubic-phase type and lattice parameters agree
well with reported experimental results55–64. EMTO-CPA gives the
correct phase for all HEA systems and a small mean absolute error

Fig. 1 Data-driven workflow to map the elastic properties of the high-entropy alloy space. A dataset of the elastic properties of quaternary
HEA compositions, containing elements from the set of the 14 highlighted elements, is created using high-throughput EMTO-CPA
calculations. After training Deep Sets models on this dataset, association rule mining is used on Deep Sets model predictions to discover
trends between elemental combinations and elastic properties. These trends are in the form of association rules which are then visualized
using network graphs. Deep Sets neural network architecture explanation: Each element feature vector in the input set is transformed by the
same mapping function, ϕ. The resulting vectors are summed in a pooling operation which ensures permutation invariance. Finally, the result
of the pooling operation is passed to a MLP (multi-layer perceptron), ρ, which maps the input to the prediction values.
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(MAE) of 1.1% for the lattice parameters. In general, the elastic
moduli predicted from DFT calculations are comparable to
experiments, with an error smaller than 15% for most inorganic
phases34. For random alloys, EMTO-CPA calculations do not
consider local lattice distortions, which can slightly overestimate
the elastic moduli than results from the supercell method, but the
quantitative trends in elastic moduli are similar31. Supplementary
Table 3, Supplementary Table 4, and Supplementary Fig. 1
compare EMTO-CPA predicted HEA elastic properties from our
high-throughput calculations with literature27,29,65–71. Good agree-
ments are found between these EMTO-CPA results. For elastic
constants C11 and C12, the MAEs are about 5%. C44 shows a larger
MAE of about 10%. The discrepancies can be attributed to
different exchange-correlation functionals and numerical uncer-
tainties. The MAEs for all polycrystalline elastic moduli are about
5%. For Poisson’s ratio and Pugh’s ratio, the MAEs are 1.8% and
4.0%, respectively. Owning to difficulties in measuring the elastic
properties of HEAs, published experimental HEA elasticity data are
scarce. Our results indicate first-principles tools can be an efficient
tool to generate reliable fundamental HEA data over a large
composition space.
In literature, Vegard’s law, or the rule of mixture (ROM), is a

popular method to estimate the elastic moduli of HEAs. Our
EMTO-CPA dataset allows a quantitative assessment of the
accuracy of ROM for HEAs. A ROM estimation of elastic moduli
can be made using Eq. (1)37 or Eq. (2)72, corresponding to the
upper and lower limit of the estimation.

M ¼
P

ciViMiP
ViMi

(1)

M�1 ¼
P

ciViM�1
iP

ViMi
(2)

where ci is the molar fraction, Vi is the molar volume, and Mi is the
elastic moduli of ith element.
We used EMTO-CPA to calculate the equilibrium volume and

bulk modulus of pure elements, which were then used to make
ROM estimations of the Wigner–Seitz radius (sws) and bulk moduli
of HEAs. Compared with other ROM estimations, we found the
average value of Eqs. (1) and (2) gives slightly better agreement
with the EMTO-CPA values, especially when Al or Ti are in the HEA.
Figure 2 compares sws and B from the ROM estimations for
quaternary equimolar HEAs with the EMTO-CPA predictions. The
ROM estimation does not consider chemical interactions between
different species, so a certain degree of discrepancy in B is
expected, as is in the ROM estimated sws. However, the
discrepancies in the ROM estimation of B are still quite significant.
For many systems, the ROM estimates are significantly higher than
the EMTO-CPA predicted B. Due to the disregard of local atomic
relaxations, the EMTO-CPA elastic moduli are already over-
estimated. When taking this factor into account, the ROM
estimation can overestimate true HEA elastic modulus by a large
fraction. While it is convenient to use ROM to estimate the elastic
properties36,37, our results show reliable predictions should be
made with DFT calculations or data-driven predictive modeling.

