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Abstract— This paper develops a method of composing
simple control policies, applicable over a limited region in
a dynamical systems free space, such that the resulting
composition completely solves the navigation and control
problem for the given systemoperating in a constrained en-
vironment. The resulting control policy deploymentinduces
a global control policy that brings the systemto the goal,
provided that there is a single connectedcomponent of the
fr ee spacecontaining both the start and goal configurations.
In this paper, control policies for both kinematic and simple
dynamical systemsare developed. This work assumesthat
the initial velocities are somewhataligned with the desired
velocity vector field. We conclude by offering an outline
of an approach for accommodating arbitrary dynamical
constraints and initial conditions.

|. INTRODUCTION

The goal of the researchdiscussedin this paperis
to develop feedback control strategies that allow for
automaticdeployment of control policies in constrained
ervironments,such that the resulting control systemin-
stantiatesa natural,provably correctbehaior for systems
operating near their dynamic capabilities. Corventional
robotarchitecturesiave separatethe planningandcontrol
problemto a degreethat provably correctplanningalgo-
rithms offer no guaranteesf dynamicalperformanceThe
typical approachs to operatefar below the capabilitiesof
the systemin order to approximatekinematic behaior.
By incorporating the constraintsinto low-level control
policies, and planning in the spaceof available control
policies,we offer amethodologythatis provably complete
in both kinematicand dynamicalervironments.

After introducing an overview of related work that
inspire our approachwe discussthe decompositionrand
planningprobleminherentin our work. This senesto mo-
tivatethe type andscopeof our low-level control policies,
while offering proof of the completenes®f the control
policy composition For clarity, we restrictthedescriptions
in this paperto IR?, althoughthe work directly extends
to higher dimensions,as explained in the companion
document[1]. Next we develop the low-level control
policies,andprovide proofsof the applicabilityto asimple
dynamical system.We then outline the developmentof
hybrid switching control policies requiredto overcome
dynamical constraints,such as accelerationlimits, and
increasethe domainof attractionfor the low-level control
policies. We concludeby outlining the next stepsin our
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researchplan, which is to develop automatedsystemsof
control policy deploymentfor real mobile robots subject
to non-holonomicconstraints.

Related Work. The problem of planning a path
from startto goal hasbeenextensvely studied[2]. Un-
fortunately just having a safe path does not guarantee
that the robot can move safely Constraints,in the form
of kinematic and dynamical limitations on achievable
velocities, may render the desired path impossible to
track. Someheuristicmethodsfor examplethe curvature-
velocity method[3], have beendevelopedto encodedy-
namicallimitations into the searchspace.

An early methodto integrateplanningand control was
basedon potentialfields[4]. Unfortunately mostpotential
field constructionssuffer from the well documentedocal
minima problem[5], [6]. Connolly et al. [7] developed
a potential field without local minima basedon a nu-
meric solution to Laplaces heat equation. Rimon and
Koditschek[6] developeda local minima free potential
field methodfor control by mappinga classof obstacles
to a modelspaceandgeneratinga minimum free potential
function over the modelspacethis potentialfunction was
termeda navigationfunction

The approachwe proposeis basedon decomposing
the free spaceinto cells, and solving the navigation and
control problemfor specificcells, basingcontrol only on
local information. The overall control policy is formed
by composingthe local control policies in a way that
guaranteeghe overall performance We take inspiration
from the work of Burridge,Rizzi, andKoditschel{8], and
the use of sequentialcompositionto control a juggling
robot. In their application, complex behaiors over a
large domainwereobtainedby composingcontrol policies
designedto function over limited domains.Their work
required hand-tuning and development of the specific
control policy domains,and requiredthe userto specify
the deployment scheme.This paperalso builds on prior
work of the secondauthor using sequentialcomposition
asa programmingtool to specify robot motion programs
for planarrobots[9], [10].

