
Composition of Object-Oriented

Software Design Models

Siobhán Clarke, B.Sc. in Computer Applications (Hons)

Thesis Submitted for the Degree of

Doctor of Philosophy in Computer Applications

School of Computer Applications
Dublin City University

Supervisor
Dr. John Murphy

January 2001

© 2001, Siobhán Clarke

i

Table of Contents

Abstract ... ix

Preface ... x

Statement of Contribution... x
Acknowledgements... xi

Chapter 1: Introduction ... 1

Thesis Contributions... 8
Thesis Structure .. 9

Chapter 2: Motivation.. 11

Specification Paradigms Across Lifecycle 12
Requirements .. 13

Object-Oriented Analysis and Design .. 16

Object-Oriented Implementation .. 18

Comparison .. 18

Example: Software Engineering Environment 19
Requirements Specification .. 19

Supported Grammar for Expressions ... 20

Expressions as Abstract Syntax Trees .. 20

SEE System Design, Version 1.0 ... 22
Product Flexibility .. 26

Comprehensibility .. 27

Managerial ... 28

Conclusion .. 29

Evolving the SEE System Design... 29
New Requirements .. 29

Extending Version 1.0 directly ... 30

Using Design Patterns .. 30

Assessing Design Patterns .. 32

Summary ... 34

Drawing Conclusions for a Solution... 34
Chapter Summary ... 35

Chapter 3: Related Work... 37

Requirements Engineering Models... 38
Viewpoints and Perspectives .. 38

Use Cases ... 40

Features .. 41

Services and Facilities .. 42

Object-Oriented Analysis and Design Models 42
Unified Modeling Language (UML) ... 42

ii

Role Modeling (OORam) .. 43

Catalysis ... 44

Role Modelling (Kristensen) ... 45

Contracts .. 45

Views .. 46

Design Patterns .. 47

Object-Oriented Programming Models .. 48
Subject-Oriented Programming ... 48

Aspect-Oriented Programming .. 49

Composition Filters .. 50

Adaptive Software ... 51

Metaobject Protocols .. 52

Database Models... 53
Discussion... 57
Chapter Summary ... 63

Chapter 4: Composition of OO Designs: The Model 64

Decomposing Design Models... 65
Structural Matching with Requirements ... 66

Overlapping Subjects .. 70

Composing Design Models... 71
What does a Subject look like? ... 72

Composing Design Subjects ... 75

Deferring Subject Composition .. 78

Specifying Composition ... 78
Specifying Inputs .. 79

Identifying Corresponding Elements .. 80

Scope of Composition Relationship .. 83

Rules for Specifying a Composition Relationship 84

Integration of Inputs ... 87

Override Integration ... 88

Merge Integration ... 91

Notation .. 95

Analysis of the Output of a Composition 95
Forwarding of References .. 96

Ill-Formedness of Result ... 99

Using Subject-Oriented Design .. 102
Usefulness throughout Development Process .. 103

What Size is a Subject? ... 104

Duplication of Effort .. 104

How Complex is Composition Specification? .. 105

Feature Interaction Problem .. 106

Chapter Summary ... 107

Chapter 5: Composition Relationship: An extension to the UML

Metamodel ... 109

The UML Metamodel ... 109
Composable Elements .. 111
Composition Relationship .. 113

Description of Constructs ... 113

Well-Formedness Rules .. 117

Semantics for Identifying Corresponding Elements 122

Semantics for Forwarding References to Composed Elements 123

Chapter Summary ... 125

iii

Chapter 6: Override Integration ... 127

Syntax ... 128
Well-Formedness Rules.. 128
Semantics.. 130

General Semantics .. 130

Impact of Override on Subjects .. 132

Impact of Override on Classifiers .. 134

Impact of Override on Attributes .. 137

Impact of Override on Operations ... 139

Impact of Override on Associations and Generalizations 140

Impact of Override on Dependencies ... 146

Impact of Override on Constraints ... 146

Impact of Override on Collaborations ... 148

Chapter Summary ... 153

Chapter 7: Merge Integration ... 155

Description.. 156
Merge as a Simple Union ... 156

Merge with Corresponding Classes, Attributes 157

Merge with Conflicts in Corresponding Elements 157

Reconciling Conflicts in Corresponding Elements 158

Merge with Corresponding Operations ... 160

Merge Integration Syntax ... 164
Merge Integration ... 165

Reconciliation of Conflicts ... 165

Collaborations for Merged Operations .. 167

Well-Formedness Rules.. 168
Semantics.. 169

General Semantics .. 169

Impact of Merge on Subjects .. 170

Impact of Merge on Classifiers .. 173

Impact of Merge on Attributes .. 177

Impact of Merge on Associations and Generalizations 180

Impact of Merge on Dependencies ... 184

Impact of Merge on Constraints ... 185

Impact of Merge on Operations ... 188

Impact of Merge on Collaborations ... 195

Chapter Summary ... 196

Chapter 8: Composition Patterns.. 198

Composition Patterns Model .. 199
Merge Integration ... 199

UML Templates .. 200

Combining the Two: Composition Patterns ... 200

Composition Pattern Specification ... 201

Composition Binding Specification .. 205

Composition Output ... 207

Composition Patterns Metamodel... 209
Well-Formedness Rules .. 211

Chapter Summary ... 211

Chapter 9: Applying the Subject-Oriented Design Model.... 213

SEE System Design, Version 1.0 ... 213
Design Subjects .. 214

iv

Characteristics of SEE Design Subjects ... 216

Composition Relationships for Design Synthesis 218

Composition Pattern ... 221

Producing Code from the Design ... 222

Evolving the SEE System Design... 222
Chapter Summary ... 223

Chapter 10: Case Study and Evaluation 225

Requirements Specification .. 225
Functional Requirements .. 226

Technical Requirements ... 227

Design with Structural Matching to Requirements 227
Decomposition .. 228

Design Subjects .. 229

Composition .. 237

Evolving the LMS... 242
Subjects ... 243

Composition .. 244

Evaluation ... 247
Product Flexibility .. 247

Comprehensibility .. 248

Managerial ... 248

Comment ... 249

Chapter Summary ... 250

Chapter 11: Summary, Conclusions and Future Work 251

Summary... 251
Future Work.. 253

Supporting Technologies .. 253

Additional Features and Rules ... 255

Software Development Process Support .. 258

Formal Foundations ... 258

Conclusions... 259

Bibliography.. 260

Appendix A: Partial Illustrations of UML Metamodel......... 269

Package ... 269
Classifier ... 270
Attribute.. 270
Operation .. 270
Relationship .. 271
Dependency .. 271
Constraint.. 272
Collaboration .. 272

v

List of Figures

Figure 1: AST Nodes as Classes..20

Figure 2: AST Classes with Superclasses..21

Figure 3: Composite Pattern for AST..21

Figure 4: Core Expression Design in UML...22

Figure 5: Sequence Diagram for Checking the Syntax of an Expression: A-B+2

23

Figure 6: Support for Check added to Class Diagram23

Figure 7: Class Diagram with Expression AST and Check, Evaluate, and

Display Tools ...24

Figure 8: Collaboration Diagram for Logging Utility: Example - Check().....25

Figure 9: UML Class Diagram for SEE, Version 1.0......................................25

Figure 10: Using Visitor to Separate Check Functions31

Figure 11: Using Observer for Logging ..31

Figure 12: Using Decorator for Logging ...32

Figure 13: Matching SEE Requirements with Design Models........................35

Figure 14: Requirements and Subjects: One-to-One Structural Match66

Figure 15: Requirements and Subjects: One-to-Many Structural Match68

Figure 16: Requirements and Subjects: Many-to-One Structural Match69

Figure 17: A Subject as a Tree Structure...73

Figure 18: Composing Design Subjects to New Result...................................76

Figure 19: Composing Design Subjects with Overlap.....................................77

Figure 20: Subject-Level Inputs to Composition...80

Figure 21: Explicit Correspondence ..81

Figure 22: Implicit Correspondence ..82

Figure 23: DontMatch Correspondence...82

Figure 24: Multiple Composition Relationships..84

Figure 25: Composition Relationships and Corresponding Parents86

Figure 26: Composition Relationships at the Same Level in Subject Tree86

Figure 27: Participation in Multiple Composition Relationships87

Figure 28: General Override Semantics...90

Figure 29: Merge Integration with Reconciliation Specification93

Figure 30: Merge Integration with Interaction Specification94

Figure 31: Forwarding References to Composed Elements97

vi

Figure 32: Ambiguities with Forwarding of References98

Figure 33: Resolving Ambiguities with Forwarding of References98

Figure 34: Loss of (some) Constraints in Input Subjects...............................100

Figure 35: Composing Incompatible Operations...101

Figure 36: Elements that may participate in Composition Relationships......112

Figure 37: Composition Relationship ..114

Figure 38: Correspondences between Primitives...122

Figure 39: Correspondences between Composites ..123

Figure 40: Forwarding of References Semantics...123

Figure 41: Forwarding Ambiguous References with Attachment to Relationship

124

Figure 42: Forwarding to Implicit Composition Output as Default125

Figure 43: Override Integration ...128

Figure 44: General Semantics for Override Integration131

Figure 45: Impact of Override on Subject Specifications..............................133

Figure 46: Impact of Override on Classifier Specifications134

Figure 47: Breaking Well-Formedness Rules for Classifiers136

Figure 48: Impact of Override on Attribute Specifications138

Figure 49: Impact of Override on Operation Specifications..........................139

Figure 50: Example 1: Impact of Override on Associations141

Figure 51: Example 2: Impact of Override on Associations141

Figure 52: Example 3: Impact of Override on Associations142

Figure 53: Example 4: Result of Override on Associations143

Figure 54: Example 1: Impact of Override on Generalizations.....................144

Figure 55: Example 2: Impact of Override on Generalizations.....................145

Figure 56: Impact of Override on Dependencies...146

Figure 57: Example 1: Impact of Override on Constraints............................147

Figure 58: Example 2: Impact of Override on Constraints............................147

Figure 59: Example 3: Impact of Override on Constraints............................148

Figure 60: Example 1: Impact of Override on Collaborations149

Figure 61: Example 2: Impact of Override on Collaborations150

Figure 62: Example 3: Impact of Override on Collaborations151

Figure 63: Example 4: Impact of Override on Collaborations151

Figure 64: Simple Merging of Subjects...156

Figure 65: Merge with Corresponding Classes and Attributes......................157

Figure 66: Conflicts in Corresponding Elements ..158

Figure 67: Reconciliation with Subject Precedence159

Figure 68: Merging Corresponding Operations...161

Figure 69: Attaching Collaborations to Composition Relationship...............163

Figure 70: Merge Integration...165

Figure 71: Reconciliation Specification ..165

Figure 72: Collaborations for Merged Operations...168

vii

Figure 73: All corresponding operations referenced in attached collaborations .

169

Figure 74: Impact of Merge on Subjects ...171

Figure 75: Reconciling Conflicts in Subject Specifications173

Figure 76: Impact of Merge on Classifiers ..174

Figure 77: Breaking Well-Formedness Rules for Classifiers175

Figure 78: Reconciling Conflicts in Classes..176

Figure 79: Impact of Merge on Attributes ...178

Figure 80: Reconciling Conflicts in Attribute Specifications........................180

Figure 81: Example 1: Impact of Merge on Associations181

Figure 82: Example 2: Using Defaults to Reconcile Conflicts in Associations ..

182

Figure 83: Example 3: Impact of Merge on Associations183

Figure 84: Example 1: Impact of Merge on Generalizations.........................183

Figure 85: Example 2: Impact of Merge on Generalizations.........................184

Figure 86: Impact of Merge on Dependencies...185

Figure 87: Example 1: Impact of Merge on Constraints186

Figure 88: Example 2: Result of Merge on Constraints186

Figure 89: Example 3: Impact of Merge on Constraints187

Figure 90: Impact of Merge on Operations ...190

Figure 91: Operations involved in Multiple Compositions191

Figure 92: Merging Operations with Attached Collaborations192

Figure 93: Merging Operations with Different Parameters193

Figure 94: Merging Operations with Other Conflicting Properties193

Figure 95: Merging Operations with Pre/Post conditions194

Figure 96: Impact of Merge on Collaborations ...196

Figure 97: Merge Integration Example..199

Figure 98: Specifying Templates in a Composition Pattern202

Figure 99: Specifying Patterns of Cross-Cutting Behaviour204

Figure 100: Specifying Binding for Composition ...207

Figure 101: Output from Composition with Pattern Subject208

Figure 102: Composition Patterns Metamodel ..210

Figure 103: Design Subjects for SEE ..214

Figure 104: Kernel Subject Class Diagram ...214

Figure 105: Check Subject Class Diagram ..215

Figure 106: Evaluate Subject Class Diagram ..215

Figure 107: Display Subject Class Diagram..216

Figure 108: Log Subject Design ..216

Figure 109: Composition Relationship for Merging SEE Subjects218

Figure 110: Composed SEE Design (Class Details Only).............................219

Figure 111: Composed SEE Design with Relationships220

Figure 112: Applying Composition Pattern for Logging...............................221

viii

Figure 113: Evolving SEE with New Check Requirements223

Figure 114: Initial Assessment of Project Classes and Tasks........................228

Figure 115: Division of Tasks into Design Subjects229

Figure 116: Add Resource Class Diagram ..230

Figure 117: Add Resource Interactions ...230

Figure 118: Remove Resource Class Diagram and Interactions231

Figure 119: Order Resource Class Diagram ..232

Figure 120: Order Resource Interactions...232

Figure 121: Search Resource Class Diagram ..233

Figure 122: Borrow Book Class Diagram ...233

Figure 123: Borrow Book Interactions ..234

Figure 124: Return Book Class Diagram...234

Figure 125: Return Library Book Interactions ..235

Figure 126: Pay Fine Class Diagram and Interactions235

Figure 127: Synchronize Pattern Classes and Interactions............................236

Figure 128: Specify Composition of Resource Management Subjects238

Figure 129: Output of Composition of Resource Management Subjects238

Figure 130: Generated Interaction ...239

Figure 131: Specifying Exception to General Matching239

Figure 132: Specify Composition of Borrowing Subjects.............................240

Figure 133: Output of Composition of Borrowing Subjects..........................241

Figure 134: Specify Composition with Synchronization...............................241

Figure 135: Output of Composition with Synchronization242

Figure 136: Updating rules for borrowing...243

Figure 137: Order Received...244

Figure 138: Specify Composition of Borrow Checking Update....................244

Figure 139: Output of Composition of Borrow Checking.............................245

Figure 140: Specify Composition with Receiving Orders.............................246

Figure 141: Output of Composition with Receiving Orders..........................247

Figure 142: Partial UML Metamodel for Package ..269

Figure 143: Partial UML Metamodel for Classifiers.....................................270

Figure 144: Partial UML Metamodel for Attributes......................................270

Figure 145: Partial UML Metamodel for Operations270

Figure 146: Partial UMl Metamodel for Relationship...................................271

Figure 147: Partial UML Metamodel for Dependency..................................271

Figure 148: Partial UML Metamodel for Constraint272

Figure 149: Partial UML Metamodel for Collaborations272

Figure 150: Partial UML Metamodel for Collaboration Roles......................273

ix

Abstract

In practice, object-oriented design models have been less useful throughout

the lifetime of software systems than they should be. Design models are often

large and monolithic, and the structure of designs is generally quite different

from that of requirements. As a result, developers tend to discard the design,

especially as the system evolves, since it is too difficult to keep its relation-

ship to requirements and code accurate, especially when both are changing.

This thesis identifies a number of key, well-defined problems with current

object-oriented design methods and proposes new techniques to solve them.

The new techniques present a different approach to designing systems, based

on flexible decomposition and composition. The existing decomposition

mechanisms of object-oriented designs (based on class, object, interface and

method) are extended to include decomposing designs in a manner directly

aligning design with requirements specifications. Composition mechanisms

for designs are extended to support the additional decomposition mecha-

nisms. The approach closely aligns designs with both requirements specifica-

tions and with code. It is illustrated how this approach permits the benefits of

designs to be maintained throughout a system’s lifetime.

x

Preface

Statement of Contribution
The author based the ideas relating to extending the decomposition and com-

position capabilities of the UML on the previously published work on sub-

ject-oriented programming from IBM Research. Having worked on the

application of the ideas to the design phase for a time without contact with

the subject-oriented programming team, the foundations of the work took

notable shape when worked on collaboratively with the IBM Research soft-

ware composition group, led by Harold Ossher, at the IBM T. J. Watson

Research Center in Hawthorne, New York. In particular, the author worked

most closely with Peri Tarr in moulding the work, and defining its shape, at a

high level. This collaborative work culminated in a number of publications,

in particular [Clarke et al. 1999a]. Participation in a number of workshops in

that year explored subject-oriented design’s application to the problems of

multi-dimensional separation of concerns [Clarke et al. 1999b], software

evolution [Clarke et al. 1999c], [Clarke et al. 1999e] and separation of cross-

cutting concerns [Clarke et al. 1999d]. The author benefited greatly from dis-

cussions with many different people at these workshops.

In addition to those publications mentioned above, the author produced the

following publications prior to this thesis. Introductions to the changes made

to the UML metamodel to support composition relationships are contained in

[Clarke 2000a] and [Clarke 2000b]. A description of the composition patterns

model is contained in [Clarke 2000c]. Early ideas on how to resolve conflicts

between corresponding elements are described in [Clarke & Murphy 1998a].

Early ideas on composing design models were also presented at a number of

workshops, where again, the author benefited from discussions with many

different people. Position papers for these workshops are contained in

[Clarke & Murphy 1998b], [Clarke & Murphy 1998c] and [Clarke & Murphy

1997]. In all cases, this thesis should be regarded as the definitive account of

the work.

Preface Acknowledgements

xi

Acknowledgements
This thesis could not have happened without the support of many people.

First, John Murphy. As my supervisor, he provided constant encouragement

with his unwavering belief in me, and his willingness to provide me with the

freedom and guidance to pursue my ideas. As my friend, he has been unfail-

ingly supportive from the moment he put the idea of a PhD into my head.

I am indebted to Rob Walker (University of British Columbia) for his in-

depth reviews of early drafts of this thesis, and numerous detailed discus-

sions and suggestions about the finer points of the “subject” approach. I have

no doubt that this is a better thesis because of him. Thanks also to Renaat

Verbruggen (Dublin City University) for reviewing early drafts, and lending

a sense of reality to the approach.

I believe that the most pivotal and influential period was the three months I

was privileged to spend in the IBM T.J. Watson Research Center. I am grate-

ful to Harold Ossher for the opportunity (initiated by Stuart Kent from the

University of Kent) of working in his software composition group. While

there, I worked most closely with Peri Tarr in defining the “subject” ideas for

design. And I had a great time too! Thanks, Peri! I am also grateful to Bill

Harrison for igniting my early interest in subject-oriented programming, and

for numerous interesting discussions.

I received so much from many friends in IBM Ireland Ltd. Paul Murphy and

Greg Scollan provided advice and encouragement in the early stages. Pat O’

Connor provided funding for conference travel. Emer MacDowell, Paul

McDaid, Carol Smith and Donal Sullivan embroiled themselves in interesting

discussions about my work. John O’Sullivan and James Rush gave invaluable

information development tips. Thanks also to Regina, Catherine and Paula.

I am grateful to Andrew Butterfield from Trinity College, and Mel Ó Cin-

néide from University College Dublin, for organising seminars for me that

gave me the opportunity to discuss the ideas.

I was funded throughout by Dublin City University, and Padraic Moran.

Thanks to my family and other friends for putting up with me, and giving lots

of very useful advice, especially my parents, Ursula, Regina, Aidan, Niamh,

Anne, Gráinne, Paula, Winnie and Ian.

Finally, there is one person who was a constant support in every conceivable

way. I couldn’t even begin to itemise them. This thesis is dedicated to my

husband, Padraic, with all my love.

1

Chapter 1: Introduction

Software design is an important activity within the software lifecycle and its

benefits are well documented ([Booch 1994], [Coleman et al. 1994], [Cook &

Daniels 1994], [Jacobson et al. 1992], [Rumbaugh et al. 1991], [Shlaer &

Mellor 1988]). The benefits include early assessment of technical feasibility,

correctness and completeness of requirements; management of complexity

and enhanced comprehension; greater opportunities for reuse; and improved

extensibility. The object-oriented design paradigm has become the standard

approach throughout the software development process, but many issues

remain open for research into improving its effectiveness against these bene-

fits [Engels & Groenewegen 2000].

Current Issues with Object-Oriented Modelling

In [Engels & Groenewegen 2000], a broad range of issues associated with

current object-oriented modelling techniques are discussed. This work repre-

sents the most up-to-date view of areas requiring research. The issues are

dealt with in the context of the Unified Modeling Language (UML) as it is

the current standard language for object-oriented modelling, as defined by

the OMG [UML 1999]. Currently open issues range across a number of dif-

ferent categories: 1) issues associated with the UML as a language, with

assessments on its architecture, notation, completeness and semantics; 2)

issues with the modelling units of the UML and their interdependencies; 3)

issues with model composition techniques; 4) issues with the modelling proc-

ess, with consideration for consistency, coordination and communication; 5)

issues with the reviewing techniques available, for example, animation, sim-

ulation and analytical techniques; and 6) issues with embedding object-ori-

ented modelling into the full software development process, with round-trip

engineering and support tools among the cited concerns.

The Problems Addressed in this Thesis

This thesis addresses a very important subset of the issues raised in the afore-

mentioned paper. In particular, the modularisation (or decomposition) capa-

bilities of object-oriented modelling units, and object-oriented model

In t roduct ion

2

composition capabilities, are addressed. As can be seen by the list of issues

raised, many of the benefits of software design are not being realised within

the object-oriented paradigm. Within this thesis, the need to realise more of

the benefits of software design is an ultimate goal. Problems with current

techniques are assessed based on their capabilities relating to management of

complexity and enhanced comprehension, greater opportunities for reuse, and

improved evolvability. As illustrated in this thesis, modularisation and com-

position capabilities are key to realising these benefits, and therefore become

the focus for the research described in this thesis.

First, let us consider modularisation. Object-oriented modelling modularisa-

tion is based on the notion of class and object, which encapsulate structural

properties defined by attributes and behavioural properties defined by opera-

tions and methods. This thesis illustrates that the limited modularisation

catered for by the object-oriented paradigm is insufficient to support readily

understandable models. This insufficiency impacts the ease with which mod-

els may change as the design evolves, and also impacts the opportunities for

reuse.

Failure of Existing Approaches

For example, a brief look at the limited modularisation capabilities of the

object-oriented paradigm shows that the units of modularisation are structur-

ally different from the units of modularisation of requirements specifications

(see “Chapter 2: Motivation” on page 11 for more details). Requirements are

specified based on the features and capabilities required of the software sys-

tem. Evidence of the structural difference between this kind of modularisa-

tion and of object-oriented classes and methods is manifested in how the

design of a single requirement generally needs multiple classes and methods

to support that requirement, and also, how an examination of most object-ori-

ented classes demonstrates that they support multiple different requirements.

From a comprehension point of view (one of the key goals for software

design), this means that understanding a single requirement needs an under-

standing of multiple classes across a design, and understanding a single class

needs comprehension of multiple requirements.

So, what about extensibility, another of the key goals? Consider a situation

where a new requirement is received. Adding the design of this new require-

ment may be as simple as adding a new class, with no impact on any existing

class, but it is easy to imagine that this is often not the case (examples are

illustrated in this thesis). In many cases, designing support for a new require-

In t roduct ion

3

ment will involve changing many of the existing classes and methods. This

means that the details of all the existing classes, and the impact of all those

changes must be clearly understood. This level of invasive change to the

existing design is not compatible with the goal of a design that is easily

changeable.

Finally, how does standard object-oriented modularisation fare when it

comes to re-use? The structural mismatch previously discussed between units

of modularisation in requirements specifications and in object-oriented spec-

ifications noted that an examination of a class demonstrates support for mul-

tiple different requirements. Classes, therefore, often include much more

functionality than any given client would use, which decreases comprehensi-

bility and, potentially, usability.

Other approaches exist that improve the modularity of object-oriented

designs. For example, design patterns attempt to isolate different parts of a

design into separate units, thereby attempting to improve understandability

and extensibility [Gamma et al. 1994]. However, as illustrated in “Chapter 2:

Motivation” on page 11, and indeed, discussed for each of the patterns in

[Gamma et al. 1994], design patterns have their own difficulties. For exam-

ple, usage of each pattern must be pre-planned and included in the design, as

retrofitting any pattern once the design is complete may require multiple

changes across the existing design. This is a problem, as it is not possible to

anticipate all the changes that may be required of a system, and therefore to

anticipate the best patterns to be included in a design.

In “Chapter 3: Related Work” on page 37, other approaches to improving

modularisation across the software development lifecycle are examined.

There are some approaches discussed that yield ideas that are adapted for the

research documented in this thesis, and other approaches which have limita-

tions that influence the direction of this research.

In this thesis, composition is discussed in the context of the capabilities

required to support new modularisation (or decomposition) approaches.

Proposed Solution

This thesis proposes a new approach to object-oriented design that extends

the modularisation capabilities currently available. Current object-oriented

modelling techniques support decomposition of design elements by class,

attribute, operation and interface. Groupings of classes into packages are

currently available, where a package is simply a “grouping of model ele-

ments” [UML 1999]. As discussed previously, the structural difference

In t roduct ion

4

between the way that requirements are specified/modularised and the way

that object-oriented designs are specified/modularised causes difficulties in

comprehension, reuse and extensibility. This thesis directly addresses this

structural mismatch by adding decomposition capabilities that support struc-

tural matching of design models with individual requirements specifications.

Corresponding composition capabilities are included in this new approach,

where separate design models may also be integrated.

The approach to modularisation and composition described in this thesis is

primarily based on a similar approach to modularisation and composition of

object-oriented programming models, called subject-oriented programming

[Ossher et al. 1996]. Throughout this thesis, the research described will be

referred to as the Subject-Oriented Design Model, or subject-oriented design.

Decomposition The basis of the subject-oriented design approach to decomposition is that

separate object-oriented design models may be specified for each individual

requirement. This has two important implications:

• Overlapping Specifications Supported: Different requirements may exist

that have an impact on the same core concepts (for example, objects) of the

system. It is this level of overlapping of requirements that is one of the

causes of the problems with comprehensibility, extensibility and reuse dis-

cussed previously in object-oriented models. That is, an examination of

many classes in object-oriented models require an understanding of multi-

ple different requirements in order to fully understand each class, and

indeed, to understand multiple collaborating classes. The subject-oriented

design model recognises and explicitly caters for this level of overlap in

the different design models for each requirement. This is achieved by

allowing each separate design model to include the specification of any

core concepts only as suits the requirement under design by that design

model. Composition capabilities supported by this new approach cater for

identifying overlapping concepts, integrating them, and handling any con-

flicts.

• Cross-cutting Specifications Supported: There are also many kinds of

requirements that will have an impact across the full design of a software

system. For example, a requirement for distributed objects has an impact

on a potentially large proportion of the objects of a computer system. Such

requirements are referred to as cross-cutting [Kiczales et al. 1997], since

support for such requirements must be included across many different

objects in a system. With the approach to decomposition proposed in this

In t roduct ion

5

thesis, cross-cutting requirements may also be designed separately, with

composition capabilities handling their integration with other system

objects as appropriate.

Standard object-oriented design language constructs may be used within the

individual design models modularised to support separate requirements. In

other words, the new design approach proposed within this thesis does not

require any new notations for the separate design models.

Composition Corresponding composition capabilities are required to support the new kinds

of decomposition proposed in this thesis. In order to verify the separated

design models, and understand the implications of all the design models for

the full system, composition of the design models is required. This thesis

defines a new design construct, called a composition relationship that sup-

ports the specification of how design models should be composed. With com-

position relationships a designer can:

• Identify and specify overlaps: Where decomposition allows overlaps in dif-

ferent design models, corresponding composition capabilities must support

the identification of where those overlaps are. In order to integrate separate

design models, overlapping design elements (or elements which corre-

spond and should therefore be integrated into a single unit) are specified

with composition relationships.

