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Abstract

We analyzed the composition of amino acids (AAs) in oligopeptides, proteins, and the free pool, as well as creatine, agmatine,
polyamines, carnosine, anserine, and glutathione, in animal- and plant-derived feedstuffs. Ingredients of animal origins were
black soldier fly larvae meal (BSFM), chicken by-product meal, chicken visceral digest, feather meal, Menhaden fishmeal,
Peruvian anchovy fishmeal, Southeast Asian fishmeal, spray-dried peptone from enzymes-treated porcine mucosal tissues,
poultry by-product meal (pet-food grade), spray-dried poultry plasma, and spray-dried egg product. Ingredients of plant
origins were algae spirulina meal, soybean meal, and soy protein concentrate. All animal-derived feedstuffs contained large
amounts of all proteinogenic AAs (particularly glycine, proline, glutamate, leucine, lysine, and arginine) and key nonpro-
teinogenic AAs (taurine and 4-hydroxyproline), as well as significant amounts of agmatine, polyamines, creatine, creatinine,
creatine phosphate, and glutathione. These nitrogenous substances are essential to either DNA and protein syntheses in
cells or energy metabolism in tissues (particularly the brain and skeletal muscle). Of note, chicken by-product meal, poultry
by-product meal, and spray-dried poultry plasma contained large amounts of carnosine and anserine (potent antioxidants).
Compared with most of the animal-derived feedstuffs, plant-derived feedstuffs contained much lower contents of glycine and
proline, little 4-hydroxyproline, and no creatine, creatinine, creatine phosphate, carnosine or anserine. These results indicate
the unique importance of animal-source feedstuffs in improving the feed efficiency, growth and health of animals (including
fish and companion animals). Because soy protein concentrate is consumed by infants, children and adults, as are BSFM and
algae for children and adults, our findings also have important implications for human nutrition.
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Introduction

Animal-source feedstuffs are generally superior to plant-
source ones for the growth and health of livestock, poultry,
and fish (Wu 2018). This is due, in part, to the greater
quantity of proteinogenic amino acids (AAs) and higher
quality (the ratios and digestibilities of AAs) of the for-
mer than the latter. Traditionally, extensive research has
focused on AAs that are not synthesized by animal cells
and are known as nutritionally essential AAs (EAAs),
including leucine, lysine, methionine, threonine, and
tryptophan (Hou and Wu 2018a). However, little atten-
tion has been directed to AAs that are synthesizable in
animal cells [so-called nutritionally nonessential AAs
(NEAAs), such as glutamate, glutamine, glycine, proline,
and 4-hydroxyproline] (e.g., Cummins et al. 2017; Dust
et al. 2005; Myers et al. 2014). However, NEAAs have
versatile nutritional and physiological functions and are
generally more abundant in animal- than plant feedstuffs
(Hou et al. 2015a). The high abundance of NEAAs in ani-
mal protein can cut the energetic and EAA costs of their
de novo syntheses in animal cells and leads to improved
feed efficiency in the production of animals, especially
carnivorous species (Li and Wu 2018). In addition, ani-
mal-source feedstuffs contain taurine, creatine and creatine
phosphate that are important anti-oxidants and participate
in energy metabolism in tissues [particularly the brain,
skeletal muscle, heart, and gonads of animals (Wu 2013)].
In contrast, plant-source feedstuffs lack these nitrogenous
nutrients (Hou et al. 2019). Furthermore, animal-derived
feedstuffs may contain polyamines that are essential for
DNA and protein syntheses in mammals, birds, and other
vertebrates (Kerr et al. 2017). Finally, the presence of
oligopeptides [small peptides (containing 2—-10 AA resi-
dues) and large peptides (containing 11-20 AA residues)]
in animal-source feedstuffs may enhance their efficiency
in promoting animal growth.

At present, little is known about the content of creatine,
polyamines, and oligopeptides in animal-source feedstuffs,
most of which are produced by the rendering and animal
protein industries to convert wastes into high-quality pro-
tein sources, protect the global environment (Meeker and
Hamilton 2006), and reduce carbon emissions from animal
production (Wu 2018). In addition, the literature shows
large variations of these substances and AAs in feedstuffs
among different laboratories (e.g., Bryan 2018; Donadelli
et al. 2019; Frikha et al. 2014; Kerr et al. 2017; Kim
et al. 2000; Norberg et al. 2004; Renna et al. 2017; Shumo
et al. 2019). These salient variations in published values
might be attributable to the raw materials used (e.g., their
sources, freshness and microbial contamination), process-
ing technologies for ingredient production, and errors in
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AA analyses. A database on the composition of AAs and
related nutrients in a variety of protein ingredients derived
from terrestrial animals and fishes is much needed to guide
the formulation of diets for feeding livestock, poultry, fish,
shrimp and companion animals (Turchini et al. 2019; Wu
2018). To achieve this goal, we analyzed eleven common
animal-source feedstuffs and, for comparison, three com-
mon plant-source feedstuffs for AAs in oligopeptides, pro-
tein, and the free pool as well as creatine, creatine phos-
phate, creatinine, agmatine, polyamines, and glutathione.

Materials and methods
Materials

Chicken by-product meal (CBPM), chicken visceral digest
(CVD), hydrolyzed feather meal, poultry by-product meal
(pet-food grade), and spray-dried poultry plasma (SDPP)
were obtained from North American Renderers Asso-
ciation (Alexandria, VA, USA). Black soldier fly larvae
meal (BSFM) was manufactured by Dr. Jeffery Tomberlin
(Department of Entomology, Texas A&M University, Col-
lege Station, TX, USA). Fishmeal (US Menhaden), fish-
meal (Peruvian anchovy), and fishmeal (Southeast Asian
miscellaneous marine fishes) were obtained from Tongwei
Research Institute (Chengdu, China). Spray-dried peptone
from enzymes-treated porcine mucosal tissues (SDPM; Pro-
Pep WD) was obtained from International Nutrition Inc.
(Omaha, NE, USA). SDPM was a by-product of heparin
extraction under salt solution and was dried by a spray-dried
technology without the presence of plant protein carriers.
Spray-dried egg product was obtained from IsoNova Tech-
nologies LLC (Springfield, MO, USA). Plant-source feed-
stuffs [algae spirulina meal, soybean meal (SBM), and soy
protein concentrate (SPC)] were obtained from Aquaculture
Research and Teaching Facility of Texas A&M University
(College Station, TX, USA).

High-performance liquid chromatography (HPLC)-grade
water and methanol were purchased from Fisher Scientific
(Houston, TX, USA). Balenine (f-alanyl-3-methylhistidine;
ophidine), which has been reported to be present in the
skeletal muscles of snakes, whales and pigs (Boldyrev et al.
2013; Carnegie et al. 1982; Wolff et al. 1968), was a gift of
Dr. J. Wolff (National Institute of Health, Bethesda, MD,
USA). Other materials, including proteases, HPLC columns,
AA standards, agmatine, carnosine (#-alanyl-L-histidine),
and anserine (f-alanyl-1-methylhistidine) were products of
Sigma Chemicals (St. Louis, MO, USA).
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Chemical analyses

Each food was finely ground to 0.5 mm in size before use
for analysis. Dry matter (DM) content was determined by
drying approximately 100 mg samples to a constant mass in
a 105 °C oven. The content of crude protein, crude fat, ash
(minerals), and carbohydrate in feedstuffs was determined as
described by Wu et al. (2016a). Creatine and creatinine were
analyzed by HPLC, as previously described by Kai et al.
(1983). Creatine phosphate was converted into creatine by
creatine kinase (Lamprecht and Stein 1965), followed by the
HPLC analysis of creatine. The detection limits for creatine,
creatinine and creatine phosphate were 3.5, 3.5, and 7 ng/g
feed (as-fed basis), respectively.