Performance of deep sets prediction of HEA elastic properties
Tables 1 and 2 compare the performance of HEA property
predictions between Deep Sets and other ML models. Regardless
of the model chosen, the prediction MAE for non-equimolar
quaternary HEAs is slightly larger than equimolar systems,
indicating that predicting properties for non-equimolar systems
is more challenging. For all properties, simple models such as k-
nearest neighbor (KNN) and linear regression (LR) generally
perform much worse than random forest (RF), support vector
machine (SVM), gradient boosting tree (GBT), and Deep Sets
models. Among the ML models, the Deep Sets model

Fig. 2 Comparison of the EMTO-CPA predictions of HEA properties with the rule-of-mixture (ROM) estimates. a It compares the
Wigner–Seitz radius, and b compares the bulk modulus. Density is described using the color bar.

Table 1. Property prediction MAE for equimolar quaternary HEAs.

Method B (GPa) sws (Bohr) C11 (GPa) C12 (GPa) C44 (GPa)

Deep Sets 4.596 ± 0.639 0.004 ± 0.001 5.199 ± 0.760 4.230 ± 0.412 3.162 ± 0.188

GBT 6.033 ± 0.349 0.005 ± 0.001 8.959 ± 0.682 5.370 ± 0.391 3.162 ± 0.126

KNN 14.953 ± 0.620 0.044 ± 0.002 22.325 ± 1.594 10.999 ± 0.689 7.098 ± 0.497

LR 7.891 ± 0.461 0.007 ± 0.001 15.844 ± 0.955 7.464 ± 0.401 5.634 ± 0.285

RF 7.488 ± 0.574 0.008 ± 0.001 11.369 ± 0.925 6.447 ± 0.347 3.391 ± 0.154

SVM 5.829 ± 0.536 0.009 ± 0.001 8.675 ± 0.807 5.191 ± 0.467 2.923 ± 0.243

Bold values represent the best prediction of each property.
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overwhelmingly outperforms the other methods, achieving better
results in almost all predicted properties. For the elastic constant
predictions of equimolar compositions, the Deep Sets method
achieves the best result for C11 and C12, whereas for C44 it is
slightly worse than the SVM model, although the difference is
small considering the standard error. The difference between the
directly predicted B and the derived B from predicted C11 and C12
was also compared. The highest deviation between these values is
8%. This deviation is acceptable considering the uncertainty of
DFT elastic constants, which can deviate from experimental values
by ±15%34. For the same reason, the predicted polycrystalline
shear modulus (G), Young’s modulus (E), Poisson’s ratio (ν), Pugh’s
ratio (B/G), and the Zener ratio (Az) were all derived from predicted
cubic elastic constants via mathematical operation for further
analysis. It is difficult to directly compare the performance of
published ML models on elastic properties as they are often
trained on different datasets. For reference, the AFLOW-ML and
the JARVIS-ML model has a MAE of 8.68 GPa and 10.5 GPa for
predicting the bulk modulus of inorganic structures, respec-
tively73,74. To further validate the performance of our Deep Sets
model, we selected 132 additional quaternary non-equimolar HEA
compositions and performed EMTO-CPA calculations. The

compositions in this validation group were randomly selected
and were different from the compositions in the training set. The
Deep Sets model without the stable lattice-type feature was used
for this validation set. Figure 3 compares the accuracy of different
models, showing the Deep Sets model generalizes much better
than the other methods. The reason that the MAE for the unseen
HEAs is even better than the test MAE can be attributable to the
procedure of averaging the prediction of 10 models that are
trained to 10 subsets (60%) of the original data. This procedure is
effectively equivalent to the ensemble method. The LR and SVM
perform poorly on the unseen HEAs so their MAE is not included.
The Deep Sets model predicts all compositions in the training set
and validation group to be mechanical stable, i.e., C11 > 0, C44 > 0,
C11−C12 > 0, and C11 + 2C12 > 0, in agreement with the EMTO-CPA
predictions.
Lastly, we tested the generalization performance of our Deep

Sets model on a widely studied HEA system AlxCoCrFeNi. Table 3
shows a comparison between the Deep Sets predictions and the
EMTO-CPA calculations reported in the literature65. The result
shows a very encouraging agreement especially considering that
the Deep Sets model was not trained by any quinary HEA
composition.

Fig. 3 Boxplots comparing the accuracy of four models (GBT, RF, KNN, and Deep Sets) predicting (from top to bottom, left to right)
lattice constant, bulk modulus, and elastic constants C11, C12, and C44. The orange line in the boxplot represents the median value; the
lower and upper limits of the box represent the 25th and 75th percentiles respectively, and the whiskers extend to 1.5 times the interquartile
range. The color of the scatterplot points corresponds to the colorbar which represents the percentage deviation of the predicted value from
the EMTO-CPA calculated value.