The methodsoutlined in this papermake use of hy-
brid switching control policies; the control policies are
switched as the system moves from cell to cell. For
systemssubjectto dynamic constraints switchedcontrol
policiesarealsousedwithin acell to maximizethedomain
of savablestatesOur controlpoliciesaredefinedsuchthat



the stability of the switchedpoliciesis guaranteed- this
obviates the needfor detailed analysisof the switching
stability such as that of [11], [12]. The possibility of
infinitely fastswitchingis precludecbecausé¢he switching
stratgy presentechere inducesa partial order over the
collection of control policies.

Il. OVERVIEW

In this sectionwe presentan overview of a new ap-
proachto decomposinghe problemof navigating a robot
sothatthe planningandcontrolsproblemis solved simul-
taneouslyby inducing a global control policy that brings
ary initial configuratiorto thegoal, providedthatthereis a
singleconnecteccomponenbf free-spaceontainingboth
the startand goal configuration.This approachallows us
to leveragethe robustnessafforded by feedbackcontrols,
while generatinga globally corvergentcontrol policy.

A. DecompositionPlanning and Control

Our approachto solving the robot navigation and con-
trol problemsis to definea paletteof control policies,and
a switchingstratgly amongtheindividual control policies,
suchthat the resultingcompositionsimultaneouslysolves
both problems. We decomposethe free spaceinto a
collectionof cells, {P}, definedasdisjoint opensets.The
union of the closuresof the cells covers the free space,
eitherexactly (S = U P) or to anapproximatiorat some
resolutionFS ~ U7P) [2]. The collection of cells is re-
ferredto asa cellular decompositionFrom the adjaceng
graphof the cells, with the root nodecorrespondingo the
cell containingthe goal,we determinea partialorderingof
the cellsusinga graphsearchalgorithm,suchasDijkstra’s
algorithm[2].

With eachcell, P, we associatean individual control
policy, which we term a componentcontol policy. The
componentcontrol policies are designedsuch that they
will causeary configurationwithin the cell, P, to move
along a trajectory into a specified adjacenttarget cell,
‘P:, specifiedby the partial order During the evolution
of the systemtrajectory the configurationwill not exit
‘P otherthan by crossingthe commonboundarywith 7.
Whenthe configurationentersthe cell containingthe goal
configuration,a simple corverging control policy (suchas
that presentedn [9]) is usedin place of the component
control policy. Using the terminologyof [8], we say that
the componentcontrol policy associatedvith P prepaes
the componentcontrol policy associatedvith the tamget
cell P;. Figure 1 shavs an exampleof this technique.

The common boundary betweena cell, P, and the
adjacentargetcell, P, is termedthe outletzoneof P. The
boundaryof a cell, excluding the outlet zone, is termed
the inlet zone Note, the outlet zone of P is part of the
inlet zoneof P. If the goal configurationis containedn a
cell, thenthe outletzoneis the emptyset. The outlet zone
for eachcell is specifiedby the sharedboundarywith the
adjacentcell next in the partial order, as determinedby
the adjacenyg graph.
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Fig. 1. A connectecthainof cells determinesa pathfrom startto goal.
Flow from previous cell prepareghe control policy in the next cell. In
this example, the free spacewas decomposednto convex polygons.

The specificationof all of the outlet zones,and the
resulting compositionof the componentcontrol policies
via the partialorder, formsa hybrid control policy overthe
entirefree spacewhich we termthe global control policy.
We referto the specificatiorof the controlpoliciesoverthe
setof cells asa contmol policy deploymentThe specified
control policy deployment schemeis complete.In other
words, given componentcontrol policies that function as
specifiedin this section,the systemcan navigate a path
from startto goalif andonly if a chainof connectectells
exists.

The control policy deploymentoutlinedabove depends
on developing componentcontrol policies that generate
the desiredresponsdor an arbitrarycell. Our approachs
to developa genericcontrolpolicy thatis valid for any cell
in the set. In Sectionlll, we discussthe developmentof
sucha control policy obtainedby mappingthe cell P to a
simple model space and generatinga potentialfield over
that model space.The cell is free of obstaclestherefore
we candesigna potentialfield over the model spacethat
is free of local minima. The potential function is then
pulled bad onto the cell via a continuousmapping, .
The gradientvector field of the pullbad of the potential
function inducesa position dependentvector field over
the cell P. The vector field is suitable for control of
kinematic systems.We generalizethe kinematic control
policy to yield a position dependentvelocity reference
control policy for dynamicalsystems.