For the determination of polyamines, agmatine, small
peptides (carnosine, anserine and balenine), and free AAs,
each feed sample (~200 mg) was homogenized in 2 ml of
1.5 M HCIO, (perchloric acid, PCA). The homogenate was
neutralized with 1 ml of 2 M K,COj, followed by addition of
2 ml HPLC-grade water. The whole solution was centrifuged
at 600 g for 10 min, and the supernatant fluid was analyzed
for polyamines and agmatine (Dai et al. 2014b), free AAs
(Hou et al. 2019; Wu and Meininger 2008), carnosine and
anserine (Wu et al. 2016a), and balenine (Hou et al. 2015b)
using HPLC methods involving precolumn derivatization
with o-phthaldialdehyde. Polyamines, agmatine, carnosine,
anserine, balenine, and free AAs in samples were quanti-
fied on the basis of known amounts of standards using the
Millenium-32 Software (Waters, Milford, MA, USA). The
detection limits for carnosine, anserine and balenine were
0.35 ng/g feed (as-fed basis).

For determining peptide-bound plus free AAs (i.e.,
total AAs) in feeds (except for peptide-bound tryptophan),
approximately 200 mg samples were hydrolyzed in 10 mL of
6 N HCl at 110 °C for 24 h under N, (Dai et al. 2014a). For
tryptophan analysis, approximately 100 mg samples were
hydrolyzed at 110 °C for 20 h in 10 mL of 4.2 M NaOH
plus 0.1 mL of 25% thiodiglycol (an antioxidant), as previ-
ously described (Dai et al. 2014a). Free AAs were extracted
from each feed as described previously for the determination
of polyamines. The differences in AA content between the
acid or alkaline hydrolysis and the free AA fraction were
taken to indicate the content of peptide-bound AAs (i.e.,
AAs in proteins and small plus large peptides). The PCA-
soluble fraction (containing small plus large peptides and
free AA) was neutralized with 1 M NaOH and the super-
natant fluid (0.5 ml) was hydrolyzed in 10 mL of 6 N HCI
at 110 °C for 24 h under N,. The differences in AA content
before and after the acid hydrolysis were used to calculate
the content of small plus large peptides. Glutamine, gluta-
mate, asparagine, and aspartate in the proteins and peptides
of feedstuffs were determined using proteases after samples
were dried in an oven (105 °C) for 20 h, as we described

previously (Hou et al. 2019; Li et al. 2011). Briefly, the
working solution of enzymes contained the following per
1 ml of phosphate-buffered saline (pH 7.5): 2 mg pronase
E (from Streptomyces griseus; Sigma Cat #P5147), 2 mg
prolidase (from porcine kidney; Sigma Cat #P6675), 2 mg
pyroglutamate aminopeptidase (from Bacillus amyloliquefa-
ciens; Sigma Cat #P4669), 2 mg carboxypeptidase A (from
bovine pancreas; Sigma Cat #C0261), and 2 mg aminopepti-
dase M (from porcine kidney; Sigma Cat #L.0632). A finely-
grounded feed sample (~ 50 mg) was incubated at 25 °C for
6 h with 250 pl of phosphate-buffered saline (pH 7.5) and
50 ul of the enzyme solution. At the end of the incubation,
50 ul of 1.5 M HCIO, was added to the solution, followed by
the addition of 25 pl of 2 M K,CO; and 5 ml of HLPC water.
Blanks were prepared by adding 50 pl of 1.5 M HCIO, to
the assay mixture before the addition of 50 pl of the enzyme
solution. All analyses of AAs were performed in triplicate
for each sample using HPLC methods involving precolumn
derivatization with o-phthaldialdehyde (Dai et al. 2014a).
Amino acids in samples were quantified on the basis of
known amounts of standards (Sigma Chemicals, St. Louis,
MO, USA) using the Waters Millenium-32 Software (Zhang
et al. 2019). Peptide-bound AAs were calculated as total
AAs minus free AAs. The content of true proteins plus pep-
tides was calculated on the basis of the molecular weights of
AA residues (i.e., the molecular weight of an intact AA—18;
Hou et al. 2019).

Statistical analysis

Values (means + SEM) are expressed on the as-fed basis,
because animal diets are generally formulated on this basis.
Sample size (n=6/feed) was chosen on the basis of known
variations of AAs among feeds (Li et al. 2011) and statisti-
cal power calculation with a probability of 0.9 (Jobgen et al.
2008). Log transformation of variables was performed when
the variance of data was not homogenous among treatment
groups, as assessed by the Levene’s test (Fu et al. 2010).
Data on AA composition were analyzed by one-way analysis
of variance and the Student—Newman—Keuls multiple com-
parison (Assaad et al. 2014). Probability values < 0.05 were
taken to indicate statistical significance.

Results

Content of nutrients in animal- and plant-derived
feedstuffs

Results of the approximate analyses of nutrients in animal-
and plant-derived feedstuffs (as-fed basis) are summarized
in (Table 1). The DM content of the feedstuffs varied from
88.7% for SDPM to 98.0% for chicken by-product meal.
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Table 1 Content of nutrients in animal- and plant-derived feedstuffs (%, as-fed basis)

Sample Water Dry matter Crude protein Crude fat Minerals Carbohydrates

Animal-source feedstuffs
BSEM 470+0.11" 95.30+0.11¢ 42.00+0.07™ 33.52+0.22° 6.22+0.06' 13.57+0.16¢
CBPM 1.97+0.02' 98.03+0.02° 68.07+0.11° 13.38+0.05¢ 12.38+0.17° 420+0.11"
CVD 6.78+0.13° 93.22+0.13¢ 67.18 +0.068 8.57+0.11° 12.03+0.22f 5.44+0.268
Feather meal 4.20+0.03! 95.80+0.03¢ 91.27+0.03* 3.52+0.02 0.87+0.01' 0.15+0.01'
FM-M 7.23+0.05° 92.77 +0.05" 62.40+0.07" 11.13+0.08¢ 18.86+0.03¢ 0.38+0.02%
FM-P 8.41+0.05¢ 91.59+0.05' 68.77+0.10¢ 7.32+0.03 15.13+0.05° 0.37+0.02
FM-SE 7.95+0.03¢ 92.05+0.03 64.70+0.07" 5.07+0.038 21.89+0.05" 0.39+0.01
SDPM 11.26+0.03? 88.74+0.03! 55.18 +0.06' 4.63+0.07" 19.78 £0.24° 9.14+0.18°
PBM (PFG) 3.19+0.08 96.81+0.08° 70.20+0.10° 11.50+0.07¢ 11.20+0.068 3.91+0.15
SDPP 4.58+0.03" 95.42+0.03¢ 69.77+0.06° 4.02+0.09' 18.28 +0.05¢ 3.35+0.08
SDEP 4.87+0.058 95.13+0.05° 48.90 +0.05 35.01+£0.07* 4.88+0.03% 6.34+0.13

Plant-source feedstuffs
Algae SM 3.47+0.11 96.53+0.11¢ 68.80+0.06 0.25+0.01™ 7.18+0.03" 20.30+0.12°
SBM 10.83+0.07° 89.17+£0.07 46.33 +0.09' 0.94+0.02% 5.68+0.03) 36.22+0.07*
SPC 4.64+0.02" 95.36+0.02° 67.47+0.05 0.47+0.01' 5.53+0.04 21.89+0.06°

Values are means + SEM, n = 6.