Table 2. Property prediction MAE for non-equimolar quaternary HEAs.

Method B (GPa) sws (Bohr) C11(GPa) C12 (GPa) C44 (GPa)

Deep Sets 6.025 ± 0.415 0.004 ± 0.001 11.613 ± 0.845 8.398 ± 0.899 2.447 ± 0.157

GBT 8.622 ± 0.485 0.009 ± 0.001 15.402 ± 1.124 8.662 ± 0.857 4.183 ± 0.277

KNN 12.508 ± 0.424 0.037 ± 0.001 21.492 ± 1.445 10.466 ± 0.521 6.579 ± 0.577

LR 11.179 ± 0.414 0.027 ± 0.001 28.069 ± 7.561 14.151 ± 10.0 10.232 ± 3.072

RF 9.607 ± 0.531 0.015 ± 0.001 16.876 ± 1.536 8.93 ± 0.810 5.218 ± 0.476

SVM 7.636 ± 0.506 0.011 ± 0.001 12.998 ± 1.126 7.571 ± 0.537 3.538 ± 0.213

Bold values represent the best prediction of each property.
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Elemental effects on HEA elasticity uncovered from
association rule mining
The rules generated by association rule mining (ARM) are
visualized in graph representations in Fig. 4. The nodes represent
element types. The size of the node represents element fractions:
The larger the node, the larger the fraction is represented. When a
pair of nodes are connected by lines, referred to as edges, the
edge colors and widths represent the consequents and lift values
of the association rules in which the pair of nodes makes up the
antecedent. When the antecedent of an association rule is a single
element, the elastic property consequent and lift value of the rule
is represented by the color and width of the node outline. The
redder (bluer) the color of the edge or node outline, the higher
(lower) the value of the elastic property consequent. The node
outlines and connections for Fig. 4(f) are mapped to a different
colorbar to emphasize rules that predict Zener ratios close to 1.0
for the isotropic case. Zener ratios lower than 1.0 are blue, those
close to 1.0 are green, and those that are greater are mapped to
yellow, orange, and red.
From Fig. 4(a) it is observed that most element pairs that

decrease (increase) B involve elements with low (high)
elemental B. For reference, the elements ranked from the
lowest to the highest B (obtained for BCC using EMTO-CPA) are
Al, Zr, Ti, Fe, Hf, Cu, Nb, Co, V, Ni, Mn, Mo, Cr, and W. However, it
is observed that while elemental Mn has a relatively high B, Mn
can lower B in an HEA on its own as well as when combined
with Zr or Hf. Cr also has high B, but it decreases B when paired
with Zr or Hf. These trends show that expectations based on
ROM are sometimes contradicted and depends on the specific
combination. B is related to the bonding strength among atoms.
W may be expected to have an attractive force on the other
elements due to its high electronegativity, thus increasing B
when paired with the 3d transition metals. The decrease in B
that accompanies the (Mn, Zr), (Mn, Hf), (Cr, Zr), and (Cr, Hf)
combinations may be due to the low B of Zr and Hf, and the
half-filled 3d orbitals of Mn and Cr. A composition containing
such a combination would have an element with low B (Hf or Zr)
as well as an element (Cr or Mn) that is less likely to be attracted
to other constituent elements. In the case of Cr, high B can still
be achieved when it is paired with an element with very high
electronegativity such as W.
Figure 4(b) shows that Young’s modulus, E, is decreased when

Zr is combined with almost any other element. Even a small
fraction of W results in lowered Young’s modulus with Zr. Only
when the composition contains Cr or a larger fraction of W is an
increase in E predicted with Zr. E is related to bulk and shear
moduli assuming a cubic symmetry and elastic isotropy (Eq. 14). W
and Cr are expected to increase both B and G, so an increase in E
due to W and Cr alloying is expected. An increase in E may be

attributed to increased B and/or G which is in turn due to
mechanisms such as an increased interatomic attraction, or an
increase in the covalent characteristic of the bonding that results
in stiffer bonds. Some differences between the figures for B and E
are that a combination of Zr with Ni, V, or W can decrease E, but
not B, while a combination of Zr and Cr can decrease B, but not E.
These trends demonstrate the potential of tuning elastic proper-
ties by predictive models such as the Deep Sets model and
descriptive models such as ARM.
Figure 4(c) shows that Zr combined with Cu, Al, Hf, or Ni, and Hf

