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Abstract— This paper develops a method of composing
simple control policies, applicable over a limited region in
a dynamical system’s fr ee space, such that the resulting
composition completely solves the navigation and control
problem for the given systemoperating in a constrained en-
vir onment. The resulting control policy deployment induces
a global control policy that brings the system to the goal,
provided that there is a single connectedcomponent of the
fr eespacecontaining both the start and goal configurations.
In this paper, control policies for both kinematic and simple
dynamical systemsare developed. This work assumesthat
the initial velocities are somewhataligned with the desired
velocity vector field. We conclude by offering an outline
of an approach for accommodating arbitrary dynamical
constraints and initial conditions.

I . INTRODUCTION

The goal of the researchdiscussedin this paper is
to develop feedback control strategies that allow for
automaticdeployment of control policies in constrained
environments,such that the resulting control systemin-
stantiatesa natural,provably correctbehavior for systems
operatingnear their dynamic capabilities.Conventional
robotarchitectureshaveseparatedtheplanningandcontrol
problemto a degreethat provably correctplanningalgo-
rithmsoffer no guaranteesof dynamicalperformance.The
typical approachis to operatefar below thecapabilitiesof
the systemin order to approximatekinematic behavior.
By incorporating the constraintsinto low-level control
policies, and planning in the spaceof available control
policies,weoffer a methodologythatis provablycomplete
in both kinematicanddynamicalenvironments.

After introducing an overview of related work that
inspire our approach,we discussthe decompositionand
planningprobleminherentin our work. This servesto mo-
tivatethe typeandscopeof our low-level controlpolicies,
while offering proof of the completenessof the control
policy composition.For clarity, werestrictthedescriptions
in this paperto � ��� , althoughthe work directly extends
to higher dimensions,as explained in the companion
document [1]. Next we develop the low-level control
policies,andprovideproofsof theapplicabilityto asimple
dynamical system.We then outline the developmentof
hybrid switching control policies required to overcome
dynamical constraints,such as accelerationlimits, and
increasethe domainof attractionfor the low-level control
policies. We concludeby outlining the next stepsin our

researchplan, which is to develop automatedsystemsof
control policy deployment for real mobile robotssubject
to non-holonomicconstraints.

Related Work. The problem of planning a path
from start to goal hasbeenextensively studied[2]. Un-
fortunately, just having a safe path does not guarantee
that the robot can move safely. Constraints,in the form
of kinematic and dynamical limitations on achievable
velocities, may render the desired path impossible to
track.Someheuristicmethods,for examplethecurvature-
velocity method[3], have beendevelopedto encodedy-
namicallimitations into the searchspace.

An early methodto integrateplanningandcontrol was
basedon potentialfields[4]. Unfortunately, mostpotential
field constructionssuffer from the well documentedlocal
minima problem[5], [6]. Connolly et al. [7] developed
a potential field without local minima basedon a nu-
meric solution to Laplace’s heat equation.Rimon and
Koditschek[6] developeda local minima free potential
field methodfor control by mappinga classof obstacles
to a modelspaceandgeneratinga minimumfreepotential
functionover the modelspace;this potentialfunctionwas
termeda navigationfunction.

The approachwe proposeis basedon decomposing
the free spaceinto cells, and solving the navigation and
control problemfor specificcells, basingcontrol only on
local information. The overall control policy is formed
by composingthe local control policies in a way that
guaranteesthe overall performance.We take inspiration
from thework of Burridge,Rizzi, andKoditschek[8], and
the use of sequentialcompositionto control a juggling
robot. In their application, complex behaviors over a
largedomainwereobtainedby composingcontrolpolicies
designedto function over limited domains.Their work
required hand-tuning and development of the specific
control policy domains,and requiredthe user to specify
the deployment scheme.This paperalso builds on prior
work of the secondauthor using sequentialcomposition
asa programmingtool to specify robot motion programs
for planarrobots[9], [10].

The methodsoutlined in this papermake use of hy-
brid switching control policies; the control policies are
switched as the system moves from cell to cell. For
systemssubjectto dynamicconstraints,switchedcontrol
policiesarealsousedwithin acell to maximizethedomain
of savablestates.Our controlpoliciesaredefinedsuchthat
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the stability of the switchedpolicies is guaranteed– this
obviates� the needfor detailedanalysisof the switching
stability such as that of [11], [12]. The possibility of
infinitely fastswitchingis precludedbecausetheswitching
strategy presentedhere inducesa partial order over the
collectionof control policies.