BSFM black soldier fly larvae meal; CBPM chicken by-product meal; CVD chicken visceral digest; FM-M fishmeal (United States Menhaden);
FM-P fishmeal (Peruvian anchovy); FM-SE fishmeal (Southeast Asian miscellaneous marine fishes); Hyp 4-hydroxyproline; PBM (PFG) poultry
by-product meal (pet-food grade); PCA perchloric acid; SBM soybean meal; SDEP spray-dried egg product; SDPM spray-dried peptone from
enzymes-treated porcine mucosal tissues; SDPP spray-dried poultry plasma; SM spirulina meal; SPC soy protein concentrate.

4~M:Withinacolumn,meansnotsharingthesamesuperscriptletterdiffers(P < 0.05)

The content of crude protein was the highest in feather meal
(91.3%; P <0.05) and the lowest in BSFM (42.0%; P <0.05).
Spray-dried egg product had the highest content of crude fat
(33.5%; P <0.05) but algae spirulina meal contained only
0.25% crude fat. The content of minerals was the highest
in Southeast Asian fishmeal (21.9%; P <0.05), followed by
SDPM, Menhaden fishmeal, spray-dried poultry plasma,
Peruvian fishmeal, chicken visceral digest, and poultry by-
product meal (pet-food grade) in descending order. The
content of carbohydrate was the highest in soybean meal
(36.2%; P<0.05) and the lowest in feather meal (0.15%;
P <0.05).

Content of total AAs, total free AAs, total peptides,
and total proteins in feedstuffs

Data on the content of total AAs (peptide-bound plus free
AAs), total free AAs, total peptides, total small plus large
peptides, and total proteins in feedstuffs are summarized in
Table 2. Feather meal and BSFM contained the highest and
lowest content of total AAs, respectively. Among animal-
source feedstuffs, the content of total AAs was the second-
highest in spray-dried poultry plasma, followed by chicken
visceral digest, Southeast Asian fishmeal, chicken by-prod-
uct meal, and Peruvian fishmeal in descending order. Algae
spirulina meal and soy protein concentrate also contained
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high content of total AAs, whereas soybean meal contained
the lowest content of total AAs.

SDPM and spray-dried egg product contained the high-
est and lowest content of free AAs, respectively, which
accounted for 39.4% and 0.37% of total AAs, respectively.
The content of free AAs was the second-highest in chicken
visceral digest (7.6% of total AAs), followed by Southeast
Asian fishmeal (6.8% of total AAs), Peruvian fishmeal (4.9%
of total AAs), BSFM (2.9% of total AAs), and Menhaden
fishmeal (2.2%) in descending order. All the plant-source
feedstuffs contained a low content of free AAs.

Feather meal and SDPM contained the highest and low-
est content of peptide-bound AAs (i.e., AAs in proteins and
small plus large peptides), respectively, which accounted
for 99.5% and 60.6% of total AAs, respectively. The con-
tent of peptide-bound AAs was the second-highest in
spray-dried poultry plasma (85.4%), followed by chicken
visceral digest (73.7%), chicken by-product meal (67.8%),
Southeast Asian fishmeal (65.6%), and Peruvian fishmeal
(63.3%) in descending order. The content of peptide-bound
AAs accounted for 99.0%, 98.6%, 99.1%, and 99.7% of total
AAs in algae spirulina meal, soybean meal, and soy protein
concentrate, respectively.

Chicken visceral digest and feather meal contained the
highest and lowest content of AAs in PCA-soluble pep-
tides (i.e., small plus large peptides), respectively, which
accounted for 62.4% and 4.3% of AAs in total peptides,
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Table 2 Content of total amino acids, total free amino acids, total peptides, total small plus large peptides, total proteins, and total glutathione in
animal- and plant-derived feedstuffs (as-fed basis)"

Sample Total amino acids (g/ Total free amino acids Amino acids in peptides (g/kg feed) Total glutathione

kg feed) (g/kg feed) (mg/kg feed)

Total PCA-soluble peptides> PCA-insoluble
polypeptides’

(A) (B) (C=A-B) (D) (E=C-D)
Animal-source feedstuffs
BSFM 503.8+1.5' 15.8+0.07° 487.9+1.5 39.6+0.211 4483+ 1.5 154 +3.7°
CBPM 685.6+2.41 7.28 +0.05! 678.3+2.4 96.2+0.44¢ 582.1+2.6° 113 +4.8¢
CVD 798.3+1.5¢ 60.9+0.35° 7374+1.4°  459.0+1.6° 278.4+1.9™ 19.8+0.6"
Feather meal ~ 924.6+1.0° 43740.04 9203+1.0°  39.1+0.15 881.2+1.1° 0.71 £0.02!
FM-M 601.8+0.7 13.2+0.08" 588.6+0.7' 77.4+0.25° 511.1+0.6 35.0+1.4f
FM-P 665.2+1.98 32.5+0.50¢ 632.7+2.1"  71.4+0.33f 561.3+2.48 23.8+0.31%
FM-SE 703.6+1.0° 48.1+0.32° 655.5+1.28  131.6+0.8° 523.8+1.9' 225+5.4°
SDPM 590.0+0.9% 232.2+0.9* 357.8+1.5"  180.1+0.6" 177.7+2.0" 175+£3.2°
PBM (PFG)  642.0+1.4" 14.7+0.08° 6273+1.4"  787+0.52° 548.6+1.3" 732+ 1.6
SDPP 864.0+3.3 10.3+£0.098 853.7+3.3>  49.7+041 804.0+3.1° 48.0+1.3°
SDEP 630.1+0.6' 2.35+0.01! 627.7+0.6"  52.5+0.39" 575.2+0.6" 34.2+0.9°
Plant-source feedstuffs
Algae SM 775.1+1.2¢ 8.01+0.10" 767.1+12% 54140208 712.9+1.3¢ 33.9+0.4
SBM 443.9+1.2™ 4.25+0.04 43974125  323+0.10 407.4+1.2" 174 £4.1°
SPC 800.6+1.9¢ 2.81+0.02% 797.8+1.9¢ 21.9+0.10" 775.9+1.9¢ 172+4.5°

BSFM black soldier fly larvae meal; CBPM chicken by-product meal; CVD chicken visceral digest; FM-M fishmeal (United States Menhaden);
FM-P fishmeal (Peruvian anchovy); FM-SE fishmeal (Southeast Asian miscellaneous marine fishes); Hyp 4-hydroxyproline; PBM (PFG) poultry
by-product meal (pet-food grade); PCA perchloric acid; SBM soybean meal; SDEP spray-dried egg product; SDPM spray-dried peptone from

enzymes-treated porcine mucosal tissues; SDPP spray-dried poultry plasma; SM spirulina meal; SPC soy protein concentrate

"Values are means +SEM, n=6. The amounts of amino acids were calculated on the basis of their intact molecular weights

2Small plus large peptides

3Proteins

47" Within a column, means not sharing the same superscript letter differs (P <0.05)

respectively. The content of AAs in PCA-soluble peptides
was the second-highest in SDPM (50.3% of total pep-
tide-bound AAs), followed by Southeast Asian fishmeal
(20.1% of total peptide-bound AAs), chicken by-product
meal (14.2% of total peptide-bound AAs), and Menhaden
fishmeal (13.2% of total peptide-bound AAs) in descend-
ing order. The content of AAs in PCA-soluble peptides
accounted for 7.1%, 11.0%, 7.3%, and 2.8% of total pep-
tide-bound AAs in algae spirulina meal, soybean meal, and
soy protein concentrate, respectively.

Feather meal and chicken visceral digest contained
the highest and lowest content of AAs in PCA-insoluble
polypeptides (i.e., proteins), respectively, which accounted
for 95.7% and 37.83% of AAs in total peptides, respec-
tively. The content of AAs in proteins was the second-
highest in spray-dried poultry plasma (94.2% of total
peptide-bound AAs), spray-dried egg product (91.6% of
total peptide-bound AAs), Peruvian fishmeal (88.7% of

total peptide-bound AAs), and chicken by-product meal
(85.8% of total peptide-bound AAs) in descending order.
The content of AAs in protein accounted for 92.9%, 89.0%,
92.7%, and 97.3% of total peptide-bound AAs in algae
spirulina meal, soybean meal, and soy protein concentrate,
respectively.