combined with Cu, Al, or Ni lower G. On the other hand, Cr or W
alone increases G. Notably, combinations involving Mn which are
present in the plots for E and B are missing in the plot for G. This
may be attributed to the half-filled 3d orbitals of Mn diminishing
the effect Mn has on the characteristic nature of interatomic
bonding, which in turn means that Mn does not affect G as much
in the systems we considered.
Figure 4(d) represents the association rules for Pugh’s ratio B/G.

Most notably, combinations of Cu and Ni increase B/G. The Pugh’s
condition predicts that when the ratio B/G is greater than 1.75, the
material will be ductile. A related criterion known as Pettifor’s
criterion states that when Cauchy pressure C12−C44 (Eq. 3) is
positive, the bonding characteristic is predicted to be metallic, and
the material is predicted to be intrinsically ductile. Otherwise, a
negative Cauchy pressure suggests the bonding characteristic is
predicted to be covalent and the material is predicted to be
intrinsically brittle75.

C12 � C44 ¼ B 1� 5Gv

3B

� �
(3)

where Gv is the Voight averaged shear modulus, and B is bulk
modulus75. The elements involved in combinations that increase B/G
such as Cu, Ni, Co are late transition metals with greater valence
electron concentration (VEC). Barring strong interatomic interactions
that cause directional bonding with angular characteristics, the
increased electron density due to the increased VEC might be
expected to increase the metallic character of interatomic bonding.
Poisson’s ratio which is represented in Fig. 4(e) has mostly

similar trends as Pugh’s ratio, with a few differences. This
observation is expected since Poisson’s ratio can be expressed

in terms of Pugh’s ratio, ν ¼ 3B
G�2
6B
Gþ2

. Therefore, the same physics that

underlies the B/G trends might be applicable to Poisson’s ratio.
Figure 4(f) shows that combinations of V, W, and Cr are predicted
to produce near isotropic Zener ratios. Senkov and Miracle derived
a modified expression for the Pugh’s condition to take elastic

Table 3. Predicted Wigner–Seitz radius (sws) and bulk modulus (B) of AlxCoCrFeNi from Deep Sets and comparisons with results from EMTO-CPA
calculations76 for the preferred phase.

x swsDeep Sets (Bohr) swsCPA (Bohr) BDeep Sets (GPa) BCPA (GPa) Phase

0.1 2.620 2.611 199 200 FCC

0.25 2.628 2.619 195 197 FCC

0.3 2.631 2.622 194 196 FCC

0.375 2.635 2.626 192 194 FCC

0.5 2.641 2.632 189 190 FCC

1.25 2.680 2.667 166 171 BCC

1.3 2.678 2.670 166 170 BCC

1.5 2.689 2.675 161 167 BCC

2.0 2.706 2.690 151 159 BCC

2.5 2.721 2.701 145 153 BCC
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anisotropy into account (Eq. 4)75:

B
G
<
5 2Az þ 3ð Þ 2þ 3Azð Þ
3ð3A2

z þ 19Az þ 3Þ (4)

Interestingly, from Eq. (4), increasing the elastic anisotropy
also increases the Pugh’s ratio threshold for ductile materials
which means that the more elastically anisotropic a material is,
the greater the Pugh’s ratio is needed for the material to be
ductile. This observation was confirmed with an analysis of 308
intermetallic compounds and 24 metals75. Relating this result to
the rules in Fig. 4(f), compositions containing Al, and Cu will
need larger Pugh’s ratios to satisfy the modified Pugh’s
condition, but as seen in Fig. 4(d) Cu does increase the Pugh’s
ratio, as does Al combined with Zr.

DISCUSSION
Discovery of HEA compositions with tailored elasticity
Predictions from the Deep Sets model can be used to screen the
HEA space in search of compositions with desired elastic
properties. In combination with the association rules, one can
further explain the predicted properties in the context of the
general property trends in the whole composition space. However,
we note that the predictive power of any ML model is limited by
the training data. For example, we only consider single cubic
phase solid solutions in this study. Additional thermodynamic
modeling or experimental studies are necessary to determine the
phase selection of the compositions.