B. ExampleDecompositiorand Mapping

For our initial developmentwe chosea convex polyg-
onal decompositionto approximatethe free spaceof a
systemto somearbitraryresolution,asshavn in Figurel.
The componentcontrol policy is designedto take the
configurationthrough a designatedoutlet face into the
adjoining polygon. There are a number of algorithms
for decomposingspacesinto corvex polygons. For the
demonstratiorin this paper we assumethe free spaceis
representedas a generalpolygon and use an algorithm
from Keil [13], allowing us to demonstrateautomated
deploymentof our control policies.



Fig. 2.  Mapping from polygonto unit disk. The contourplot on the
left shaws level setsof the pullback~, o ¢ on the polygon;the contour
plot on the right shavs the correspondindevel setsof 4 on the unit
disk.

In order to generatea vector field with continuous
derivatives, as neededby our dynamiccontrol policy, we
requirea C? diffeomorphisnfrom anarbitrarypolygonto
our modelspace Unfortunately the polygonverticespre-
cludethe possibility of constructinga C? diffeomorphism.
The mapping can only approximatethe polygon at the
cornerswhile maintainingC? continuity. Our construction
approximateghe verticesin a naturalway that averages
the adjacentnormals,therebypreservingthe vector field
propertiegpresentedn this paper For detailsthe readeris
referredto [1].

We chosea unit disk for our model space,and define
¢ : P — D, suchthatyp is a C? diffeomorphismfrom the
interior of the polygon?P to the interior of the unit disk,

D={Gau) | r= /i< 1| .

¢ usesa radial retraction techniqueto map the cell
boundariego the boundaryof the unit disk, usingC? fillet
curves within a specifiedneighborhoodof eachvertex.
This mappingis depictedin Figure 2.

I1l. COMPONENT CONTROLLERS

The control policy deploymentoutlined in Sectionll-
A dependson developing componentcontrol policies
that generatethe desiredresponsefor eachcell in the
decomposition.In this section, we presenta candidate
componentcontrol policy for an arbitrary cell basedon
a potentialfield. Control Policiesfor both kinematicand
dynamicsystemsare developed.

lIn computeraided design (CAD), a fillet curve describesan arc
joining two lines.

A. Harmonic Potential Functions

Our approachto generatinga potential field, taking
inspiration from [6], is to generatea potential function
v4 : D = IR, whereD is our simple model space.The
potential function in the arbitrary cell P, given as the
pullback of the model spacepotential,is

Y=Ya0¥-

To generatea potential function free of local minima,
we solve Laplaces equation
_ 52%1 32%1
-~ Ory Oy
overtheunit disk. Laplaces equationwhich is the classic
partial differential heatequation,can be solved in closed
form given the potential specificationon the disk bound-

ary, wheretheradiusr = 1. Let V() specifythe potential
alongthe boundary where

_ Vs 0€[m,ai]
V()= { 0 otherwise

with 8 € (-7, 7], ap € (—7r, —g), anda; € (%,ﬂ').

The a; termsarethe anglesof the mappedexit verticesin

the disk. Specificationof the boundarypotential (V; > 0)

provides a parametricfreedomthat can be usedto con-
trol the potential field magnitudeand resulting gradient
magnitude. The closedform solutionis given by

V>4 =0

)

Ya(r,0) = Yela—co)

% tan_l( rsin(a1—0) )

1—rcos(a1—6)

—tan (a0 ) -
wherer = /2% + y2 andf = atan2 (y4, z4) is the polar
coordinaterepresentatiomf a point (x4, y4).

The potentialfunction 4 given by the solution of the
heat equationis free of local minima or other critical
points, and resemblesa navigationfunction [6], [7]. The
navigation function-like properties,ncluding the absence
of local minima, are presered when ~, is pulled-back
ontothe cell P via the diffeomorphismy [6], [1]. Figure2
shavs an example of the pullback of a sucha potential
function.