Content of total individual AAs (peptide-bound
plus free AAs) in feedstuffs

Data on the content of total individual AAs (peptide-bound
plus free AAs) in feedstuffs are summarized in Table 3.
Tyrosine was the most abundant AA in the peptides plus
the free AA pool in BSFM; glutamate in Menhaden fish-
meal, Southeast Asian fishmeal, SDPM, and spray-dried egg
product; glycine in chicken by-product meal, chicken vis-
ceral digest, and poultry by-product meal (pet-food grade);
leucine in Peruvian fishmeal and spray-dried poultry plasma;
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and proline in feather. Glutamate was the second most abun-
dant AA in the peptides plus the free AA pool in BSFM and
chicken by-product meal; glycine in feather meal, Southeast
Asian fishmeal, and SDPM; leucine in Menhaden fishmeal;
lysine in Peruvian fishmeal and spray-dried poultry plasma;
and serine in chicken visceral digest, and spray-dried egg
product. Glutamate was the third most abundant AA in the
peptides plus the free AA pool in chicken visceral digest,
Peruvian fishmeal, poultry by-product meal, and spray-dried
poultry plasma; leucine in BSFM, chicken by-product meal,
SDPM, and spray-dried egg product; lysine in Menhaden
fishmeal; proline in Southeast Asian fishmeal; and serine
in feather meal. Alanine was the fourth most abundant AA
in the peptides plus the free AA pool in BSFM; arginine
in chicken by-product meal; aspartate in spray-dried poul-
try plasma; glycine in Menhaden fishmeal and Peruvian
fishmeal; leucine in chicken visceral digest, feather meal,
Southeast Asian fishmeal, and poultry by-product meal;
and lysine in SDPM and spray-dried egg product. In all
animal-source feedstuffs except for BSFM and Southeast
Asian fishmeal, tryptophan and cysteine were the least and
second least abundant AA, respectively, but the opposite
was true for BSFM and Southeast Asian fishmeal, whereas
4-hydroxyproline, histidine and methionine were among
the third, fourth or fifth least abundant AAs depending on
feedstuffs. Similar results were obtained when values were
calculated as the percentage of total AAs in the feedstuffs
(Supplemental Table 1).

Glutamate was the most abundant AA in the peptides plus
the free AA pool in algae spirulina meal, soybean meal, and
soy protein concentrate. In algae spirulina meal, leucine was
the second most abundant AA in the peptides plus the free
AA pool, followed by alanine, arginine, valine and serine
in descending order. In both soybean meal and soy protein
concentrate, glutamine was the second most abundant AA
in the peptides plus the free AA pool, followed by either
leucine or arginine as the third or fourth most abundant AA.

Content of free AAs in feedstuffs

Data on the Content of free AAs in feedstuffs are summa-
rized in Table 4. The first, second, third, fourth, and fifth
most abundant free AAs in descending order were as fol-
lows: tyrosine, glutamate, glutamine, leucine, and proline
in BSFM; taurine, alanine, glycine, aspartate, and leucine in
chicken by-product meal; leucine, serine, proline, alanine,
and arginine in chicken visceral digest; cysteine, proline,
alanine, leucine, and glutamate in feather meal; taurine, ala-
nine, leucine, lysine, and glutamate in Menhaden fishmeal;
taurine, histidine, alanine, leucine, and arginine in Peruvian
fishmeal; taurine, alanine, leucine, valine, and proline in
Southeast Asian fishmeal; leucine, lysine, alanine, valine,
and aspartate in SDPM; taurine, alanine, glycine, glutamate,

and aspartate in poultry by-product meal (pet-food grade);
glutamate, taurine, alanine, arginine, and glycine in spray-
dried poultry plasma; and alanine, taurine, glutamate, argi-
nine, and aspartate in spray-dried egg product.

Glutamate was the most abundant free AA in algae
spirulina meal and arginine in both soybean meal and soy
protein concentrate. Alanine was the second most abun-
dant free AA in algae spirulina meal and glutamate in both
soybean meal and soy protein concentrate. The content of
other free AAs in plant-derived feedstuffs was very low,
compared with animal-derived feedstuffs.

Content of peptide-bound AAs in feedstuffs

Data on the content of peptide-bound AAs (i.e., AAs in
proteins plus small and large peptides) in feedstuffs are
summarized in Table 5. Tyrosine was the most abundant
peptide-bound AA in BSFM; glutamate in Menhaden
fishmeal, SDPM, and spray-dried egg product; glycine in
chicken by-product meal, chicken visceral digest, South-
east Asian fishmeal, and poultry by-product meal (pet-food
grade); leucine in spray-dried poultry plasma; lysine in
Peruvian fishmeal; and proline in feather. Glutamate was
the second most abundant peptide-bound AA in BSFM,
chicken by-product meal, Menhaden fishmeal, Southeast
Asian fishmeal, and spray-dried egg product; glycine
in feather meal and SDPM; leucine in Menhaden fish-
meal, and Peruvian fishmeal; lysine in spray-dried poul-
try plasma; proline in poultry by-product meal (pet-food
grade); and serine in chicken visceral digest and egg prod-
uct. Lysine was the third most abundant peptide-bound AA
in BSFM and Menhaden fishmeal; glutamine in SDPM;
glutamate in chicken visceral digest, Peruvian fishmeal,
SDPM, poultry by-product meal, and spray-dried poul-
try plasma; leucine in chicken by-product meal and egg
product; lysine in BSFM and Menhaden fishmeal; proline
in Southeast Asian fishmeal. Leucine was the fourth most
abundant peptide-bound AA in BSFM, chicken visceral
digest, and poultry by-product meal (pet-food grade);
arginine in chicken by-product meal, feather meal, and
SDPM; glycine in Menhaden fishmeal and Peruvian fish-
meal; lysine in Southeast Asian fishmeal and egg product;
and valine in spray-dried poultry plasma. In all animal-
source feedstuffs except for BSFM and Menhaden fish-
meal, tryptophan and cysteine were the least and second
least abundant AA, respectively, but the opposite was true
for BSFM and Menhaden fishmeal, whereas 4-hydroxypro-
line, histidine and methionine were among the third, fourth
or fifth least abundant peptide-bound AAs depending on
feedstuffs.

Leucine was the most abundant peptide-bound AA in
algae spirulina meal and glutamate in soybean meal and soy
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protein concentrate. In algae spirulina meal, glutamate was
the second most abundant AA in their peptide-bound AA,
followed by alanine, arginine, valine, serine, aspartate and
glutamine in descending order. In both soybean meal and soy
protein concentrate, glutamine was the second most abun-
dant AA in their peptide-bound AA, followed by leucine,
arginine, aspartate, and lysine in descending order.

Content of AAs in the PCA-soluble peptides
of feedstuffs

Data on the content of AAs in the PCA-soluble peptides
(i.e., AAs in small and large peptides called oligopeptides)
of feedstuffs are summarized in Table 6. The patterns of AAs
in oligopeptides were very different from those in total pep-
tides (i.e., oligopeptides plus proteins, Table 7). The most
noticeable differences were that, in contrast to total peptides
(oligo- plus poly-peptides), (a) phenylalanine and tyrosine
were the first and second least abundant AA in the oligo-
peptides of BSFM; (b) the content of 4-hydroxyproline was
greater than that of proline in the oligopeptides of chicken
by-product meal; (c) 4-hydroxyproline was barely detectable
in the oligopeptides of both spray-dried poultry plasma and
egg product; (d) methionine was the least abundant AA in
the oligopeptides of feather meal and SDPM and was the
third least abundant AA in the oligopeptides of chicken vis-
ceral digest, father meal, Southeast Asian fishmeal, SDPM,
poultry by-product meal (pet-food grade), and spray-dried
poultry plasma; (e) histidine was the second least abundant
AA in the oligopeptides of feather meal; and (f) methionine
was the least abundant AA in the oligopeptides of soybean
meal and soy protein concentrate and was the fourth least
abundant proteinogenic AA in the oligopeptides of algae
spirulina meal.