• Specify how models should be integrated: Design models may be integrated

in different ways, depending on why they were modularised in a particular

way. For example, if different design models were designed separately to

support different requirements, a composed design where all the require-

ments are to be included might be integrated with a merge strategy - that is,

all design elements are relevant to the composed design. Alternatively, if a

design model contains the design of a requirement that is a change to a

requirement previously designed (for example, a business process has

changed), then that design model might replace the previous design. In this

case, integration with an override strategy is appropriate, where existing

design elements are replaced by new design elements. These two particular

integration strategies are described in detail in this thesis (see “Chapter 6:

Override Integration” on page 127 and “Chapter 7: Merge Integration” on

page 155). However, other integration strategies are possible, and so this

thesis discusses how new integration strategies may be added to this

approach.

In t roduct ion

6

• Specify how conflicts in corresponding elements are reconciled: For some

integration strategies, where some corresponding elements are integrated

into a single design element, (merge integration is an example of such a

strategy) conflicts between the specifications of those corresponding ele-

ments must be reconciled. Composition relationships support the specifica-

tion of different kinds of reconciliation possibilities - for example, one

design model may take precedence over another, or default values should

be used.

Composition relationships are a new kind of design construct. This thesis

uses the UML as the sample object-oriented design language on which to

illustrate the decomposition and composition capabilities of the model

described in this thesis. As such, extensions to the UML metamodel to incor-

porate this new design construct are included in “Chapter 5: Composition

Relationship: An extension to the UML Metamodel” on page 109.

Composition

Patterns

For design models that support cross-cutting requirements (i.e., those

requirements that have an impact on potentially multiple classes in the

design), composition of those models with other models is likely to follow a

pattern. In other words, a cross-cutting requirement has behaviour that will

affect multiple classes in different design models in a uniform way. For these

kinds of requirements, this thesis defines and discusses a mechanism

whereby this common way of composing the cross-cutting design elements

may be defined as a composition pattern.

Solving the Problems

In [Engels & Groenewegen 2000], two of the issues with object-oriented

modelling that are discussed relate to modularisation (or decomposition) of

models, and composition of models. This thesis illustrates that limitations

with current modularisation possibilities are the cause of difficulties with

comprehensibility, extensibility and reuse of object-oriented designs. The

limitations identified and illustrated in “Chapter 2: Motivation” on page 11

are directly associated with the structural mismatch between the modularisa-

tion of requirements specifications and the modularisation of object-oriented

designs.

The subject-oriented design model described in this thesis removes this limi-

tation by adding the capability of decomposing design models in a manner

that supports the direct structuring of design models with requirements spec-

ifications. The approach is simple, as it means that standard object-oriented

design techniques may be used for the resulting individual design models.

In t roduct ion

7

The primary extension to the standard is a new composition relationship that

supports the composition of those models that contain the design of different

requirements. So, how does this model solve the problems that current modu-

larisation limitations cause?

Comprehensi-

bility

As previously discussed, comprehensibility difficulties relating to the struc-

tural mismatch between modularisation in requirements specifications and

modularisation in object-oriented models are two-fold. First, in order to

understand how a particular requirement is designed, multiple design ele-

ments must be examined and understood in full. Second, in order to under-

stand a particular object-oriented design element (for example, a class),

multiple requirements must be examined and understood in full. This is illus-

trated in “Chapter 2: Motivation” on page 11. The subject-oriented design

model proposed in this thesis eases this comprehensibility problem by having

separate design models for each requirement. Understanding the design of

one requirement in full requires an understanding of only those design ele-

ments that directly support that requirement. An examination of a single

design element requires a detailed knowledge of only one requirement. This

approach, as illustrated throughout this thesis, has a positive impact on the

comprehensibility of design models.

Extensibility As for extending and changing a system’s design, this thesis also illustrates

how this can be achieved in a manner that does not require direct manipula-

tion of existing designs, and therefore is simpler as a result. Each extension

(for example, as a result of a new requirement) or change (for example, as a

result of a change to business processes) may be designed in a separate

design model, with its composition with existing designs specified with a

composition relationship. In “Chapter 2: Motivation” on page 11, there is a

discussion of the negative impact of having to change designs directly when

new requirements are received. In “Chapter 9: Applying the Subject-Oriented

Design Model” on page 213, there is an illustration of the improvements to

extensibility with the new approach described in this thesis.

Reuse As previously discussed, an important impediment to reusing design models

is the tangling of the design for multiple requirements within design ele-

ments. This results from the structural mismatch of the modularisation

approaches in requirements specifications and object-oriented models. If a

need is identified for reusing the design of some particular requirement,

unwanted design elements are part of the deal, impacting development and

testing. With the approach described in this thesis, however, each require-

In t roduct ion Thesi s Cont ributions

8

ment is supported by a single design model, and therefore the reuse potential

of that design model is considerably enhanced.

1.1. Thesis Contributions
The previous section discusses the problems with current object-oriented

design techniques addressed in this thesis, introduces the approach to solving

these problems that is the basis of thesis, and summarises how this new

approach to object-oriented design solves these problems. In this section, a

succinct summary of the contributions of the research described in this thesis

is provided. They are:

• Extensions to Object-Oriented Modularisation Capabilities

The units of abstraction and decomposition in current object-oriented designs

tend to focus on interfaces, classes and methods. This thesis describes an

additional unit of decomposition designed to align object-oriented designs

with requirements specifications. This approach to decomposition has been

previously documented and implemented at the code level in the work on

subject-oriented programming [Harrison & Ossher 1993], [Ossher et al.

1996]. This thesis applies the subject approach to the Unified Modeling Lan-

guage [UML 1999], which has not previously been researched.

Important implications of modularisation in this manner are that:

• Overlapping specifications are supported

• Cross-cutting specifications are supported

• Extensions to Object-Oriented Model Composition Capabilities

The subject-oriented design model introduces composition relationships to

UML which specify how designs should be composed. A composition rela-

tionship between design subjects (and component design elements) indicates

correspondences between elements in subjects that describe overlapping con-

cepts, specifies how mismatches between corresponding elements are to be

resolved with reconciliation specifications, and how design subjects are to be

understood as a whole with integration specifications. The full semantics of

the subject-oriented design model are described in this thesis.

• Extensions to the UML Metamodel to Support Design Model Composition

Composition specification requires key extensions to the UML that are

described in this thesis. The semantics of the UML itself have been specified

at the meta-level in [UML 1999], with the description of a metamodel . A

metamodel “defines a language for specifying a model” [UML 1999] - that is,

In t roduct ion The sis S tructure

9

it defines all the design language constructs (for example, Class, Operation,

Attribute etc.) that are available for specifying a design model. Since a com-

position relationship is an additional kind of design language construct

required to support subject-oriented design, its semantics are defined within

the UML metamodel as defined in [UML 1999] (see “Chapter 5: Composition

Relationship: An extension to the UML Metamodel” on page 109). This is

achieved with:

• meta-class models illustrating the details of composition relationships

• well-formedness rules specifying constraints for composition relationships

• detailed descriptions of the semantics of composition

• Composition Patterns for Composing Collaborative Behaviour Supported

Sophisticated specification of the behaviour of operations that are merged

from different design models is possible. This is supported with the ability to

attach collaborations to composition relationships with merge integration. In

particular, patterns of collaborative behaviour may be identified and reused.

A requirement that may have a behavioural impact across the full design may

be encapsulated, with this impact specified as a pattern. Pattern composition

relationships may be specified when the behaviour needs to be reused (see

“Chapter 8: Composition Patterns” on page 198).

1.2. Thesis Structure
Chapter 2 Chapter 2 motivates the need for an approach such as subject-oriented design

by describing problems associated with current approaches to object-oriented

design. The focus is on problems with the use of UML, and UML with design

patterns [Gamma et al. 1994].

Chapter 3 Chapter 3 discusses the current state of software engineering from the point

of view of providing a context for subject-oriented design. Different

approaches to requirements specifications, object-oriented design, object-ori-

ented programming and database management systems are discussed.

Chapter 4 Chapter 4 defines the foundation for the subject-oriented design model.

There is a discussion of the approach to decomposing design models and the

approach to specifying how design models may be composed using composi-

tion relationships, with an introduction to the rules associated with their

usage. There is also an analysis of the output of a composition process - the

In t roduct ion The sis S tructure

10

composed design models, and a discussion on the usage of the subject-ori-

ented design model.

Chapter 5 Chapter 5 defines the syntax and semantics of the subject-oriented design

model against the UML metamodel. This includes meta-class diagrams of the

constructs for composition relationships, well-formedness rules covering

constraints on composition relationships, and descriptions of the semantics of

composition. This chapter includes an abstract specification of how integra-

tion may be specified with composition relationships, but excludes details of

any specific integration strategies.

Chapter 6 Chapter 6 defines the syntax and semantics of override integration. This

includes a meta-class diagram illustrating the constructs of override integra-

tion in the context of the composition relationship constructs in Chapter 5,

additional well-formedness rules for composition relationships with override

integration specified, and a detailed description of the impact of override

composition on each of the design constructs supported in this thesis.

Chapter 7 Chapter 7 defines the syntax and semantics of merge integration. This

includes meta-class diagrams illustrating the constructs of merge integration

in the context of the composition relationship constructs in Chapter 5, addi-

tional well-formedness rules for composition relationships with merge inte-

gration specified, and a detailed description of the impact of merge

composition on each of the design constructs supported in this thesis.

Chapter 8 Chapter 8 discusses how patterns of composition may occur, and presents a

solution for specifying patterns of cross-cutting behaviour based on a combi-

nation of the subject-oriented design merge integration model, and UML

templates. These patterns are called composition patterns.

Chapter 9 Chapter 9 describes the application of subject-oriented design to the exam-

ples in Chapter 2, showing how those problems are ameliorated with subject-

oriented design.

Chapter 10 Chapter 10 demonstrates the use of the subject-oriented design model using a

Library Management System case study.

Chapter 11 Chapter 11 concludes and suggests possibilities for future work.

11

Chapter 2: Motivation

This chapter motivates the need for a new approach to object-oriented design.

With current software engineering techniques, a structural mismatch exists

between the specification paradigms across the software development lifecy-

cle. This structural mismatch is the root of the problems described in this

chapter. The problems exist because of a scattering and tangling effect that

is the mismatch’s natural outcome. That is, support for a single requirement

touches multiple classes in the object-oriented design and code (scattering),

and a single class in the object-oriented design and code may support multi-

ple different requirements (tangling). The new approach to object-oriented

design proposed by this thesis adds decomposition capabilities to the object-

oriented design model that support structural matching to requirements,

thereby reducing scattering and tangling.

First, this chapter examines the specification paradigms of the requirements,

analysis/design and implementation phases of the development lifecycle. The

different paradigms are compared and a structural mismatch is found.

It is then illustrated how the structural mismatch causes scattering and tan-

gling properties. It is shown that these properties result in a negative impact

on the initial development and evolution phases of software development.

The illustration is based on working with a small example and uses the cur-

rent OMG standard language for object-oriented design (UML), together with

design patterns (design improvement techniques, [Gamma et al. 1994]). The

impact of the structural mismatch is assessed based on criteria used by Par-

nas in [Parnas 1974].1 These criteria are:

Evaluation Criteria • Product flexibility: The possibility of making drastic changes to one part

of the system, without a need to change others.

1. Parnas considered that these criteria were the benefits to be “expected of modular pro-
gramming”. These benefits remain good goals for high-quality software engineering.

Motivat ion Speci fi cat ion Para digms A cros s L i fecycle

12

• Comprehensibility: The possibility of studying the system one part at a

time. The whole system can therefore be better designed because it is bet-

ter understood.

• Managerial: The length of development time, based on whether different

groups can work on different parts of the system with reduced need for

communication.

The expected benefits to software design discussed in “Chapter 1: Introduc-

tion” on page 1 (comprehensibility, extensibility and reuse) are subsumed

and extended by Parnas’ criteria. Extensibility is discussed within “product

flexibility” and reuse is discussed within “comprehensibility”.

The problems found motivate the need for a different design approach. A new

design approach is proposed that diminishes the difficulties described and is

the central tenet of this thesis.

2.1. Specification Paradigms Across Lifecycle
This section compares the specifications of requirements, object-oriented

analysis/designs, and object-oriented implementations for software systems.

The comparison is made based on one central theme - how the problem is

divided into smaller parts.

As with any large, complex problem, breaking the problem into smaller parts

makes it easier to understand [Pólya 1957]. Software engineering is no dif-

ferent in this respect, and so the specifications from each phase divide the

whole problem into smaller parts. This section examines the selection of the

parts for division in each phase, and the motivations for those selections. It is

illustrated that since the motivations for selection are different, the resulting

divisions are different, causing a structural mismatch in the specifications.

The process of developing software, and of changing software over its life-

time, has a number of different basic phases. These are:

Software Phases • Requirements Specification: The output of this phase is a documentation of

what the software system is expected to do [Jacobson et al. 1999]. The

needs and requirements of the potential end-users of the software system

are elicited and documented. The business processes the software system

must support are examined, and the requirements to support those business

processes are documented. The technical environment and technical con-

straints within which the software system must run are assessed and docu-

mented. All existing software systems with which the new software system

Motivat ion Speci fi cat ion Para digms A cros s L i fecycle

13

must interact are identified, and the requirements for their interaction doc-

umented. Requirements specifications tend to be documented in a language

which can be understood by the eventual users of the system. This is gener-

ally a natural language.

• Analysis and Design: The analysis phase refines and structures the require-

ments, providing a better understanding of those requirements [Jacobson et

al. 1999]. By refining the requirements into more detail, the analysis proc-

ess attempts to tease out any ambiguities and inconsistencies associated

with the requirements specifications, and attempts to ensure that the com-

plete set of requirements for the computer system has been defined2. This

process is performed with the involvement of the business domain experts,

and the people who define the technical requirements, in cooperation with

the software analysts. The requirements are structured and documented in

the language of the developer. The design phase shapes the system, provid-

ing sound and stable architectures and creates a blueprint for the imple-

mentation [Jacobson et al. 1999]. Detailed design decisions are made and

documented (for example, class structure/behaviour; how the system

should handle performance, distribution, concurrency - indeed, all techni-

cal concerns; subsystem separation for implementation; etc.).

• Implementation: Starting from the design specifications, the system is

implemented in terms of source code, scripts, binaries and executables

[Jacobson et al. 1999].

• Test: The result from the implementation is verified against the require-

ments. A test team develops a set of test cases that are based on the

requirements specifications. The test cases are run against the software to

verify that all the requirements are met by the software.

Requirements The usage of software systems in society is ever increasing. Individuals, and

groups of individuals (for example, clubs or businesses), have different needs

for software systems from both a business and personal perspective. The

vocabularies and processes used to describe these needs are wide and varied.

This section examines:

2. Without the use of a formal description technique, it is difficult to test or measure the
completeness and lack of ambiguity/inconsistency of analysis specifications. Without
the ability to test and measure these properties, informal analysis techniques are there-
fore assumed to be, to some extent, ambiguous, inconsistent and incomplete.

Motivat ion Speci fi cat ion Para digms A cros s L i fecycle

14

1. the differences in the vocabularies used by various approaches to label

individual requirement “units” (e.g. feature, functionality, service), and

also,

2. the different approaches to dividing up a requirements specification into

smaller parts. There are many terms associated with multiple users of a

software system using it in different ways (e.g. role, view, perspective,

responsibility). Each of these have an influence on the decision-making

process associated with dividing the requirements specification into

smaller parts, and so these factors are considered.

“Units” in Require-

ments Specification

First, a look at how individual units in a requirements specification are

labelled. There are many words used to describe what a computer system is

supposed to do: “requirement”, “feature”, “functionality”, “facility” and

“service”. In order to give a context for the vocabulary, the dictionary [OED

1989] definitions for each of these terms are as follows:

Different requirements engineering processes use different vocabularies to

describe units of interest to the requirements gatherer. For example, the Uni-

fied Software Development Process, described in [Jacobson et al. 1999],

refers to requirements, features and functionality, but in essence, describes

the process of capturing requirements as “Use Cases”. A use case delimits

the system from its environment; outlines who and what will interact with the

system, and what functionality is expected from the system; and captures and

defines in a glossary common terms that are essential for creating detailed

descriptions of the system’s functionality.

Modelling domains in a feature-oriented way, integrated with a use case

approach is described in [Griss et al. 1998]. The purpose of feature-oriented

domain analysis (FODA) is “... to capture in a model the end-user’s (and cus-

tomer’s) understanding of the general capabilities of applications in a

domain”, which, the point is made, “sounds like use-case modelling”. How-

Requirement: “need; depend for success, fulfilment, etc. on; wish to have”

Feature: “distinctive or characteristic part of a thing; part that arrests

attention; important participant in”

Function: “mode of action or activity by which a thing fulfils its purpose”

Service: “provision of what is necessary for due maintenance of a thing

or property”

Facility: “equipment or physical means for doing something”

Motivat ion Speci fi cat ion Para digms A cros s L i fecycle

15

ever, the integration of the two approaches is motivated by the difference of

use-case modelling and feature modelling serving different purposes. The use

case model is user-oriented, providing the “what” of a domain: a complete

description of what systems in the domain do. The feature model is reuser

oriented, providing the “which” of the domain: which functionality can be

selected when engineering new systems in the domain.

Features, described as “an optional unit or increment of functionality” in

[Zave 1999], are also at the core of the Distributed Feature Composition

(DFC) architecture described in [Jackson & Zave 1998]. The fundamental

idea of the DFC architecture for the telecommunications domain is to treat

features as independent components through which calls are routed from

caller to callee. Examples of features in the telecommunications environment

are “call-waiting”, or “3rd-party conference”.

Services and facilities are part of the specification of the OMG work on

CORBA [Mowbray & Zahavi 1995], [Siegel 1996]. Examples of services a

system supporting distributed objects, and conforming to the CORBA stand-

ard, should provide are an object naming service and an object event service.

Examples of common facilities provided for by CORBA are user interface

facilities, and data interchange facilities.

Motivation for

Choosing Units

From these definitions, and the approach of different requirements specifica-

tion techniques, requirements for computer systems can be seen to be state-

ments of what the computer system should do. The opinions of what computer

systems should do, even opinions of the same computer system, are depend-

ent on the people who will use the system, and what they will use the system

for. Different kinds of people have different needs - and again many different

terms are used to describe the different motivations, for example: view; per-

spective; role. As before, in order to give a context for the vocabulary, the

dictionary [OED 1989] definitions for each of these terms are as follows:

Processes for requirements gathering take different approaches that are based

on the motivations of the end-users of the computer system. Those motiva-

View: “manner of considering a subject, opinion, mental attitude;

intention, design”

Perspective: “aspect of a subject and its parts as viewed by the mind; view”

Role: “one’s function, what person or thing is appointed or expected to

do”

Motivat ion Speci fi cat ion Para digms A cros s L i fecycle

16

tions depend on the views, the perspectives, the roles or the responsibilities

of the end-users. Views in requirements engineering are the focus in

[Nuseibeh et al. 1994], where views are described as allowing “development

participants to address only those concerns or criteria that are of interest,

ignoring others that are unrelated”. A framework for requirements elicitation

based on the capture of multiple perspectives is described in [Easterbrook

1991], while the roles end-users play under different domain-dependent cir-

cumstances are the motivation behind role-modelling from [Reenskaug et al.

1995].

Output of Require-

ments Phase

A requirements specification, therefore, contains descriptions of required

features, services, functions and facilities. Potentially, each individual unit

may be described from different views and perspectives, and to support mul-

tiple roles.

Object-Ori-

ented Analy-

sis and

Design

In this section, the units of the object-oriented analysis and design paradigm

are examined, together with the typical motivations for their specification.

From the early to the mid 1990’s, there was a so-called “methods war”

[Jacobson 1994], which resulted in “26 different object-oriented methods

described by OMG’s special interest group on analysis and design (SIGAD)”.

The proliferation of multiple methods prompted numerous studies into the

differences between them, for example [deChampeaux & Faure 1992], [Car-

michael 1994], [Graham 1993], [Hutt 1994]. These studies illustrate differ-

ences between methods, but for the purposes of comparison of the basic units

of decomposition common to the object-oriented paradigm, it is sufficient to

consider them collectively, as the methods generally agree in this regard. The

most basic units of decomposition in object-oriented analysis and design

methods in general are classes and objects [Wirfs-Brock et al. 1990]. Classes

and objects encapsulate further units describing structural and behavioural

elements of the system, namely attributes, operations, interfaces and meth-

ods. Many different methods have slightly different definitions of these

terms, but essentially, the notions are the same.

“Units” in Object-

Oriented Specifica-

tion

Some examples of how each of the units are described in some of the differ-

ent methods are:

Motivat ion Speci fi cat ion Para digms A cros s L i fecycle

17

Motivation for

Choosing Units

The motivations associated with the choice of “object” as the basic decompo-

sition unit in the object-oriented software paradigm was to model “real

world” objects, thereby making software systems easier to develop and

understand. Since everyday living involves dealing with all kinds of objects,

Structural Units

Class: A description of a set of objects that share the same attributes, operations, relation-

ships and semantics [Booch et al. 1998]

Objects which share the same behaviour are said to belong to the same class. A

class is a generic specification for an arbitrary number of similar objects [Wirfs-

Brock et al. 1990].

A description of a group of objects with similar properties, common behaviour,

common relationships and common semantics [Coleman et al. 1994]

Object: A concrete manifestation of an abstraction; an entity with a well-defined boundary

and identity that encapsulates state and behaviour; an instance of a class [Booch et

al. 1998].

A concept, abstraction or thing with crisp boundaries and meaning for the problem

at hand [Coleman et al. 1994].

The “is a” abstraction, representing a part of a system. An object has identity and

attributes and is encapsulated so that the messages it sends and receives constitute

all its externally observable properties [Reenskaug et al. 1995]

Attribute: A named property of a class that describes a range of values that instances of the

property may hold [Booch et al. 1998].

A data value held by the objects in a class [Coleman et al. 1994].

The information an object may store [Reenskaug et al. 1995].

Behavioural Units

Operation: The implementation of a service that can be requested from any object of the class

in order to affect behaviour [Booch et al. 1998].

A function or transformation that may be applied to or by objects in a class [Cole-

man et al. 1994].

A piece of code triggered by a message [Cook & Daniels 1994].

Interface: A collection of operations that are used to specify a service of a class or a compo-

nent [Booch et al. 1998].

Method: The implementation of an operation [Booch et al. 1998], [Coleman et al. 1994].

Motivat ion Speci fi cat ion Para digms A cros s L i fecycle

18

the concept of working with objects at the software specification level is

therefore familiar and intuitive.

note: Following the methods war of the early 1990’s, a collaborative effort

started which resulted in a consortium of companies agreeing on a single sub-

mission to the OMG for an object-oriented analysis and design modelling

language - the Unified Modelling Language (UML) [UML 1999]. Given the

general consensus associated with the usage of UML as the standard object-

oriented modelling language (and endorsed as a standard by the OMG), this

thesis will hereafter refer to the semantics definition of the UML only. Anal-

ysis and design are considered throughout the thesis as object-oriented mod-

elling. Though often referred to within the thesis as designs, the models

considered are any that are written using the UML.

Object-Ori-

ented Imple-

mentation

The units of decomposition in object-oriented programming technologies

such as C++ [Stroustrup 1991] and Java™ [Gosling et al. 1996], directly and

deliberately match the the units at the design level described in the previous section.

The direct matching is clear from each of the object-oriented programming languages’

construct support for the notions of: class; the encapsulation of attributes and methods

with class; interface; and the instantiation of classes to produce runtime objects. The

deliberate matching is natural for the purposes of structuring object-oriented code with

the same decomposition units as object-oriented designs, thereby providing direct

traceability between the two phases.

For the purposes of this examination of specification paradigms across the

software development lifecycle, the specification paradigms of the object-

oriented design and object-oriented implementation phases are therefore con-

sidered as the same.

Comparison The requirements specification paradigm contains the notions of features,

capabilities, services, functions etc. - with generally no mention of objects

and interfaces or any of the units of interest in the object-oriented design

domain. The object-oriented paradigm contains the notions of objects and

interfaces etc. - with no mention of features, or requirements, or any of the

units of interest in the requirements domain. That is the mismatch.

The units of interest in the requirements domain are structurally fundamen-

tally different to the units of interest in object-oriented designs. Thus,

requirements units of interest generally are not, and cannot readily be, encap-

sulated in the design. This is illustrated in “2.3. SEE System Design, Version

1.0” on page 22.

Motivat ion Example: Software Engineering Envi ronme nt

19

In the previous section, there is a discussion about how object-oriented

designs structurally match object-oriented code, providing a measure of

traceability between the two phases. This necessitates a transition from “fea-

ture” (or function or....) concerns in the requirements phase to the object/

class concerns of the object-oriented paradigm at the design phase. In achiev-

ing a close tie to code, object-oriented design loses potential for a close tie

with requirements.

This point is particularly important. In general, most design paradigms are

not sufficiently powerful to permit designs to match both requirements and

code - they allow designs to align with either the requirements or the code,

but not both.

The evidence of the negative impact of the structural mismatch between

requirements specifications and object-oriented designs can now be pre-

sented. The next section introduces the example to be used that will show this

evidence. The following section illustrates how the mismatch affects the ini-

tial development of the system (“2.3. SEE System Design, Version 1.0” on

page 22). The negative impact on the evolution of that system is described in

“2.4. Evolving the SEE System Design” on page 29.

2.2. Example: Software Engineering Environment
This section presents a running example that is used to illustrate the prob-

lems that motivates this research. The example involves the construction and

evolution of a simple software engineering environment (SEE) for programs

consisting of expressions. A simplified software development process is

assumed, consisting of informal requirements specification in natural lan-

guage, design in UML, and implementation in Java.

Requirements
Specification

The required SEE supports the specification of simple expression programs.

The following initial set of tools are needed to work with expressions:

• an evaluation capability, which determines the result of evaluating expres-

sions;

• a display capability, which depicts expressions textually; and

• a check capability, which optionally determines whether expressions are

syntactically and semantically correct.

The SEE should also permit optional logging of operations.

Motivat ion Example: Software Engineering Envi ronme nt

20

Supported

Grammar for

Expressions

The initial software system supports a small grammar for expressions as fol-

lows:

Expression := VariableExpression | NumberExpression | Plus-

Operator | MinusOperator | UnaryPlusOp | UnaryMinusOp

PlusOperator := Expression ‘+’ Expression

MinusOperator := Expression ‘-’ Expression

UnaryPlusOp := ‘+’ Expression

UnaryMinusOp := ‘-’ Expression

VariableExpression := (‘A’| ‘B’ | ‘C’ | ... | ‘Z’) +

NumberExpression := (‘0’ | ‘1’ | ‘2’ | ... | ‘9’) +

This grammar is very simple and small to effectively illustrate two problems:

first, even with a small grammar, the design of a supporting SEE gets

unwieldy and second, adding new constructs to the grammar, for example a

product or assignment operator, requires invasive changes to the design.

Expressions

as Abstract

Syntax Trees

In this thesis, the SEE design in all examples represents expressions as

abstract syntax trees (AST). Each type of AST node is represented as a class

as shown in Figure 1.

Further examination of the nodes of the tree for this grammar show that there

may be common properties between different nodes which could be

abstracted to superclasses. For this example, the PlusOperator and the

MinusOperator have similar properties in that they both have left and

right operands, which could be abstracted to a class called BinaryOpera-

tor. Also, the UnaryPlusOp and the UnaryMinusOp are similar in that

they both only have one operand, which could be abstracted to a class called

UnaryOperator. Finally, NumberExpression and VariableEx-

pression are literals, and so could be abstracted to a class called Lit-

eral. These classes are illustrated in Figure 2.