We usethe negative gradientof the pulled-backpoten-
tial function to generatea vectorfield X : P — TP,
givenas

X(q) = _Dq’YT == (Dq‘PT qu'Yg) |<p(q) (@
whereq € P andqq = ¢(q) € D. By construction,
the gradientvector field inducedby the pullback of the
heat equationsolution is orthogonalto the boundaryof
the cell’. This is trivial to show, given that the potential
along the boundaryof the cell is constantby virtue of
the pull-back. This orthogonality feature allows us to
constructcontrol policies that have continuity acrossthe
cell boundariesand facilitatessomeof our later proofs.

2The vector field at the verticesof a polygonalcell of our example
is undefined.In the neighborhoodof the vertices, the mapping ¢
approximatesthe vector field in a natural way such that the desired
behaior is presered.



Fig. 3. Solution for kinematic system.The dark line shavs the path
taken from the start configuration, marked with an “0”, to the goal
configurationmarkedwith an“x”. Thedarkregion denoteshe boundary
of the free space and dottedlines shawv the decompositiorinto convex

polygons.

B. KinematicPath Plan

For kinematic systems,the vector field X(q) can be
usedto specify the velocity of the system.The integral
curvesof X(q) tracea pathfrom startto goal provided a
connectedset of cells exist betweenthe startand goal.

Lemma3.1: For a kinematic systemof the form q =
u, whereq,u € IR?, the integral curves of the vector
field u = X(q) = —D ! for the pulled-backpotential,
determinea path from ary point on the inlet zone, or
interior of the cell, to a point on the exit zone suchthat
the trajectoryis completelycontainedin the cell until it
crosseghe exit zone.

The proof is trivial by construction.

Combinedwith the automatedcontrol policy deploy-
ment schemedescribedin Sectionll-A, the component
control policy u = X(q) = —D,y" yields a complete
path planning method for the kinematic systemvia the
induced overall control policy. Becausethe vector field
is orthogonalto the boundariesthe velocity orientation
is continuous.By normalizing the vector field, we can
generatea continuougexceptat the vertices)velocity pro-
file from startto goal without changingthe completeness
propertiesof the algorithm.

Figure 3 shavs an exampledeploymentfor a kinematic
systemusing the corvex polygon decompositionscheme
from Sectionll-B. The free spaceis shovn asa maze-like
polygon,with a startand goal specified.

C. DynamicControl Policy

While the control policy deploymentschemeandcom-
ponent control policy design provides a novel solution
to the classicalmobile robot navigation problem,it does
not guaranteethat a real robot, subject to dynamical
constraintscould follow the prescribedpath.

Given a secondorder systemof the form

q=u, ()
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we wish to designa control law that corvergesto an
integral curve of the vectorfield X(q) = —Dq7”, without
departingthe definedcell P. We begin by developingthe
control policy assumingthe systemallows arbitrary but
still finite, accelerationsLater, we consideracceleration
and velocity constraints.

Usingthenegative gradientfield asa positiondependent
velocity referenceleadsto a natural velocity reference
control policy of the form

u=K (X(q) - &) +X(q) , ©)

where K > 0 is the “velocity regulation” gain [9]. The
K (X(q) — q) termactsto decreas¢he error betweerthe
currentand the desiredvelocity. The feed-forward term,
X(q) = D4X g, accountdor the changen thevectorfield
aswe move in the q direction, and allows the systemto
exactly track the integral curves of X(q) oncethe error
hascorvergedto zero.

Lemma3.2: In the absenceof constraints,including
thoseof the cell boundarytheintegral curvesof thevector
field X(q) are attractive to the trajectoriesof the closed
loop systemdefinedby (2) underthe influenceof (3).

Proof: For details, see [1]. The proof depends
on a Lyapuna-like function using the velocity error
(X(q) — q), andfollows that givenin [9]. [ |

The orientationerror, i.e. the anglebetweerthe desired

velocity, X(q), andthe currentvelocity, q, is given by

T
9=cos ! 2= X ,
VaTaXTX
whereX = X(q).