The PCA-soluble fraction in all of the animal-source
feedstuffs contained various amounts of carnosine (Table 8).
Except for the three fishmeal feedstuffs and BSFM, all of
the analyzed animal-source feedstuffs contained various
amounts of anserine (Table 8). Among the ten animal-
source feedstuffs, the content of carnosine was the highest
(P <0.05) in chicken by-product meal, followed by spray-
dried poultry plasma, SDPM, Peruvian fishmeal, and poultry
by-product meal (pet-food grade) in descending order. The
content of anserine was the highest (P <0.05) in chicken
by-product meal, followed by poultry by-product meal (pet-
food grade), spray-dried poultry plasma, SDPM, and chicken
visceral digest in descending order. Carnosine and anserine
were absent from the plant-source feedstuffs (Table 8). All
of the animal- and plant-source feedstuffs analyzed in the
present study did not contain balenine.

Alanine was the most abundant AA in the oligopeptides
of Menhaden fishmeal; glutamate in the oligopeptides of
BSFM and SDPM; glycine in chicken by-product meal,

@ Springer

chicken visceral digest, Peruvian fishmeal, Southeast Asian
fishmeal, poultry by-product meal (pet-food grade), and egg
product; and serine in feather meal and spray-dried poultry
plasma. Glutamine was the second most abundant AA in the
oligopeptides of BSFM; glutamate in the oligopeptides of
chicken by-product meal, chicken visceral digest, Peruvian
fishmeal, Southeast Asian fishmeal, poultry by-product meal
(pet-food grade), and spray-dried poultry plasma; and gly-
cine and proline in the oligopeptides of SDPM and feather
meal, respectively. Glycine was the third most abundant AA
in the oligopeptides of BSFM, feather meal and Menhaden
fishmeal; serine in the oligopeptides of chicken visceral
digest and Peruvian fishmeal; as well as alanine, arginine,
glutamate, leucine, and proline in the oligopeptides of
chicken by-product meal, poultry by-product meal (pet-food
grade), egg product, spray-dried poultry plasma, and South-
east Asian fishmeal, respectively. Serine was the fourth most
abundant AA in the oligopeptides of BSFM and Menhaden
fishmeal; arginine in the oligopeptides of chicken by-product
meal and feather meal; alanine in the oligopeptides of Peru-
vian fishmeal, Southeast Asian fishmeal, poultry by-product
meal (pet-food grade), and spray-dried poultry plasma; leu-
cine in the oligopeptides of chicken visceral digest and egg
product; and aspartate in the oligopeptides of SDPM. In all
animal-source feedstuffs except for Southeast Asian fishmeal
and poultry by-product meal (pet-food grade), the content
of tryptophan in the oligopeptides was lower (P <0.05) than
the content of cysteine, but the opposite was true for South-
east Asian fishmeal and poultry by-product meal (pet-food
grade).

Glutamate was the most abundant AA in the oligopep-
tides of algae spirulina meal, and serine in the oligopeptides
of soybean meal and soy protein concentrate. In algae spir-
ulina meal, serine was the second most abundant AA in their
oligopeptides, followed by aspartate, alanine, glutamine,
threonine, asparagine, and leucine in descending order. In
both soybean meal and soy protein concentrate, glutamate
was the second most abundant AA in their oligopeptides,
followed by glutamine, glycine, and aspartate in descend-
ing order.

Content of AAs in the PCA-insoluble peptides
of feedstuffs

Data on the content of AAs in the PCA-insoluble polypep-
tides (i.e., proteins) of feedstuffs are summarized in Table 7.
For all animal-source feedstuffs except for BSFM, chicken
by-product meal, chicken visceral digest, and SDPM, the
patterns of AA in proteins of the analyzed feedstuffs were
generally similar to those in the total peptides (i.e., oligo-
peptides plus proteins, Table 7). Tyrosine was still the most
abundant AA in the proteins of BSFM, lysine, leucine, ala-
nine, and valine were the second, third, fourth, and fifth most
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Table 8 Content of creatine,

e . Feedstuff Creatine Creatinine  Cr phosphate Cr+CrT Carnosine Anserine

creatinine, creatine phosphate,

carnosine, and anserine in (Cr) (CIT) (CrP) +CrP)

?:;g;?lll}fznd plant-derived Animal-source feedstuffs - -
BSFM 3.5+0.06¢ 178+2.8"  226+4.1 408 +6.0" 127+4.5°  0.00
CBPM 4.6+0.11F 1447 +46"°  90+1.98 1541 +45¢ 5506+40° 7966+ 62°
CVD 3.4+0.108 1056548 601 +15° 1660 + 68" 136+1.8"7  482+1.4°
Feather meal ~ 1.0+0.03" 134+35  75+0.18" 143+£3.4 2.0+0.1" 6.7+0.2f
FM-M 59.2+1.0°  3575+49°  1751+30° 5385+ 70° 125277 0.00
FM-P 127+2.9* 5412487  6150+116°  11,689+198" 665+179  0.00
FM-SE 14.0+0.35% 4161 +48> 2403 +54° 6579 +97° 359+1.68  0.00
SDPM 42.1+1.2¢ 2716529 1430479 4188 +90¢ 955 +32¢ 66.7 +2.0°
PBM (PFG)  3.5+0.078 1768 £56°  233+7.3f 2005 +59° 545+15° 1146 +14°
SDPP 3.3+0.108 440409  92.0+2.08 139+2.8! 1407 +13%  382+8.4°
SDEP 7.0+0.13° 102+2.8  87.8+3.18 196 +5.8' 1.8+0.16"  6.5+0.4
Plant-source feedstuffs
Algae SM 0.00 0.00 0.00 0.00 0.00 0.00
SBM 0.00 0.00 0.00 0.00 0.00 0.00
SPC 0.00 0.00 0.00 0.00 0.00 0.00

Values, expressed as mg/kg feed (as-fed basis), are means +SEM, n=6

BSFM black soldier fly larvae meal; CBPM chicken by-product meal; CVD chicken visceral digest; FM-
M fishmeal (United States Menhaden); FM-P fishmeal (Peruvian anchovy); FM-SE fishmeal (Southeast
Asian miscellaneous marine fishes); Hyp 4-hydroxyproline; PBM (PFG) poultry by-product meal (pet-food
grade); PCA perchloric acid; SBM soybean meal; SDEP spray-dried egg product; SDPM spray-dried pep-
tone from enzymes-treated porcine mucosal tissues; SDPP spray-dried poultry plasma; SM spirulina meal;

SPC soy protein concentrate

a=kWithin a column, means not sharing the same superscript letter differ (P <0.05)

abundant AA in the proteins of this feedstuff, respectively.
Leucine, glutamate, glycine, proline, and lysine were the
first, second, third, fourth, and fifth most abundant AA in the
proteins of chicken by-product meal, respectively. Lysine,
glycine, leucine, valine and proline were the first, second,
third, fourth, and fifth most abundant AA in the proteins of
chicken visceral digest, respectively. Finally, glycine, lysine,
leucine, glutamine, and arginine were the first, second, third,
fourth, and fifth most abundant AA in the proteins of SDPM,
respectively.