I I . OVERVIEW

In this sectionwe presentan overview of a new ap-
proachto decomposingthe problemof navigating a robot
so that theplanningandcontrolsproblemis solvedsimul-
taneouslyby inducing a global control policy that brings
any initial configurationto thegoal,providedthatthereis a
singleconnectedcomponentof free-spacecontainingboth
the start andgoal configuration.This approachallows us
to leveragethe robustnessaffordedby feedbackcontrols,
while generatinga globally convergentcontrol policy.

A. Decomposition,Planning, and Control

Our approachto solving the robot navigation andcon-
trol problemsis to definea paletteof controlpolicies,and
a switchingstrategy amongtheindividual controlpolicies,
suchthat the resultingcompositionsimultaneouslysolves
both problems. We decomposethe free space into a
collectionof cells, �	��
 , definedasdisjoint opensets.The
union of the closuresof the cells covers the free space,
eitherexactly ( ��������� ) or to anapproximationat some
resolution(��������� ) [2]. The collection of cells is re-
ferredto asa cellular decomposition. From the adjacency
graphof thecells,with theroot nodecorrespondingto the
cell containingthegoal,wedeterminea partialorderingof
thecellsusinga graphsearchalgorithm,suchasDijkstra’s
algorithm[2].

With eachcell, � , we associatean individual control
policy, which we term a componentcontrol policy. The
componentcontrol policies are designedsuch that they
will causeany configurationwithin the cell, � , to move
along a trajectory into a specifiedadjacenttarget cell,��� , specifiedby the partial order. During the evolution
of the systemtrajectory, the configurationwill not exit� other thanby crossingthe commonboundarywith � � .
Whentheconfigurationentersthecell containingthegoal
configuration,a simpleconverging controlpolicy (suchas
that presentedin [9]) is usedin placeof the component
control policy. Using the terminologyof [8], we say that
the componentcontrol policy associatedwith � prepares
the componentcontrol policy associatedwith the target
cell ��� . Figure1 shows an exampleof this technique.

The common boundary betweena cell, � , and the
adjacenttargetcell, ��� , is termedtheoutletzoneof � . The
boundaryof a cell, excluding the outlet zone, is termed
the inlet zone. Note, the outlet zoneof � is part of the
inlet zoneof ��� . If thegoalconfigurationis containedin a
cell, thentheoutletzoneis theemptyset.Theoutlet zone
for eachcell is specifiedby the sharedboundarywith the
adjacentcell next in the partial order, as determinedby
the adjacency graph.

X

O

Fig. 1. A connectedchainof cellsdeterminesa pathfrom startto goal.
Flow from previous cell preparesthe control policy in the next cell. In
this example,the free spacewasdecomposedinto convex polygons.

The specificationof all of the outlet zones,and the
resulting compositionof the componentcontrol policies
via thepartialorder, formsa hybridcontrolpolicy over the
entirefreespace,which we termtheglobal control policy.
Wereferto thespecificationof thecontrolpoliciesoverthe
setof cells asa control policy deployment. The specified
control policy deployment schemeis complete.In other
words,given componentcontrol policies that function as
specifiedin this section,the systemcan navigate a path
from startto goal if andonly if a chainof connectedcells
exists.

The control policy deploymentoutlinedabove depends
on developing componentcontrol policies that generate
the desiredresponsefor an arbitrarycell. Our approachis
to developa genericcontrolpolicy thatis valid for any cell
in the set. In SectionIII, we discussthe developmentof
sucha controlpolicy obtainedby mappingthe cell � to a
simplemodelspace,andgeneratinga potentialfield over
that model space.The cell is free of obstacles;therefore
we candesigna potentialfield over the modelspacethat
is free of local minima. The potential function is then
pulled back onto the cell via a continuousmapping, � .
The gradientvector field of the pullback of the potential
function inducesa position dependentvector field over
the cell � . The vector field is suitable for control of
kinematic systems.We generalizethe kinematic control
policy to yield a position dependentvelocity reference
control policy for dynamicalsystems.

B. ExampleDecompositionand Mapping

For our initial development,we chosea convex polyg-
onal decompositionto approximatethe free spaceof a
systemto somearbitraryresolution,asshown in Figure1.
The componentcontrol policy is designedto take the
configuration through a designatedoutlet face into the
adjoining polygon. There are a number of algorithms
for decomposingspacesinto convex polygons. For the
demonstrationin this paper, we assumethe free spaceis
representedas a generalpolygon and use an algorithm
from Keil [13], allowing us to demonstrateautomated
deploymentof our control policies.
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Fig. 2. Mapping from polygon to unit disk. The contourplot on the
left shows level setsof the pullback +-,/.10 on the polygon; the contour
plot on the right shows the correspondinglevel setsof +-, on the unit
disk.