Lemma3.3: In the absencef acceleratiorconstraints,
and for initial velocitiessuchthat ¢ZX > 0, there exists
a lower boundon K such that the orientationerror, 19,
monotonicallydecreases.

Proof: First, considertheisolatedcasewhereq = 0;
we defined |q=0= 0. Beginning from rest, the acceler
ation specifiedby K (X(q) — q) will move the system
differentially in the direction of the desiredvelocity, and
the orientationerror will be zero.As we showv below, the
orientationerror will remainzerofor all time.

To show that the orientation error ¥ monotonically
decreases;onsiderthe set

U:={(q,q) [9=0},
and definea Lyapuna-lik e function of the form
N = sin®¥=1-—cos’?
qTaX"X - ¢"X "X

= . 4
TaxTX (4)

Evaluatingthe time derivative of (4) alongthe trajecto-



ries of the closedloop system,and simplifying yields

. 2(4"X)” [( T T L AT T
w = ———72 _|[XTX X
T @axTxy 4
_QTQXTX-T_QTQXTXXT X
ax 1T Tgx
qTQXTX
- K <#XTX—XTX<1TX)] (5)
q'X

Whengq is alignedwith X(q), 1, = 0, andwe conclude
the set!{ is invariant. In other words, if the orientation
erroris zero, it remainszero.

Away from U, the leadingterm of (5) is positve and
bounded,becausewe assumethat initially g”X > 0.
Assumingthe systemhasfinite initial velocity and that
[|X(q)|| is finite, if follows thatthe velocity erroris finite;
then by Lemma3.2, the error magnitudedecreasesand
we concludethat ||q|| remainsfinite for all time. The first
parentheticatermin bracletsfor (5) hasanindeterminate
sign, but is finite since all the terms are bounded.The
last parentheticalterm in (5) is positive. Therefore,for
sufficiently large K, 7, can be made negative definite.
This implies that ¢ X remainspositive, andthereforerj,,
is always negative for sufficiently large K. Sincen, < 0,
we concludethat?/{ is attractive and invariant,and that
monotonicallydecreasesinderthe influenceof (3). m

Intuitively, making K sufficiently large ensureghatthe
control policy is correctingmore quickly thanthe vector
field is changing.Thesuficientlylarge K is determinedn
the worst casebasedon the vectorfield derivative, which
is largestnearlocal concaities in the cell boundary

Lemma3.4: In the absenceof acceleratiorconstraints,
with sufficiently large K and initial velocities such that
q'X > 0, the trajectoriesof the closed loop system
definedby (2) underthe influenceof (3), corvergeto the
integral curvesof the vectorfield X(q) in suchaway that
the trajectorynever exits the cell exceptby the exit zone,
andin fact exits the cell via the exit zone.

Proof: For ¢X > 0, we know the orientationerror
is initially lessthan 7. By Lemma3.3, for sufficiently
large K, the orientationerroris monotonicallydecreasing.

Assumethetrajectoryexits the cell in theinlet zone.At
the point of departureg” X < 0 giventheinward pointing
vectorfield orthogonalto the cell boundary This implies
thaty > 7, requiring that the orientationerror increased
alongits trajectory This contradictsLemma3.3.

Since the vector field X(q) is nowhere zero over the
cell, the systemcannotcometo restandremainstationary
becausdhe systemexperiencesan acceleratioralong the
vector field. Therefore,we concludethat the trajectory
must leave the cell via the exit zone underthe influence
of (3) for the given conditions. [ ]

Figure 4 shavs a simulation of the dynamic system
given in (2) under the influence of (3). A variety of
initial conditionsare shovn, eachcorverging to the goal
configurationusingthe hybrid control strategyy inducedby
the underlyingdecomposition.
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Fig. 4. Simulation of the dynamicalsystemusing the hybrid control
stratgy introducedin this paper Light coloredlines representintegral
cunesof X(q), while the dark coloredlines representrajectoriesof the
systemfor variousinitial conditions.The velocity regulation gain used
in this examplewas K = 20.

The utility of Lemmas3.3 and 3.4 is limited by two
factors.First, a large value for K canleadto an overly
aggressie policy overthecell thatmay prove troublesome
for implementation.Secondly and most importantly all
real world systemshave accelerationlimits, which may
very well be violated by the feed-forward term of (3),
regardlessof the value of K andthe velocity error.