Figure 1: AST Nodes as Classes

Motivat ion Example: Software Engineering Envi ronme nt

21

The tree structure nature of the AST is supported using the Composite pattern

from [Gamma et al. 1994]. The intent of the Composite pattern is to “com-

pose objects into tree structures to represent part-whole interactions”. The

idea is to provide a uniform interface to the objects within such a tree struc-

ture, be it a leaf or a composite object. Composite is centred around an

abstract class that represents both primitives (in the SEE case, literals) and

their containers (in the SEE case, operators, which “contain” one or two

expressions). From the pattern, a container object maintains an aggregation

relationship [Booch et al. 1998] with its parts. As shown in Figure 3, the

abstract class that is used to represent literals and operators is called

Expression. Since both UnaryOperator and BinaryOperator are

containers of expressions, they maintain aggregation relationships with

Expression.

The basic structure of this design recurs in all examples of designs for a soft-

ware engineering environment supporting expressions.

Figure 2: AST Classes with Superclasses

Figure 3: Composite Pattern for AST

Motivat ion SEE System De sign, Ver sion 1.0

22

The next two sections show evidence of the negative impact of that structural

difference on a small example object-oriented system design, affecting first

the initial development and then the evolution of that system.

2.3. SEE System Design, Version 1.0
In this section, the design is considered as “Version 1.0” (the “first release”)

of the SEE system. In later sections, the impact of evolving the system as a

result of adding new requirements is assessed.

The requirements specification in “Requirements Specification” on page 19

identifies several requirements that must be realised in the design: expression

support, the evaluation tool, display tool, check tool, and a logging utility

that can be included or excluded from the environment.

There may, of course, be many approaches to the design and implementation

of such a system, from both a management and technical point of view. Tech-

nically, a simple design is illustrated here. In “Evolving the SEE System

Design” on page 29, some general kinds of problems that other approaches

produce (notably, those that use design patterns) are discussed. From a man-

agement perspective, let us assume that the project manager recognises that a

team member is knowledgeable in the area of expressions, and design pat-

terns, and gives him the task of designing the core expression environment.

This designer designs an expression as an abstract syntax tree, as described

in “Expressions as Abstract Syntax Trees” on page 20, which, with its struc-

tural and accessor properties, is illustrated in Figure 4.

Figure 4: Core Expression Design in UML

Motivat ion SEE System De sign, Ver sion 1.0

23

The project manager also has an expert in the syntax checking of expressions,

who is given the task of designing the check requirement.

This designer, however, must wait until the core structure of the expression

classes is decided, before working on a design for the checking behaviour. He

works with a number of scenarios for sequence diagrams to determine the

required operations, determining that recursive operations are appropriate for

the tree nature of expressions. One example of a scenario is one to support

the checking of the expression A-B+2 as illustrated in Figure 5.

Figure 5: Sequence Diagram for Checking the Syntax of an Expression: A-B+2

Figure 6: Support for Check added to Class Diagram

Motivat ion SEE System De sign, Ver sion 1.0

24

Once the check designer is comfortable with the design elements (attributes

and operations) that are to be added to the class, and therefore appear on

class diagram, he must ensure exclusive access to the class diagram in order

to update it with the additional properties to support checking expressions.

Of course, sophisticated CASE tool support may reduce the “wait-time” for

the exclusive access to the class diagram. The impact of adding the checking

design properties to the class diagram is illustrated in Figure 6.

The experts on evaluating expressions and those on displaying expressions,

design these tools as recursive functions over the abstract tree representation

of expressions, in a standard object-oriented manner, using the UML [Booch

et al. 1998], and in a manner similar to the behavioural design of the check

tool illustrated in Figure 5. The behavioural diagrams may be worked on sep-

arately, but the additional structural and behavioural properties may only be

added to the class diagram when it is available, after which the class diagram

is as illustrated in Figure 7.

The remaining requirement to be designed is the optional logging of opera-

tion execution. Figure 8 shows an example collaboration diagram for logging

a check() operation. If the logging utility is turned on (modelled as a

Boolean attribute loggingOn) each operation invokes Logger.before-

Invoke() prior to performing its action, then invokes Logger.after-

Invoke() just before it terminates. The Logger permits applications to turn

Figure 7: Class Diagram with Expression AST and Check, Evaluate, and Display Tools

Motivat ion SEE System De sign, Ver sion 1.0

25

logging on and off with its turnLoggingOn() and turnLoggingOff()

methods. This permits logging to be optional, as required.

The impact of the logging requirement on the structure diagram of the SEE is

illustrated on Figure 9. Logging is modelled as a separate, singleton class,

Logger. “Singleton” is a design pattern from [Gamma et al. 1994] that

ensures a class only has one instance, as is appropriate for a class performing

a logging function that will always behave the same way regardless of what

operation is being logged.

Figure 8: Collaboration Diagram for Logging Utility: Example - Check()

Figure 9: UML Class Diagram for SEE, Version 1.0

Motivat ion SEE System De sign, Ver sion 1.0

26

The design demonstrates some important features. The mapping from design

to code is straightforward and quite direct - every unit of interest (i.e. class)

in the UML class diagram will have a direct correspondent in the code. This

is not unexpected, since both are object-oriented, and much of the reason for

the trend toward object-oriented design is that it permits a direct mapping

between design and object-oriented code.

The mapping between the SEE requirements specification and this design, on

the other hand, is more complex. Even with a requirements specification for a

small system, there is evidence of problems against each of our evaluation

criteria from Parnas:

• product flexibility

• comprehensibility

• managerial.

Product Flex-

ibility

As described in [Parnas 1974], product flexibility is the “possibility of mak-

ing drastic changes to one part of the system, without the need to change oth-

ers”. The structural differences in the specification paradigms between the

requirements specification, and the object-oriented design (discussed in gen-

eral in “2.1. Specification Paradigms Across Lifecycle” on page 12) for the

SEE are central to the difficulties associated with changing the system.

The natural outcome of the structural differences is a scattering and tangling

effect across the object-oriented design.

Scattering and tangling are apparent in the design for the SEE.

Scattering: The SEE requirements of expression evaluation, checking, and

display, which are described as encapsulated concerns in the requirements

specification, are not encapsulated in the design. In fact, these requirements

are scattered across the AST classes - each class contains a method that

implements these capabilities for its own instances. Scattering is negative

from an evolutionary perspective: the impact of change to a single require-

Scattering: The structural difference results in the design of a single require-

ment being scattered across multiple classes and operations in

the object-oriented design.

Tangling: The structural difference also means that a single class or opera-

tion in the object-oriented design will contain design details of

multiple requirements.

Motivat ion SEE System De sign, Ver sion 1.0

27

ment, well localised at the requirements level, can nonetheless be extremely

high, because that change necessitates multiple changes across a class hierar-

chy.

Tangling: The logging capability is realised as a first-class unit of interest in

both the requirements and the design. Nonetheless, the protocol for logging

requires co-operation from each method in each AST class, to appropriately

invoke Logger.beforeInvoke() and Logger.afterInvoke(). This

is tangling - satisfying a given requirement necessitates interleaving design

details that address the requirement with details that address other require-

ments. Tangling is a serious impediment to software comprehension, reuse

and evolution because it is impossible to deal with the design details relating

to one requirement without constantly encountering and having to worry

about intertwined details relating to other requirements.

Traceability: Scattering and tangling are also devastating from the point of

view of traceability: the ability to determine readily how a piece of one soft-

ware artefact (e.g. requirement, design, code) affects others. Traceability

makes it possible to look at a change to a requirement, and to find those parts

of the design and code details that are affected by the change. Traceability is

essential to keeping requirement and design documents up-to-date with

respect to evolving code. Without it, these documents are likely to become

obsolete and useless, since, when it is difficult to determine how a proposed

change to one will impact the other, changes may not be propagated across

them consistently, or at all.

Comprehen-

sibility

As described in [Parnas 1974], comprehensibility is the “possibility of study-

ing the system one part at a time. The whole system can therefore be better

designed because it is better understood”. The descriptions of the scattering

and tangling problems as manifested in the SEE, and which are described in

the previous section, also have a negative impact on the comprehensibility of

the system. Any attempt at “studying the system one part at a time” will

result in a required knowledge of the full design if the “one part” chosen is a

requirement, or will result in a required knowledge of all the requirements if

the “one part” chosen is a class in the design.

Comprehensibility is also an essential property to the successful reuse of any

unit from a system design, as any unit to be reused must be understandable or

it will not be reused correctly. “Reuse” is a much heralded benefit of the

object-oriented approach to software engineering, but the properties of scat-

tering, tangling and poor traceability also contribute to a design that is diffi-

Motivat ion SEE System De sign, Ver sion 1.0

28

cult to reuse. Poor traceability (resulting from scattering and tangling) makes

it difficult to follow exactly what parts of the design relate to a particular

feature of the system, and therefore what parts must be included in a reuse of

that feature. Another important ingredient for successful reuse is clean

boundaries - i.e. a design unit that does not have interdependencies with

other design units, and which may therefore be easily incorporated into a dif-

ferent system, with limited impact on the system. Again, scattering and tan-

gling properties in a design are the antithesis of such a clean incorporation

into another system. Further, effective reuse requires powerful mechanisms

for customisation and adaptation. With this design, designers are forced to

make invasive, rather than additive changes to adapt design units. For exam-

ple, adding a new feature to the SEE, like additional forms of checking of

expressions, requires each of the AST nodes to be changed.

Managerial As described in [Parnas 1974], managerial issues concern the “length of

development time, based on whether different groups can work on different

parts of the system with little need for communication”. The abstraction units

of the object-oriented paradigm (classes, interfaces, packages) are inherently

centralised, in that they each cleanly encapsulate (and own) all the structural

and behavioural features relating to them. As described, even in this small

system, comprehension, maintainability and reusability are reduced as a

result of the monolithic nature of the classes. This monolithic property also

has ramifications for the design process itself. For example, designers are

limited in their ability to work concurrently on the design (and on the code),

to a much greater degree than when producing a requirements specification.

Specifically, it would be desirable to have a compiler expert work on the

AST representation itself, a user interface expert work on the design of the

display feature, etc. The scattering and tangling of these features results,

however, in interdependencies across these features and across the classes,

that hampers concurrent design and implementation. Since classes encapsu-

late and own their own structural and behavioural properties, they are inher-

ently centralised notions, so it is also often fairly difficult to permit

concurrent development of the same classes. Further, while the logging capa-

bility can be designed independently of the AST classes, all the developers

must be aware of its presence and must design with it in mind. For the same

reasons, all of the SEE tool designers must wait for the “core” AST to be

defined before they can work effectively even if designers could work in par-

allel on features. This opens the door to a variety of errors, and it can result

in delays while designers wait for one another.

Motivat ion Evolving the SEE System Des ign

29

Conclusion The core reason for these problems is because the concerns identified in the

requirements, which are based on requirements of the SEE, are different from

those used to modularise the design, which are the objects and classes that

implement the SEE. Thus, the requirements units of interest generally are

not, and cannot readily be, encapsulated in the design. This is different from

the relationship between design and code, where the respective set of con-

cerns are very similar. In the process of creating designs from requirements,

UML and other object-oriented formalisms and languages necessitate a tran-

sition from feature concerns to object concerns. This transition essentially

results in the discarding of the encapsulation of those units of interest identi-

fied during requirements specification in favour of units of interest mandated

by the design and coding paradigms. In achieving a close tie to code, object-

oriented design loses its close tie with requirements. Scattering and tangling

are, in fact, symptomatic of this mismatch.

Thus, designs fail to achieve one of their primary purposes: to promote trace-

ability by bridging the gap between requirements and code. Traceability is an

important prerequisite to evolution, as is encapsulation, which aids in limit-

ing the impact of any given change. For example, it is difficult both to deter-

mine how a change to the logging requirement will impact the design, and to

affect such a change additively, rather than invasively. Limited traceability

and encapsulation, as is present in the SEE design, result in reduced evolva-

bility. Consequently, they also result in the eventual obsolescence of require-

ments, design or both, since changes may not be propagated consistently if it

is difficult to determine how a proposed change to one will impact the other.

The next section looks at the process of evolving the SEE system as a result

of new requirements. Different approaches to designing systems, based on

Design Patterns [Gamma et al. 1994], are examined to assess whether they

are sufficient to solve the problems illustrated in this section.

2.4. Evolving the SEE System Design
This section assesses the impact on the design of adding new requirements to

the SEE requirements specification. The approaches to extensibility as rec-

ommended by design patterns [Gamma et al. 1994] are considered.

New Require-

ments

After using the SEE for some time, the clients request the inclusion of differ-

ent forms of optional checking;

Motivat ion Evolving the SEE System Des ign

30

1. A check is required to ensure that all variables used are defined, and all

variables defined are used (def/use)

2. A check is required to verify that expressions conform to local naming

conventions.

3. The check feature is a “mix-and-match” capability - clients can choose a

combination of syntax, def/use, and/or style checking to be run on their

expression programs when they invoke the check tool.

Extending

Version 1.0

directly

This change in requirements is additive - it need not affect any other require-

ment. At the design level, however, the change is not as straightforward,

since the check feature is not encapsulated as a concern in the design. In fact,

this change necessarily affects all AST classes in the design. One approach is

to add new defUseCheck(), and styleCheck() operations to each of

the AST classes, with conditional execution based on boolean attribute

options. This approach requires each class in the design to be changed, with

corresponding significant potential for error introduction even to Version 1.0

of the SEE system design. Another possible approach to designing the new

forms of checking would be to create new subclasses of the AST classes,

where a given subclass overrides the original (syntax) check() method

with one intended to provide def/use or style checking for a particular kind of

AST class. Clearly, while this approach is non-invasive, it is completely

impractical, as it results in combinatorial explosion of classes with each new

feature.

Using Design

Patterns

A better approach is to use the Visitor design pattern [Gamma et al. 1994].

The Visitor pattern “represents an operation to be performed on elements of

an object structure. Visitor lets you define a new operation without changing

the classes of the elements on which it operates” [Gamma et al. 1994].This

pattern definition with its corresponding description in [Gamma et al. 1994],

makes it a good candidate for solving the problem of adding new check oper-

ations non-invasively. This is achieved by having a Visitor to represent

checking, and to provide different visitors that correspond to the different

kinds of checking. The Visitor approach, which is depicted in Figure 10,

facilitates “mix-and-match” without combinatorial explosion of classes. It

requires, however, an invasive change to all of the AST classes, to replace

the check() methods with accept(Visitor) methods.

Motivat ion Evolving the SEE System Des ign

31

The use of visitors also introduces a second complication. The logging fea-

ture requires the visitors to invoke Logger.beforeInvoke() and Log-

ger.afterInvoke() appropriately, further increasing the scattering and

tangling problems associated with this feature.

Another possibility for the use of design patterns is in the design of the log-

ger functionality. For example, a mutation of the Observer pattern [Gamma et

al. 1994] appears as if it might be useful in capturing operations for logging.

The Observer pattern supports an object that has changed state notifying

other objects that have expressed an interest in its state. In Figure 11, this

approach is evolved to capture all operations on an object by the interested

object which is the Logger.

Figure 10: Using Visitor to Separate Check Functions

Figure 11: Using Observer for Logging

Motivat ion Evolving the SEE System Des ign

32

In this design, any operation call results in a call to notifyBefore() and

notifyAfter(), before and after its execution. This approach has the

advantage that any object other than an instance of a logger, may express an

interest in operations within the expression, and attach itself as an observer

to be notified before and after operation execution. For example, different

kinds of audit trails may be attached with no change to the design of the

expression AST.

Another approach to designing logging is to use the Decorator pattern

[Gamma et al. 1994]. Decorator supports the attachment of additional respon-

sibilities to an object dynamically. Decorators provide an alternative to sub-

classing for extending functionality, and reduces coupling by, for example in

the logging case, separating the logging functionality into separate, decorator

objects, as illustrated in Figure 12.

Assessing

Design Pat-

terns

Many other design approaches are possible for the SEE, and some of them

address some of the issues that have been raised. For example, the judicious

application of design patterns might help solve some of these problems.

While it is impossible to elaborate the possible design approaches (with or

without design patterns) exhaustively, this section briefly explores some of

the design pattern alternatives to illustrate why neither they, nor other

approaches, address the whole problem.

Visitor: The initial use of the visitor pattern to model checking (“SEE System

Design, Version 1.0” on page 22) would have facilitated greatly the addition

of new checkers - this is the case precisely because visitors provide encapsu-

lation of features, which results in better alignment of design with require-

ments. While visitors promote some forms of evolution, they hinder other

forms. For example, adding a new type of expression, like assignment, is

Figure 12: Using Decorator for Logging

Motivat ion Evolving the SEE System Des ign

33

simple in the original design in Figure 9, but it would necessitate invasive

changes to all visitors [Gamma et al. 1994].

Observer: To reduce the coupling between the logger and the AST classes,

logging could be performed by observers. This approach would achieve

looser coupling. Observer is, however, an extremely heavyweight solution

that incurs high overhead, in both complexity and performance. Further, it

does not improve the scattering problem, as AST methods must notify any

observers, thereby scattering the implementation of logging across all the

AST classes. Used in conjunction with visitors for the AST tools (check,

evaluate, display), the design for the SEE becomes significantly larger and

more complex, with many more interrelationships among the classes to be

represented and enforced.

Decorator: As an alternative to observer, logging could be designed using

the decorator pattern, where decorators optionally perform logging. Decora-

tor, like observer, helps to reduce coupling, and unlike observer, it reduces

tangling by segregating logger notification code into separate, decorator

objects. Unfortunately, the decorator solution is significantly more problem-

atic than the observer solution, because of the object schizophrenia problem.

That is, to ensure that logging occurs consistently, it is necessary to ensure

that all messages to all objects go through the decorator, not directly to the

object itself. Once a method on an object is invoked, however, that method

may invoke others, which, in turn, must go through the decorator. This means

that the object must know about its decorator(s), which introduces a new

form of coupling and tangling (i.e. each class must include code to imple-

ment interaction with the decorator).

This evolutionary change, which appeared to be straightforward and additive

from the client’s perspective and from its impact on the requirements, dem-

onstrates, in a microcosm, the spectrum of problems resulting from the mis-

alignment problem. Scattering and tangling lead to weak traceability and

poor encapsulation of requirements-level concerns within the design, and

subsequently, the code. They also make propagation of requirements changes

to design and code very difficult and invasive. It is even difficult to deter-

mine which design elements are affected by a given requirements change.

The level of effort needed to propagate changes from requirements to design

is much greater than the effort to propagate the changes from design to code,

precisely because of the misalignment.

Motivat ion Drawing Conclusions for a Solut ion

34

Summary Design patterns can help alleviate some, but not all, of the identified prob-

lems. Unfortunately, in diminishing some problems, they introduce other

problems or restrictions [Gamma et al. 1994], [Vlissides 1998]. Designs and

code must be pre-enabled with design patterns to avoid subsequent invasive

changes to incorporate them. This need to pre-plan for change - which is

present in the use of all design patterns - is especially problematic. It is

impossible to anticipate every kind of change that might be required; even if

it were possible, flexibility always comes at a cost in terms of conceptual

complexity and/or performance overhead, as the visitor, observer and decora-

tor patterns demonstrate. Enabling for some forms of change inhibits other

kinds of change - for example, introducing visitors will promote the future

addition of new types of checkers, but it greatly complicates the addition of

new types of expressions.

Thus, while design patterns and other design approaches are very useful, they

cannot address the issues raised here - their use results in the exchange of one

set of problems for another. In some cases, the new set of problems is accept-

able, but in others, it is not. As long as the misalignment problem exists, its

consequences - weak traceability, low comprehensibility, scattering, tan-

gling, coupling, poor evolvability (including high impact of change and inva-

sive change), reduced concurrency in development, etc. - will be present.

Clearly, the need for a new approach to designing object-oriented software

has been motivated. The next section proposes the solution that is the central

theme of this research.

2.5. Drawing Conclusions for a Solution
As illustrated in this chapter, the structural misalignment of requirements,

design and code is at the root of the problems associated with object-oriented

designs. Two general approaches exist to addressing the misalignment prob-

lem. One is to impose the same development paradigm on all software arte-

facts. This is precisely the approach that has been used to provide close

alignment between designs and code - both are written in the object-oriented

paradigm. This approach is not appropriate when applied to requirements

specifications, however, as requirements deal with concepts in the user’s

domain, while designs and code deal with concepts in the programming

domain.

The other approach to addressing the misalignment problem is to provide

additional means of further decomposing artefacts written in one paradigm so

Motivat ion Chapter Summ ary

35

that they can align with those written in another. This approach suggests, for

example, that it must be possible to cleanly encapsulate requirements within

the object-oriented design paradigm - that is to have object-oriented design

models encapsulating requirements units of interest only. This is the

approach that is adopted in this thesis, in recognition of the fact that different

paradigms are appropriate under different circumstances, so that homogene-

ity, while appealing, is likely to be inadequate. The approach proposed in this

thesis is called Subject-Oriented Design and is related to the work on sub-

ject-oriented programming, which addressed misalignment and related prob-

lems at the code level [Harrison & Ossher 1993], [Ossher et al. 1996].

Like subject-oriented programming, subject-oriented design supports decom-

position of object-oriented software into modules, called subjects, that cut

across classes. For the SEE system, this means that there will be separate

design modules for each of the requirements (see Figure 13).

The complexity of understanding the combined impact of multiple require-

ments on the design of a system is not entirely removed, however, as these

separated design models may also be integrated to form complete designs.

See “Proposed Solution” on page 3 for a brief introduction, and “Chapter 4:

Composition of OO Designs: The Model” on page 64 for more details.

2.6. Chapter Summary
This chapter clearly illustrates that a new approach is needed for object-ori-

ented design. This is because object-oriented designs are difficult to under-

stand, extend and re-use. The chapter outlines and illustrates why this is the

case. At the root of the problem is a significant structural mismatch between

the units of interest that are the focus of requirements specifications and the

units of interest that are the focus of object-oriented specifications.

First the chapter analyses how requirements are specified and how object-ori-

ented designs are specified with the respective motivations for selection of

Figure 13: Matching SEE Requirements with Design Models

Motivat ion Chapter Summ ary

36

the units of interest discussed. The two paradigms are compared, and a struc-

tural mismatch found.

This is followed up with an illustration of how this structural mismatch

causes difficulties with the development and evolution of software systems

because of the scattering and tangling effect that is its natural outcome. That

is, software system support for a single requirement touches multiple classes

in the object-oriented design and code, and a single class in the object-ori-

ented design and code may support multiple different requirements. Even

with a small example system, the impact of this mismatch is obvious, with

the scattering and tangling of requirements in the designs reducing the flexi-

bility and comprehensibility of the system, and causing managerial difficul-

ties in the development process. Other design approaches based on Design

Patterns are examined, but while some of the problems are solved, their use

often involves the exchange of one set of problems for another.

Finally, a new approach to designing systems is proposed that is described in

this thesis. This new approach extends the object-oriented design paradigm

by adding additional decomposition capabilities that support the designer

creating design models that directly encapsulate a single requirement,

thereby aligning the designs directly with requirements, and removing the

scattering and tangling properties that cause the outlined problems. In the

remainder of this thesis, it is illustrated how this solution removes the scat-

tering and tangling properties of standard object-oriented designs, thereby

improving comprehensibility, extensibility and reusability. The SEE example

is redesigned in “Chapter 9: Applying the Subject-Oriented Design Model”

on page 213.

The new approach is called Subject-Oriented Design. The model supports

both the new decomposition capabilities and the corresponding composition

of design models capabilities, and is described in more detail in “Chapter 4:

Composition of OO Designs: The Model” on page 64.

First though, let us examine work related to this thesis (“Chapter 3: Related

Work” on page 37). Approaches throughout the software development lifecy-

cle are considered, as the need to decompose large problems, together with

the need to integrate them are common problems for each development

phase.

37

Chapter 3: Related Work

The approach to designing object-oriented software proposed in this thesis is

based on providing a new way to decompose (that is, divide up) design mod-

els, with supporting techniques for identifying overlaps in design units, and

for integrating design models. Recognition that decomposition of object-ori-

ented systems by class is necessary, but not sufficient for good software

engineering is not new, and this chapter looks at many interesting approaches

to extending the manner in which software artefacts are divided up.

Software design can be seen as a bridge between requirements and code, and

therefore, it is interesting to consider related work across the development

phases of requirements gathering, analysis/design, and coding. The need to

decompose artefacts in each phase, together with the need to recognise and

identify overlaps in different artefacts, and the need to integrate artefacts, are

common problems across the lifecycle. Therefore, each approach in each

phase is examined by considering how these needs are catered for. In addi-

tion, since one of the integration strategies described in this thesis caters for

reconciliation of conflicts, this category of problem is also examined in this

chapter.

Related work in the database field is also included. Decomposition of data

for database management systems is primarily either based on relational the-

ory or the object-oriented paradigm, and therefore, from a decomposition

perspective, the work is not directly relevant for comparison purposes. How-

ever, research into integration of heterogeneous schemas has many similari-

ties in the areas of identifying overlapping elements, reconciling conflicts in

elements, and integration of schemas.

The chapter is divided up into the following sections:

• Requirements Engineering Models

• Object-Oriented Analysis and Design Models

• Object-Oriented Programming Models

• Database Models

Relat ed Work Requir emen ts Eng ineer ing Models

38

Within each of these four areas, different approaches are discussed based on

their approaches to decomposition, identifying overlaps, integration and, in

some cases, reconciliation of conflicts. A discussion section follows which

assesses the impact of these approaches on the subject-oriented design

model.

3.1. Requirements Engineering Models
In the requirements phase, requirements are decomposed based on the units

of interest to the requirements gatherer. There will also be the units of inter-

est to the person(s) from whom requirements are elicited. This section dis-

cusses viewpoints [Easterbrook 1991] [Nuseibeh 1994], use cases [Jacobson

et al. 1999], features [Zave 1999] [Turner 1999], and services/facilities

[Mowbray & Zahavi 1995] [Siegel 1996].

Viewpoints

and Perspec-

tives

Using “perspectives” as a unit for decomposition is the focus of the elicita-

tion of requirements in [Easterbrook 1991], where a supporting framework

for multi-perspective integration is described in [Nuseibeh et al. 1994]. The

model proposed in [Easterbrook 1991] is that “a separate knowledge base is

built for each perspective, to capture the knowledge offered by the person

expounding that perspective”, thus ensuring that “each perspective is prop-

erly represented in the integration process”. This approach to decomposition

is supported in [Nuseibeh et al. 1994], where a ViewPoints framework sup-

ports multi-perspective development, with method integration. This frame-

work structures, organises and manages the different perspectives, and also

checks consistency, handling inconsistencies between the different perspec-

tives.

The existence of overlaps in the different perspectives of requirements for

computer systems is central to this approach to requirements gathering. The

approach’s process of requirements analysis is based on first identifying and

developing the different perspectives, but then comparing them to build an

understanding of how the different perspectives relate. Though avoiding the

“tough problem” of comparing representation schemes, the approach to com-

parison of the different perspectives is based on the notion that the origina-

tors of the different viewpoints are not wholly unfamiliar with the other

viewpoints. Therefore, the originators’ suggestions of correspondences

between the different viewpoints may be used as a basis for discussion of the

overlaps. The supporting framework later described in [Nuseibeh 1994] sup-

ports the explicit identification of the general relationships between view-

Relat ed Work Requir emen ts Eng ineer ing Models

39

points with an inter-ViewPoint relationship. Through this relationship,

overlaps within viewpoints may be identified, and rules governing the over-

lap specified. Rules, for example, may specify constraints such as existence

rules (a ViewPoint requires the existence of another ViewPoint, or of ele-

ments within another ViewPoint), or agreement rules (expressing relation-

ships between the contents of Viewpoints), or exclusion rules (for example,

uniqueness of names). These rules are the vehicle for viewpoint integration,

as they express the relationships between viewpoints, identifying overlaps

and defining rules for those overlaps.

The integration of perspectives of requirements in this model begins with

comparing the different perspective specifications to assess where the over-

laps are. Integration of the perspectives is then about resolving any differ-

ences between them. A process of in-depth negotiation between all parties

involved in each perspective is described. The negotiation process is

intended to resolve the differences in the perspectives. In the supporting

framework ([Nuseibeh 1994]), integration involves consistency checking of

rules defined between different viewpoints - the inter-viewpoint relation-

ships. Viewpoints are “consistent” when all the rules defined between them

have been found to hold. The notion of consistency is central to the integra-

tion objectives - integration is achieving consistency. This is different to the

notion of integration in the subject-oriented design model, where integration

is either integrating the subject design models into one result model, or pro-

viding a specification for the integration of supporting subject programs into

one result module.