Ductile HEAs with high Young’s moduli
One of the most desirable property combinations of structural
HEAs is high Young’s modulus (or bulk modulus), high-
temperature softening resistance, good ductility, and low
weight density. An example of a refractory HEA with low-
density, high-ductility, and temperature resistance reported in
literature is Nb40Ti25Al15V10Ta5Hf3W2

76. However, this HEA is a
two-phase alloy with a BCC matrix and B2 nanoprecipitates. With
our materials screening it may be possible to discover a single-
phase solid solution with comparable properties. When a
system’s Pugh’s ratio B/G is greater than 1.75, the system can
be considered ductile. Figure 5 visualizes the trends of B/G vs. E
for the 14-element quaternary HEA space. Detailed screening
results are in Supplementary Table 5. It is obvious the B/G
generally decreases with E, indicating high E HEAs usually do not
have good ductility. The inset of Fig. 5 highlights a region where
a balance of high B/G and E can be achieved. In particular, the
CrMnTiV system can have high Young’s moduli and good
ductility. The pale blue edges for (Cr, Mn) and (Mn, V) pairs in
Fig. 4(d) indicate these element pairs tend to produce
intermediate to low Pugh’s ratios, which is consistent with the
screening. The Pugh’s ratio of CrMnTiV also has a similar value of
2.530 from DFT calculations using a 64-atom special quasiran-
dom structure. There is no publication reporting the experi-
mental synthesis and elastic constants of the CrMnTiV HEA.
Senkov et al reported that CALPHAD modeling predicts the
equimolar system CrMnTiV to be a single BCC phase18, but Yoav
et al indicated the phase composition as inconclusive using their
“LTVC” approach19.

Fig. 4 Graph representations of association rules between elements and elastic properties of HEAs. Results for (a) bulk modulus, (b)
Young’s modulus, (c) shear modulus, (d) Pugh’s ratio, (e) Poisson’ ratio, and (f) Zener ratio respectively. Node colors and sizes represent
different elements (as shown in the legend) and fractions. The redder (bluer) the color of the node outlines and connections, the higher
(lower) the value of the elastic property is predicted to be. The thicker the node outline or connection, the higher the lift value of the rule is.
The node outlines and connections for the Zener ratio are mapped to a separate color bar to emphasize rules that predict Zener ratios that are
close to 1.0 for the isotropic case.
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Elastically isotropic HEAs with low Young’s moduli
Another group of interesting HEAs are elastically isotropic systems
with low Young’s moduli. These HEAs can be potentially used in
biomedical application77. The inset of Fig. 6 shows a composition
window that satisfies these conditions. Detailed screening results
are in Supplementary Table 6. The (Cr, V) pair identified as related
to elastically isotropic systems from ARM in Fig. 4(f) also appears in
HEAs within the composition window. From the screening, we
notice that the densities of most HEAs in the composition window
are relatively low, which can be another advantage for biomedical
applications. The EMTO-CPA method usually overestimates the
elastic moduli, suggesting that those selected compositions may
even have lower E in real world applications.
In summay, we present an efficient, generalizable, and accurate

Deep Sets model that can predict the energetic, structural, and
elastic properties of HEA compositions. To our knowledge, the
Deep Sets model was trained on the largest dataset of first-
principles HEA elastic properties. The present work also analyzed
the elastic properties predicted by our Deep Sets model using
ARM to demonstrate correlations between compositional trends
and properties that may assist the ultimate goal of alloy design.
Elasticity is the underlying drive for mechanical responses, and the
huge composition space that HEAs span gives rise to the potential
for tuning elastic properties for targeted applications. Effective
alloy design must also be efficient, and our methodology
represents a step forward in improving our ability to design HEAs.