D. Constained Dynamics

To extend our ideasto real world systems,we now
considerthe following dynamicconstraints,

lall < Vmax (6)
lull =lldll < Umax (7)

The velocity limit is taken to be a safetylimit, and it
is assumedhat || X(q)|| < Vmax for all q € P. However,
if the changein the vectorfield X(q) is alignedwith the
currentvelocity, then the feed-forward term of (3) may
act to increasethe velocity magnitude(speed),causinga
violation of the maximumspeed.

The accelerationlimit on the other hand, represents
a physical limitation of the dynamic system.Since the
acceleratiorcannotbe exceededthe inability to produce
the desiredacceleratiorwill invalidatethe lemmasgiven
above. To accommodatéoththe velocity andacceleration
constraintswe are currently developing modified control
policies and hybrid switching strateies.

Ouir first proposedmethodfor addressinghe accelera-
tion limits is by encodinga speedreductionin areasvhere
thefeed-forwardtermis excessve. By decreasingpeedn
areaswherethe vectorfield hashigh derivative changing,
we reducethe impact of the feed-forward term, which
dependson both the currentvelocity andvectorfield. For
purposef this paper our only freedomfor affecting the
speedis in the specificationof the boundary potential
value, V. Unfortunately this impactsthe entire cell, so
we are seekingmethodsbasedon the local magnitudeof



the Do X term. Thiswill allow usto naturallyencodesuch
common-senseotionsas “slow down whenapproaching
a sharpcorner’ basedon local information (encodedin
thedecompositionyvithout explicitly modelingthe corner

The secondapproachwe are pursuing, which is in-
tendedto addressboth accelerationand velocity con-
straints, is the developmentof hybrid switching con-
trol policies to form our componentcontrol policy. Our
approach,again taking inspiration from the sequential
compositionmethodsof [8], [9], [10], is to definea setof
control policies that are maximal over the statespaceof
the cell P, andwhosecompositioncorvergesto (3) before
the systemconfigurationexits the cell. The hybrid control
policies are constructedsuch that they induce a patrtial
orderwithin a given cell, and precludethe possibility of
infinitely fastswitching.The hybrid control policies,used
in situationswherethe dynamiclimitations invalidateour
basic control policy given in (3), are designedto apply
maximum accelerationto move the systemtowards the
domainof (3).

The lowestcontrol policy in the partial order, which we
termthe Savecontrol policy, is designedo preventviola-
tionsof thecell boundariesf thevelocity is too high given
the constraintof the system We termthe setof all states
for which the Save control policy preventsa violation as
thesavableset[9]. The sarablesetincludesthe domainsof
the otherhybrid control policies. The biggestchallengeis
to make surethatthe systemexits onecell with a velocity
within the savablesetof the next cell. The scalingmethod
proposedto handle accelerationconstraintswill also be
usedto guaranteehat cells connectappropriately which
will then allow us to backchainthe velocity constraints
for the savable set. For more information, see[1].

IV. CONCLUSION

The work presentedn this paperrepresentghe initial
stepsin a programof researchdesignedto bring about
automaticmethodsof deploying robust low-level control
policies in constrainedervironments.Our goal is to en-
able global behaiors through compositionof low-level
controlsin a mannerthat guaranteegperformance.This
paperpresentanethodsto accomplishthis goal for fully
actuatedsystemsin IR?; extensionsto higher dimensions
aregivenin [1].

After finalizing the constraineddynamical controls,
the next step in our researchplan is to extend this
methodologyto systemswith traditional non-holonomic
constraintsThis will allow usto decompose largermore
complicatedcontrol probleminto a seriesof well defined
andmoretractablecontrol problems Ourlongtermgoalis
to developmethodsf encodingoehavior designandfacil-
itating automatedeploymentof thesecomponentontrol
policies to enablehigh-level goalsto be accomplished,
while leveragingthe robustnessand performanceof low-
level controlsto accomplishthe specifiedtasks.
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