Resolution of conflicts is through a process of education and negotiation

between the parties involved in the different perspectives. The model

describes three phases: the exploration of the different perspectives, where

the participants learn about each other’s perspectives; the generation of sug-

gestions for resolving conflicts; and the evaluation of these suggestions. The

supporting framework described in [Nuseibeh 1994] considers resolution pri-

marily as the handling of inconsistencies. The view is that forcing consist-

ency may restrict the creativity and inventiveness of the development

process, and therefore, to manage rather than restrict inconsistency supports

the reality of inconsistencies in the development process. This management

of inconsistency takes the form of identification of where inconsistencies

exist based on inter-viewpoint relationships, and acting on them based on the

use of actions at the meta-level. These actions specify how to act according

to the context of the particular inconsistency identified, and are based on

Relat ed Work Requir emen ts Eng ineer ing Models

40

temporal logic with temporal operators. An open issue identified within the

framework is the actual resolution of conflicts, with the focus described

based on identifying and managing inconsistencies.

Use Cases The approach to decomposing and capturing requirements described in

[Jacobson et al. 1999] is based on the notion of use cases. A use case outlines

who and what will interact with the system, what functionality is expected

from the system, and also captures and defines in a glossary common terms

that are essential for creating detail descriptions of the system’s functional-

ity.

The policy of working with use cases is based on keeping each use case as

separate as possible during the requirements phase. The benefits associated

with this approach is that each use case is simpler for the software users to

understand during requirements elicitation. Consideration of the inherent

overlaps associated with use cases therefore becomes more in focus during

the analysis and design phases. Here, there is recognition that analysis and

design elements such as classes and their objects may participate in many

different use cases. This level of overlap is identified through a series of use

case realisations that have trace dependency relationships from particular

use cases to the analysis and design models realising those use cases. No fur-

ther reasoning is supported for those overlaps.

The notion of integration in relation to use cases is not considered in [Jacob-

son et al. 1999], as use cases are explicitly independent from each other for

the purposes of maintaining comprehensibility for the end-users. Complica-

tions associated with overlap in terms of concurrency, conflict or general

interferences between use cases are left for consideration in the analysis and

design phases. The structural decomposition visible in use cases is not car-

ried through to the analysis and design models, where the object-oriented

paradigm of decomposing based on the notion of class, interface etc. is

applied. The link between use cases and analysis and design models is main-

tained through trace dependency relationships, where elements within the

analysis and design models may participate in multiple use cases. Explicit

integration is therefore not required.

While there is recognition in the use case modelling approach described in

[Jacobson et al. 1999] that there may be conflicts and interferences between

different use cases, handling of those conflicts is essentially an intellectual

effort during the analysis and design phases. Use cases are explicitly main-

tained and worked with separately during the requirements phase. Object-ori-

Relat ed Work Requir emen ts Eng ineer ing Models

41

ented analysis and design techniques, which are the responsibility of the

analyser and designer, apply to handling the impact of the conflicts in the

analysis and design models. Solutions are not fed back to the use cases.

Features In [Zave 1999], decomposition of requirements specifications is by “feature”.

Features, described as “an optional unit or increment of functionality” [Jack-

son & Zave 1998], are at the core of the Distributed Feature Composition

architecture. DFC is for a telecommunications domain, where features are

treated as independent components through which calls are routed from caller

to callee. Features are also the core of feature-oriented domain analysis

(FODA) where the purpose is to “capture in a model the end-user’s (and cus-

tomer’s) understanding of the general capabilities of applications in a

domain” [Griss et al. 1998].

The need to reason about “features” from the requirements phase and

throughout the software lifecycle is the subject of the work on Feature Engi-

neering described in [Turner 1999],[Turner et al. 1999]. The definition of

feature used in the work on Feature Engineering [Turner 1999] states that “A

feature is a clustering or modularization of individual requirements within

that [requirements] specification”. The decomposition described at the

requirements phase particularly focuses on identifying the features of a sys-

tem. The approach maintains the perspective of identification of features

throughout the lifecycle, with the ultimate contribution at the level of config-

uration management. Here, configuration management supports the developer

“checking-out” all the appropriate software artefacts relevant to particular

features. This ensures that the impact of any change made is catered for

across all artefacts impacted by a feature.

The notion that features may have overlapping requirements is central to the

motivation of feature engineering, which therefore has an important need to

identify the overlaps. A prototype configuration management tool supports

the explicit specification of feature as a first-class construct. Here, features

are identified and their relationships detailed. For example, relationships

such as implementedby associates features with all the components par-

ticipating in its implementation. This explicitly identifies components that

may implement multiple features. Feature relationships such as com-

peteswith, excludes, and requires may be identified to indicate con-

straints between features. It is not clear, however, how these relationships

between features are used. When there is a need to work with components, a

Relat ed Work Objec t-Oriented Analysis and Des ign Models

42

check-in/-out procedure is based purely on the implementedby relation-

ships between features and components.

Services and

Facilities

The notion of services and facilities is the basis for decomposition of require-

ments for a system in the specification of the OMG work on CORBA [Mow-

bray & Zahavi 1995], [Siegel 1996]. Examples of services a system

supporting distributed objects, and conforming to the CORBA standard,

should provide are an object naming service and an object event service.

Examples of common facilities provided for by CORBA are user interface

facilities, and data interchange facilities.

3.2. Object-Oriented Analysis and Design Models
At the analysis and design level, there have been many approaches to enhanc-

ing the basic object-oriented model. A significant body of work is centred

around decomposition based on roles. This section talks about three

approaches to roles, OORam [Reenskaug et al. 1995], Catalysis [D’Souza &

Wills 1998] and an approach described in [Kristensen & Østerbye 1996].

Other interesting approaches to enhancing the basic object-oriented model

discussed here are contracts from [Helm et al. 1990], views from [Shilling &

Sweeney 1989] and design patterns [Gamma et al. 1994]. First though, we

look at the standard UML, and discuss its existing composition mechanisms.

Unified Model-

ing Language

(UML)

The UML is a “language for specifying, constructing, visualizing, and docu-

menting the artifacts of a software-intensive system” [UML 1999]. Structural

and behavioural aspects of systems may be captured by a series of different

kinds of models - Class, Object, Use case, Sequence, Collaboration, State-

chart, Activity, Component and Deployment diagrams. These diagrams

present different “views” of underlying structural and behavioural concepts,

and may be “combined” into a single design model. The UML metamodel is

structured to support such a separation of different “views” into different

models. Where one diagram references a model element that is also refer-

enced in another diagram (for example, operations appear in both class dia-

grams and interaction diagrams), only one specification of that element is

supported, with both diagrams referencing the same specification. As such,

combining diagrams into the same model does not present any conflict diffi-

culties, or merging of behaviours.

The UML contains a small number of mechanisms that could be used to sepa-

rate different elements that support different requirements. For example,

Relat ed Work Objec t-Oriented Analysis and Des ign Models

43

attributes and operations may be organised within classes using stereotypes

to group them for particular needs. In addition, multiple models of the same

kind (e.g. multiple object models, or class models) may be defined within the

same package that could be used to provide a limited measure of separation,

based on requirements. This support is limited for overlapping concepts (con-

cepts that support multiple requirements) because, using UML, design ele-

ments that support the same concept, but have different views that necessitate

different specifications, must be specified separately. Since there is no means

of synthesising a complete design of incomplete pieces in UML, such ele-

ments will remain separate throughout the design cycle.

Multiple generalization is another mechanism that could be used to combine

multiple different structural and behavioural properties, designed to support

different requirements. However, there are some difficulties with using this

technique in an attempt to separate support for different requirements into

different classes. First, as described previously for the use of multiple mod-

els of the same kind, separation based on multiple generalization is not possi-

ble when there are overlapping concepts that support multiple requirements.

Another issue is the practicality of the approach based on the possibilities

relating to an explosion of the class hierarchy for each new requirement

added.

Role Modeling

(OORam)

Role modelling from the OORam software engineering method [Reenskaug et

al. 1995] shows how to apply role modelling by describing large systems

through a number of distinct models. The designer constructs a role model

for each activity or task carried out in the overall system, or constructs sev-

eral role models for the same activity at different levels of detail. Using this

decomposition approach, separation of the design models may be structured

to match requirements specifications, where the different roles objects play

to support a particular task are distinct in separate role models.

A central notion of role modelling in OORam is the close relationships

between the different role models. This is because the same objects often

appear in several of them, playing different roles. Synthesis in OORam is at

the level of role models (not on single roles) so an explicit specification of

the mapping of all roles in base models to roles in a derived model is

required. This is supported by an OORam language which has constructs to

identify derived and base models, and the explicit mapping between roles.

This serves to support the identification of those roles that overlap in the

sense that they should be synthesised in the derived model.

Relat ed Work Objec t-Oriented Analysis and Des ign Models

44

Integration (or synthesis) in OORam is based on synthesising base role mod-

els into a derived model. Every base role in a base model is synthesised into

a derived role in the derived model. Base model semantics are retained in

derived models. While static correctness of the derived model is achievable,

approaches to ensuring dynamic correctness of the derived model are less

clear. This is recognised within the OORam model, and approaches to ensure

“safe” synthesis limit the possibilities available for integration. Two exam-

ples of approaches to safe synthesis for dynamic behaviour are defined. The

first is called Activity Superposition where each base model activity is

retained unchanged in the derived model. The second is called Activity

Aggregation where a base model activity is changed to include the execution

of another base model activity in the derived model. As described in

[Andersen & Reenskaug 1992], the synthesised role models form the basis

for the type requirements of the classes implementing the design.

Catalysis Another approach to role modelling, based on the UML, is Catalysis

[D’Souza & Wills 1998]. Catalysis separates design models according to

concerns, using horizontal and vertical slices. Vertical slices decompose

models according to the point of view of different categories of users. The

approach yields different models of the same types and actions. Horizontal

slices decompose based on separating technical infrastructures and communi-

cations protocols from the business models. This approach to decomposition

supports structuring design models to align with both business requirements,

and more technical kinds of requirements that may have an impact across all

of the business requirements.

In Catalysis, the joining of package specifications is based, by default, on

joining those definitions with the same name. Exceptions to this may be

explicitly specified using extra invariants which may state that two defini-

tions with different names should be considered to map together, and explic-

itly stating the name to be used in the result. This approach can also be used

to state that two definitions with the same name should not map together, by

explicitly renaming one of them.

Integration is based on a definition of the UML import relationship, called

join. In general, the resulting definition for each type of element in a package

contains the combined set of elements that are defined for that type. For

example, a set of all the attributes from the joined packages appears. Con-

straints are and-ed, including preconditions, postconditions, rely conditions

and guarantee conditions.

Relat ed Work Objec t-Oriented Analysis and Des ign Models

45

Role Model-

ling (Kris-

tensen)

The approach to role modelling described in [Kristensen & Østerbye 1996]

decomposes based on the separation of an object’s intrinsic properties from

the roles that an object may play. These roles are entities that may contain

additional state and behaviour, and are attached to the base object. The anal-

ysis of a system may be in terms of the roles of objects, lifting roles to a pri-

mary consideration in the design. This supports the structuring of analysis

models to match with requirements that specify different tasks to be per-

formed by the same objects playing different roles.

With this approach to role modelling, roles are explicitly related to particular

intrinsic objects to which they add role behaviour. The notion of roles work-

ing with particular core concepts (and therefore overlapping) is explicitly

identified at design time. Though roles have state and behaviour, they may

not exist independently (i.e. they do not have identity), and must be attached

to intrinsic objects. Multiple role objects may be attached to intrinsic objects,

and may be referenced by a single reference to groups of those roles called a

subject reference. However, a restriction exists that does not allow for over-

lap between those roles. Though this is recognised as a restriction, it ensures

that a remote access through a subject reference, which may reference multi-

ple different roles, is always well defined.

Roles may be aggregated for an intrinsic object. For example, a Professor

may be an aggregation of Teacher and Researcher roles. The separation of

role specifications from intrinsic object specifications supports the dynamic

attachment of roles to different objects at different times. A subject is seen as

an instantiation of a class with roles, and in this sense, is an integration of a

class with particular roles. As described in [Kristensen & Østerbye 1996],

restrictions apply on the naming of roles involved in a subject instantiation,

for the purposes of avoiding name collisions. An extension to this restriction

is described in [Kristensen 1997], where, for the purposes of composition of

hierarchies (both role and class), like-named roles and classes are considered

to be the same and their integration supported only where the resulting hier-

archy does not contain cycles.

Contracts A different approach to decomposition of analysis and design models speci-

fies components called contracts, where the focus is on decomposition in an

interaction-oriented way [Helm et al. 1990], [Holland 1992]. Contracts spec-

ify behavioural compositions and obligations on participants. They capture

explicitly and abstractly the behavioural dependencies amongst collaborating

objects. Contract specification identifies the participants in a behavioural

Relat ed Work Objec t-Oriented Analysis and Des ign Models

46

composition and their contractual obligations. Contract conformance checks

classes to ensure that they behave appropriately relative to all the contracts in

which they participate. Contract instantiation creates objects at run time that

interact as described by the contract.

With this approach, contracts are defined independently of classes, and spec-

ify the contractual obligations of participants in the contract - therefore, the

notion of “overlap” is not an issue. Decomposition is based on separating the

specifications for behavioural interactions between collaborating objects,

where the identification of objects that conform to the contract specification

is done with an explicit “conformance” specification stage. Once an object

has been deemed to conform to the contractual obligations of a particular

participant in the contract, then it may be instantiated as that participant and

behaves as defined by the contract. In the sense where an “overlap” may be

seen as a specification of a correspondence, then the specification of class

mappings to contracts (with contract conformance declarations) may be seen

as the specification of correspondence to a contract participant.

Behavioural compositions specifying the interactions of collaborating objects

are specified with contracts. Contracts define the obligations of participants

in a contract in terms of the variables, external interfaces and sequences of

actions which must be supported in order to participate. Basic contracts can

be further composed to specify more complex behavioural specifications with

contract refinement and inclusion . Refinement supports the specialisation of

contract specifications, with extensions to its actions or invariants. Contract

inclusion supports the union of contract specifications, thereby allowing mul-

tiple contract specifications to be composed to more complex specifications.

In terms of creating behavioural compositions of objects that participate col-

laboratively as defined by a contract, this is done through the instantiation of

contracts. This requires the identification of objects as participants, and

establishing the contract via the methods defined in the contract.

Views Some approaches to extending the decomposition of object-oriented systems

are based on the notion of “views” - for example, [Shilling & Sweeney 1989].

Here, large, complex systems may be decomposed based on the “view” of the

user. The basis of this architecture relies on extending the object-oriented

paradigm in three steps: 1) defining multiple interfaces in object classes; 2)

controlling visibility of instance variables; and 3) allowing multiple copies

of an instance variable to occur within an object instance. These object

extensions are used to create view classes and view instances. A view class is

Relat ed Work Objec t-Oriented Analysis and Des ign Models

47

a global abstraction which uses many object classes to provide a unified glo-

bal behaviour. A view class is defined as a set of ordered pairs of the form

(object class, interface). A single object may participate in many view

classes. This allows view instances to intersect. The object class specifies

how view instances interact by its rules for sharing and accessing instance

variables.

Specification of the control of overlaps in this “Views” model is contained in

the object classes that participate in the View - that is, the global abstraction

of multiple collaborating objects. Each object class has rules for sharing and

accessing instance variables by explicitly stating the particular interfaces that

may access instance variables and methods. The identification of overlaps

(or, corresponding elements) is therefore defined for each class as part of the

specification of the different interfaces the class supports. It is the responsi-

bility of the specifier of the view class - that is, the set of ordered pairs

(object class, interface) that participate in the view - to ensure that the view

class is coherent in its inclusion of the appropriate pairs to support the

required view.

A View Class specifies the composition of objects important to a particular

view with its ordered set of tuples (object class, interface). Instantiation of

objects is only in the context of an instance of a view class. Composition of

the objects is by joining each object instance to the view instance. The parts

of the objects (interfaces and instance variables) visible to the view are as

specified by the view class (interface), and the object class (instance varia-

bles). It is the responsibility of the view class designer to ensure that the set

of (object class, interface) tuples that make up the view is a set that makes

sense to support the particular requirement of the view.

Design Pat-

terns

The decomposition focus of design patterns [Gamma et al. 1994] is on ena-

bling the design of reusable, extensible software. To this end, decomposition

is based on isolating different aspects of a problem into separate design units.

Different patterns support this approach from different perspectives; for

example, structural decomposition is supported with a Decorator pattern that

separates extensions to an object’s functionality in an alternative to subclass-

ing, and behavioural decomposition is supported with the Visitor pattern that

supports the definition of new operations without changing the classes of the

elements on which it operates. Depending on the kind of separation required

in a particular design situation, an appropriate design pattern is chosen and

applied.

Relat ed Work Objec t-Oriented P rogramming Models

48

The notion of overlap is catered for explicitly in design patterns. The level of

decomposition for each of the design patterns, where structural, behavioural

or creational issues may be decomposed separately from core objects, is

designed into the suite of collaborating design elements supporting that pat-

tern. The pattern of collaboration between the appropriate design elements

explicitly caters for the overlapping of concepts. Therefore, the identification

of corresponding elements which must work together is an essential part of

each pattern.

The specification of each design pattern in [Gamma et al. 1994] includes how

the appropriate collaborating objects to support a particular design pattern

are integrated. Integration is not explicit in the sense of synthesis into a sin-

gle result, but rather, it is a specification of collaboration of appropriate

objects to achieve the goal of the particular design pattern. The level of inte-

gration in this sense is explicitly designed into the classes that are identified

as participating in the design pattern.

3.3. Object-Oriented Programming Models
Approaches to enhancing the object-oriented decomposition paradigm are

also prevalent in different programming models. This section discusses sub-

ject-oriented programming [Harrison et al. 1996], aspect-oriented program-

ming [Kiczales et al. 1997], composition filters [Aksit et al. 1992], adaptive

software [Lieberherr 1995] and metaobject protocols [Kiczales et al. 1991].

Subject-Ori-

ented Pro-

gramming

Hyper/J™ [Tarr & Ossher 2000] supports what they term “multi-dimensional

separation of concerns” [Tarr et al. 1999]. This is an approach to decompos-

ing software into modules, each of which contains the code for (thereby

encapsulating) a particular area of interest. These modules are called hyper-

slices. Examples of the areas of interest that motivate this level of decompo-

sition are functions, data types/classes, features (e.g. “persistence”, “print”,

“concurrency control”) and roles. Developers can write separate programs in

Java™ to support this decomposition. This work has evolved from the work

on subject-oriented programming [Harrison & Ossher 1993], [Ossher et al.

1996].

The modules that implement different units of interest (hyperslices) in

Hyper/J are composed by identifying corresponding units in different hyper-

slices, and integrating them. The relationships between corresponding units

in different modules are identified in a specification file that has two main

parts:

Relat ed Work Objec t-Oriented P rogramming Models

49

1. it explicitly names the hyperslices involved in the composition (keyword

hyperslices);

2. it identifies the corresponding units within these hyperslices, and how they

are to be integrated (keyword relationships).

Some relationships identify the corresponding elements by combining the

matching criteria with the integration criteria. For example, mergeByName

specified in the relationships part of the specification file indicates that units

with the same name correspond, and should be merged. Other relationships

just identify units that correspond, without an indication of how they should

be integrated. For example, the equate relationship indicates that a set of

units match each other, and the match relationship provides a more flexible

pattern matching with wild cards. The composition process uses these rela-

tionships to identify the units within the different hyperslices that corre-

spond.

This separate specification file is the means for specifying integration of

hyperslices. This file identifies the hyperslices to be composed, the units

within the hyperslices that correspond, and how they are to be integrated.

Integration relationships such as merge and override specify different kinds

of integration strategies for corresponding units. merge indicates that corre-

sponding units are to be integrated together into a single unit. override

causes one unit to replace other corresponding units. The actual integration is

performed by Hyper/J, the result of which is a composed Java program con-

taining the combination of the input hyperslices as defined by the integration

strategy.

Aspect-Ori-

ented Pro-

gramming

Decomposition based on “aspects” is the approach taken in AspectJ™ [Kic-

zales & Lopes 1999], where an aspect is a unit of interest that “cross-cuts”

another unit of interest. Two units of interest cross-cut each other when the

available decomposition paradigm supports the encapsulation of one unit of

interest, but this presents difficulties in cleanly localising the other. Exam-

ples of a cross-cutting unit of interest are “persistence”, “concurrency con-

trol” and “distribution”. With AspectJ, such cross-cutting units of interest

can be encapsulated, and coded (in Java) separately from the rest of the code.

The approach is called “aspect-oriented programming” [Kiczales et al. 1997].

The existence of a “base” program into which aspect code is weaved is the

primary difference in the approaches of subject-oriented programming (and

therefore, decomposition in subject-oriented design) and aspect-oriented pro-

gramming. In subject-oriented programming, there is no concept of a base

Relat ed Work Objec t-Oriented P rogramming Models

50

program - each code subject is independent, and completely provides the

code for the particular unit of decomposition supported.

AspectJ has extended Java to support constructs that implement the aspects

that cross-cut programs. The overlaps with standard Java programs are

explicitly and clearly defined with new Java language constructs that sup-

port:

1. The identification of the points in the base Java program (such as types,

messages, instantiations, exceptions or members) where the aspect pro-

gram defines actions that may be performed on those points. The keyword

crosscut is used here.

2. The aspect program also specifies the actions to be performed on the iden-

tified points, and controls when these actions are performed with new key-

words - some examples of which are before , after, finally and

catch .

Integration in aspect-oriented programming using AspectJ is performed at

compilation time. The source .java aspect and class files are input to an

aspect compiler that “weaves” the input source files, and produces Java code

containing the integration of the aspect code and the class code. The weaver

generates the output Java code based on the specification in the input aspect

files. The aspect files indicate the exact points in the class files that have

additional actions specified, and where those actions should be integrated

(e.g. before, after etc.). The generated Java code may then be compiled with a

standard Java compiler.

Composition

Filters

“Composition filters” are the approach to decomposition described in [Aksit

et al. 1992], where decomposition based on “views” integrates database-like

features with the object-oriented model. Views are supported with “filters”

which are part of the definition of a class. Filters define the guidelines for an

object’s behaviour and have two components: a filter handler that determines

what is to be done with messages, and an accept-set function that defines the

conditions under which messages to the object are accepted. Multiple views

are defined in terms of filters, where a client object is examined to determine

the behaviour to which it has access. Different filters may be defined for each

class to support different kinds of views - for example, concurrency or syn-

chronisation. Each filter is responsible for handling all aspects of its associ-

ated view. Since both message sends and receives are trapped by filters,

filters can perform certain actions relevant for its view, before the actual

method is executed. This approach differs from the subject-oriented approach

Relat ed Work Objec t-Oriented P rogramming Models

51

primarily in its handling of separation for a single class, where multiple, col-

laborating classes are separated into subjects.

In this approach, filters are explicitly attached to class definitions in the lan-

guage. Each class definition defines the behaviour of any filters on receipt of

incoming messages, and the behaviour that may be defined as a result of out-

going messages. Further identification of overlaps is not required.

Integration involves integrating the filters that contain the additional con-

straints or behaviour to support the separated units of interest. The effect of

integrating filters is essentially to and them together, with messages being

accepted or rejected in a sequential manner.

Adaptive Soft-

ware

The problem with standard object-oriented programming languages

addressed by adaptive software [Lieberherr 1995] is the impact of attaching

methods to classes. The impact is that the details of the class structure for

collaborating objects are encoded into the program. This means that pro-

grams are hard to evolve and maintain as changing the class structure

requires changes to all code that explicitly refers to that structure. Adaptive

software decomposes programs by separating the algorithms on data into

code patterns. These patterns, called propagation patterns, interact with a

class dictionary that defines class structure with minimal dependency on that

structure. Minimal dependency is achieved because propagation patterns con-

taining algorithms only refer to class structures implicitly through a level of

indirection from the actual class structure, called a propagation graph. The

propagation graph provides the succinct specification of the group of collab-

orating classes required for the algorithm in the propagation pattern. This

level of decomposition protects the algorithms from changes to the base class

structure, minimising the impact of changes.

So, we have propagation patterns that implement functionality for groups of

collaborating classes, and propagation graphs that specify what those classes

are. The identification of overlap required to integrate the algorithms with

the classes is done with propagation directives. How classes should be tra-

versed to suit the algorithms is specified by the propagation directives. The

correspondence (or overlap) of the collaborating classes with the appropriate

algorithm is specified when a propagation pattern uses the propagation direc-

tive specifying the collaborating group and its traversal.

Integration in adaptive software systems with propagation patterns is per-

formed at compile time. The pattern compiler integrates a class hierarchy

with algorithms defined in propagation pattern wrappers, as defined by a

Relat ed Work Objec t-Oriented P rogramming Models

52

propagation directive which specifies the traversal through the appropriate

collaborating classes. A “wrapper” specification within a propagation pattern

may express combinations of methods, where the generated code resulting

from the compilation simulates multiple inheritance within the class hierar-

chy.

Metaobject

Protocols

The separation of base and meta-levels of programs is the focus for decompo-

sition with metalevel programming. The interface between the base-level and

meta-level programs is achieved with metaobject protocols [Kiczales et al.

1991]. Metaobject protocols are interfaces to the programming language that

allow programmers to customise the behaviour and implementation of pro-

gramming languages and other system software. Metaobjects trap message

sends and receives to objects, and can therefore supplement the behaviour of

operations at the base level. With this level of separation, metaobjects may

contain support for distribution of objects, concurrency, etc., thereby neatly

separating such concerns from the base-level algorithms of the object. How-

ever, further decomposition at the meta-level remains an open issue, as it is

not possible to separate, for example, distribution support from concurrency

support if both are required for the base object. Aspect-oriented program-

ming can be seen as an outgrowth of this work, where decomposition based

on any kind of cross-cutting activity is possible.

As described in [Kiczales et al. 1991], metaobjects are defined by metaobject

classes, where, for each kind of programming construct (e.g. class, method),

a basic metaobject class may be defined. These basic metaobject classes may

be further specialised and attached to standard base classes to extend their

behaviour. One implementation of this for C++ is defined in [Gowing &

Cahill 1996], where categories of possible metaobject classes for C++ have

been defined (for example, object creation, method invocation etc.). A pro-

grammer may specialise metaobject classes within these categories, defining

additional state and behaviour. The notion of identifying overlaps is handled

explicitly, where base objects requiring any additional behaviour within the

defined categories are explicitly associated with the relevant metaobject(s).

Integration in metaobject protocols amounts to simply attaching the appropri-

ate metaobjects to the base level objects [Kiczales et al. 1991]. Each pro-

gramming language that handles the specification of metaobject classes has,

generally, been extended to support the relationship between the defined

metaobjects and base objects, and therefore executes the required meta-

behaviour on invocation of the appropriate programming language construct

Relat ed Work Dat abase Models

53

in the base object - for example, object instantiation, method entry, or

method exit etc.

3.4. Database Models
The means to manage data within an organisation with database management

systems first emerged in the late 1960’s [Bell & Grimson 1992]. The motiva-

tions for decomposing data in different ways were many - for example, to

eliminate duplication of data, to avoid problems associated with multiple

updates of data, and to minimise inconsistencies across applications [Batini

et al. 1986]. Different approaches to decomposition over the decades from

the 1960’s have been described as first, second and third generation [Stone-

braker et al. 1991].

Network and hierarchical database systems were classified as “first-genera-

tion” and were prevalent in the 1970’s. However, due to the complexity of

navigation, these first generation approaches to data management were

largely replaced by the “second-generation” of database management systems

- relational databases. Decomposition of data in the relational model is in

two-dimensional structures known as tables or relations [Bell & Grimson

1992]. Relational database technology has a strong theoretical basis in math-

ematical relational theory, and has proven a successful approach to data man-

agement. However, because of a perceived limitation in supporting a broader

base of applications [Stonebraker et al. 1991], a third generation of database

management systems were born, based on the object-oriented paradigm.

