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1. Introduction

A classical result about composition in Sobolev spaces asserts that if u ∈ W k,p(Ω) ∩
L∞(Ω) and Φ ∈ Ck(R), then Φ ◦u ∈ W k,p(Ω). Here Ω denotes a smooth bounded domain
in RN , k ≥ 1 is an integer and 1 ≤ p < ∞. This result was first proved in [13] with the
help of the Gagliardo-Nirenberg inequality [14]. In particular if u ∈ W k,p(Ω) with kp > N
and Φ ∈ Ck(R) then Φ ◦ u ∈ W k,p since W k,p ⊂ L∞ by the Sobolev embedding theorem.
When kp = N the situation is more delicate since W k,p is not contained in L∞. However
the following result still holds (see [2],[3])

Theorem 1. Assume u ∈ W k,p(Ω) where k ≥ 1 is an integer, 1 ≤ p < ∞, and

(1) kp = N.

Let Φ ∈ Ck(R) with

(2) DjΦ ∈ L∞(R) ∀j ≤ k.

Then
Φ ◦ u ∈ W k,p(Ω)

The proof is based on the following

Lemma 1. Assume u ∈ W k,p(Ω) ∩W 1,kp(Ω) where k ≥ 1 is an integer and 1 ≤ p < ∞.
Assume Φ ∈ Ck(R) satisfies (2). Then

Φ ◦ u ∈ W k,p(Ω).
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Proof of Theorem 1. Since u ∈ W k,p we have

Du ∈ W k−1,p ⊂ Lq

by the Sobolev embedding with
1
q

=
1
p
− k − 1

N
.

Applying assumption (1) we find q = N = kp and thus u ∈ W 1,kp. We deduce from
Lemma 1 that Φ ◦ u ∈ W k,p.

Proof of Lemma 1. Note that if u ∈ W k,p ∩ L∞ with k ≥ 1 integer and 1 ≤ p < ∞ then
u ∈ W 1,kp by the Gagliardo - Nirenberg inequality [14]. Thus, Lemma 1 is a generalization
of the standard result about composition. In fact, it is proved exactly in the same way as
in the standard case (when u ∈ W k,p ∩ L∞). When k = 2 the conclusion is trivial.

Assume, for example that, k = 3, then

W 3,p ∩W 1,3p ⊂ W 2,3p/2

by the Gagliardo - Nirenberg inequality. Then

D3(Φ ◦ u) = Φ′(u)D3u + 3Φ′′(u)D2uDu + Φ′′′(u)(Du)3,

and thus Φ ◦ u ∈ W 3,p since∫
|D2u|p|Du|p ≤

( ∫
|D2u|3p/2)2/3

( ∫
|Du|3p

)1/3

≤ C‖u‖p/2
W 3,p‖u‖3p/2

W 1,3p .

A simular argument holds for any k ≥ 4.

Starting in the mid-60’s a number of authors considered composition in various classes
of “Sobolev spaces” W s,p, where s > 0 is a real number and 1 ≤ p < ∞. The most
commonly used are the Bessel potential spaces Ls,p(RN ) = {f = Gs ∗ g; g ∈ Lp(RN )}
where Ĝs = (1 + |ξ|2)−s/2 and the Besov spaces Bs,p

p (RN ) (who’s definition is recalled
below when s is not an integer). It is well-known (see e.g. [1],[19] and [20]) that if k is
an integer, Lk,p coincides with the standard Sobolev space W k,p; also if p = 2, the Bessel
potential spaces Ls,2 and the Besov spaces Bs,2

2 coincide for every s non-integer and they
are usually denoted by Hs. When p 6= 2 the spaces Ls,p and Bs,p

p are distinct.

The first result about composition in fractional Sobolev spaces seems to be due to
Mizohata [12] for Hs,s > N/2. In 1970 Peetre [15] considered Bs,p

p ∩L∞ using interpolation
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techniques; a very simple direct argument for the same class, Bs,p
p ∩ L∞, was given by M.

Escobedo [10] (see the proof of Lemma 2 below).