METHODS
High-throughput DFT calculations
High-throughput DFT calculations were performed using the EMTO-CPA
method to predict the stability and elastic constants of selected HEA
compositions. Fourteen elements (Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Ti,
V, W, and Zr) were selected to create a large composition space of
elements commonly found in 3d transition metal and refractory HEAs. All
possible quaternary equimolar compositions of the 14 elements, and more
than 2000 sampled quaternary non-equimolar compositions of these
elements were calculated. Non-equimolar compositions that are close to
the center of the composition space, i.e., A1BxCyDz (0.6 ≤ x, y, z ≤ 1), were
sampled more frequently. For each composition, we considered the face-
centered cubic (FCC) and BCC random solid-solution phases for calcula-
tions. While realistic HEAs can crystalize as multi-phase alloys and with
different lattices, the focus of the study is to understand the trends of
elemental combinations on the properties of single-phase random alloys.
The high-throughput workflow can be extended with additional DFT
calculations and CALPHAD modeling to treat structurally complex HEAs78.

Two sets of EMTO-CPA calculations were performed for each HEA
composition. First, the EOS was calculated to determine the relative
phase stability and the lattice parameters of the HEA. At least fifteen
volumes were dynamically generated for both lattices, and the total
energy was calculated at each volume35. The energy, E, vs. volume, V,
pairs were used to fit the Birch-Murnaghan EOS79 in Eq. (5), where the
subscript 0 represents the equilibrium condition and B0' is the derivative
of the bulk modulus with respect to pressure. The bulk modulus B0 was
obtained from the EOS.

E Vð Þ ¼ E0 þ 9V0B0
16

V0
V

� �2
3

�1

" #3

B00 þ
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V

� �2
3

�1
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6� 4
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V

� �2
3

" #8<
:

9=
;
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Next, EMTO-CPA calculations were performed to predict the elastic
constants for the cubic phase with lower energy at the equilibrium volume.
For non-equimolar compositions, the complete cubic elastic constant
calculations were only calculated for relatively stable compositions with
formation energy < 0.15 eV/atom. The elastic constants were found by
fitting the energy changes with respect to externally applied deformations
to the lattice. The energy change with the orthorhombic deformation
(Eq. 6) gives the tetragonal shear modulus c' (Eq. 7). Elastic constants C11
and C12 can be derived using Eqs. (8) and (9). The energy change with the
monoclinic deformation (Eq. 10) gives the elastic constant C44 (Eq. 11). The
deformation to the equilibrium cell was applied at three steps of δo(orδm)
= 0.00,0.03,0.05.

Dt þ J ¼
1þ δo 0 0

0 1� δo 0

0 0 1
1�δ2o

0
B@

1
CA (6)

ΔEðδoÞ ¼ 2Vc0δ2o þOðδ4oÞ (7)

B ¼ ðC11 þ 2C12Þ
3

(8)

c0 ¼ ðC11 � C12Þ
2

(9)

Dm þ J ¼
0 δm 0

δm 1 0

0 0 1
1�δ2m

0
B@

1
CA (10)

ΔEðδmÞ ¼ 2VC44δ
2
m þOðδ4mÞ (11)

The polycrystalline elastic moduli were obtained from the calculated
cubic elastic constants. The Voigt bound and Reuss bound of the
polycrystalline bulk modulus of cubic structure are the same, BR = BV =
B080. We used the arithmetic Hill average for the polycrystalline shear

Fig. 6 Distribution of Young’s modulus E vs. Zener ratio Az of the
14-element HEA composition space. The inset shows the high-
lighted HEA systems with targeted elastic properties, where density
ρ are represented using the colorbar.

Fig. 5 Distribution of Young’s modulus E vs. Pugh’s ratio B/G of
the 14-element HEA composition space. The inset shows the
highlighted HEA systems with targeted elastic properties, where the
B values are represented using the colorbar.
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modulus: G ¼ GVþGR
2 , where GR is the Reuss bound (Eq. 12) and GV is the

Voigt bound (Eq. 13). The Young’s modulus E and Poisson’s ratio v were
obtained from Eqs. (14) and (15). The Zener ratio Az (Eq. 16) was employed
to assess the elastic anisotropy. When Az= 1, the crystal lattice is elastically
isotropic.