Content of agmatine and polyamines in feedstuffs

Data on the content of agmatine and polyamines in feedstuffs
are summarized in Table 9. BSFM, chicken visceral digest.
Per gram basis, Peruvian fishmeal, Southeast Asian fish-
meal, and SDPM contained much greater (P <0.05) amounts
of agmatine than algae meal, soybean meal, and soy protein
concentrate. For animal-source feedstuffs, the total content
of polyamines was the highest (P <0.05) in SDPM, followed
by Peruvian fishmeal, Southeast Asian fishmeal, poultry by-
product meal, and chicken by-product meal in descending
order.

Content of creatine, creatinine, and creatine
phosphate in feedstuffs

Data on the content of creatine, creatinine, and creatine
phosphate in feedstuffs are summarized in Table 8. For all
animal-source feedstuffs tested, the content of creatine, cre-
atinine, and creatine phosphate was the highest (P <0.05)
in Peruvian fishmeal. The content of creatinine was the sec-
ond-highest in Southeast Asian fishmeal, followed by Men-
haden fishmeal, SDPM, poultry by-product meal, chicken
by-product meal, and chicken visceral digest, and BSFM
in descending order. The content of creatine phosphate was
the second-highest in Southeast Asian fishmeal, followed by
Menhaden fishmeal, SDPM, chicken visceral digest, BSFM,
and poultry by-product meal (pet-food grade) in descending
order. The content of all creatine moieties was the highest
(P <0.05) in Peruvian fishmeal, followed by Menhaden fish-
meal, Southeast Asian fishmeal, SDPM, and chicken visceral
digest in descending order. Algae spirulina meal, soybean
meal, and soy protein concentrate did not contain creatine,
creatinine, or creatine phosphate.
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Table 9 COP“’“F of a,gma‘i“e Feedstuff Agmatine Spermidine Spermine Putrescine Total PA

and polyamines in animal- and

plant-derived feedstuffs Animal-source feedstuffs
BSFM 615+16¢ 127 5.7 33.7+0.9 202+ 1.0¢ 181+£6.3
CBPM 225+7.6" 494 +12° 504+ 169 174 +£5.4° 1172+ 15
CVD 1727 +40° 384+ 12 330+6.2f 161 +6.7° 875+ 178
Feather meal 118 +5.48 775 +14° 310+9.3 32.4+1.3" 1117+ 18"
FM-M 220+6.8 21.1+0.7™ 133+£5.5" 97.6+5.2" 251+111
FM-P 908 +12¢ 232+ 13 1587 + 637 171+6.1° 1990 +76°
FM-SE 1649 +34° 351+8.82 210+6.2¢ 1074+ 18° 1634 +25°
SDPM 7027 +108* 1361 +74° 1431 +45° 530+19° 3322+76°
PBM (PFG) 310+ 10° 556+ 149 802 + 16° 66.2+2.0° 1423 +27°
SDPP 0.00 17.1+0.7° 16.1£0.84 57.6+1.3¢8 90.8 +2.1%
SDEP 0.00 29.1+0.8' 18.0+0.9 143 +4.4¢4 190+4.2
Plant-source feedstuffs
Algae SM 323+ 1.3 294+9.3 26.4+0.6 3.4+0.2¢ 324495
SBM 303+6.7° 1130+20° 385+7.3° 18.8+0.6' 1533 +22¢
SPC 61.2+1.6" 57.3+1.4 13.7+0.6' 8.8+0.3 79.8 + 1.4

Values, expressed as mg/kg feed (as-fed basis), are means +SEM, n=6

BSFM black soldier fly larvae meal; CBPM chicken by-product meal; CVD chicken visceral digest; FM-
M fishmeal (United States Menhaden); FM-P fishmeal (Peruvian anchovy); FM-SE fishmeal (Southeast
Asian miscellaneous marine fishes); Hyp 4-hydroxyproline; PBM (PFG) poultry by-product meal (pet-food
grade); PCA perchloric acid; SBM soybean meal; SDEP spray-dried egg product; SDPM spray-dried pep-
tone from enzymes-treated porcine mucosal tissues; SDPP spray-dried poultry plasma; SM spirulina meal;

SPC soy protein concentrate

#~"Within a column, means not sharing the same superscript letter differ (P <0.05)

Content of total glutathione in feedstuffs

Data on the content of total glutathione in feedstuffs are sum-
marized in Table 2. Among the analyzed animal-source feed-
stuffs, this tripeptide was most abundant in Southeast Asian
fishmeal, followed by SDPM, BSFM, chicken by-product
meal, poultry by-product meal (pet-food grade), spray-dried
poultry plasma, and Menhaden fishmeal in descending order.
The content of total glutathione in soybean meal and soy
protein concentrate was similar to that in SDPM. Algae also
contained a significant amount of glutathione.

Discussion

Adequate provision of AAs in diets is essential for the maxi-
mal growth and production performance as well as optimal
health of all farm animals, including swine, poultry, rumi-
nants, fish, and shrimp (Baker 2009; Li et al. 2007; Sulabo
et al. 2013; Wu 2018; Yi et al. 2018; Zhang et al. 2015).
Although AAs had long been classified as nutritionally
essential or nonessential, the term “NEAA” has now been
recognized as a misnomer in nutritional sciences (Hou and
Wu 2017). Emerging findings have revealed the importance
of NEAAs, such as glycine, proline, glutamate, glutamine
and 4-hydroxyproline, in improving intestinal health and
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whole-body growth in animals (Fan et al. 2019; Le Floch
et al. 2018; Li and Wu 2018; Wu et al. 2019). We have
shown that glycine, proline and glutamate are the first, sec-
ond, and third most abundant AAs in animal tissues, respec-
tively (Wu 2013), supporting the notion that mammals, birds
and other vertebrates have particularly high requirements
for these nutrients (Hou and Wu 2018b; Liu et al. 2019;
Meléndez-Hevia et al. 2009; Wu et al. 2014). Despite the
immunological, nutritional and physiological importance of
tryptophan, the content of this AA in feedstuffs was often
not analyzed due to technical difficulties (e.g., Bryan 2018;
Dozier et al. 2003; Jamdar and Harikumar 2008; Ravindran
et al. 2005; Renna et al. 2017; Shumo et al. 2019). To our
knowledge, this is the first report of all proteinogenic AAs,
key nonproteinogenic AAs (taurine, f-alanine, ornithine,
and citrulline), agmatine, polyamines, creatine, creatine
phosphate, creatinine and glutathione in animal-source
feedstuffs for guiding the formation of animal diets. Our
findings are expected to shed light on the functionality of
animal-derived feedstuffs in the production of farm animals,
particularly carnivorous species.

Because of limited knowledge about AA biochemistry
and nutrition, both researchers and animal producers had
paid little attention to the content of NEAAs (peptide-bound
plus free AAs) in feedstuffs, including animal-source feed-
stuffs produced by the rendering industry (e.g., Cummins
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et al. 2017; Dust et al. 2005; Myers et al. 2014). In stud-
ies that reported the content of some NEAAs in feedstuffs,
no data were provided for glutamate, glutamine, aspartate
or asparagine because the acid hydrolysis of the feedstuffs
converted glutamine into glutamate and asparagine into
aspartate. A recent study even showed that glutamate and
glutamine were absent from proteins in the meal prepared
from black soldier flies reared on chicken manure (Shumo
et al. 2019). To our knowledge, this is the first detailed report
of the high abundance of glutamine, glutamate, asparagine
and aspartate in rendered animal feedstuffs (Tables 3-7).
Our current work also provided much-needed data on gly-
cine, proline, 4-hydrocyproline, and taurine in animal-source
feedstuffs, the AAs that had often been ignored in most stud-
ies (e.g., Cummins et al. 2017; Dust et al. 2005; Klemesrud
et al. 1997; Myers et al. 2014; Shumo et al. 2019; Supple-
mental Tables 2-5).