Starting in 1980 techniques of dyadic analysis and Littlewood-Paley decomposition à
la Bony [5] were introduced. For example, Y. Meyer [11] considered composition in Ls,p

for sp > N ; see also [16],[4],[9] for Hs with s > N/2 or for Hs ∩ L∞, any s > 0. We
refer to [17],[6],[7],[18] and their bibliographies for other directions of research concerning
composition in Sobolev spaces.

In what follow we denote by W s,p(Ω) the restriction of Bs,p
p (RN ) to Ω when s is not an

integer. Our main result is the following

Theorem 2. Assume u ∈ W s,p(Ω) where s > 1 is a real number, 1 < p < ∞, and

(3) sp = N.

Let Φ ∈ Ck(R), where k = [s] + 1, be such that

(4) DjΦ ∈ L∞(R) ∀j ≤ k.

Then
Φ ◦ u ∈ W s,p(Ω).

The proof of Theorem 2 relies on a variant of Lemma 1 for fractional Sobolev spaces.

Lemma 2. Let u ∈ W s,p(Ω), where s > 1 is a real number and 1 < p < ∞. Assume, in
addition, that u ∈ W σ,q for some σ ∈ (0, 1) with

(5) q = sp/σ.

Let Φ ∈ Ck(R), where k = [s] + 1, be such that (4) holds. Then

Φ ◦ u ∈ W s,p

Proof of Theorem 2. By the Sobolev embedding theorem we have

W s,p ⊂ W r,q

with r < s and
1
q

=
1
p
− (s− r)

N
.

In view of assumption (3) we find
q = N/r.
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In particular,
u ∈ W σ,q

for all σ ∈ (0, 1) with

q =
N

σ
=

sp

σ
.

Thus we may apply Lemma 2 and conclude that Φ ◦ u ∈ W s,p.

Remark 1. Theorem 2 is known to be true when the Sobolev spaces W s,p are replaced
by the Bessel potential spaces Ls,p with sp = N ; see D. Adams and M. Frazier [3]. Even
though the two results are closely related it does not seem possible to deduce one from the
other. Their argument relies on a variant of Lemma 2 for Bessel potential spaces:

Let u ∈ Ls,p ∩ L1,sp where s > 1 is a real number and 1 < p < ∞. Let Φ be as in
Lemma 2. Then Φ ◦ u ∈ Ls,p.

Remark 2. The assumption in Lemma 2, u ∈ W s,p ∩ W σ,q, with q = sp/σ for some
σ ∈ (0, 1), is weaker than the assumption u ∈ W s,p ∩ L∞ but it is stronger than the
assumption u ∈ W 1,sp; this is a consequence of Gagliardo - Nirenberg type inequalities
(see e.g. the proof of Lemma D.1 in the Appendix D of [8]). It is therefore natural to raise
the following:

Open Problem. Is the conclusion of Lemma 2 valid if one assumes only u ∈ W s,p∩W 1,sp

where s > 1 is a (non-integer) real number?

Before giving the proof of Lemma 2 we recall some properties of W s,p when s is not an
integer.

When 0 < σ < 1 and 1 < p < ∞ the standard definition of W σ,p is

W σ,p(Ω) = {f ∈ Lp(Ω);
∫ ∫

|f(x)− f(y)|p

|x− y|N+σp
dxdy < ∞}.

If s > 1 is not an integer write s = [s] + σ where [s] denotes the integer part of s and
0 < σ < 1. Then

W s,p(Ω) = {f ∈ W [s],p(Ω), Dαf ∈ W σ,p for |α| = [s]}.

There is a very useful characterization of W s,p in terms of finite differences (see Triebel
[20], p.110). Here it is more convenient to work with functions defined on all of RN and
to consider their restrictions to Ω. Set

(δhu)(x) = u(x + h)− u(x), h ∈ RN ,
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so that
(δ2

hu)(x) = u(x + 2h)− 2u(x + h) + u(x), etc...

Given s > 0 not integer, fix any integer M > s. Then

W s,p = {f ∈ Lp;
∫ ∫

|δM
h f(x)|p

|h|N+sp
dxdh < ∞}.