In order to generatea vector field with continuous
derivatives,asneededby our dynamiccontrol policy, we
requirea 2 � diffeomorphismfrom anarbitrarypolygonto
our modelspace.Unfortunately, the polygonverticespre-
cludethepossibilityof constructinga 2 � diffeomorphism.
The mapping can only approximatethe polygon at the
cornerswhile maintaining3 � continuity. Our construction
approximatesthe verticesin a naturalway that averages
the adjacentnormals,therebypreservingthe vector field
propertiespresentedin this paper. For detailsthe readeris
referredto [1].

We chosea unit disk for our model space,and define�546�87:9 , suchthat � is a 2 � diffeomorphismfrom the
interior of the polygon � to the interior of the unit disk,9;� <�=?>1@BADCE@GF�H6I ��J > �@�K C �@MLONQPSRUT V �XW� uses a radial retraction technique to map the cell
boundariesto theboundaryof theunit disk,using 3 � fillet
curves1 within a specifiedneighborhoodof eachvertex.
This mappingis depictedin Figure2.

I I I . COMPONENT CONTROLLERS

The control policy deployment outlined in SectionII-
A dependson developing componentcontrol policies
that generatethe desiredresponsefor each cell in the
decomposition.In this section, we presenta candidate
componentcontrol policy for an arbitrary cell basedon
a potentialfield. Control Policiesfor both kinematicand
dynamicsystemsaredeveloped.

1In computeraided design (CAD), a fillet curve describesan arc
joining two lines.

A. HarmonicPotential Functions

Our approachto generatinga potential field, taking
inspiration from [6], is to generatea potential functionY @ 4Z9:7[� � , where 9 is our simple model space.The
potential function in the arbitrary cell � , given as the
pullbackof the modelspacepotential,isY � Y @]\ � W

To generatea potential function free of local minima,
we solve Laplace’s equation^ � Y @ ��_ � Y @_ > � @ K _ � Y

@
_ C �@ ��`

over theunit disk. Laplace’s equation,which is theclassic
partial differentialheatequation,can be solved in closed
form given the potentialspecificationon the disk bound-
ary, wheretheradius

I � N . Let a =cbBF specifythepotential
alongthe boundary, wherea =dbBF � < afe bhgSi jlkEAmjXnpo` qsrptvu-wpxzy|{Du A
with

bOg}=D~z�XAD�Zo
,

j k g��m~z�XA-~�� �f� , and

j n g��G� � Am� � .The

j��
termsaretheanglesof themappedexit verticesin

the disk. Specificationof the boundarypotential

= a ez� ` F
provides a parametricfreedomthat can be usedto con-
trol the potential field magnitudeand resulting gradient
magnitude.The closedform solution is given byY @]=dI6AmbBF � �������E���Z�B�D�� � K������ rp��� � n �;�B�?� � �����p�Z�p�n � �E�¡ p� ��� � �¢�m�-£~ rp��� � n �¤�B�d� � �|���-�Z�p�n � �E�¡ m� ��� � �Z�p��£¥£ A
where

I ��¦ > �@�K C �@ and

b ���6r§�s�f¨ =?CB@�AD>1@©F is the polar
coordinaterepresentationof a point

=d>Z@�AmCB@�F
.

The potential function Y @ given by the solution of the
heat equation is free of local minima or other critical
points,and resemblesa navigationfunction [6], [7]. The
navigation function-like properties,including the absence
of local minima, are preserved when Y @ is pulled-back
ontothecell � via thediffeomorphism� [6], [1]. Figure2
shows an exampleof the pullback of a sucha potential
function.

We usethe negative gradientof the pulled-backpoten-
tial function to generatea vector field ª«4¬�«7 ®� ,
given asª =c¯/F � ~�°h± Y¢² � ~³�c°�± � ² °h±s´ YZ²@ � H µ � ± � A (1)

where

¯¶g � and

¯Z· �¸� =?¯/F5g 9 . By construction,
the gradientvector field inducedby the pullback of the
heat equationsolution is orthogonalto the boundaryof
the cell2. This is trivial to show, given that the potential
along the boundaryof the cell is constantby virtue of
the pull-back. This orthogonality feature allows us to
constructcontrol policies that have continuity acrossthe
cell boundaries,and facilitatessomeof our later proofs.