Published data on the content of NEAAs (peptide-bound
plus free AAs) in feedstuffs showed exceedingly large varia-
tions by up to three magnitudes despite their similar content
of DM or protein. For example, spray-dried egg product was
reported to contain either 1.91 g glycine and 1.90 g proline
per kg DM (Donadelli et al. 2019) or 16.4 g glycine and
16.7 g proline per kg DM (Norberg et al. 2004). Surpris-
ingly, spray-dried inedible whole egg was found to contain
only 0.02 g glycine/kg DM (Donadelli et al. 2019). We
determined that spray-dried egg product contained 25.8 g
glycine and 35.6 g proline per kg DM (Table 3). In addition,
chicken by-product meal was reported to contain 6.07 g gly-
cine, 4.13 g proline and 1.82 g 4-hydroxyproline per kg DM
(Donadelli et al. 2019), whereas poultry by-product meal
was reported to contain 57 g glycine and 53 g proline per
kg DM (Murray et al. 1997). We determined that chicken
by-product meal contained 60.6 g glycine, 43.9 g proline
and 18.9 g 4-hydroxyproline per kg DM and that poultry
by-product meal contained 70.9 g glycine, 52.4 g proline and
23.2 g 4-hydroxyproline per kg DM (Table 3). Furthermore,
BSFM was reported to contain 0.55 g cysteine and 23.2 g
glycine per kg DM (Renna et al. 2017), 2.8 g cysteine and
19 g glycine per kg DM (Kawasaki et al. 2019), or 7.6 g
cysteine and 29.2 g glycine per kg DM (Lei et al. 2019).
In marked differences from porcine and poultry byproducts
(Wu 2013), the content of 4-hydroxyproline in the meals
from black soldier flies reared on chicken manure was
reported to be 5.1 times that of proline (Shumo et al. 2019).
We determined that BSFM contained 7.23 g cysteine, 30.5 g
glycine, 30.6 g proline, and 13.4 g 4-hydroxyproline per kg
DM (Table 3). A major difference in NEAAs between the
animal- and plant-source feedstuffs analyzed in the present
study is that the former contained a higher content of glycine
and proline than the latter. These two NEAAs are nutrition-
ally essential for the maximal growth and feed efficiency
of poultry (Baker 2009), piglets (Wu et al. 2011), and fish

(Li et al. 2009). Additionally, 4-hydroxyproline, along with
glycine (Fan et al. 2019), protects the intestine from oxida-
tive stress (Wu et al. 2019) and enhance the growth perfor-
mance of animals, including fish (Aksnes et al. 2008; Liu
et al. 2014). This may explain, in part, why gut damage often
occurs in animals such as pigs (Wu et al. 2014) and fish
(Daniel 2018) that fed diets containing plant ingredients as
the sole source of protein. The complete information on the
content of all proteinoenic AAs and key nonproteinoenic
AAs in animal-derived feedstuffs from the present study is
very useful to guide the formulation of diets for animals.
Like NEAAs, the content of EAAs in animal-source feed-
stuffs also varied greatly in the published studies by up to
tenfold or greater despite their similar content of DM or
protein. For example, spray-dried egg product was reported
to contain either 4.67 g leucine and 4.14 g lysine per kg
DM (Donadelli et al. 2019) or 44.1 g leucine and 35.8 g
lysine per kg DM (Norberg et al. 2004). We determined that
spray-dried egg product contained 48.5 g leucine and 43.0 g
lysine per kg DM (Table 3). In addition, chicken by-product
meal was reported to contain either 5.10 g leucine and 4.59 g
lysine per kg DM (Donadelli et al. 2019) or 44.9 g leucine
and 40.6 g lysine per kg DM (Dust et al. 2005), whereas
poultry by-product meal was reported to contain either 46 g
leucine and 38 g lysine per kg DM (Murray et al. 1997), or
31.3 g leucine and 30.4 g lysine per kg DM (Dozier et al.
2003). We determined that the chicken by-product meal
contained 53.9 g leucine and 46.1 g lysine kg DM and that
poultry by-product meal contained 44.7 g leucine and 36.6 g
lysine per kg DM (Table 3). Furthermore, chicken visceral
meal was reported to contain 12.5 g isoleucine and 15.0 g
valine per kg DM (Djissou et al. 2018), 37 g isoleucine and
58 g valine per kg DM (Jamdar and Harikumar 2008), or
15 g isoleucine and 19 g valine per kg DM (Murray et al.
1997). It is unknown whether AA content in chicken visceral
meal is affected by pre-mortem feeding. We determined that
chicken viscera meal contained 41.2 g isoleucine and 59.7 g
valine per kg DM (Table 3). Results of our work showed that
leucine [an activator of the mechanistic target of rapamy-
cin signaling to promote protein synthesis (Suryawan et al.
2020)] was the most abundant AA in all of the analyzed
animal-source feedstuffs (Table 3), again underscoring their
important roles in improving animal growth. Because the
addition of animal-derived feedstuffs to a typical corn- and
soybean meal-based diet improves the growth performance
of the young pig (Hou et al. 2017; Wu 2018), their high
content of leucine confers a nutritional benefit and does not
result in an imbalance among dietary branched-chain AAs.
A novel observation from the present work is that tyros-
ine was the most abundant peptide-bound and free AA in
BSFM (Tables 3 and 7). The content of tyrosine in BSFM
was previously reported to be 23 g/kg DM (Kawasaki et al.
2019) or not reported at all (Dumas et al. 2018; Spranghers
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et al. 2017). Interestingly, tyrosine is actively synthesized
from phenylalanine and accumulated in insects for cuticle
hardening and for defense against pathogens (Vavricka et al.
2014). As the precursor of melanin that determines the pig-
ment of skin, BSFM may be particularly useful to maintain
desirable colors in animals (e.g., fish, dogs and cats).

Peptide nutrition has received much attention in recent
years because small and large peptides appear to have a
greater rate of digestion and absorption in animals than
intact proteins (Hou et al. 2017). To our knowledge, this is
the first study to determine the content of AAs in the oligo-
peptides and proteins of animal-source feedstuffs. Except for
chicken visceral meal and SDPM, all other animal-source
feedstuffs contained more proteins than oligopeptides. Most
AAs were present as oligopeptides in chicken visceral meal,
whereas AAs were equally distributed between oligopep-
tides and proteins in SDPM (Table 2). In addition, a signifi-
cant proportion of AAs existed as oligopeptides in South-
east Asian fishmeal, likely because proteases were used to
prepare this feedstuff. For feedstuffs with a high proportion
of oligopeptides, it is possible that their inclusion rates in
animal diets can be reduced, as compared with feedstuffs
with a high proportion of intact proteins. This can economi-
cally spare the use of high-quality protein sources as feed
additives. Of particular note, chicken by-product meal and
poultry by-product meal (pet-food grade) contained large
amounts of carnosine and anserine (Table 8). Appreciable
amounts of carnosine and anserine were also present in
spray-dried poultry plasma [likely released from red blood
cells (Ng and Marshall 1976)] and SDPM. The different
amounts of carnosine in Menhaden, Peruvian and Southeast
Asian fishmeals reflect the different sources of fish used to
manufacture the feedstuffs (FAO 2018). For example, the
skeletal muscle of 50-g largemouth bass contained carnosine
(43.6 + 0.91 mg/kg of wet tissue; mean + SEM, n = 6) but
no detectable anserine (Wu G, unpublished data). Interest-
ingly, all these three fishmeals did not contain a detect-
able amount of anserine, which is absent in humans and
some animals including fishes (Boldyrev et al. 2013). Both
carnosine and anserine are potent antioxidants (Boldyrev
et al. 2013), their presence in the animal-source feedstufts
is expected to play an important role in protecting the small
intestine from oxidative stress and inflammation, thereby
improving intestinal health and function.