Different attempts at defining an object-oriented database management sys-

tem are described in manifestos from [Stonebraker et al. 1991], and from

[Atkinson et al. 1990]. In summary, object-oriented databases manage com-

plex objects, with object identity, and support standard object-oriented prin-

ciples of encapsulation and inheritance. Other features and characteristics

required of object-oriented databases are computational completeness, per-

sistence, concurrency, recovery and an ad-hoc query facility. Object-oriented

database management systems follow the structural decomposition paradigms

of object-oriented analysis, design and coding paradigms.

From the point of view of decomposition, modern database management sys-

tems are primarily either based on relational theory or the object-oriented

paradigm. Therefore, from a decomposition perspective, the work is not

directly relevant for comparison purposes. The approach proposed in this the-

sis is motivated by problems with the object-oriented paradigm, and therefore

Relat ed Work Dat abase Models

54

more relevant related work is in areas where the object-oriented paradigm is

being extended. However, research into integration of heterogeneous sche-

mas has many similarities in the areas of identifying overlapping elements,

reconciling conflicts in elements, and integration of schemas, and therefore

this discussion on decomposition in database management systems is useful.

Reference

Architecture for

Schema Inte-

gration

An environment with multiple heterogeneous databases, where data is

required from each of these different sources, needs an architecture whereby

any required data may be integrated, regardless of the source of that data. In

[Sheth & Larson 1990], a reference architecture is defined, from which feder-

ated database systems (that is, a collection of cooperating database systems

that are autonomous and possibly heterogeneous) may be developed. The ref-

erence architecture includes descriptions of components that have responsi-

bilities for mapping the schemas from different databases and for checking

constraints and integrating data from the different sources. The five-level

schema architecture described defines the steps the schemas from different

databases go through, from the local schema that is private to a component

database system of the federation, to the external schema that contains data

required by a user and/or application. From the perspective of the work that

is related to this thesis, the focus is on levels that have integration and recon-

ciliation elements.

Identifying

Overlaps

In the federated database system architecture described in [Sheth & Larson

1990], schema translation and schema analysis steps provide the means to

examine component database systems for overlaps. Where database systems

are described using different data models (that is, Common Data Models

(CDMs) or different “languages”) schema translation supports the translation

of the different models into a uniform CDM, aiding the analysis step since it

is easier to compare data described in the same language, than it is to com-

pare data described in different languages. Schema analysis involves compar-

ing the objects in the schema prior to integration, and identifying naming and

domain conflicts, structural and constraint differences, and missing data. The

identification of the overlaps in the different schemas involves specifying the

interrelationships among the schema objects.

Research into integrating database schemas generally conforms to an archi-

tecture of identifying overlaps between different schemas and integrating the

schemas to provide a single view. From the perspective of identifying over-

lapping elements within different schemas, approaches vary in the extent to

Relat ed Work Dat abase Models

55

which they automate the process, and the extent to which they support the use

of heuristics for identifying overlap. For example, in [Sheth et al. 1993], the

relationships between attributes in different schema are identified by a

human with attribute relationships, but these are considered only a partial

identification of overlapping elements. Generation of an attribute hierarchy

is supported, further establishing semantics equivalence between attributes.

In general, explicit identification of overlapping elements is prevalent in

database schema integration approaches. For example, there are articulation

axioms from [Collet et al. 1991], inter-schema correspondence assertions

from [Spaccapietra et al. 1992], assumption predicates from [Gotthard et al.

1992], pairing of user-defined vertices from schema graphs in [Klas et al.

1996] and object correspondence assertions from [Navathe & Savasere

1996]. Correspondence types identified in [Navathe & Savasere 1996] are

defined as equivalence, contains, contained-in, overlap, disjoint, aggregate

and composite. Similarly in [Bertino & Illarramendi 1996], correspondence

types are defined as equivalence, inclusion, overlapping and disjoint. In each

of these approaches, varying levels of explicit identification and heuristics to

support the general identification of possible overlaps are applied, with the

integrator confirming or rejecting results from the general heuristics.

Integrating

Schemas

In the reference federated database system architecture described in [Sheth &

Larson 1990], a “federated schema” is the integration of multiple export

schemas from component databases. Export schemas are the subset of the

component schema (that is, local schema translated to a common data model)

that is made available to the federated database system. Implementations of

the reference architecture must have a schema integration step that may

include automated integration based on the relationships previously defined

between the component schema during an analysis for the identification of

overlaps, and also, support for a more interactive integration process

whereby a user may be guided through a process of defining equivalences for

integration. Issues with integrating schemas from the point of view of differ-

ences in data representation are identified in [Bright et al. 1992] as: 1) nam-

ing differences (synonyms, homonyms); 2) format differences (data types,

domain, scale, precision); 3) structural differences (single v. multiple values,

differences in types); 4) missing or conflicting data (conflicts in actual data

values stored). Approaches to integrating database schema described in this

section, in general, contend with these issues.

Relat ed Work Dat abase Models

56

However, once correspondences in different schema have been established,

approaches to integration of schemas are based on merging schemas in differ-

ent ways. [Navathe & Savasere 1996] describe a number of different merging

operators that contain strategies to handle the merging of pairs of objects

(established as corresponding) as appropriate to their types, and the extent to

which their merging requires support to handle conflicts between them. The

merging strategies range, for example, from adding a generalisation or spe-

cialisation object to capture common attributes and/or their constraints, to

the creation of a new entity to contain the union of all attributes. Some

restructuring operators are also included where new entity types may be cre-

ated (or deleted) in the composed schema where necessary. Automated class

integration based on formal reasoning is described in [Sheth et al. 1993],

where the attribute relationships defined by the user to specify corresponding

attributes are used as the basis for formal use of a classification algorithm

which is based on the semantics of class subsumption - that is, whether a

class is a superclass of another.

These two approaches are good representatives of the general approaches to

integrating schemas - transformation (or some level of structural enhance-

ment) of schemas is a common theme, as also is the use of formal heuristics

for some level of automation of the union of schemas.

Resolving Con-

flicts

Conflicts in heterogeneous database models can arise as a result of “systems”

reasons (where the hardware, operating system, database management sys-

tem, transaction management system, or communications protocols are dif-

ferent) or for “semantic” reasons (where there are differences in the way data

is modelled, resulting in conflicts in database schemas). Subsuming earlier

work on classifying heterogeneities in relational multidatabase systems (for

example [Kim & Seo 1991]), [García-Solaco et al. 1996] classifies numerous

categories where semantic heterogeneities may arise - namely, differences in

extensions (i.e. instances of classes), differences in attributes, methods and

names, differences in domains and differences in constraints. This work con-

cludes that detection of semantic heterogeneities is “the most critical task of

the reconciliation”, and that it is not possible to fully automate the process

due primarily to incompleteness of design methodologies, semantic poorness

of local/component schemas, and also because some semantics can only be

determined with respect to a particular context that may only be known to the

integrator. However, while human intervention is unavoidable, some measure

of automation is possible. Therefore this section looks at some representative

Relat ed Work Discussion

57

work in the database field in the area of automating the reconciliation of con-

flicts in database schemas.

Research into the automation of mapping of information from input schemas

to integrated schemas is the focus of the approaches in [Härder et al. 1999]

and in [Spaccapietra & Parent 1994]. A mapping language, called BRIITY, is

described in [Härder et al. 1999], which has been designed to “bridge hetero-

geneity”. For each classification of conflict, the mapping language has rules

to define how each conflict should be resolved. These rules are based on

combining the object-oriented paradigm with set theory from relational data-

bases to establish relationships between entities and attributes of the

instances of different schemas. The language has explicit constructs to iden-

tify the mappings between the types and entities of different schemas. The

approach to mapping described in [Spaccapietra & Parent 1994] is based on

correspondence assertions defined between related constructs in different

schemas. For each assertion, formal rules state how to derive the constructs

to be inserted into an integrated schema. Where conflicts exist in correspond-

ing entities, the integration holds the least restrictive representation.

Another interesting and different approach to automated resolution of seman-

tic heterogeneity is based on the use of on-line linguistic tools to interpret a

user’s imprecise language in requesting data [Bright et al. 1994]. First, a glo-

bal data structure is built relating local access terms which are semantically

similar. Then, using this global structure and on-line linguistic tools, the

user’s imprecise query is interpreted and associated with the precise local

system access terms that are semantically closest. This is not the same as res-

olution in the subject-oriented design sense of resolving to a single output,

but is an interesting approach to being as flexible as possible from a user’s

perspective.

3.5. Discussion
As stated previously, the fundamental goal governing this work is to extend

the decomposition capabilities of software artefacts, as applied to software

designs. In support of this, the identification of overlaps in different design

models, the integration of design models, and the reconciliation of conflicts

between design models is required. For this reason, the discussion in the pre-

Relat ed Work Discussion

58

vious sections focused, where appropriate, on how each approach handled

these areas. See Table 1 for a summary.

Decomposition
Identifying
Overlaps

Integration
Reconciling

Conflicts

Requirements Engineering Models

Viewpoints Capture of perspective of
requirements from indi-
viduals

Relationships between
viewpoints explicitly
defined with inter-View-
point relationship with
rules to govern overlaps

Integration based on
negotiation of perspec-
tives, and consistency
checking of inter-View-
point relationships. Inte-
gration is achieving
consistency

At gathering phase,
based on negotiation
and understanding
of perspectives.
Supporting frame-
work based on man-
aging
inconsistencies

Use Cases Based on functionality
expected from system

Use cases are kept sepa-
rate.

Analysis phase han-
dles inconsistencies

Features
(Zave)

In telecommunications
domain, based on unit of
functionality

Features
(Turner)

Modularisation based on
individual requirement

Explicit association of
features with system
components with an
implementedBy keyword

Services/
Facilities

Technical kinds of serv-
ices - for example, object
naming and object events

Object-Oriented Analysis and Design Models

OORam Role model for each
activity or task

Language defined with
explicit constructs to
identify mappings
between roles in different
role models

Base role models are syn-
thesised into a derived
model. A notion of
“safe” synthesis limits
possibilities for integra-
tion - two possibilities:
activity superposition
(each activity retained
unchanged) and activity
aggregation (activity
changed to include exe-
cution of another)

Catalysis Horizontal and vertical
slices for different kinds
of functionality

Joining generally based
on “same name” corre-
spondence, with invari-
ants to define exceptions
possible

Based on a definition of
UML import relation-
ship called join. Result
contains combined set of
elements with con-
straints and-ed

Role
Modelling
(Kristensen)

Separation of intrinsic
object from role object
plays

Overlaps defined at
design time, with explicit
attachment of roles to
intrinsic objects. Like-
named roles and classes
are also considered to be
the same.

Roles may be aggregated
for a single intrinsic
object. Integration of
like-named roles and
classes only possible
when result does not con-
tain cycles.

Table 1: Summary of Related Work

Relat ed Work Discussion

59

Contracts A contract separates
specification of behav-
ioural compositions and
obligations on partici-
pants

Classes may be explicitly
mapped to contracts,
deeming that class as a
participant in the contract

By instantiation of con-
tracts, behavioural com-
positions of collaborating
objects are created. Con-
tracts may be composed
to define more complex
specifications

Views System decomposed
based on “view” of user,
with definitions of differ-
ent interfaces, and varia-
ble visibilities and copies
for different views within
each class

View classes define the
set of object classes and
interfaces of the required
set of collaborating
classes.

View Classes specify
composition of objects
relevant for a particular
view. Instantiation of
objects is in context of an
instance of a view class.

Design
Patterns

Isolates different parts of
a problem in areas such
as structural, behav-
ioural and creational con-
cerns

The interaction of collab-
orating objects is defined
as part of each pattern

Integration not explicit in
the sense of synthesis to
single result, but as a
specification of collabo-
rating classes

Object-Oriented Programming Models

Subject-
oriented pro-
gramming

Different modules con-
tain code for different
areas of concern along
multiple dimensions

Corresponding units in
different modules (hyper-
slices) are defined with
relationships

Integration strategy
defined with explicit key-
words (e.g. merge, over-

ride) with input modules
composed by a composi-
tor that produces an out-
put module.

Aspect-
oriented pro-
gramming

Separates cross-cutting
concerns (such as distri-
bution) into separate
modules

Aspect language con-
structs (keyword cross-

cut) specify the parts of
the base program
affected by an aspect

Integration performed at
compile time, with aspect
coded weaved in with the
based program as speci-
fied by the aspect pro-
gram.

Composition
filters

“Filters” support views
on classes by defining
what is to be done with
messages, and the condi-
tions under which mes-
sages are accepted

Filters are attached to
class definitions (sup-
ported by language con-
structs)

Filters may be integrated
(that is and-ed) with tests
for acceptance of mes-
sage through the filters in
a sequential manner

Adaptive
Software

Separates algorithms
from the data on which
algorithms work, using a
level of indirection to
work with the class struc-
ture required.

Propagation directives
contain information on
the class hierarchy and
how it should be tra-
versed by the algorithm
(propagation pattern)

Performed at compile
time, the pattern com-
piler integrates the algo-
rithms with the class
hierarchy as defined by
propagation directives

Metaobject
Protocols

Base and meta-levels of
classes are separated,
with metaobject proto-
cols supporting the trap-
ping of messages to an
object, for enhancement

Meta-objects and base
objects are explicitly
associated with support-
ing language constructs

Integration simple
attaches the appropriate
metaobjects to the base
objects.

Decomposition
Identifying
Overlaps

Integration
Reconciling

Conflicts

Table 1: Summary of Related Work

Relat ed Work Discussion

60

In general, decomposition in requirements engineering models is based on

units of relevance to the end user, or on units of relevance for the technical

environment. This makes sense, as requirements are generally gathered from

end-users, or defined to support a particular environment. It is important,

therefore, for validation purposes, that the requirements specification be in a

language understood by the end-users, and that their concerns are the primary

units of specification. For this reason, it is unlikely that requirements engi-

neering research will radically change how requirements specifications are

decomposed in the future.

Compared with the requirements model, there appears to be more flexibility

in the approaches to decomposition in analysis and design models. Research

in this field is most notable for the interesting ways of attempting to divide

up design artefacts. The goals for these attempts are, in general, similar to

each other, with approaches trying to make software designs more re-usable,

extensible, and comprehensible. Subject-oriented design has these goals in

common with many approaches. In general, subject-oriented design distin-

guishes itself with its support for different kinds of integration of overlap-

ping concepts, thereby enabling more flexible kinds of decomposition.

The approach to decomposition in role modelling in OORam [Reenskaug et

al. 1995] is subsumed by the approach taken in the research described in this

thesis. Additional decomposition capabilities for technical kinds of concerns

are possible with the subject-oriented design model. There are also strong

similarities with Catalysis [D’Souza & Wills 1998], with vertical and hori-

zontal slices similar to functional and cross-cutting decompositions. Where

the subject-oriented design model distinguishes itself is primarily in its sup-

port for different kinds of integration, and its support for specifying patterns

of collaborating design elements. The more sophisticated resolution and inte-

gration capabilities in subject-oriented design, especially of overlapping ele-

Database Models

By the third generation of
database models, decom-
position is based on the
standard object-oriented
paradigm

Explicit identification of
corresponding elements
is prevalent with schema
integration models - for
example with corre-
spondence assertions,
assumption predicates,
articulation axioms, etc.

Integration is based on
schema union.
Approaches are generally
based on transformation
(some level of structural
enhancement) or formal

heuristics for the automa-
tion of the union of sche-
mas.

Research into classi-
fications of different
kinds of heterogene-
ity basis for heuris-
tics of mapping
input to output to
avoid conflict. This
tends to involve
transformation.

Decomposition
Identifying
Overlaps

Integration
Reconciling

Conflicts

Table 1: Summary of Related Work

Relat ed Work Discussion

61

ments, support extensions to the decomposition capabilities in Catalysis. The

approach to role modelling from [Kristensen & Østerbye 1996] is different

from subject-oriented design in the specification of the intrinsic object to

which roles are attached. With the subject-oriented design model, there is

flexibility for evolving the properties of an object over time, by specifying

new or changed properties and composing them with previous versions of an

object.

Differences are more significant in the approaches to contracts, views and

design patterns. With contracts, decomposition is based on supporting com-

position of objects as opposed to composition of classes as defined in the

subject-oriented design model. This is also true of views [Shilling &

Sweeney 1989], while design patterns do not have a notion of overlapping

specifications, or integration of designs.

From the cited work within programming models, the subject-oriented design

model most emulates the approach supported for code by Hyper/J [Tarr &

Ossher 2000]. Hyperslices are modules that implement different units of

interest, and are directly analogous to design subjects in the subject-oriented

design model. The ideas within the subject-oriented design model based on

the specification of overlaps (corresponding elements) within different sub-

jects, and the approaches to integrating subjects are based on those within

this programming model. At the highest level, where subject-oriented design

distinguishes itself (aside from working with designs instead of code) is pri-

marily in the ability to specify patterns of collaborating design elements. At a

more detailed level, there are other differences between the rules and capa-

bilities of composition relationships (subject-oriented design) and composi-

tion rules (subject-oriented programming). See “Composition of OO Designs:

The Model” on page 64 for more details.

Also from the cited work within programming models, the aspect-oriented

programming approach [Kiczales et al. 1997] has many similarities with sub-

ject-oriented design in terms of the goals that each is trying to achieve.

Cross-cutting concerns are separated from “base programs” within the

aspect-oriented programming model. Cross-cutting concerns may also be

designed as a separate design subject within the subject-oriented design

model. However, as in subject-oriented programming, subject-oriented

design also does not have the notion of a “base design”. Each requirement or

area of interest may be designed separately, including functional require-

ments that are all implemented in the “base program” within aspect-oriented

programming. This also has implications for composition specification, as in

Relat ed Work Discussion

62

the subject model (both design and programming), composition specification

is separate from the individual subjects, whereas in the aspect model, how

aspects are composed with a particular base program is part of the aspect pro-

gram which also contains the cross-cutting behaviour specification. Nonethe-

less, the goals of both approaches are sufficiently similar to warrant

investigation into the applicability of the aspect-oriented programming

implementation as a supporting technology for subject-oriented design (see

“Future Work” on page 253 for more details).

Differences with the other programming models are more significant. Com-

position filters decompose units of interest on a per-class basis [Aksit et al.

1992], whereas the subject approach decomposes based on units of interest of

groups of collaborating classes. The more sophisticated reconciliation and

integration capabilities of the subject-oriented design model allow more flex-

ibility of decomposition than is available in adaptive software [Lieberherr

1995]. While metaobjects permit the separation of the base and metaobjects,

it is not possible to compose metaobjects, and therefore further decomposi-

tion of metaobjects to implement different functionality is not possible [Kic-

zales et al. 1991].

Resolving conflicts in overlapping entities has been the focus of some work

in the requirements engineering and the database fields particularly.Work in

the analysis/design and programming fields tends to restrict the kinds of

overlaps possible to ensure that conflicting elements are not integrated. How-

ever, in the requirements engineering field, it is particularly important to

attempt to resolve conflicting requirements, as it is not possible to restrict the

kinds of requirements that end-users want to include. As a result, it is not

possible to avoid the possibility of there being conflicting requirements.

These conflicts must be resolved prior to completion of the requirements

specifications.

In the database field, the core problem addressed in current research is based

on the assumption of heterogeneity in schemas to be integrated. Therefore,

algorithms and processes for the resolution of conflicts in heterogeneous

schemas are the focus of much research. The subject-oriented design model

proposed by this thesis allows differences in specifications of overlapping

design models, and therefore reconciliation of potential conflicts is required

where corresponding elements are to be integrated into a single element (this

occurs in merge integration).

Relat ed Work Chap ter Summary

63

3.6. Chapter Summary
This chapter examines research work related to the new approach to object-

oriented design proposed in this thesis, called subject-oriented design. Since

software design can be seen as a bridge between requirements and code,

research has been examined within the fields of requirements engineering,

object-oriented analysis and design, object-oriented programming and data-

base management systems. While the focus of the research described in this

thesis is the object-oriented design phase, the very fact that the structures of

the artefacts from phases across the lifecycle are fundamentally different is

the root cause of many of the problems motivating subject-oriented design.

Therefore, because of the “bridge” nature of design, it is particularly interest-

ing to examine the manner in which software artefacts are structured in the

different phases.

Within these areas, the themes used to analyse different approaches are based

on the primary areas of focus for subject-oriented design - they are: decom-

position; identification of overlap; integration; and reconciliation of conflict.

In this way, there is an emphasis on the particular parts of related areas of

work that are specifically related to the different parts of subject-oriented

design. This serves to highlight similarities and differences in a focused way.

From the volume of research that exists for improving and extending the

object-oriented paradigm, it may be deduced that there is considerable recog-

nition of the need for improvements across the software development lifecy-

cle. The selection of the work chosen for discussion in this chapter is

research that endeavours to provide different ways of dividing up software

artefacts. A common theme of all the research discussed here is the need to

separate different kinds of units of interest. This need is based on the desire

to make software artefacts easier to understand, easier to extend, and easier

to re-use.

Now that we have motivated the research described in this thesis, and exam-

ined other work in this field, we now take a closer, more detailed look at the

subject-oriented design model (see Chapter 4: Composition of OO Designs:

The Model” on page 64).

64

Chapter 4: Composition of OO
Designs: The Model

The root problem addressed in this thesis is the inherent structural mismatch

between requirements specifications and object-oriented design specifica-

tions. “Chapter 2: Motivation” on page 11 describes and illustrates the nega-

tive impact of this structural mismatch - support for individual requirements

is scattered across the design and support for multiple requirements is tan-

gled in individual design units. This reduces comprehensibility and traceabil-

ity, making designs difficult to develop, re-use and extend.

This chapter describes an approach to addressing the structural mismatch

problem. The approach is based on providing a means of decomposing arte-

facts written in one paradigm so that they can structurally match those writ-

ten in another. In order for there to be such a structural match, it must be

possible to decompose object-oriented designs in a manner that aligns with

the structure of requirements specifications. Requirements are generally

described by feature and capability. So, this means that object-oriented

designs must also decompose design models by feature and capability,

thereby encapsulating and separating their designs. Since requirements are

encapsulated, decomposition in this way removes the scattering of require-

ments across the full design. It also removes the tangling of multiple require-

ments in individual design units, as requirements are separated into different

design models.

Decomposition in this manner requires corresponding composition support,

as object-oriented designs still must be understood together as a complete

design. The core of this thesis is the specification of how design models are

composed. Composing design models involves:

1. Identification of Corresponding Elements: As described in “4.1. Decom-

posing Design Models” on page 65, decomposing design models based on the

structure of requirements specifications may result in overlapping parts,

where there are different views of those parts in different design models. In

Com posit ion of O O Des igns: The Model De composing Des ign Model s

65

order to successfully compose design models, those overlapping parts (called

corresponding elements) must be identified.

2. Integration: Integration of design models involves synthesising a single

composed design model from a collection of design models. Two kinds of

integration are described in this thesis. “Chapter 6: Override Integration” on

page 127 gives a detailed description of the semantics of overriding design

subjects in the context of UML, and the impact of override on different kinds

of design elements. “Chapter 7: Merge Integration” on page 155 provides the

same detail for merging design subjects

This chapter describes the composition model with the following sections:

• Decomposing Design Models: This section describes the structural match-

ing of design models with requirements specifications.

• Composing Design Models: This section gives an overview of the compo-

sition model; that is, input design models are integrated to an output

design model. It introduces the notion of design models as design subjects

and describes their structure from the perspective of composition.

• Specifying Composition: This section describes the means for specifying

how design models should be composed. This is with a new kind of design

relationship, called a composition relationship .

• Analysis of the Output of a Composition: This section analyses the output

of a composition, and considers possible difficulties associated with it.

Solutions to these difficulties are discussed.

• Using Subject-Oriented Design: This section discusses the phases of the

development cycle when the approach described in this research is useful,

and some implications of its usage.

4.1. Decomposing Design Models
For object-oriented design models, matching the structure of requirements

means that design models must be decomposed – that is, divided up – into

separate models that match that structure. These separate models are called

design subjects. Each design subject separately describes that part of a sys-

tem or component that relates to a particular requirement, encapsulating its

design and separating it from the design of the rest of the system.

The kinds of requirements whose designs can be described in design subjects

are many and varied. They include units of requirements like features, and

so-called cross-cutting requirements, (like persistence or distribution) that

Com posit ion of O O Des igns: The Model De composing Des ign Model s

66

affect multiple units of functionality. Design subjects can also encapsulate

units of change, making evolution of software additive rather than invasive.

Conceptually, a design subject can be written in any design language, but the

focus of this thesis is the UML [UML 1999]. A UML design subject can con-

ceptually contain any valid UML diagrams. Scoping for this work, however,

involved selecting a subset of the full set of UML diagrams, and is detailed in

“Scope of Work” on page 72. Application of this approach to other design

languages, and to all UML diagrams remain interesting issues for future

research.

Design subjects thus provide a means of decomposing systems that comple-

ments those already provided by the other UML diagrams. They permit the

encapsulation of all, and only, those design elements that relate to a particu-

lar requirement. Whereas the design elements in a conventional UML design

model must be defined completely with respect to the entire system, the

design elements in a design subject need only contain those details that are

relevant to the requirement it encapsulates.

Structural

Matching

with Require-

ments

The simplest model for structuring design subjects directly with requirements

specifications is to have a one-to-one match of requirement with subject. The

full requirements specification is the input to the decision-making associated

with dividing up the design into design subjects. In “Chapter 2: Motivation”

on page 11, a discussion of the requirements specification paradigm notes

that there are numerous approaches to requirements gathering and specifica-

tion based on the notions of features, capabilities, services, etc.

One-to-One In many cases, a division into design subjects based directly on the particular

units of division at the requirements specification level will yield a one-to-

one match of requirement with subject.

For the small example motivating this work described in “Chapter 2: Motiva-

tion” on page 11, an analysis of the requirements specification (“Require-

Figure 14: Requirements and Subjects: One-to-One Structural Match

Com posit ion of O O Des igns: The Model De composing Des ign Model s

67

ments Specification” on page 19) shows that capturing each feature of the

SEE in a subject illustrates this simple model (see Figure 14).

Even a requirement which has an impact across all the other requirements,

such as the subject “Log” (which logs operation execution across the full

SEE), may be separated from those operations, and designed as a separate

model. These kinds of requirements are considered to be cross-

cutting requirements ([Kiczales et al. 1997], [Tarr et al. 1999]), and their

separation from the design elements they cut across is a particularly useful

capability of this model. This is because cross-cutting requirements are gen-

erally tangled up with the design for other requirements, thereby exacerbat-

ing difficulties with comprehension, etc. (see “Chapter 2: Motivation” on

page 11).

The ability to structure design models in this way alleviates the scattering

and tangling problems that motivate this work. Each design subject is easy to

understand as it supports only one requirement, with every included design

element providing for some need within the requirement, and no redundant

design element that is not used for that requirement. Traceability is clear

because of this one-to-one match. Any new requirement may also have its

own design subject, making changes additive rather than invasive. Reuse of

any particular design subject is not complicated by the existence of design

elements within the subject that are not relevant.

From a UML perspective, the approach to capturing requirements as Use

Cases is likely to yield a one-to-one match with design subjects [Jacobson et

al. 1999]. Use cases support the separation of requirements specifications

into the different uses of a computer system. This separation is not main-

tained through the analysis and design with UML, but with an approach such

as this composition model, the decomposition of the design models could be

based on the individual use cases in a one-to-one match.

One-to-Many There may also be situations where the level of granularity of a particular

requirement may yield a complex design subject, which, based on the intui-

tion and experience of the designer, could be further divided up and captured

as multiple design subjects. This has the advantage of simplifying the design

of the individual design subjects, and also supports their concurrent develop-

ment by different teams. For example, further analysis of the display require-

ment of the SEE might highlight the need to display expressions on different

kinds of devices, and in different ways; 1) Display an expression as a string

on a text window; 2) Display an expression as a tree structure on a graphical

Com posit ion of O O Des igns: The Model De composing Des ign Model s

68

window; 3) Display an expression as a string and highlight different con-

structs in different colours, on a graphical window; etc. The original display

requirement might thus be captured as multiple design subjects as illustrated

in Figure 15.