2The vector field at the verticesof a polygonalcell of our example
is undefined. In the neighborhoodof the vertices, the mapping 0
approximatesthe vector field in a natural way such that the desired
behavior is preserved.
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Fig. 3. Solution for kinematicsystem.The dark line shows the path
taken from the start configuration,marked with an “o”, to the goal
configuration,markedwith an“x”. Thedarkregion denotestheboundary
of the free space,anddottedlines show the decompositioninto convex
polygons.

B. KinematicPath Plan

For kinematic systems,the vector field ª =c¯/F can be
usedto specify the velocity of the system.The integral
curvesof ª =¹¯/F tracea pathfrom start to goal provided a
connectedsetof cells exist betweenthe startandgoal.

Lemma3.1: For a kinematicsystemof the form º¯ �» , where

¯¼A » g T V � , the integral curves of the vector
field » ��ª =¹¯/F � ~�°�½ Y ² for the pulled-backpotential,
determinea path from any point on the inlet zone, or
interior of the cell, to a point on the exit zonesuchthat
the trajectory is completelycontainedin the cell until it
crossesthe exit zone.
The proof is trivial by construction.

Combinedwith the automatedcontrol policy deploy-
ment schemedescribedin Section II-A, the component
control policy » ��ª =?¯/F � ~�° ½ Y ² yields a complete
path planning method for the kinematic systemvia the
inducedoverall control policy. Becausethe vector field
is orthogonalto the boundaries,the velocity orientation
is continuous.By normalizing the vector field, we can
generatea continuous(exceptat thevertices)velocity pro-
file from start to goal without changingthe completeness
propertiesof the algorithm.

Figure3 shows anexampledeploymentfor a kinematic
systemusing the convex polygon decompositionscheme
from SectionII-B. Thefreespaceis shown asa maze-like
polygon,with a startandgoal specified.

C. DynamicControl Policy

While the control policy deploymentschemeandcom-
ponent control policy design provides a novel solution
to the classicalmobile robot navigation problem,it does
not guaranteethat a real robot, subject to dynamical
constraints,could follow the prescribedpath.

Given a secondordersystemof the form¾¯ � » A (2)

we wish to design a control law that converges to an
integral curveof thevectorfield ª =c¯/F � ~�°h± Y ² , without
departingthe definedcell � . We begin by developingthe
control policy assumingthe systemallows arbitrary, but
still finite, accelerations.Later, we consideracceleration
andvelocity constraints.

Usingthenegativegradientfield asapositiondependent
velocity referenceleads to a natural velocity reference
control policy of the form» �³¿ = ª =?¯/F¼~ º¯/F K ºª =c¯/FÀA (3)

where ¿ � ` is the “velocity regulation” gain [9]. The¿ = ª =c¯/FX~ º¯/F termactsto decreasetheerrorbetweenthe
currentand the desiredvelocity. The feed-forward term,ºª =?¯/F � ° ± ª º¯ , accountsfor thechangein thevectorfield
as we move in the º¯ direction,and allows the systemto
exactly track the integral curves of ª =c¯/F once the error
hasconvergedto zero.

Lemma3.2: In the absenceof constraints,including
thoseof thecell boundary, theintegral curvesof thevector
field ª =c¯/F are attractive to the trajectoriesof the closed
loop systemdefinedby (2) underthe influenceof (3).

Proof: For details, see [1]. The proof depends
on a Lyapunov-like function using the velocity error= ª =¹¯/F¼~ º¯/F , and follows that given in [9].

Theorientationerror, i.e. the anglebetweenthe desired
velocity, ª =c¯/F , andthe currentvelocity, º¯ , is given byÁ �ÃÂ	qB{ � n º¯ ² ª¦ º¯ ² º¯ ª ² ª A
where ªO�³ª =?¯/F .

Lemma3.3: In the absenceof accelerationconstraints,
and for initial velocitiessuchthat º¯ ² ª � ` , thereexists
a lower bound on ¿ such that the orientationerror,

Á
,

monotonicallydecreases.
Proof: First, considerthe isolatedcasewhere º¯ ��` ;

we define
Á HÅÄ±sÆ¢k �}` . Beginning from rest, the acceler-

ation specifiedby ¿ = ª =c¯/F¼~ º¯/F will move the system
differentially in the direction of the desiredvelocity, and
the orientationerror will be zero.As we show below, the
orientationerror will remainzero for all time.