GV ¼ C11 � C12 þ 3C44
5

(12)

GR ¼ 5ðC11 � C12ÞC44
4C44 þ 3ðC11 � C12Þ (13)

E ¼ 9BG
3Bþ G

(14)

v ¼ 3B� 2G
2ð3Bþ GÞ (15)

Az ¼ 2C44
C11 � C12

(16)

For all DFT calculations, the exchange-correlation energy was defined by
the generalized gradient approximation (GGA) in the Perdew-Burke-
Ernzerhof (PBE) parameterization81 with the full charge density (FCD)
techniques39,82,83. The Monkhorst-Pack k-point grid was set to 17 × 17 × 17
and the energy was converged to 10−6 eV/atom. The screened impurity
model parameter of CPA was 0.6 with the soft-core approximation. The
magnetic moment was initialized as ferromagnetic. We developed a
workflow based on pyEMTO84, performed and analyzed more than 160,000
high-throughput EMTO-CPA calculations85. The complete dataset is
included in the supplementary information. Due to numerical issues, a
small fraction of the calculations (especially for compositions with Ta) did
not converge to the required accuracy. Results from all successful
calculations are included in the reported dataset, but our ML modeling
and analysis does not include data with Ta to avoid introducing bias.

Deep sets model
The main idea of Deep Sets is that any permutation invariant function f
over a set X (e.g., the set of elements x in an equimolar HEA) can be
represented as ρ

P
x2X ϕðxÞ

� �
, where ρ and ϕ are two functions that are

usually parametrized by deep neural networks. In this study, we used MLP
(multilayer perceptron) with ELU (exponential linear unit) activation
function for ρ and MLP with ReLU (rectified linear unit) for ϕ. In particular,

ELUðxÞ ¼ x if x > 0
α ex � 1ð Þ if x < 0

�
, where α was set as 1, and

ReLUðxÞ ¼ x if x > 0
0 if x < 0

�
. We used the Adam optimizer86 with batch size

32, learning rate 10−3 and weight decay rate 10−4. In the case of
quaternary HEAs with non-equimolar ratios, we incorporated the weights
by replacing ρ

P
x2X ϕðxÞ

� �
with ρðPx2X ϕðwxxÞÞ where wx stands for the

weight of element x in the HEA. Since we consider HEAs as a collection of
atoms randomly decorated on a lattice, it is natural to represent HEAs as a
set of weighted atoms, with weights representing the elemental
concentration.
We predicted the following properties using the Deep Sets model: sws,

lattice parameter (a), elastic constants (C11, C12, C44), B, G, E, ν, and B/G. Each
quaternary HEA system was represented as a set of size four, {u1,u2,u3,u4},
where ui is the feature vector for an element of the HEA. Elemental
properties were encoded in ui using one-hot encoding50. Table 4 lists the
elemental features we selected to train the model. For discrete properties,
the property values were encoded according to the category the value
belongs to; for continuous properties, the range of property values was
evenly divided into 10 categories and the vectors were encoded
accordingly. For instance, if we use the group number and period number
as the elemental features, the atom feature vector for H will be a 27-
dimensional vector with the 1st and 19th element being 1 and the other
elements being 0. If the atomic radius is 0.7 pm, then the atomic size
feature vector will be a 10-dimensional vector with the 1st element being 1
and the other elements being 0. The training data consisted of EMTO-CPA
computed property data for 1911 equimolar and non-equimolar quatern-
ary HEAs with complete cubic elastic constants. We randomly split the
dataset into 60%, 20%, 20% as training, validation, and test set. We
repeated the experiments 10 times and report the average MAE and the
standard deviation. We compared our Deep Sets model with KNN, LR, RF,

GBT, and SVM models. Table 5 lists the hyper-parameter space that was
explored for each algorithm. We first used the training set that contains the
features listed in Table 4 along with the stable lattice type (FCC or BCC) as
an optional feature.
After training, we applied the Deep Sets model to predict the elastic

properties of 369,369 HEA compositions for further analysis. The larger
composition pool contains all quaternary compositions A1BxCyDz (0.6 ≤ x, y,
z ≤ 1 with an 0.1 increment) of the 14 elements. Because the relative cubic
phase stability is unknown for most compositions in the space, we used a
Deep Sets model that does not include the stable lattice type for property
prediction.

Association rule mining
ARM was utilized to identify meaningful correlations between the
elemental combinations and the Deep Sets predicted HEA elastic
properties. ARM is a descriptive data mining method to discover
underlying relationships between different items in a dataset87. In this
study, the items are element fractions and target properties. The
relationships or associations are represented by If-Then rules consisting
of an antecedent and a consequent. For example, the rule shown below
says: If a HEA composition contains low fractions of elements A and B, then
the target property will have a relatively high elastic constant value.