Another possibility of a one-to-many match of requirements with design sub-

jects is where a significant change request may be received from an inter-

ested party. One approach to handling such a request, where the impact is

significant, is to design the change as a separate design subject, and compose

with the design subject to be changed1. While the change request may itself

be viewed as a new requirement, and therefore the one-to-one structural

match applies - on the other hand, from the original requirement’s perspec-

tive, its correct design is now in multiple subjects.

One-to-many structural matches could be looked upon as having the negative

scattering properties that result in difficulties associated with comprehensi-

bility, traceability, evolvability and reuse as described in “Chapter 2: Motiva-

tion” on page 11. In both cases, a single requirement is scattered across

multiple subjects. However, clear traceability to the original requirement still

exists in this case. In addition, the rationale for further dividing the subjects

is for reasons of decomposing complexity in the first case, and easing change

of a subject by designing the change separately in the second case. Finally,

since the model supports the composition of subjects, the “many” subjects in

the one-to-many structural match may be composed to a single subject,

thereby simulating a one-to-one structural match.

Many-to-One It is also possible that multiple requirements may be supported by a single

design subject. However, this occurs as a result of a composition, as the

result of a composition is itself a design subject. In general, the output of

composition of multiple subjects is expected to have scattering and tangling

Figure 15: Requirements and Subjects: One-to-Many Structural Match

1. See “Is every Requirement a Subject?” on page 70 for a discussion on whether every
change is designed as a separate design subject.

Com posit ion of O O Des igns: The Model De composing Des ign Model s

69

properties as this is the motivation for decomposing design models in the

first place. However, the case considered here is where a small, logical

grouping of requirements may each have been designed as separate subjects,

but, for convenience, composed into a design subject as a single unit. From

the SEE example, this might occur where there are different kinds of check-

ing requirements; 1) Check for syntax; 2) Check for conformance to organi-

sation style; 3) Check variables defined are used, and variables used are

defined. Each of these three requirements may be designed as separate sub-

jects, which cleanly separates their designs, making them easier to under-

stand. However, from a higher level perspective, they might collectively be

considered as a single, check activity (and therefore as one requirement), and

composed into a single subject to simplify the inclusion of checking into an

expression environment. (See Figure 16).

The Check subject in Figure 16 is the composition of the CheckStyle,

CheckSyntax and CheckDefUse subjects that are a one-to-one match with

the requirements for checking. As such, Check now contains the design for

those three requirements. In one way, Check itself could be considered as

“tangled” up with a number of different requirements. Tangling is a property

previously identified as having a negative impact on comprehensibility,

traceability, evolvability and reusability (see “Chapter 2: Motivation” on

page 11). However, as regards comprehensibility, the separated checking sub-

jects may still be reasoned about separately. Traceability to the requirements

remains clear. Any changes to the existing check requirements, or any new

check requirements may still be designed separately and composed where

required. Finally, each individual check subject may still be reused separately

from the others, and composed separately, where required.

Figure 16: Requirements and Subjects: Many-to-One Structural Match

Com posit ion of O O Des igns: The Model De composing Des ign Model s

70

Many-to-Many The final general cardinality possibility considered here is whether many-to-

many requirements to design subjects are acceptable. Though the model does

not currently explicitly enforce rules to ensure that this situation is avoided,

it is not recommended. In general, such a case is exactly the kind of situation

that the subject-oriented design model is explicitly designed to avoid. The

scattering and tangling properties associated with a structural mismatch

between requirements and design models feature highly here, and therefore,

such a design will exhibit the same difficulties as those described in “Chapter

2: Motivation” on page 11, that are the central motivations for this work.

Is every

Requirement a

Subject?

System change requests received from test teams (or any interested party)

may be considered as requirements on the system. Here, where the change

request is a significant size, it may often be prudent to design the change as a

separate subject, thereby making it more easy to understand and work with,

and avoiding the need for invasive change of an existing subject. However, in

practical terms, not all change requests might warrant a new design subject.

Where the change is small and invasively changing an existing subject is not

an issue, it may be more practical to simply change the subject directly.

The trade-off to be made when making such a decision is to balance the per-

ceived need for keeping separate all changes to subjects during the testing

phase, against the possible cost of managing all the separate subjects. Keep-

ing all changes separate has the advantage of providing an auditable, histori-

cal record of change during testing - quality assurance professionals like this

level of auditability for their records and for general accounting purposes for

feeding into the next planning phase [IBMa 2000], [IBMb 2000].

Where there is good development environment support, a development team

may be able to easily manage multiple separate design subjects. In this case,

a need to keep all changes separate may be easily supported. However, where

the environment support is insufficient, a balance may need to be considered

as to how important it is to keep changes designed separately, versus how dif-

ficult it is to manage separate subjects. This will tend to influence the deci-

sion of whether to design a particular change request as a new design subject,

or just change the subject directly.

Overlapping

Subjects

It is possible – indeed, expected – that some of the same concepts may be rel-

evant to multiple design subjects. For example, an educational system that

contains requirements for teachers and for students both consider the concept

of Person (assuming, in this case, that teaching is performed by people).

Com posit ion of O O Des igns: The Model Composing Des ign Model s

71

Thus, if different requirements were each modelled as separate design sub-

jects, they would both include their own views of people. These views may,

or may not be identical; for example, one subject might attempt to generalise

its perception of basic properties of people, and specialise for its require-

ment, whereas the other, in a similar attempt at good software engineering,

may use delegation for separation of different kinds of properties, and may

also have a different view of what the basic properties of people are.

Design subjects may therefore overlap, and may include some differences in

their views of overlapping parts. This is the strength of design subjects – they

permit each of the different parts of a system under design to model the same

concepts in whatever way is most appropriate to support that subject’s

requirement. This ability provides considerable decomposition and encapsu-

lation power. Differences in views can be identified and resolved during

composition, as part of the design process. With UML, design elements that

support the same concept, but have different views that necessitate different

specifications, must be specified separately. And, since there is no means of

synthesising a complete design from incomplete pieces in UML, such ele-

ments will remain separate throughout the design cycle.

4.2. Composing Design Models
Decomposing design models brings many benefits relating to comprehensi-

bility, traceability, evolution and reuse. However, designs that have been

decomposed must also be integrated at some later stage in order to under-

stand the design of the system as a whole. This is required for reasons such as

verification, or to support a developer’s full understanding of the semantics

of the design and the impact of composition on the full design. This section

discusses the policies employed in this research for composing design sub-

jects and includes:

• What does a Subject look like?: Here, the scope of this work is defined,

and how the design elements within a subject are viewed by is composi-

tion discussed.

• Composing Design Subjects: Here, there is a general discussion on what

composition is - i.e. the synthesis of input design subjects to an output

design subject.

• Deferring Subject Composition: Though not the main focus of this

research, this section describes how design subjects need not be composed

at the design level. With supporting programming models, the decomposi-

Com posit ion of O O Des igns: The Model Composing Des ign Model s

72

tion into design subjects may be maintained in the code, with composition

deferred to the code phase.

The description of how to specify composition within the subject-oriented

design model then follows in “4.3. Specifying Composition” on page 78.

What does a

Subject look

like?

A design subject is similar to a UML package in that it is a grouping mecha-

nism for model elements. A design subject is represented as a special type of

UML package, stereotyped as «subject». The difference between a subject

and a package is that there is a restriction on the kinds of model elements that

a subject may group. This restriction is for the purposes of providing a man-

ageable boundary for this work.

Scope of Work The UML semantics guide states that “A Package may only own or reference

Packages, Classifiers, Associations, Generalizations, Dependencies, Con-

straints, Collaborations, StateMachines, and Stereotypes”. For the purposes

of this thesis, we further restrict a subject to a subset of these elements by

stating that

“A Subject may only own or reference Subjects, Classifiers, Associations,

Generalizations, Dependencies, Constraints, and Collaborations”

The restriction does not imply that the composition concept is only appropri-

ate for a subject that owns or references only these model elements. The

extent to which “subject” and “package” should be considered synonyms

must be investigated, and therefore, the impact of composition on all the

model elements that are owned or referenced by packages needs to be consid-

ered. This is an important area for future research.

Tree Structure While a subject looks like standard UML design models to the designer, from

the perspective of composition, a subject looks like a tree structure. The con-

sideration of a subject as a tree structure for the purposes of composition pro-

vides a convenient mechanism for assigning rules to its specification.

Composition is specified with composition relationships between design ele-

ments. Representing design elements as a tree structure supports the defini-

tion of rules relating to scope, precedence and general validity of those

composition relationships. See “4.3. Specifying Composition” on page 78 for

more details.

This representation of subjects is based on the observation that each UML

design element has properties and may (or may not) contain other design ele-

Com posit ion of O O Des igns: The Model Composing Des ign Model s

73

ments in a standard tree type of structure. For example, in Figure 17, the tree-

like structure of the design elements within the scope of this work is illus-

trated.

Composable

Elements

The first observation to be made from Figure 17 is that not all of the UML

constructs supported within the scope of this work have been included. The

design elements illustrated are those elements which may directly participate

in composition relationships, and are therefore considered to be “composable

elements”. While there are many other design elements within the scope of

this work (for example, generalizations, dependencies, parameters, etc.), and

which therefore may be impacted by composition, these are the only elements

which may be directly related by a composition relationship. The exclusion

of other design elements from the set of composable elements is based on two

criteria:

• Some elements within the scope of this work logically belong to another

element which is itself a composable element. For example, parameters

are part of operations. The full signature of operations includes the prop-

erties defined by the UML for the Operation metaclass, but also, the set of

parameters which are connected to an operation. The semantics of compo-

sition in relation to operations is based on this full signature. Therefore,

Parameters are excluded as elements which may directly participate in a

composition relationship independently of the operation to which they

belong. Another example of such an element is AssociationEnd - a UML

metaclass which defines the connection of an association to a classifier.

These are also considered to be part of the full specification of Associa-

tions, and are therefore excluded as elements which may directly partici-

pate in composition relationships.

• Other kinds of design elements are broadly considered to be “constraints”

on particular composable elements within design subjects, and so, they

are also appropriately considered to be part of the full specification of the

element(s) to which they are attached - for example, instances of the Con-

Figure 17: A Subject as a Tree Structure

Com posit ion of O O Des igns: The Model Composing Des ign Model s

74

straint, Dependency and Generalization metaclasses. These elements are

therefore excluded from participating directly in composition relation-

ships.

Primitive vs.

Composite

A further observation may be made from Figure 17. Some elements are nodes

which are composed of other elements further down the tree (e.g. Subject,

Class), while other elements are leaves (e.g. Attribute, Operation). The ele-

ments which are composed of other elements are called composites. The ele-

ments which are leaves are called primitives. Whether an element is a

primitive or a composite has an impact on the semantics of composition,

described in this section.

The selection of the design elements that are considered to be composites or

primitives is not directly obvious from the UML metamodel. Just considering

the UML metamodel directly, for example, we might consider operations to

be composites as they contain parameters. However, the distinction between

the two is not based on the definitions within the metamodel, but instead

based on the semantics of composition.

Primitive elements are those design elements that are considered in
their entirety for the purposes of composition - that is, all properties
of primitive elements are considered together when establishing
correspondences between them, and when integrating them.

Revisiting the example of operations, operations contain parameters, but the

full signature of an operation is integrated with the full signature of other

operations. For example, the following operation specification is of a pro-

tected operation named op1 with two parameters:

op1(p1 : Integer, p2 : String)

Another subject has a specification for op1 as a public operation with three

parameters:

+ op1(p1 : Integer, p2 : String, p3 : Boolean)

With a composition relationship with override integration specified2, this

results in a composition of the two operations. Overriding the first op1 spec-

ification with the second results in an operation specified as public, with

three parameters as defined by the second specification. This example illus-

trates how the full specification of an operation is overridden, and so, in this

sense, operations are primitives.3

2. Where a composition relationship with override integration is specified between two
design elements, this means that the specification of one of the design elements is
replaced by the specification of the other design element

3. See “Incompatible Elements” on page 100 for a general discussion on composing ele-
ments with potentially incompatible properties.

Com posit ion of O O Des igns: The Model Composing Des ign Model s

75

Primitives are defined as elements whose full specifications are composed

with other primitives. For the purposes of composition, the following ele-

ments are considered to be primitives: Attributes, Operations, Associations

and Interactions. Except for attributes, each of these elements, from the per-

spective of the UML metamodel, appears to be a container for other con-

structs - operations own parameters, associations own association ends, and

interactions own messages. However, from the perspective of composition,

they are considered in their entirety as their components are not sensibly

designed or reasoned about separately (for example, what’s an association

end without its association?).

There are, however, some elements that contain other elements, and cannot

be considered as primitive. For example, a class contains attributes and oper-

ations, and those attributes and operations, as primitives, are examined indi-

vidually for composition. Such elements are called composites.

Composites are defined as elements whose components are not
considered part of the full specification of the composite and
therefore are considered separately for composition.

For the purposes of composition, three types of elements are recognised as

composite - Subject, Classifier and Collaboration. Each of these contain ele-

ments that have been identified as primitive composable elements, and there-

fore, during composition, these elements are considered separately. From the

perspective of composition, composites may also contain other composites.

An example within the current scope of this work is a subject which may con-

tain other subjects, classifiers or interactions.

Composing

Design Sub-

jects

The model for composing design models is, essentially, the synthesis of mul-

tiple (two or more) input design subjects to an output design subject. Each

input design subject is an independent tree structure in its own namespace, as

defined by the UML. The input subjects are integrated as defined by a (set of)

composition relationships4, and the result is a new, independent tree structure

in its own namespace (see Figure 18).

4. In each of the examples in this thesis, a composition relationship is represented as a dot-
ted arc between the elements to be composed. The arrowheads at the ends of the arc
have meaning in terms of specifying the integration strategy, and are further explained
in “Integration of Inputs” on page 87.

Com posit ion of O O Des igns: The Model Composing Des ign Model s

76

Why compose

into new model?

An alternative to composing design subjects into a new “result” design sub-

ject might be to make the appropriate changes to an existing subject. This

question applies to composition with override integration particularly. Over-

ride integration means that design elements in a particular design subject are

replaced by design elements in another subject. Here, it is not immediately

clear whether it would be better to make the replacements in the existing

design subject - that is, change the particular tree structure of the subject

being overridden, or copy elements to a new subject as appropriate. For the

following reasons, the result of composition of design subjects is a new

design subject.

• Consistency: While it is not immediately obvious which approach to take

for override integration, composing subjects to a new subject is the appro-

priate course of action for merge integration. Since the semantics of

merge is essentially the amalgamation of design subjects, it is appropriate

that the result is a new subject. For consistency purposes, a single compo-

sition strategy is used. This means that composition with override integra-

tion also composes to a new subject.

• Comprehensibility: One of the difficulties with conventional object-ori-

ented design is the difficulty in understanding its semantics. This is

because of the scattering of the support of a single requirement across the

full design, and because of the tangling of the support for multiple

Figure 18: Composing Design Subjects to New Result

Com posit ion of O O Des igns: The Model Composing Des ign Model s

77

requirements in a single design element. Maintaining the separate design

subjects while composing to a new resulting subject supports comprehen-

sibility, as the full design may be understood by understanding the compo-

nent subjects.

• Version control: Maintaining the histories of versions is an important part

of software engineering. The histories of decisions, and the clear repre-

sentations of previous approaches are valuable information for the main-

tenance and evolution of software. Composing subjects to new subjects,

thereby maintaining the separate component subjects supports clean ver-

sion control. Maintenance of multiple copies is not an issue, as, with this

approach, changes to the design are themselves encapsulated in a separate

design subject, to be composed where appropriate.

Composing

Overlapping

Subjects

As described in “Overlapping Subjects” on page 70, some of the same con-

cepts may be relevant for multiple subjects, and therefore each subject may

contain a specification of that concept from the perspective of the particular

subject.

The areas of overlap in the input subjects to a composition are identified as

corresponding elements during composition specification (see “Identifying

Corresponding Elements” on page 80). As illustrated in Figure 19, corre-

sponding elements are synthesised in the resulting design subject. The exact

nature of this integration depends on the integration strategy defined within

the composition specification (see “Integration of Inputs” on page 87).

Figure 19: Composing Design Subjects with Overlap

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

78

Deferring

Subject Com-

position

Enhancing existing UML decomposition capabilities by adding an ability to

decompose based on the structure of requirements specifications provides

many benefits relating to comprehensibility and traceability. With supporting

capabilities in the programming domain, this separation can be maintained

throughout the lifecycle. Such support is available, for example, in Hyper/J™

for Java, from IBM Research [Tarr & Ossher 2000]. With a programming

model like that provided in Hyper/J, the decomposition into design subjects

described here can be maintained to the code phase. In Hyper/J, composition

of the resulting code subjects is specified with composition rules, which

identify corresponding code elements and specifies how the programs should

be integrated. The composition relationship specification for composition of

design subjects has been influenced by composition rules from this program-

ming model. Automated generation of the composition rules that are used for

composing programs in Hyper/J, from the composition relationships for

design subjects described here, remains an important area for future work.

Such automated generation is likely to be relatively straightforward, because

the concepts are similar. A complete assessment of where the differences lie

is required, and is added to future work.

Another programming model that provides similar levels of separation at the

code level is the aspect-oriented programming model, as implemented by

AspectJ™ [Kiczales & Lopes 1999]. This model has differences with the

decomposition/composition approach taken here for design models - most

particularly in the notion of a “base” program to which all “aspects” are

applied. However, at a conceptual level, the goals of the aspect and subject

approaches are similar, in that separation of different kinds of requirements

is supported. An interesting area of future research is to assess the applicabil-

ity of the subject-oriented design model described here as the design

approach for aspect-oriented programming.

It is important, however, for the work described in this thesis to define the

semantics of composition relationships by describing their impact on the

design subjects. Once the semantics of composition relationships at the

design level are well-defined, generation of composition rules at the code

phase should be straightforward.

4.3. Specifying Composition
Composition of design models is specified with a composition relationship

between the design models to be composed. This compares with the specifi-

cation of joining packages in Catalysis (specified using a stereotyped

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

79

dependency relationship [D’Souza & Wills 1998]), and also compares with

the synthesis operation from OORam, which identifies role models to be syn-

thesised [Reenskaug et al. 1995].

A composition relationship identifies corresponding design elements in the

related models, and specifies how the models are to be integrated; i.e. the

composition’s integration strategy. Different kinds of integration strategies

may be attached to a composition relationship - for example, the models

should be merged, or one model should override another. These two integra-

tion possibilities are defined in detail in this thesis.

In this section there is:

• a description of how inputs to a composition are specified,

• a discussion on how corresponding elements are specified,

• a description of rules governing a composition relationship’s scope, and

• a description of the kinds of integration currently supported within the

model.

Specifying

Inputs

The intellectual exercise of choosing the particular design subjects to be

composed depends on the needs defined by the development effort under

way. Depending on the original decomposition into design subjects, the

selection of the design subjects for a particular manifestation of a combina-

tion of requirements may be varied, and is based on the needs of various

players within the development process - for example: integration testers

may experiment with the composition of multiple different combinations of

subjects; system testers may experiment with different combinations again;

while acceptance testing by different users may require the composition of a

set of subjects to fulfill the business needs of those users. This research does

not provide a process for aiding this intellectual exercise, but the possibility

of providing rules and guidelines for such selection remains an interesting

area for further research. Instead, this section considers the technical aspect

of how to specify inputs to a composition with composition relationships.

Composition relationships are defined between composable design elements.

The elements that are related by a composition relationship are the inputs to

that composition specification. As discussed previously, composition entails

synthesising two or more input subjects into an output subject. Therefore,

identifying inputs to a composition must first involve identifying the input

subjects, and specifying a composition relationship between those subjects.

Figure 20 illustrates a composition relationship between subjects - that is,

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

80

from the perspective of composition, between the roots of the trees to be

composed. The composition relationship between the roots of the trees to be

composed provides the context for the composition to a single output subject.

This relationship is required because it specifies context in the sense that it

provides a namespace within which rules associated with naming, element

referencing and integration of composed elements in the output subject

occurs (see “4.4. Analysis of the Output of a Composition” on page 95 for

more details).

Once the context for composition is set with a composition relationship

between input subjects, further composition relationships may be defined

between composable elements at lower levels of the tree. These define excep-

tions to the general composition specification defined at subject level. There

are many examples of this in forthcoming sections. See “Scope of Composi-

tion Relationship” on page 83 for rules associated with specifying composi-

tion relationships at levels of the tree lower than the subject level.

Identifying

Correspond-

ing Elements

Elements in different subjects which provide a design for the same concept

are said to correspond. Though the elements in the different subjects may

provide different views or specifications for a concept, they nonetheless rep-

resent the same fundamental concept in the domain. These are the overlaps

which were discussed in “Overlapping Subjects” on page 70. Therefore, the

semantics of any integration strategy must recognise this correspondence,

and act accordingly. For example, an override integration strategy specifies

that an element is overridden by its corresponding element in another subject,

and elements without corresponding elements are not overridden. Composi-

Figure 20: Subject-Level Inputs to Composition

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

81

tion relationships specify corresponding elements either explicitly, or implic-

itly with matching criteria.

Explicit Inputs to a composition relationship explicitly define that those inputs are

corresponding. Since composition relationships may be defined between

composable elements which are both primitive elements and composite ele-

ments, then the correspondence of elements may be explicitly defined

between primitive elements and between composite elements.

In Figure 21, the following elements are corresponding:

• Subject S1 corresponds with subject S2

• Class S1.ClassA corresponds with class S2.ClassA

• Operation S1.ClassA.op1 corresponds with operation

S2.ClassA.op1.

Implicit Implicit specification of correspondence is achieved in a general way that

applies to all elements owned by the elements related by the composition

relationship - that is, all elements lower in the tree structure than the ele-

ments between which the composition relationship has been defined. The

general rule is a matching specification attached to the composition relation-

ship and is based on matching the values of properties of design elements of

the same type. For example, a match specification may state that a match on

the values of the name properties of the related elements implies correspond-

ence. In theory, the values of all properties (as described in the UML specifi-

cation [UML 1999]) associated with the type of the design element may be

used for matching criteria. However, within the scope of the research

described in this thesis, matching is on name only. Based on the general

matching specification, each of the elements within the scope of the composi-

tion relationship are compared in order to establish whether they are corre-

sponding (see “Scope of Composition Relationship” on page 83 for more

details on the scope of composition relationships). Figure 22 illustrates how

Figure 21: Explicit Correspondence

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

82

multiple composition relationships as illustrated in Figure 21 can be avoided

through the use of general matching criteria.

In Figure 22the following elements are corresponding:

• [Eg4.3.1] Subject S1 corresponds with subject S2

• [Eg4.3.2] Class S1.ClassA corresponds with class S2.ClassA (from

matching criterion specified in [Eg4.3.1])

• [Eg4.3.3] Attribute S1.ClassA.a corresponds with attribute

S2.ClassA.a (from matching criterion specified in [Eg4.3.1])

• [Eg4.3.4] Operation S1.ClassA.op1 corresponds with operation

S2.ClassA.op1 (from matching criterion specified in [Eg4.3.1])

Exceptions A composition relationship with match[name] implicit correspondence

specifies that identification of corresponding elements is on the values of the

name property. All components of composites are subject to this check for

correspondence. However, in some cases, there may be exceptions, where

elements of the same name are not intended to correspond. Composition rela-

tionships between the exceptions with a dontMatch specification specify

that those elements do not correspond. This specification takes precedence

over any relationships between their owners (see “Scope of Composition

Relationship” on page 83 for more details).

Figure 22: Implicit Correspondence

Figure 23: DontMatch Correspondence

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

83

In Figure 23 the following elements are corresponding:

• [Eg4.3.5] Subject S1 corresponds with subject S2

• [Eg4.3.6] Class S1.ClassA corresponds with class S2.ClassA (from

matching criteria specified in [Eg4.3.6])

• [Eg4.3.7] Attribute S1.ClassA.a corresponds with attribute

S2.ClassA.a (from matching criteria specified in [Eg4.3.6])

• [Eg4.3.8] Operation S1.ClassA.op1 corresponds with operation

S2.ClassA.op1 (from matching criteria specified in [Eg4.3.6])

• [Eg4.3.9] Operation S1.ClassA.op2 corresponds with operation

S2.ClassA.op2 (from matching criteria specified in [Eg4.3.6])

Operation S1.ClassA.op3 does not correspond with S1.ClassA.op3

because of the relationship with dontMatch specified, and therefore they

are treated as separate elements in the integration process.

Scope of

Composition

Relationship

The specification of composition in a composition relationship between two

composable elements applies to all elements at levels of the subject tree

lower than the elements related by the relationship, except for those elements

where additional relationships are defined. The lower levels to which compo-

sition relationship specification applies are called the scope of the composi-

tion relationship. For example, in Figure 20 on page 80, all design elements

in the tree are within the scope of the relationship between subject S1 and

subject S2.

Within the main context of the composition (that is, the composition relation-

ship between the input subjects - see “Specifying Inputs” on page 79), addi-

tional composition relationships may be defined between elements at a lower

level of the tree - subject to certain rules5. For example, in Figure 24, addi-

tional composition relationships are specified at levels of the tree lower than

the relationship between the subjects.

5. See “Rules for Specifying a Composition Relationship” on page 84 for a discussion on
some rules.

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

84

Precedence Composition relationships between elements take precedence over relation-

ships at a higher level in the tree. For example, looking at the tree representa-

tion in Figure 24, the elements S1.ClassB.op3 and S2.ClassD.op4 are

composed based on the specification of the composition relationship marked

[3]. That is, regardless of the integration specification specified in relation-

ships [1] or [2], these elements are composed only based on what is speci-

fied in [3]. Similarly for the composition of S1.ClassB and S2.ClassD.

These are composed based on the specification in the relationship marked

[2], though S1.ClassB.op3 and S2.ClassD.op4 are excluded because of

their participation in another relationship.

Rules for

Specifying a

Composition

Relationship

As with any design construct, rules are defined to ensure the validity of com-

position relationships. This section only addresses general rules for composi-

tion relationship well-formedness that serve to describe the subject-oriented

design model. For the full list of well-formedness rules for composition rela-

tionships in the context of the UML see “Chapter 5: Composition Relation-

ship: An extension to the UML Metamodel” on page 109, and for rules

directly related to integration strategies, see “Chapter 6: Override Integra-

tion” on page 127, and “Chapter 7: Merge Integration” on page 155.

Inputs are the

Same Type

[Rule 1] Composition relationships may only be specified between
elements of the same type.

In the subject-oriented design model, inputs to a particular composition rela-

tionship must be the same type. Some work in the database field where inte-

Figure 24: Multiple Composition Relationships

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

85

gration of schemas is the focus (for example [Batini et al. 1986]), defines

equivalences between different constructs in the database model. One exam-

ple is where a concept might be modelled as an attribute in one schema, and

as a separate entity with a relationship in another. The application of this

level of flexibility to integration within the object-oriented modelling para-

digm remains an interesting area for further research. The restriction defined

here is in keeping with similar restrictions defined for integration in the com-

position of multi-dimensional concerns implemented in Hyper/J, [Tarr &

Ossher 2000] and also the aspect-oriented programming model implemented

in AspectJ [Kiczales & Lopes 1999]. These are the most likely candidates for

direct programming support for the subject-oriented design model (see

“Deferring Subject Composition” on page 78), and so this restriction is cur-

rently not seen as an issue.

Context for

Composition

must be Speci-

fied

[Rule 2] A composition relationship must be specified between
input subjects to define the context for composition of inputs to an
output subject, and a context for composition relationships at lower
levels of the subject tree.

[Rule 2] has been previously discussed in “Specifying Inputs” on page 79.