To show that the orientation error
Á

monotonically
decreases,considerthe setÇ 4È��� =c¯¼A º¯lFÉH Á �³`�
 A

anddefinea Lyapunov-like function of the formÊBË � {my�� � Á � N ~ Â	qB{ � Á� º¯ ² º¯ ª ² ª ~ º¯ ² ª¤º¯ ² ªº¯ ² º¯ ª ² ª W (4)

Evaluatingthe time derivative of (4) alongthe trajecto-
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ries of the closedloop system,andsimplifying yields

ºÊBË � ¨ � º¯ ² ª � �= º¯ ² º¯ ª ² ª F �SÌsÍ ª ² ª º¯ ² K º¯ ² º¯ ª ²~ º¯ ² º¯ ª ² ªº¯ ² ª º¯ ² ~ º¯ ² º¯ ª ² ªº¯ ² ª ª ²lÎ ºª~ ¿ Í º¯ ² º¯ ª ² ªº¯ ² ª ª ² ª ~ ª ² ª¤º¯ ² ª ÎzÏ (5)

When º¯ is alignedwith ª =¹¯/F , ºÊ Ë �Ã` , andwe conclude
the set

Ç
is invariant. In other words, if the orientation

error is zero,it remainszero.
Away from

Ç
, the leading term of (5) is positive and

bounded,becausewe assumethat initially º¯ ² ª � ` .
Assumingthe systemhas finite initial velocity and thatÐ ª =?¯/F Ð is finite, if follows that thevelocity error is finite;
then by Lemma3.2, the error magnitudedecreases,and
we concludethat

Ð º¯ Ð remainsfinite for all time. Thefirst
parentheticaltermin bracketsfor (5) hasan indeterminate
sign, but is finite since all the terms are bounded.The
last parentheticalterm in (5) is positive. Therefore,for
sufficiently large ¿ , ºÊ�Ë can be madenegative definite.
This implies that º¯ ² ª remainspositive, andtherefore ºÊ Ë
is alwaysnegative for sufficiently large ¿ . Since ºÊ Ë�Ñ ` ,
we concludethat

Ç
is attractive and invariant,andthat

Á
monotonicallydecreasesunderthe influenceof (3).

Intuitively, making ¿ sufficiently largeensuresthat the
control policy is correctingmore quickly than the vector
field is changing.Thesufficientlylarge ¿ is determinedin
the worst casebasedon the vectorfield derivative, which
is largestnearlocal concavities in the cell boundary.

Lemma3.4: In the absenceof accelerationconstraints,
with sufficiently large ¿ and initial velocitiessuch thatº¯ ² ª � ` , the trajectoriesof the closed loop system
definedby (2) underthe influenceof (3), converge to the
integral curvesof thevectorfield ª =c¯/F in sucha way that
the trajectorynever exits the cell exceptby the exit zone,
and in fact exits the cell via the exit zone.

Proof: For º¯ ² ª � ` , we know the orientationerror
is initially less than

� � . By Lemma 3.3, for sufficiently
large ¿ , theorientationerror is monotonicallydecreasing.

Assumethetrajectoryexits thecell in the inlet zone.At
thepoint of departure,º¯ ² ª Ñ ` giventheinwardpointing
vectorfield orthogonalto the cell boundary. This implies
that

Á � � � , requiring that the orientationerror increased
along its trajectory. This contradictsLemma3.3.

Since the vector field ª =?¯/F is nowhere zero over the
cell, thesystemcannotcometo restandremainstationary,
becausethe systemexperiencesan accelerationalongthe
vector field. Therefore,we concludethat the trajectory
must leave the cell via the exit zoneunderthe influence
of (3) for the given conditions.

Figure 4 shows a simulation of the dynamic system
given in (2) under the influence of (3). A variety of
initial conditionsare shown, eachconverging to the goal
configurationusingthehybrid control strategy inducedby
the underlyingdecomposition.

Fig. 4. Simulationof the dynamicalsystemusing the hybrid control
strategy introducedin this paper. Light colored lines representintegral
curvesof Ò]Ó�Ô�Õ , while thedarkcoloredlines representtrajectoriesof the
systemfor various initial conditions.The velocity regulation gain used
in this examplewas ÖÉ×ÙØ�Ú .