Proof of Lemma 2. It suffices to consider the case where s is not an integer. For simplicity
we treat just the case where 1 < s < 2. The same argument extends to general s > 2, s
noninteger, using the same type of computations as in Escobedo [10].

The key observation is that δ2
h(Φ ◦ u) can be expressed in terms of δ2

hu and δhu. This
is the purpose of our next computation.

Set

X = u(x + 2h)

Y = u(x + h)

Z = u(x).

Since Φ′′ ∈ L∞(R) we have

(6) Φ(X)− Φ(Y ) = Φ′(Y )(X − Y ) + 0(|X − Y |2)

and since Φ′ ∈ L∞(R) we also have

(7) Φ(X)− Φ(Y ) = Φ′(Y )(X − Y ) + 0(|X − Y |).

Combining (6) and (7) we find

Φ(X)− Φ(Y ) = Φ′(Y )(X − Y ) + 0(|X − Y |a)

for any 1 ≤ a ≤ 2 ( we will choose a specific value of a later) Similarly

Φ(Z)− Φ(Y ) = Φ′(Y )(Z − Y ) + 0(|Z − Y |a)

Since
δ2
h(Φ ◦ u)(x) = (Φ(X)− Φ(Y )) + (Φ(Z)− Φ(Y )),

one finds

(8) |δ2
h(Φ ◦ u)(x)| ≤ C(|δ2

hu(x)|+ |δhu(x + h)|a + |δhu(x)|a).
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This yields

(9)
∫ ∫

|δ2
h(Φ ◦ u)(x)|p

|h|N+sp
dxdh ≤ C

∫ ∫
|δ2

hu(x)|p

|h|N+sp
dxdh + C

∫ ∫
|δhu(x)|ap

|h|N+sp
dxdh.

The first integral on the right-hand side of (9) is finite since u ∈ W s,p. To handle the
second integral we argue as follows. From the assumption u ∈ W s,p ∩W σ,q with σ ∈ (0, 1)
and q given by (5) we know that

(10)
∫ ∫

|δ2
hu(x)|p

|h|N+sp
dxdh < ∞ and

∫ ∫
|δ2

hu(x)|q

|h|N+sp
dxdh < ∞.

From (10) and Hölder’s inequality we derive that

(11)
∫ ∫

|δ2
hu(x)|r

|h|N+sp
dxdh < ∞

for all r ∈ [p, q], i.e., u ∈ W τ,r with τ = sp/r. We now choose

a = min{2, s/σ}, so that a ∈ [1, 2]

and r = ap ∈ [p, q]. It follows that∫ ∫
|δhu(x)|ap

|h|N+sp
dxdh < ∞,

which is the desired in equality.

Remark 3. There could be another natural proof of Theorem 2 by induction on [s]. One
might attempt to prove that

D(Φ ◦ u) = Φ′(u)Du ∈ W s−1,p.

Note that u ∈ W (s−1),N/(s−1) and thus (by induction) we would have Φ′(u) ∈ W (s−1),N/(s−1).
On the other hand Du ∈ W s−1,p. In order to conclude we need a lemma about products,
but we are not aware of any such tool.

Remark 4. When s (or equivalently p) is a rational number, and Φ ∈ C∞ with DjΦ ∈
L∞ ∀j, there is a simple proof of Theorem 2 based on trace theory and Theorem 1. Assume
for simplicity that Ω = RN . Suppose that s is not an integer, but that s1 = s + 1/p is an
integer. Then u is the trace of some function u1 ∈ W s1,p(RN+1). Then s1p = N +1 and by
Theorem 1 we deduce that Φ◦u1 ∈ W s1,p(RN+1). Taking traces we find Φ◦u ∈ W s,p(RN ).
If s1 is not an integer we keep extending u1 to higher dimensions and stop at the first
integer k such that sk = s + k/p is an integer ( this is possible since p is rational and
s + k/p = (N + k)/p becomes an integer for some integer k). We have an extension
uk ∈ W sk,p(RN+k) of u. Then Φ ◦ uk ∈ W sk,p(RN+k) by Theorem 1. Taking back traces
yields u ∈ W s,p.
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