X ) Y

X : low fractions of elements A and B

Y : high value predicted for target elastic property

The condition of low fractions of the A and B elements is the antecedent,
X, which is correlated with the consequent, Y, the high value of the target
property. While these rules represent correlations and do not imply
causation, they have directionality meaning that while antecedent X leads
to consequent Y it does not necessarily mean that Y leads to X.
The first step in ARM is rule generation. Due to the sheer number of

feature combinations that can make up both the antecedents and
consequents, it is impossible to evaluate the entire combinatorial space of
rules. Therefore, Apriori algorithm was used to generate rules from
frequently occurring item sets88. The Apriori algorithm searches for rules
based on the assumption that all subsets of a frequently occurring item set

Table 4. Features for Deep Sets training.

Feature Unit Range # of categories

Group number – 1, 2, ..., 18 18

Period number – 1, 2, ..., 9 9

Electronegativity – 0.5~4.0 10

Covalent radius pm 25~250 10

Valence electrons – 1, 2, ..., 12 12

First ionization energy eV 1.3~3.3 10

Electron affinity eV –3~3.7 10

Block – s, p, d, f 4

Atomic volume cm3mol−1 1.5~4.3 10

Table 5. Tested space for hyper-parameters.

Method Hyper-parameters

Deep Sets Hidden dimension for ϕ: 94; hidden dimension for ρ:
{100, 50}

GBT Number of estimators: {10,100,300,500,1000}

KNN Number of neighbors: {3,5,7,10,20}

LR No hyperparameters.

RF Number of estimators: {10,20,50,100,200}

SVM Kernel type: {linear,rbf }; bandwidth:{10−2,10−1,1,101,102}, C:
{10−2,10−1,1,101,102,103,104}.
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will also be frequent. In other words, a rule with fewer conditions, which is
more general, will be satisfied more frequently. From this assumption it
follows that if an item set is infrequent, its supersets will also be infrequent.
The Apriori algorithm performs a breadth-first search of rules starting with
item sets with few items and adding items to the item set, while only
considering item sets that exceed a threshold of support in the dataset. The
support of an item set is defined as the frequency of the item set within the
dataset. If an item set does not have enough support, none of its supersets
are considered. After the frequent item sets are found, relevant rules are
evaluated based on metrics such as support, confidence, and lift.

support X ) Yð Þ ¼ P X and Yð Þ
confidence X ) Yð Þ ¼ P YjXð Þ ¼ P X and Yð Þ

P Xð Þ

lift X ) Yð Þ ¼ P X and Yð Þ
P Xð Þ�P Yð Þ

Confidence can be used to find rules with high probability of the
consequent Y conditional on the antecedent X. Confidence has a
drawback that if the consequent is frequent, the confidence for the rule
may be high even though a true relation does not exist between the
antecedent and the consequent. Lift is the ratio of the probability of
events X and Y co-occurring to the product of the probability of event X
and event Y. In other words, lift is a metric that shows whether the co-
occurrence of events X and Y is more frequent than would be expected if
the two events are statistically independent. Lift does not suffer from the
same drawback as confidence.
The ARM methodology works on datasets with binary data rather than

the continuous data that the Deep Sets model predicts. Our aim of the
ARM analysis is to produce descriptive trends rather than to train a
separate quantitative predictive model. Therefore, the continuous data was
first discretized into 10 bins, which transformed the continuous dataset
into an ordinal dataset89. Then, the ordinal data was further transformed
by one-hot encoding. The labels of the one-hot encoded data correspond
to the rank of the ordinal data. For example, the one-hot encoded feature
labels ‘Cr0’ and ‘Cr9’ corresponds to low and high Cr fractions respectively.
A low threshold support value of 0.006 was used to filter the item sets, to
ensure that meaningful rules were not missed due to the relative rarity of
an item set. An item set with the support of 0.006 corresponds to 2,216
occurrences in our dataset. The rules were then filtered using a lift
threshold of 2.4. The choice of this lift threshold was to keep the number of
rules low. Higher lift thresholds can result in too few rules.

DATA AVAILABILITY
All data used to train and validate the Deep Sets model are available in the
Supplementary Materials.

CODE AVAILABILITY
The Deep Sets code is available at GitHub (github.com/Chen-Cai-OSU/hea-ml).
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