Inputs to a com-

position relation-

ship at lower level

to their corre-

sponding parents

[Rule 3] Composition relationships may only be specified between
elements whose parents are corresponding, and therefore are
integrated in the result.

Composition of elements to a result requires a context and namespace within

which to place the composed element. Recall the tree structure of a design

subject described in “Tree Structure” on page 72, which illustrated composa-

ble elements as either composites or primitives, where composites contain

primitives, and some may also contain other composites. In order to maintain

this tree structure in the output design subject, each composed element must

be placed in an appropriate node of the tree. As illustrated in Figure 25, a

composition relationship between elements where the parents are not com-

posed leads to an unscoped namespace within which to place a result of such

a composition.

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

86

An implication of this rule is that all inputs to a composition relationship will

be at lower levels of the tree to their corresponding parents. For example, in

Figure 26 the composition relationship marked [1] has been defined as the

relationship setting the context for the composition to an output (see [Rule

2]). A further composition relationship between S1.S3 and S2 violates [Rule

3], when defined within the context of the relationship marked [1]. The rule

avoids difficulties which this case may have presented. The namespace

within which to place the composed elements of S1.S3 and S2, in the con-

text of a composition between S1 and S2, is ambiguous. Of course, in a dif-

ferent context, as a composition to a different output, a relationship between

S3 and S2 may be valid. The composition relationship between S1.S4 and

S2.S5 (marked [3]) does not present the same difficulty, as the namespace

for the result is in the context of the output of the composition of S1 and S2.

Participation in

multiple composi-

tion relationships

There is no restriction to the number of relationships in which a design ele-

ment may participate. While individual integration strategies may extend

restrictions in this area, the general composition model allows an element to

Figure 25: Composition Relationships and Corresponding Parents

Figure 26: Composition Relationships at the Same Level in Subject Tree

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

87

participate in multiple composition relationships, subject to [Rule 3]. For

example, the set of composition relationships depicted in Figure 27 are possi-

ble.

Here, within the context of the composition relationship between subjects S1,

S2 and S3 (marked as [1]), S1.ClassA participates in two different explicit

composition relationships ([2] with S2.ClassG and [3] with

S3.ClassE). From these two relationships, there will be two result classes

within the composed S1, S2 and S3 which contains an integration involving

S1.ClassA. S1.ClassA is also composed with S3.ClassA, as they corre-

spond because of the contextual relationship (marked as [1]) which specifies

matching by name for identifying corresponding elements.

This example also illustrates that composition relationships at lower levels

do not have to have the same number of inputs as composition relationships

at higher levels in the tree. This increases the flexibility of the kinds of com-

positions possible within the context of the composition of one output sub-

ject.

Integration of

Inputs

The integration of input subjects to produce an output subject is at the core of

composition of design models. The semantics of the integration strategy must

detail how corresponding elements are represented in the output subject (that

is, the overlapping elements), and how elements with no corresponding ele-

ments are catered for in the output subjects. Design elements may be inte-

grated in many different ways, and it is not the intention of the subject-

oriented design model to restrict the kinds of integration which can be done.

In this thesis, two particular kinds are described - override and merge. How-

Figure 27: Participation in Multiple Composition Relationships

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

88

ever, since it is not possible to anticipate all the different kinds of integration

that might be needed, it is the policy of subject-oriented design to make the

integration semantics as extensible as possible. This is done by abstracting

the integration specification part of composition relationships at the meta-

level, thereby allowing it to be extended as required (see “Chapter 5: Compo-

sition Relationship: An extension to the UML Metamodel” on page 109 for

more details).

Override Inte-

gration

An existing design subject is changed by creating a new design subject that

contains the design of new behaviour, and overriding the existing design sub-

ject with this new design subject. Overriding an existing design subject is

specified with composition relationships with override integration, specified

between the existing design subject and a new design subject.

Overriding design elements is also possible in the overall context of multiple

subjects being merged. This is analogous to design elements at lower levels

of the subject tree being composed in a certain way, as specified by a compo-

sition relationship which takes precedence of a composition relationship at a

higher level of the subject tree.

Composition relationships with override integration specify which design

elements in the existing design subject are to be overridden by design ele-

ments in the new design subject. Any design elements in the existing design

subject that are not overridden by design elements in the new design subject

are added to the result unchanged. Any design elements in the new design

subject that do not override design elements in the existing design subject are

added to the result.

As with all kinds of integration, the overridden design subject itself remains

unchanged, as the result of integration is to a new output subject (see discus-

sion in “Composing Design Subjects” on page 75). Therefore, integration

does not impact any composition specifications in which the overridden sub-

ject has previously participated. If it is appropriate for the output of the over-

ride integration to participate in any such compositions, then the output

subject must be explicitly included in those compositions.

Specifying

Override Inte-

gration

Override integration is specified by first selecting the inputs to the composi-

tion relationship; the design element to be overridden, and the design element

containing the overriding specification. Override integration as part of a

composition relationship is represented by a single arrowhead at only one

end of the dashed arc, which indicates the element to be overridden. In gen-

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

89

eral, the scoping and rules associated with composition relationships apply

when override integration is specified, with two exceptions:

[Override Rule 1] A composition relationship with override
integration may only be specified between two composable
elements. That is, one composable element is overridden by one
other composable element.

Override integration changes the specification of an element to be overrid-

den. This rule is included because without it (that is to allow an element to be

overridden multiple times by different elements) there may be unanticipated

results. Without explicit ordering of the different integrations, it is not possi-

ble to predict the final specification of the overridden element. General

ordering of multiple compositions is currently not supported in the subject-

oriented design model, but remains an interesting area for future research.

[Override Rule 2] Within the context of a single composition, a
composable element may only participate in one composition
relationship as an overridden element.

This rule is an extension to [Override Rule 1], as the same argument applies

in the context of a single composition of multiple input subjects to a single

output subject.

General

Semantics

This section illustrates the general semantics of override integration. For a

more complete discussion on the impact of override integration on all ele-

ments currently supported by the subject-oriented design model, see “Chapter

6: Override Integration” on page 127.

[1] For each component in the overridden composite element, the existence

of a corresponding element in the overriding composite element results in the

specification of that element to be changed to that of the corresponding ele-

ment. From Figure 28, the following overrides occur:

• The specification of class S2.ClassA is changed to the specification of

S1.ClassA as a result of override

• The specification of attribute S2.ClassA.a is changed to the specifica-

tion of S1.ClassA.a as a result of override

• The specification of operation S2.ClassA .op1 is changed to the speci-

fication of S1.ClassA.op1, as a result of override.

• The specification of operation S2.ClassA .op2 is changed to the speci-

fication of S1.ClassA.op2, as a result of override (recall that elements

may participate in multiple compositions from “Participation in multiple

composition relationships” on page 86)

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

90

• The specification of operation S2.ClassA .op3 is changed to the speci-

fication of S1.ClassA.op2, as a result of override.

Note that there are two specifications of S1.ClassA.op2 since it was

involved in two override compositions. One of these is renamed to avoid a

nameclash (arbitrarily chosen). While this conforms to the general composi-

tion model, in this case there is some scope for optimisation in future work.

[2] Elements in an overridden composite that are not involved in a corre-

spondence match are unchanged. For example, from Figure 28, the attribute

S2.ClassA.c has no corresponding elements, and so is added to the result

unchanged.

[3] Elements that are components of an overriding composite and are not

involved in a correspondence match are added to the result. For example,

from Figure 28, the attribute S1.ClassA .b has no corresponding elements

in S2. Since it is a component of an overriding class named ClassA, it is

added to the specification of ClassA as a result of override.

[4] Changes to an overridden subject, either as a result of overriding of corre-

sponding elements, or as a result of adding elements directly to the overrid-

den subject, may not result in name clashes. In the event of name clashes,

renaming of clashing elements occurs. For example, from Figure 28, overrid-

ing operation S2.ClassA.op3 with S1.ClassA.op2 results in a name

clash with an already existing operation S2.ClassA.op2. To avoid this,

the name of the overridden operation is changed.

Figure 28: General Override Semantics

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

91

[5] The composed subject must conform to the well-formedness rules of the

UML. Composition of input subjects to an output subject has the potential to

result in problems in the output subject. These problems are discussed in

“4.4. Analysis of the Output of a Composition” on page 95. Suffice it to say

here that where it is appropriate, the subject-oriented design model will assist

in avoiding some kinds of problems. In other cases, it is the responsibility of

the designer to work to ensure the well-formedness of the output of the com-

position.

Merge Inte-

gration

Design subjects are merged by specifying composition relationships with

merge integration between the subjects to be merged. Composition relation-

ships identify the subjects to be merged, and the design elements within those

subjects that specify the same concept (i.e. correspond to each other) and

should be considered as one. For many elements (for example, classifiers and

attributes) this means that the corresponding elements appear once in the

merged result. In cases where differences in the specifications of correspond-

ing design elements need to be resolved, composition relationships with

merge integration specify guidelines for the reconciliation.

With merged operations, the receipt of a message that may have activated one

of the operations in an input subject, now results in the execution of all of the

merged operations. Interactions may be attached to a composition relation-

ship with merge integration to determine the order of execution. In general,

composition relationships with merge integration conform to the scoping and

general rules of composition relationships.

Specifying

Merge Integra-

tion

Specifying composition relationships with merge integration involves:

• Specifying the input elements to be merged within the context of an over-

all composition. This context does not have to be a composition relation-

ship with merge integration specified. However, the elements at lower

levels of the tree to a composition relationship with merge integration are

subject to this integration unless further relationships are defined.

• For elements within the scope of merge integration that are not opera-

tions, reconciliation strategies should be attached to the relationship to

handle possible conflicts. Reconciliation of conflicting elements is intro-

duced in this section, but for a more detailed discussion, see “Chapter 7:

Merge Integration” on page 155.

• For operation elements within the scope of merge integration where the

order of their execution is important, an interaction specifying this order

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

92

should be attached to the composition relationship. Where the order of

execution is not important, and an interaction is not attached to the com-

position relationship, merge integration generates interactions with the

specification that each of the operations is executed. Specifying interac-

tions for ordering of corresponding operations execution is introduced in

this section, but for a more detailed discussion, see “Chapter 7: Merge

Integration” on page 155.

• Patterns of merge integration may be identified and defined. Some kinds

of requirements may have the same impact on multiple classes in a design

model. For example, the logging of operations requirement in the SEE

example impacts all operations in a model. This pattern of interaction

between logging and operations requiring logging may be identified and

designed separately for composition where required. See “Chapter 8:

Composition Patterns” on page 198 for details on composition patterns.

Specifying Recon-

ciliation for Con-

flicts

When subjects are merged, elements that are specified to support correspond-

ing concepts are identified, and will be merged in the composed subject –

that is, for most kinds of elements (except, for example, operations), they

will appear once in the merged subject. However, since corresponding ele-

ments may have been specified separately, there may be differences in those

specifications. There is considerable discussion in [Nuseibeh 1994] as to the

nature of conflict between views, with a discussion based around differences

in terms of inconsistencies, conflicts, contradictions and mistakes. For the

purposes of this work, a conflict is defined as follows:

If the values of any of the properties of corresponding design
elements are different, then these design elements conflict.

Differences between elements must be reconciled for the composed subject.

One approach to reconciling conflict is to assign precedence to one of the

subjects involved in the merge. When a conflict occurs, the specification of

the element in the subject with precedence is deemed to be the specification

for the merged element.

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

93

By adding a precedence indicator to S1 (see Figure 29), the result of the

merge is:

• S1.ClassA.a and S2.ClassA.a correspond from match[name]

merge relationship between S1 and S2. Since their specifications are dif-

ferent, and precedence has been specified for S1 (from composition rela-

tionship with merge integration between S1 and S2), S1.ClassA.a is

added to the result.

• S1.ClassA.b and S2.ClassA.c correspond from composition rela-

tionship between the two. Again, since their specifications are different,

and precedence has been specified for S1, S1.ClassA.c is added to the

result.

Other reconciliation strategies are possible and are described in “Chapter 7:

Merge Integration” on page 155.

Specifying Inter-

actions for Order-

ing Execution of

Operations

When the order of execution of corresponding operations is important, an

interaction specifying this order should be attached to the merge relation-

ship.6 In this case, the attached interaction is added to the merged subject as

the specification of the behaviour of corresponding operations (see Figure

30). All operations in the corresponding operation set must be included in

any interaction defined.

Figure 29: Merge Integration with Reconciliation Specification

6. Where the order of execution is not important, no interaction need be attached. In this
case, an interaction is generated arbitrarily specifying when each corresponding opera-
tion is executed.

Com posit ion of O O Des igns: The Model Speci fy ing Composi t ion

94

In this example, the result of the merge is:

• S1.ClassA and S2.ClassA correspond from match[name] merge

relationship between S1 and S2. No conflict exists between the specifica-

tions, and so ClassA is added to the result.

• S1.ClassA.a and S2.ClassA.a correspond from match[name]

merge relationship between S1 and S2. No conflict exists between the

specifications, and so ClassA.a is added to the result. S1.ClassA.c

and S2.ClassA.c have no corresponding attributes and so are added to

the result.

• S1.ClassA.op3, S2.ClassA.op1 and S2.ClassA.op2 corre-

spond from the merge relationship between them. All the operations are

added to the result. The interactions attached to the merge relationship are

added to the result indicating that on receipt of an op1 or an op2 or an

op3 message, op1 followed by op3 followed by op2 are executed.

Notice in Figure 30 that operations have been added to the result in order to

capture the interaction between the corresponding operations. For a full dis-

cussion on the options considered for capturing this behaviour, and a descrip-

tion of the approach taken, see “Impact of Merge on Operations” on

page 188.

Figure 30: Merge Integration with Interaction Specification

Com posit ion of O O Des igns: The Model A nalys is of the Output of a Composi t ion

95

Notation Composition relationships are graphically represented with dotted arcs as

have been illustrated previously in examples. Composition relationships with

merge integration are represented with multi-headed arrows at the inputs to

the arcs. Composition relationships with override integration are represented

with single-headed arrows, with the arrowhead at the end of the element to be

overridden. In many cases, additional relationship specification (for example,

implicit matching specification such as match[name]) may be attached to

the relationship. There are other cases, however, when the extent of the spec-

ification associated with a composition relationship makes it unwieldy to

represent the full specification graphically in a diagram. It is recommended

that a CASE tool support the selection of composition relationships, and the

representation of all the appropriate associated specification in supporting

dialogs.

In all the examples illustrated in this thesis, each of the composition relation-

ships under discussion are represented in the illustrations. However, the

examples are very small, and it is easy to imagine that the number of compo-

sition relationships might be large where models are large. For this reason, it

is also recommended that a CASE tool supports the representation of just the

contextual level composition relationship (i.e., between input subjects), with

dialog support illustrating the detail of all composition relationships at lower

levels.

The examples in the thesis illustrating tree structures of subjects are purely to

support discussion and explanation of the composition model, and are not

considered part of the notation.

4.4. Analysis of the Output of a Composition
When composing design subjects, there is potential for the resulting subject

to be “ill-formed”, from the perspective of the UML well-formedness rules

[UML 1999]. One example is that composing design subjects with different

generalization graphs may result in cycles, which are not permitted in the

UML. There are many cases where composition may result in a breakage of a

well-formedness rule of the UML. It is the policy of this composition model

to perform the composition as specified by the designer with composition

relationships, and highlight breakages to the well-formedness rules on the

result. This is for the following reasons:

• Difficulties with automated semantic reasoning: A different approach to

“compose first – check later” is to attempt to automatically “fix” elements

Com posit ion of O O Des igns: The Model A nalys is of the Output of a Composi t ion

96

that cause a breakage of the rules. This is possible in many cases and is

discussed in “Forwarding of References” on page 96, but in some situa-

tions, the solutions to the correct properties to apply to elements in a com-

posed subject are based on the domain of the computer system. “Chapter

6: Override Integration” and “Chapter 7: Merge Integration” illustrate

examples in some detail. Though it is not advisable or desirable in many

situations to automate “fixes”, it is considered most useful to compose

subjects as specified by the composition designer and highlight problems

in the result. The designer must solve the highlighted problems for the

resulting subject to be well-formed.

• Unanticipated results: Where the composition process guarantees to per-

form the composition precisely as specified by the designer with composi-

tion relationships, the designer is protected from unanticipated results that

might occur if automation of fixes to potential breakages occurs.

• Validation of composition relationships: Another approach to fixing

potential problems is to halt the composition process at the first breakage,

thereby ensuring that the result always conforms to the well-formed rules

of the UML. However, performing the full composition tests the full set of

composition relationships defined for the composition process, and pro-

vides the opportunity of assessing the impact of composition across the

whole design. This may be required to solve some well-formedness prob-

lems.

There are, however, some areas in which the composition model may assist in

alleviating difficulties in the result. In “Forwarding of References” on

page 96 an approach to maintaining outside references to elements changed

as a result of composition is discussed. Other difficulties could be avoided by

extending the rules associated with specifying composition relationships and

are discussed in “Ill-Formedness of Result” on page 99. These rules are not

included in this version of the composition model.

Forwarding

of Refer-

ences

In some cases, integration of design elements results in changes to an ele-

ment in an output subject - for example, override integration changes the

specification of the overridden element to that of the overriding element. Ele-

ments which reference such an element in an input subject may therefore,

when themselves copied to the output, have a difficulty because their refer-

enced element has changed. For example, in Figure 31, operation

S2.ClassA.op3 has a parameter of type ClassC, which is valid within the

namespace of S2. However, when the elements of S2 are overridden by the

Com posit ion of O O Des igns: The Model A nalys is of the Output of a Composi t ion

97

elements in S1, in particular when S2.ClassC is overridden by S1.ClassB,

the resulting class in the output is called ClassB.

This example illustrates that in addition to copying the compositions of ele-

ments to an output, references to those elements could also be “forwarded” in

the same output. This case is not ambiguous as to intent, and therefore, the

subject-oriented design model supports the forwarding of references to

changed elements within other elements to the output subject.

There are cases, however, where there may be some ambiguity as to which

composed elements in the result references should be forwarded to. This

occurs because of the possibilities allowing design elements to participate in

multiple composition relationships within the same composition context (see

“Participation in multiple composition relationships” on page 86). Consider

the example in Figure 32. Because of the participation of S1.ClassA in two

different composition relationships with merge integration, two classes to

which ClassA has contributed appear in the output subject. This causes

ambiguity of forwarding for ClassX.a in the result, since it has a type of

ClassA.

Figure 31: Forwarding References to Composed Elements

Com posit ion of O O Des igns: The Model A nalys is of the Output of a Composi t ion

98

To resolve this ambiguity, an additional attachment to composition relation-

ships is supported. This attachment, called [forwards], explicitly states the

composition to which all elements of a particular input subject forwards.

This attachment may be added to any or all ends of a composition relation-

ship, but a restriction has been applied which negates any ambiguity:

[Forwards Rule 1] Where a design element participates in multiple
composition relationships within a single composition context, only
one of those composition relationships may be annotated as
specifying the result to which all referring elements within the input
subject forward.

Figure 33 illustrates the [forwards] attachment to the previous example.

As specified, any elements in subject S1 will forward to ClassA_ClassB in

the output. In this example, no annotation is required for elements referring

to ClassB within S2, or to ClassC within S3, as each of these only partici-

pate in one composition relationship.

Figure 32: Ambiguities with Forwarding of References

Figure 33: Resolving Ambiguities with Forwarding of References

Com posit ion of O O Des igns: The Model A nalys is of the Output of a Composi t ion

99

Discussion While the ambiguity relating to forwarding has been cleared up with this

annotation, there is an implied restriction in [Forwards Rule 1]. This rule

means that all of the elements in a particular input subject which refer to the

element participating in multiple compositions will refer to the same result in

the output. An alternative to this approach is to support the analysis of each

individual reference within an input subject and the selection of the particu-

lar forwarding result from multiple compositions for each one. This is a more

flexible approach, and will be considered for the subject-oriented design

model in its future iterations. Detailed research is required to assess the suit-

ability of the approach, as it may cause its own problems - for example, spec-

ification of forwarding for individual elements may prove unwieldy and

difficult to maintain. However, for the purposes of this thesis, the ambiguity

which is the cause of difficulty is closed. The price for the simplicity of the

solution is the lack of flexibility.

Ill-Formed-

ness of

Result

The current flexible approach to allowing composition of any design ele-

ments so long as they have the same type (and their parents correspond) has

the potential to create other difficulties. This section looks at two areas of

concern in particular:

• Constraints on elements specified in input subjects may be lost in the out-

put as a result of overriding or reconciliation of conflicts.

• Elements which may be the same type, but which may be incompatible in

other ways, may be composed.

Loss of Con-

straints

Each design construct within the UML has a number of properties that pro-

vide information about, or constraints on instances of that construct. For

example, attributes and operations have a visibility property which states

whether it is public, protected or private. The particular semantics of a design

subject may dictate the values of such properties for elements within the sub-

ject as a whole. However, as illustrated in Figure 34, such constraints may be

easily lost within a composition context as a result of the use of override

integration, and also, reconciliation of conflicting elements in merge integra-

tion.

In Figure 34, subjects S1 and S2 are merged, where elements with the same

name are corresponding, and precedence is given to elements within S1 in the

event of a conflict. As a result of this composition specification,

S1.ClassA.a and S2.ClassA.a are corresponding, and therefore merged.

However, their specifications are different (particularly, the values of the

Com posit ion of O O Des igns: The Model A nalys is of the Output of a Composi t ion

100

visibility property conflict), but, because of the precedence given to S1

in the composition relationship, the specification of ClassA.a in S1 is cop-

ied to the output. However, this means that any elements in S2 which worked

with ClassA.a as a public attribute no longer work. Of course, that may not

have been a very object-oriented approach for those elements, but nonethe-

less, it illustrates the point of where difficulties can arise as a result of com-

position.

A more sympathetic example is the impact on the operation S2.ClassC.op1

as a result of being overridden by S1.ClassD.op1. The specifications of

the two op1s are different in the values of the property concurrency. The

semantics of S2 may be such that expectations of ClassC.op1 are that it

works concurrently. However, as a result of being overridden by an op1 that

is specified as sequential, expectations of concurrent behaviour specified

within the output (copied from S2) will cause problems. Another possible

problem with operations not illustrated here is changing the visibility of an

operation from public to private. There is potential for causing difficulties

with changing the specifications of all properties of all constructs in an out-

put.

Incompatible

Elements

The examples given in the previous section illustrate difficulties with chang-

ing the specifications of elements as a result of composition. Another exam-

ple of where difficulties may arise in the output subject exists where the

specifications of composed elements are each added to the result, but merged.

The semantics of merging operations adds all corresponding operations to the

Figure 34: Loss of (some) Constraints in Input Subjects

Com posit ion of O O Des igns: The Model A nalys is of the Output of a Composi t ion

101

output, and specifies that on execution of one of those operations, all corre-

sponding operations are executed. This behaviour has potential for compos-

ing operations which are semantically incompatible from an execution

perspective.

Consider the example in Figure 35. Three operations are merged which have

differences in their specifications for every property of the operation con-

struct. The semantics that defines that each of the corresponding operations

are executed means that the design specification in the output subject speci-

fies (in the automatically generated interaction) that the execution of a public

method (op3) will also result in the execution of the protected and private

methods. Another difficulty is in relation to the differences in the number of

parameters - from an implementation perspective, this is not currently sup-

ported in programming models.

This discussion also applies for override integration, as it is currently possi-

ble to override one operation with another that is essentially incompatible

from an implementation perspective. For example, they may have differing

parameter lists (for example, cardinality or types differences), which would

have an impact on clients of the overridden operation.

Discussion Loss of constraints for input subjects and the possible composition of essen-

tially incompatible operations is an area of concern for the subject-oriented

design model. An approach to avoiding such difficulties might be to build a

taxonomy of rules associated with the validity of composing elements based

Figure 35: Composing Incompatible Operations

Com posit ion of O O Des igns: The Model Using Subjec t-Oriented Des ign

102

on the values of properties (and the combination of values of properties), of

elements of all types. For example, one rule might be:

[Example Rule] Only those elements with the same visibility may be
composed.

This approach requires that every possible value of every property of every

construct (and every combination thereof), be examined to assess whether a

rule guarding against composition is required, where values are different.

Catalysis has a small number of rules for joining classes that go some way

towards avoiding problems with constraints (for example variable types must

be the same [D’Souza & Wills 1998]), but these do not go far enough to

avoid all possible difficulties. A full taxonomy of rules based on all possibil-

ities of values is required.

Such a set of rules associated with the specification of composition relation-

ships would guard against the loss of constraints in input subjects, and ensure

that incompatible elements are never composed. This piece of work would be

a valuable addition to the subject-oriented design model, and is added to the

future work.

Without this set of rules (as is the case with the model described in this the-

sis), it is the responsibility of the designer to use caution when specifying

composition relationships. The designer should examine the output to ensure

the semantics of the input subjects are preserved. However, allowing the

merge integration of incompatible elements results in a model of operation

execution that is unsupported both in UML and programming languages. For

this reason, and in the absence of an appropriate taxonomy of rules, the sub-

ject-oriented design model deems operations with different specifications

to be non-corresponding, and therefore they will not be merged. A single

exception is made to this rule when the conflict in specifications is related to

the parameter lists. This case is permissable when the designer specifies an

interaction detailing the behaviour when these operations are executed. This

exception is described in more detail in “Conflict Rules for Merging Opera-

tions” on page 192.

4.5. Using Subject-Oriented Design
In this section, the phases of a software development process where the sub-

ject-oriented design model may be used are described. Then, some possible

issues with, and limitations to, the usage of the model are discussed.

Com posit ion of O O Des igns: The Model Using Subjec t-Oriented Des ign

103

Usefulness

throughout

Develop-

ment Pro-

cess

Different phases of software development cycles may gain different kinds of

benefits from decomposing design models based on requirements specifica-

tions. For example:

• A new system is under design, and the initial design phase is being

planned. A primary goal from a planning perspective may be to reduce the

critical paths of parts of the system. This maximises designer effort by

minimising idle time generated by waiting for artefacts on critical paths.

By decomposing based on requirements, different requirements may be

designed concurrently by different teams. In this situation, the composi-

tion requirement is to amalgamate (i.e. merge) all the different designs to

build the complete design. The designers may also search for reusable

artefacts previously designed elsewhere, which might be integrated with

the new design effort.

• New versions of existing systems are required, based on adding new fea-

tures. New requirements for additional features are received. As per the

initial design effort for previous versions, separating each new require-

ment into different subjects supports concurrent development, with the

composition requirement being to merge the new designs with the previ-

ous version.

• New versions of existing systems are required, based on changes to the

supported business process. The previous design of certain requirements

is no longer applicable because of changes to the business process.

Requirements are received that describe changes to the behaviour of the

system as specified previously. Again, the changed requirements may be

designed separately in different design subjects. In this case, the integra-

tion of the new design subjects replaces (i.e. overrides) the obsolete

requirements in the previous version with the new design subjects.

• Existing system needs to be ported to different technologies. For example,

a fat client implementation is to be changed to work in a distributed envi-

ronment. Here, it is likely that the whole design is affected. Even so, the

design of the support for the new environment may be separated into a

design subject and merged with the existing subjects. Or, if explicit sup-

port for a different environment exists in a previous design, then this sup-

port may need to be overridden.

• System change requests are received from test teams (or any interested

party). Here, it has been determined that the behaviour as specified in a

design subject does not adequately or correctly support the requirement. A

Com posit ion of O O Des igns: The Model Using Subjec t-Oriented Des ign

104

design subject may be designed to correct the inadequacies, with composi-

tion required to override the previous effort.

It is not the intent of this thesis to impose any particular development process

for use with the composition model. This list of possible areas of usefulness

throughout a development process is not exhaustive. Different development

processes may have different needs in different situations. Since it is not pos-

sible to anticipate all the kinds of processes a software development effort

may employ, it is the approach of this composition model to support the com-

position of design models in the most flexible way possible. This is achieved

by allowing the sub-division of design models into whatever is most appro-

priate for the particular development effort, and supporting subsequent com-

position of those models.

What Size is

a Subject?