Both animals and plants contain agmatine, polyamines
and glutathione (Baratella et al. 2018; Blachier et al. 2011;
Lenis et al. 2018). There is little information about the
content of these nitrogenous substances, creatine, creatine
phosphate, creatinine, or glutathione in feedstuffs. Along
with ornithine, agmatine is a precursor for the synthesis of
polyamines in animal cells and plays a role in maintaining
mitochondrial membrane permeability (Akasaka and Fuji-
wara 2019; Martinis et al. 2019). Bryan (2018) reported
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that the presence of significant amounts of agmatine (mg/kg
DM): fishmeal, 240; feather meal, 0.68; and soybean meal,
17.1. The values of agmatine content in the fishmeal used by
Bryan (2018) were similar to those we found for Menhaden
fishmeal but the values in feather meal and soybean meal
were substantially lower than those we found for feather
meal and soybean meal, which were 125 and 338 mg/kg
DM, respectively (Table 9). To our knowledge, this is the
first report of a greater abundance of agmatine in chicken
visceral meal and SDPM than in other animal-source feed-
stuffs. Polyamines are substances are essential to DNA and
protein syntheses in all cell types (Provenzano et al. 2019)
and to energy metabolism in excitable tissues (the brain and
skeletal muscle; Brosnan and Brosnan 2007). Bryan (2018)
reported that the content of putrescine in fishmeal, feather
meal and soybean meal was much greater than that of sper-
midine or spermine, but this was not observed for all the
feedstuffs used in the present study except for Southeast
Asian fishmeal and spray-dried egg product (Table 9). Of
note, the content of spermidine (14-137 mg/kg DM) and
spermine (12-72 mg/kg DM) reported by Kerr et al. (2017)
for chicken by-product meal, feather meal and poultry by-
product meal was substantially lower than that we found for
these types of feedstuffs (e.g., 500-804 mg spermidine/kg
DM and 324-826 mg spermine/kg DM; Table 9). Among
all of the analyzed feedstuffs, SDPM contained the highest
level of polyamines (Table 9), and this may explain, in part,
a beneficial role for this ingredient in promoting the rapid
recovery of the small intestine from weaning-induced injury
(Hou et al. 2017). Furthermore, the content of total polyam-
ines was greater in animal- than algae spirulina meal and soy
protein concentrate (Table 9).

Creatine may be a functional nutrient in diets for live-
stock, poultry and fish (Wallimann et al. 2011). In contrast
to plant-source feedstuffs, creatine, creatinine, and creatine
phosphate were present in significant amounts in animal-
source feedstuffs but were completely absent from all the
plant-source feedstuffs (Table 8). These results indicate
the unique importance of the former in improving the feed
consumption, growth and health of animals (including com-
panion animals). Furthermore, the simultaneous presence
of a significant amount of glutathione [the major small-
molecular-weight antioxidant (Wu 2013)] with creatine and
polyamines in animal-source feedstuffs protects the small
intestine of animals from oxidative stress that often occurs
under stressful conditions such as weaning, transportation,
and heat stress (Wu 2018; Yang and Liao 2019). Finally, the
inclusion of creatine in diets reduces the need for its endog-
enous synthesis of arginine, glycine and methionine due to
a potent inhibition of renal arginine:glycine amidinotrans-
ferase expression (Brosnan and Brosnan 2007), thereby spar-
ing these AAs for protein synthesis. In livestock, poultry
and fish that are fed creatine-free diets, large amounts of
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arginine, glycine and methionine must be utilized for pro-
ducing creatine, which is highly abundant in skeletal muscle.
For example, in young (Wu et al. 2016b) and gestating (Wu
et al. 2018) swine, creatine synthesis accounts for about 20%
and 50%, respectively, of arginine catabolized in the body.
There is also evidence that dietary supplementation with
creatine to growing-finishing (Maddock et al. 2002; Young
et al. 2007) and gestating (Vallet et al. 2013) swine improves
their growth and reproductive performances. Collectively,
these results indicate the unique importance of creatine in
animal-source feedstuffs in improving the feed consump-
tion, growth, health and reproduction of animals (including
farm, companion and aquatic animals). Our findings will
also guide the cost-effective formulation of new diets for
livestock, poultry, fish and shrimp (e.g., reducing the use of
fishmeal in aquafeeds) that is based on the nutrient compo-
sition and complementarity of feedstuffs, an important area
of animal nutrition research (Le Floch et al. 2018; Turchini
et al. 2019; Wu 2018).

Results of this study may have important implications for
human nutrition. Soybean proteins have been consumed by
humans for centuries in a variety of forms, including infant
formulas, flours, protein isolates and concentrates, and tex-
tured components (Friedman and Brandon 2001; Singh et al.
2008). This food is popular for infants, children and adults
who are allergic to cow’s milk protein. The content of most
AAs was similar between SPC and egg (Table 3). Notably,
the content of methionine in SPC (g/kg food) was relatively
low (Gorissen et al. 2018) and was only 58% of that in eggs
(Table 3). Complementary intake of animal-source protein
[e.g., meat (Wu et al. 2016a) and egg] can prevent a defi-
ciency of methionine in soy product-based diets. Likewise,
algae has been part of human diets for thousands of years in
many regions of the world, including Asia, Europe, South
America, and North America (Wells et al. 2017). Global
demands for algae as a functional food are growing due to
its health benefits (Koyande et al. 2019). However, algae
contained 36% less cysteine than eggs (Table 3), and this
should be brought into the attention of nutritionists. Finally,
insects (including black soldier fly larvae) have been used as
human foods in more than 110 countries all over the world
(MacEvilly 2000) and at least 2,000 insect species are con-
sidered to be edible in human diets (Jongema 2012). Edible
insects provide high-quality animal protein, with their nutri-
tional quality likely depending on their species and devel-
opmental stage (egg, larvae, pupae and adult; Roos 2018;
Rumpold and Schliiter 2013). Interestingly, BSFM contained
48% more tyrosine than eggs (Table 3). Thus, under vari-
ous environmental and psychological stresses, ingestion of
insect proteins may be a lost-cost source of tyrosine for the
syntheses of dopamine and norepinephrine in the brain to
improve the adaptation, cognitive performance, and neuro-
logical function of humans (Lieherman 1994; Wurtman et al.

1981). This may also be applied to farm animals when they
are faced with a variety of stress factors, such as weaning,
lactation, pregnancy, and exposure to low temperatures.

In conclusion, we analyzed all peptide-bound and free
AAs, as well as agmatine, polyamines, creatine, carnos-
ine, anserine, and glutathione, in animal- and plant-source
feedstuffs. Compared with plant-source feedstuffs, most of
the animal-source feedstuffs contained much larger amounts
of glycine, proline and 4-hydroxyproline. All feedstuffs con-
tained significant amounts of agmatine, polyamines, and glu-
tathione. Chicken by-product meal, poultry by-product meal,
and spray-dried poultry plasma contained large amounts of
carnosine and anserine. In contrast, taurine, creatine, cre-
atinine, and creatine phosphate were present in significant
amounts in all animal-derived feedstuffs but were absent
from plant-derived feedstuffs. These results indicate the
unique importance of animal-source feedstuffs in improving
the feed efficiency, growth and health of animals (including
companion and aquatic animals). Because soy protein con-
centrate is consumed by infants, children and adults, as are
BSFM and algae for children and adults, our findings also
have important implications for human nutrition.
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