The utility of Lemmas3.3 and 3.4 is limited by two
factors.First, a large value for ¿ can lead to an overly
aggressivepolicy over thecell thatmayprovetroublesome
for implementation.Secondly, and most importantly, all
real world systemshave accelerationlimits, which may
very well be violated by the feed-forward term of (3),
regardlessof the valueof ¿ and the velocity error.

D. ConstrainedDynamics

To extend our ideas to real world systems,we now
considerthe following dynamicconstraints,Ð º¯ Ð L ÛÝÜXÞmß

(6)Ð » Ð � Ð ¾¯ Ð L à�ÜXÞmß
(7)

The velocity limit is taken to be a safety limit, and it
is assumedthat

Ð ª =c¯/F Ð L�ÛáÜXÞDß for all

¯âg � . However,
if the changein the vectorfield ª =c¯/F is alignedwith the
current velocity, then the feed-forward term of (3) may
act to increasethe velocity magnitude(speed),causinga
violation of the maximumspeed.

The accelerationlimit on the other hand, represents
a physical limitation of the dynamic system.Since the
accelerationcannotbe exceeded,the inability to produce
the desiredaccelerationwill invalidatethe lemmasgiven
above.To accommodateboththevelocity andacceleration
constraints,we arecurrentlydevelopingmodifiedcontrol
policiesandhybrid switchingstrategies.

Our first proposedmethodfor addressingthe accelera-
tion limits is by encodinga speedreductionin areaswhere
thefeed-forwardtermis excessive.By decreasingspeedin
areaswherethe vectorfield hashigh derivative changing,
we reducethe impact of the feed-forward term, which
dependson both the currentvelocity andvectorfield. For
purposesof this paper, our only freedomfor affecting the
speedis in the specificationof the boundarypotential
value, a e . Unfortunately, this impactsthe entire cell, so
we areseekingmethodsbasedon the local magnitudeof

3550



the

°�± ª term.This will allow usto naturallyencodesuch
common-sensenotionsas “slow down whenapproaching
a sharpcorner,” basedon local information (encodedin
thedecomposition)withoutexplicitly modelingthecorner.

The secondapproachwe are pursuing, which is in-
tended to addressboth accelerationand velocity con-
straints, is the development of hybrid switching con-
trol policies to form our componentcontrol policy. Our
approach,again taking inspiration from the sequential
compositionmethodsof [8], [9], [10], is to definea setof
control policies that are maximal over the statespaceof
thecell � , andwhosecompositionconvergesto (3) before
thesystemconfigurationexits the cell. Thehybrid control
policies are constructedsuch that they induce a partial
order within a given cell, and precludethe possibility of
infinitely fastswitching.The hybrid control policies,used
in situationswherethe dynamiclimitations invalidateour
basic control policy given in (3), are designedto apply
maximum accelerationto move the systemtowards the
domainof (3).

The lowestcontrolpolicy in thepartialorder, which we
term the Savecontrol policy, is designedto preventviola-
tionsof thecell boundariesif thevelocity is too high given
the constraintsof the system.We termthe setof all states
for which the Save control policy preventsa violation as
thesavableset[9]. Thesavablesetincludesthedomainsof
the otherhybrid control policies.The biggestchallengeis
to make surethat thesystemexits onecell with a velocity
within thesavablesetof thenext cell. Thescalingmethod
proposedto handleaccelerationconstraintswill also be
usedto guaranteethat cells connectappropriately, which
will then allow us to backchainthe velocity constraints
for the savableset.For more information,see[1].

IV. CONCLUSION

The work presentedin this paperrepresentsthe initial
stepsin a programof researchdesignedto bring about
automaticmethodsof deploying robust low-level control
policies in constrainedenvironments.Our goal is to en-
able global behaviors through compositionof low-level
controls in a mannerthat guaranteesperformance.This
paperpresentsmethodsto accomplishthis goal for fully
actuatedsystemsin � � � ; extensionsto higherdimensions
aregiven in [1].

After finalizing the constraineddynamical controls,
the next step in our researchplan is to extend this
methodologyto systemswith traditional non-holonomic
constraints.This will allow usto decomposea largermore
complicatedcontrol probleminto a seriesof well defined
andmoretractablecontrolproblems.Our long termgoalis
to developmethodsof encodingbehavior design,andfacil-
itating automateddeploymentof thesecomponentcontrol
policies to enablehigh-level goals to be accomplished,
while leveragingthe robustnessandperformanceof low-
level controlsto accomplishthe specifiedtasks.
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