The subject-oriented design model does not explicitly recommend any partic-

ular “size” for a design subject. If a design subject is measured by the

number of design elements contained within, then the size will be dictated by

what is necessary to support the particular requirement under design by that

subject. Other design approaches provide some guidelines as to the size of

their different models. For example, the OORam model described in [Reen-

skaug et al. 1995] provides some loose guidelines for the size of role models,

based on the notion that human short term memory can manage seven plus or

minus two notions at the same time. The suggested guideline, therefore, is

that a role model should consist of between five and nine roles - where fewer

than five roles should be synthesised into a larger role model, and where con-

sideration should be given to further breaking up a model with greater than

nine roles. While the subject-oriented design model does discuss further

decomposing design subjects where an analysis of the requirement it supports

lends itself to such division (see Figure 15 on page 68), such decomposition

is recommended based on possible logical divisions within the requirement,

and not the “size” of the design subject.

Duplication

of Effort

As described in “Overlapping Subjects” on page 70, it is expected that some

of the same basic domain concepts may be used in multiple design subjects.

These domain concepts may require different specifications in different sub-

jects to support different requirements. For example, requirements to check

and evaluate expressions both work with a basic expression, but have differ-

ent behaviour to handle the different requirement. Therefore, there are bene-

fits in the ability to design these perspectives separately. The benefits include

Com posit ion of O O Des igns: The Model Using Subjec t-Oriented Des ign

105

increased comprehensibility, traceability, evolvability and reuse capabilities.

However, there is also some potential for overlap where the same concepts do

not require different specifications for the different requirements they sup-

port. In this case, there is a danger of duplication of designer effort in the

design of those concepts. This danger is inherent in this approach, but can be

alleviated with careful decomposition of the design models. In addition to

decomposing the design models based on structuring with the requirements,

consideration could also be given to areas of the domain which may be re-

used unchanged in many parts of the design. Such areas of the domain might

also be separated into a design subject. In terms of matching with require-

ments, this is viewed as a case similar to that illustrated in Figure 15, with

one difference - one of the subjects may be re-used for multiple require-

ments.

Where the area of overlap is very small, or not obvious to the designers

immediately, it may be more difficult to initially assess that it should be

designed as a separate subject, and duplication of effort may occur. This is an

area of concern which requires further research to assess its impact. Part of

this assessment might be to calculate the benefits of decomposition in this

area against the cost of some duplication of effort because of overlap where

the specifications for different requirements are the same.

How Complex

is Composition

Specification?

Composition specification with composition relationships is flexible in the

kinds of compositions allowed. Within the context of a composition relation-

ship between elements at the roots of the subject trees to be composed, multi-

ple other composition relationships may be specified between elements at

levels lower in the tree, with the same elements possibly participating in mul-

tiple different relationships. This flexibility means that the suite of composi-

tion relationships within the context of a composition to a single output could

get quite complex. Where some cooperation exists between the design teams

of subjects with potentially considerable overlap, composition specification

could be as simple as a single composition relationship between input sub-

jects. In this case, with some communication, there may be few differences in

the overlapping areas. On the other hand, one of the benefits of this approach

is the support for design teams working concurrently with, potentially, little

or no contact between them. Taken to the extreme, this might result in con-

siderable differences in the specifications of overlapping concepts. This situ-

ation would require multiple composition relationships to specify the

overlapping concepts’ resolution and integration. In this case, composition

Com posit ion of O O Des igns: The Model Using Subjec t-Oriented Des ign

106

specification becomes more complex. For each software development project

using the subject-oriented design model, a balance should be found between

increasing the levels of communication between different design teams and

thereby decreasing the complexity of composition specification versus totally

isolating the design teams, thereby increasing the likelihood of more complex

composition specification. Depending on the personnel make-up of the over-

all team in terms of levels of experience and knowledge, and the physical

locations of the different teams, different choices may be appropriate. In

addition, experience with using the model will provide assistance in both

determining an appropriate extent of isolation of teams, and also with experi-

ence with the specification of composition relationships, thereby supporting

more isolation.

Feature Inter-

action Prob-

lem

The so-called feature-interaction problem is well documented for the tele-

communications domain ([Jackson & Zave 1998], [Zave 1999], [Turner

1999]), and seems like an ideal problem for which subject-oriented design

would find a solution - the problem should, in some cases, influence the

choice of input subjects to a composition. The feature interaction problem is

defined in [Zave 1999] as:

A bad feature interaction is one that causes the specification to be
incomplete, inconsistent, or unimplementable, or that causes the
overall system behavior to be undesirable.

[Turner 1999] describes defining “conflicts” or “competes” or “constraints”

relationships between features in order to capture problems between their

potential interactions. The subject-oriented design model currently does not

support such relationships between subjects, but support is possible with

some extensions to the model. For example:

• an extension of the dependency relationship in UML to include stereo-

types to support similar kinds of dependencies to those described in

[Turner 1999].

• an extension to the rules associated with the specification of composition

relationships to cater for such dependencies when defining inputs to a

composition. For example, a rule might be included that states that sub-

jects that conflict may not participate in the same composition context.

An interesting part of this future work is a study of how such extensions to

the subject-oriented design model will support the specification of how fea-

tures interact and how they may conflict when or if they are composed.

Com posit ion of O O Des igns: The Model Chapter Summ ary

107

4.6. Chapter Summary
This chapter provides a description of the subject-oriented design approach

to designing software. Motivated by the need to remove scattering and tan-

gling properties in standard object-oriented designs, the model is based on

adding decomposition capabilities to structure designs more directly with the

structure of requirements specifications. Corresponding composition capabil-

ities support considerable flexibility in the decomposition of design models.

First, this chapter describes how design models may be decomposed into

design subjects. A design subject encapsulates a requirement, providing a

complete design for that requirement, without redundant design elements.

Changes to the design as a result of new requirements may themselves be

encapsulated into design subjects, thus making changes to the design additive

rather than invasive. Impediments to the reuse of designs were described in

“Chapter 2: Motivation” on page 11 as rooted in the tangling of multiple

requirements in design models. With the approach described in this chapter,

each design subject supports a single requirement, where every element

within the design subject is needed to support that requirement, and no

redundant design elements are included. Even requirements that cross-cut

other designs may be designed separately and without explicit reference to

other design models.

The model is then further developed with a description of the means of com-

posing design subjects - composition relationships. Composition relation-

ships identify the subjects to be composed, overlaps within those subjects to

be integrated as overlapping concepts, and how the elements should be inte-

grated. Considerable flexibility is illustrated with different combinations of

composition relationships supported. Patterns of composition may be identi-

fied and specified separately, providing support for the encapsulation of

cross-cutting requirements, and their re-use.

The framework for composition involves the composition of input subjects to

an output subject. This chapter analyses this output and illustrates how diffi-

culties may occur as a result of composition. One category of difficulties

relating to references to integrated elements is handled by the composition

relationship. Solutions to other categories of difficulties - the loss of input

subject constraints and the possible incompatibility of integrated operations -

are proposed but not included in this version of the model.

The composition relationship is a new design construct which needs to be

added to the UML metamodel. This is described in “Chapter 5: Composition

Com posit ion of O O Des igns: The Model Chapter Summ ary

108

Relationship: An extension to the UML Metamodel” on page 109. A more

detailed description of the semantics of the two integration strategies

described in this research, override and merge, are in “Chapter 6: Override

Integration” on page 127, and “Chapter 7: Merge Integration” on page 155.

How to specify patterns of collaborative behaviour is described “Chapter 8:

Composition Patterns” on page 198.

109

Chapter 5: Composition Rela-
tionship: An extension to the
UML Metamodel

The model for composing object-oriented designs described in this thesis is

based on composing a number of input subjects into an integrated output sub-

ject (“Chapter 4: Composition of OO Designs: The Model” on page 64).

Overlapping elements in input subjects are integrated as corresponding con-

cepts. Different kinds of integration strategies are possible. The means for

specifying composition proposed and developed in this thesis is a new kind

of design relationship called a composition relationship.

This new design construct for specifying how to compose design models (the

composition relationship) needs to be defined in the context of the design

language used. This chapter describes how the UML may be extended to

include the notion of a composition relationship. A composition relationship

is an extension to the language, and as such, is defined within the context of

the UML. This is achieved by extending the UML Metamodel as currently

described in [UML 1999].

5.1. The UML Metamodel
As stated previously in “4.1. Decomposing Design Models” on page 65, a

design subject may, conceptually, be written in any design language, but the

focus of this thesis is the UML [UML 1999]. The UML is the OMG’s stand-

ard language for object-oriented analysis and design specifications. The

OMG currently defines the language using a metamodel. The metamodel

defines the syntax and semantics of the UML, and is itself partially described

using the UML. The metamodel is described using the views:

• Abstract syntax: This view is a UML class diagram showing the meta-

classes defining the language constructs (e.g. Class, Attribute, Operation,

Association etc.), and their relationships. An informal description in natu-

Com posit ion Relationship: An extension to the UML Metam odel The U ML Metamode l

110

ral language describes each of these constructs and their relationships.

The class diagrams include multiplicity and ordering constraints.

• Well-formedness rules: A set of well-formedness rules, each of which has

an informal description and an OCL definition, specifying constraints on

instances of the metaclasses – i.e. the usage of the UML language con-

structs.

• Semantics: The meanings of the constructs in the language are described

using natural language.

Because of its usage of natural language, this description of the UML is not a

completely formal specification, and therefore, it is assumed in this research

that ambiguities exist within its specification. The difficulties associated

with extending the UML (in this case, by adding composition capabilities)

are further compounded by the fact that the UML is in the early stages of its

life, and is continuously undergoing changes - for example, work on Version

2 starts this year. The changes are being made for a number of reasons,

including corrections, and filling gaps in the existing specification.

The ideal situation in which to extend the UML would be if the standard lan-

guage, upon which this work is based, were completely and formally defined,

and not undergoing change. Since this is not the case, the problem must be

worked around. Providing a complete and formal specification of the stand-

ard UML is beyond the scope of this work, and ensuring that it does not

undergo further change is beyond our control, not to mention inappropriate at

this time. What is within our control, and within the scope of this work, is

providing a semi-formal description of the syntax and semantics of composi-

tion relationships, in a style compatible with the current UML specification.

Since the UML could be considered a moving target, this work anchors itself

on the version 1.3 beta R7 - the version most current when the bulk of this

research was performed. Changes to the UML subsequent to this version will

not be catered for in this thesis, but must be incorporated into future work in

this area.

The composition capabilities proposed and described in this thesis are impor-

tant additions to the UML. For this reason, their incorporation into the stand-

ard UML is considered a high priority. Therefore, it is appropriate that the

description of this work is in a similar style to that of the description of the

UML, and that references to constructs of the UML are as they are described

by the OMG.

Com posit ion Relationship: An extension to the UML Metam odel Composable E lements

111

This thesis, therefore, describes the extensions required to the UML with the

following subsections containing the relevant views of the extensions:

• a subsection with UML class diagrams describing the constructs of the

composition, and their relationships. This includes definitions of the

kinds of constructs that may participate in composition relationships

(called composable elements), followed by the composition relationship

itself.

• a subsection containing the well-formedness rules describing the con-

straints on instances of composition relationships.

• a subsection containing descriptions of the semantics of composition rela-

tionships. This includes a description of how corresponding elements are

identified, and the semantics of forwarding references to elements in out-

put subjects.

Details of the semantics of the supported integration strategies, and their

impact on the language metamodel, are in subsequent chapters.

5.2. Composable Elements
As discussed in “Composable Elements” on page 73, not all of the constructs

supported within the scope of this work are composable elements - that is,

elements which may directly participate in composition relationships. The

exclusion of some design elements is based on two criteria; first, whether the

element logically belongs to another element and the semantics of that ele-

ment mean that it does not make sense for the element to be composed by

itself, and secondly, whether the element is considered to be a constraint on

another element. One example of the first case is Parameter. Parameters are a

logical part of the complete signature of an operation or method, and there-

fore it does not make sense for them to participate in separate compositions.

Another example is AssociationEnds. These are logically part of the full def-

inition of associations, and therefore it does not make sense for them to be

considered separately for compositions. An example of the second case is

instances of Constraints, which are appropriately considered as part of the

model element to which they are attached. Other model elements that are not

included are deemed part of the full specification of one of the model ele-

ments that may participate.

Figure 36 describes which constructs may be related by a composition rela-

tionship. The style for restricting the kinds of model elements that may par-

ticipate in composition relationships is similar to the way that the UML

Com posit ion Relationship: An extension to the UML Metam odel Composable E lements

112

defines the model elements that may participate in generalization relation-

ships. In the UML, an abstract construct called GeneralizableElement exists,

from which any model element that may participate in a generalization inher-

its. Similarly, a new abstract construct, called ComposableElement, is cre-

ated here to define which model elements may participate in a composition

relationship.

Compos-

ableElement

Metaclass

A composable element is a model element that may participate in a composi-

tion relationship. ComposableElement is an abstract metaclass.

CompositeEle-

ment Metaclass

A composite is a composable element that may contain other composable ele-

ments. Components of a composite are not considered part of the full specifi-

cation of the composite for the purposes of composition, and are therefore

considered separately for composition. The relationships between the com-

posites and their components are unchanged from the specifications in the

UML semantics, and are therefore not included here.

CompositeElement is an abstract metaclass.

PrimitiveEle-

ment Metaclass

A primitive is a composable element whose full specification may be com-

posed with other primitives.

PrimitiveElement is an abstract metaclass.

Subject Meta-

class

A subject is a subclass of Package, and has a more restrictive set of elements

that may be owned or referenced than Package. A subject may only own or

reference subjects, classifiers, associations, dependencies, generalizations,

constraints and collaborations.

Figure 36: Elements that may participate in Composition Relationships

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

113

5.3. Composition Relationship
Composition relationships are the means for specifying how design elements

should be composed. Composition relationships indicate elements that corre-

spond, and how they should be integrated. This section describes the syntax

of a composition relationship in the context of the UML metamodel. The

meta-class diagram in Figure 37 illustrates:

• that composition relationships are specified between composable elements

• that a contextual composition relationship between subjects defines the

context for a composition of subjects

• that composition relationships between design elements must be in the

context of a contextual composition relationship (except when the compo-

sition relationship is itself the contextual one)

• that the specification of integration as an abstract metaclass attached to a

composition relationship supports its specialisation for different integra-

tion strategies

• that the integration of design elements results in output design elements

that are the result of the composition

• that a contextual composition relationship defines a namespace for out-

puts of the integration of design subjects and their components

The model supporting composition of design models also describes the need

for forwarding of references to elements from within an input subject to ref-

erences to appropriate elements in an output subject.

The meta-class diagrams illustrating the meta-class structure of a composi-

tion relationship are not sufficient to define the rules associated with a well-

formed composition relationship. Similarly to the UML metamodel specifica-

tion, well-formedness rules for composition relationships are also described

in this section.

Description

of Constructs

Each of the metaclasses in the class diagrams defining the syntax of a compo-

sition relationship are listed in this section with a description of their pur-

pose. For each metaclass, a table describing any attributes and/or

associations is included.

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

114

Compos-

ableElement

Metaclass

A composable element may participate in a composition relationship.

Associations

CompositionRe-

lationship Meta-

class

A composition relationship is a relationship between composable elements,

recognising overlaps in concept specifications by identifying corresponding

elements, and specifying how elements are to be integrated.

CompositionRelationship is an abstract metaclass.

Associations

Figure 37: Composition Relationship

composedBy The associated composition relationships specify how this com-

posable element will be composed with the other related com-

posable elements.

usesForRefer-

enceForward-

ing

The associated composition relationship defines the composed

element to which references to its input element should forward.

The cardinality for this relationship is 0..* because composable

elements may participate in multiple composition contexts, or

none at all. A well-formedness rule is included to ensure that

there is only one forwarding composition specified within a sin-

gle composition context.

compose The composable elements related by this composition relation-

ship.

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

115

CompositeCom-

position Meta-

class

A composite composition relationship is a composition relationship between

two composites. Composites have properties other than their components

[UML 1999], and these property specifications from corresponding compos-

ites are integrated, as defined by the integration semantics. A composition

relationship between composites specifies how correspondences between the

composites’ components are identified, and also specifies their integration

semantics. Where a composite is itself a component of another composite, its

composition relationship takes precedence over any composition relationship

its owner may participate in.

Associations

ContextualCom-

position Meta-

class

A contextual composition relationship defines the context within which a

composition of input subjects occurs. All further composition relationships

between design elements that are components of the input subjects (that is, at

levels further down the subject tree - see “Tree Structure” on page 72) are

defined within the context of a contextual composition relationship - that is,

they must specify a context relationship to a contextual composition rela-

tionship. The contextual composition relationship also defines a namespace

within which it, and each of the composition relationships for which it pro-

vides a context for, is contained.

Associations

integrate The integration strategy for this composition

context The contextual composition relationship that provides the com-

position context for this composition

definesFor-

wardingOfRef-

erences

All references to this input element (from compose relationship),

in its container subject, forward to the composed result specified

by this composition relationship.

match The general matching criteria to be used to establish correspon-

dence between the components of the composite.

providesContextFor Any relationships between components of the input subjects

related by a contextual composition relationship are defined

within the context of this relationship.

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

116

PrimitiveCom-

position Meta-

class

A primitive composition relationship is a composition relationship between

two primitives. The full specifications of elements are composed with the full

specification of the corresponding elements. A primitive composition rela-

tionship takes precedence over any composition relationship between com-

posites that own the primitives.

Match Meta-

class

With matching specified as part of the relationship, correspondence is estab-

lished based on a match in the value of the name property of the elements.

Attributes

Integration

Metaclass

Integration is an abstract metaclass that defines how corresponding elements

are to be integrated. The result of the integration of corresponding elements

is copied to one or more new design elements.

As an abstract metaclass, it is the intent that Integration be specialised to

define the semantics of any integration strategy required. How this is

achieved for override integration is described in “Chapter 6: Override Inte-

gration” on page 127, and for merge integration in “Chapter 7: Merge Inte-

gration” on page 155.

Associations

definesModel-

NamespaceFor

The namespace of the output subject resulting from the inte-

gration of the input subjects and their components is defined

by the input subjects to the contextual composition relation-

ship. The name of the output subject is the concatenation of

the names of the input subjects.

matchByName Indication that matching for correspondence identification is

based on the value of the name property of elements.

dontMatch A composition relationship between elements that specifies

dontMatch indicates that those elements do not correspond.

composed The result of integration (as defined by the semantics of

subtypes of this metaclass) is copied to one or more new

model elements.

owner The composition relationship to which the integration speci-

fication is attached.

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

117

Well-Formed-

ness Rules

The well-formedness rules described in this section are included to ensure

that composition of UML design models conforms to the general composition

model as described in “Chapter 4: Composition of OO Designs: The Model”

on page 64. The style used to define the rules is similar to that used to define

the well-formedness rules of the UML. A textual description of the rule is

followed, where appropriate, by an OCL (Object Constraint Language

[Warmer & Kleppe 1999]) specification. The reasons why these rules are

required are also included with each rule, which may, in some cases, be sim-

ply a reference to the appropriate part of the description of the model in

“Chapter 4: Composition of OO Designs: The Model” on page 64.

Structural Rules [1] Composition relationships may only be specified between design ele-

ments of the same type1.

self.compose->forAll (c1, c2 |

 c1.oclType = c2.oclType)

where self is an instance of CompositionRelationship

This rule is included because it is required by the composition model as

described in “Inputs are the Same Type” on page 84.

[2] PrimitiveComposition relationships may only be specified between prim-

itive elements.

self.compose->forAll(c |

 c.oclIsKindOf(PrimitiveElement))

where self is an instance of PrimitiveComposition

In this metamodel, a distinction is made between composition relationships

that are between primitive elements and between composite elements since

the specification for composite elements includes the possibility of attaching

match criteria for components of the composite (see “Primitive vs. Compos-

ite” on page 74 for a description of the distinction between the two). Since

the distinction is made at the meta-levels, this rule is included to ensure that

primitive composition relationships are between primitive elements.

modelNamespace-

DefinedBy

The contextual composition relationship that defines the

namespace of the output subject that contains the result of

an integration between composable elements.

1. Operations used in well-formedness rules (e.g., compose) are defined in “Additional
Operations” on page 120.

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

118

[3] CompositeComposition relationships may only be specified between com-

posite elements.

self.compose->forAll(c |

 c.oclIsKindOf(CompositeElement))

where self is an instance of CompositeComposition

See previous rule, as discussion also applies to composite composition rela-

tionships.

[4] A contextual relationship is not defined within the context of another

contextual relationship

self.oclIsKindOf(ContextualComposition) implies

 self.context.isEmpty

where self is an instance of CompositionRelationship

A contextual relationship is a relationship between the roots of a subject tree

that defines the composition context for composition of the elements at lower

levels of the tree (see “Specifying Inputs” on page 79). Since this relation-

ship is between the roots of the subject tree, it is meaningless for the rela-

tionship itself to have a context, as there are no higher levels of the tree.

[5] A contextual relationship is only defined between subjects.

self.oclIsKindOf(ContextualComposition) implies

 self.compose.forAll(c |

 c.oclIsKindOf(Subject))

where self is an instance of CompositionRelationship

This rule reinforces that contextual composition relationships must be

between subjects.

[6] All kinds of composition relationships other than the contextual composi-

tion relationship are defined with a context relationship to contextual

composition relationship.

self.oclIsTypeOf(PrimitiveComposition) or

self.oclIsTypeOf(CompositeComposition) implies

 not self.context.isEmpty

where self is an instance of CompositionRelationship

The specification of composition of input subjects first involves the specifi-

cation of a composite composition relationship between the roots of subject

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

119

trees - that is, between the input subjects. This relationship defines a name-

space within which composition of elements at levels of a subject tree lower

than the root occurs. Therefore, every composition relationship between lev-

els of a subject tree lower than the roots must be defined relative to the com-

position relationship between the roots of the tree (see “Rules for Specifying

a Composition Relationship” on page 84).

[7] For each of the input design elements to a composition relationship, the

subject in which that design element is contained must participate in the con-

textual relationship that defines the context of the composition relationship

self.compose->forAll(c |

 self.context.compose->exists(s |

 c.owningSubject = s))

where self is an instance of CompositionRelationship

This rule reiterates that composition relationships between design elements

at levels of a subject tree lower than the root must be in the context of a con-

textual relationship involving the root of each tree containing those elements.

[8] Composition relationships may only be specified between elements whose

parents are corresponding, and therefore will be composed.

The specification of the semantics for identifying corresponding elements is

described in “Semantics for Identifying Corresponding Elements” on

page 122. These semantics should be considered for testing the well-formed-

ness of composition relationships against this rule.

Common Inte-

gration Rules

[9] A composition relationship specified between input subjects defines the

namespace for composed elements in an output subject

self.integrate.composed->forAll(outEl |

 self.context.compose->forAll(s |

 outEl.namespace =

 s.namespace.concat(outEl.namespace))

where self is an instance of CompositionRelationship

As described in “Specifying Inputs” on page 79, a contextual composition

relationship defines the context for composition of all design elements within

the input subjects, providing a namespace for their integration.

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

120

Forwarding [10] Where a design element participates in multiple composition relation-

ships in multiple composition contexts, within a single composition context

only one of those composition relationships may specify the result to which

all referring elements within the input subject forward.

self.usesForReferenceForwarding->forAll(c1, c2 |

 c1 <> c2 implies c1.context <> c2.context)

where self is an instance of ComposableElement

This rule is included to ensure that ambiguity for forwarding of references is

removed by having only one possibility defined (see “Forwarding of Refer-

ences” on page 96).

[11] Within a single composition context, one composition relationship must

be defined as the one specifying the result to which all referring elements

forward.

self.inputComposableElements->forAll(cEl |

 exists(cr : CompositionRelationship |

 cr.definesForwardingOfReferences.includes(cEl)

 and cr.context = self))

where self is an instance of ContextualComposition

Additional Operations

[1] The operation compose returns a Set containing all related elements

compose : Set(ComposableElement);

compose = self.compose

where self is an instance of CompositionRelationship

[2] The operation composedBy returns a Set containing the composition

relationships in which a composable element participates

composedBy : Set(CompositionRelationship);

composedBy = self.composed

where self is an instance of ComposableElement

[3] The operation composed returns a Set containing the composed ele-

ments

composed : Set(ModelElement);

composed = self.composed

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

121

where self is an instance of CompositionRelationship

[4] The operation owningSubject returns the subject that owns the com-

posable element

owningSubject : Subject;

owningSubject = self.namespace2

where self is an instance of ComposableElement

[5] The operation usesForReferenceForwarding returns the set of

composition relationships defined as the result for forwarding of references

usesForReferenceForwarding :

 Set(CompositionRelationship);

usesForReferenceForwarding =

 self.usesForReferenceForwarding

where self is an instance of ComposableElement

[6] The operation providesContextFor returns the set of composition

relationships for which the contextual composition relationship provides a

context.

providesContextFor : Set(CompositionRelationship);

providesContextFor = self.providesContextFor

where self is an instance of ContextualComposition

[7] The operation inputComposableElements returns the set of com-

posable elements that directly participate in composition relationships within

the context of a single composition

inputComposableElements : Set(ComposableElement);

 self.providesContextFor->forAll(c |

 inputComposableElements->union(c.compose))

where self is an instance of ContextualComposition

2. The UML Metamodel states that a “namespace is used for unstructured contents such as
the contents of a package..”. Since Subject is a stereotyped Package, then Namespace is
considered in this thesis to be the designated name of the subject container of model ele-
ments.

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

122

Semantics

for Identify-

ing Corre-

sponding

Elements

Where corresponding elements exist in input subjects, those elements must

be identified prior to integration. This is because the semantics of integration

must take the potential for overlapping of subjects into account. This section

describes the semantics of how corresponding elements are identified based

on a composition relationship. The semantics of the other primary responsi-

bility of a composition relationship - integration - are described in subse-

quent chapters.

[1] Correspondence between primitives is established either directly with a

primitive composition relationship, or indirectly based on matching from the

specification of its bounding composition. Correspondence between primi-

tives is not possible where the elements are components of non-correspond-

ing composites. See Figure 38.

[2] Correspondence between composites is established in two ways:

• either directly with a general matching rule from a composite composition

relationship,

• or indirectly with a general matching from a composite composition rela-

tionship between any owning composites at higher levels of the tree.

Correspondence matching between a composite’s components is established

• either by matching as specified in the composite composition relationship

between their owners,

• or by additional relationships which take precedence over the composite

composition relationship between their owners.

Any elements that participate in composition relationship with a “dont-

Match” specification, do not correspond.

Figure 38: Correspondences between Primitives

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

123

See Figure 39 for an illustration.

Semantics

for Forward-

ing Refer-

ences to

Composed

Elements

The integration of corresponding input design elements results in an output

design element which may be different from the input design elements,

depending on the integration semantics. As defined by this composition

model (see “Forwarding of References” on page 96), design elements that

reference any of the design elements that are input to a composition will ref-

erence the resulting output element in the output subject.

[1] Every integration strategy composes design elements to one or more out-

put design elements that are added to the composed contextual namespace.

Prior to the addition of each output design element, any references to other

design elements are examined. These referenced design elements are them-

Figure 39: Correspondences between Composites

Figure 40: Forwarding of References Semantics

Com posit ion Relationship: An extension to the UML Metam odel Compos it ion Relat ions hip

124

selves added to the same composition contextual namespace, either

unchanged or changed in some way as a result of the composition. Where

changes to referenced elements has occurred, the semantics of forwarding

references to them requires that the change is reflected in the referring ele-

ment. See Figure 40 for an illustration.

[2] Where a design element referenced in an input subject participates in

multiple compositions, the change to the reference is based on the composi-

tion relationship specified as its forwarding composition. See Figure 41 for

an illustration.

[3] In addition to the situation where composable elements directly partici-

pate in multiple composition relationships, ambiguity may also occur as a

result of implicit correspondence matching of elements from a composition

relationship at a higher level of the subject tree. If there is no [forwards]

attachment to a relationship in which the element causing the ambiguity

directly participates, forwarding occurs to the result of the implicit matching.

This is because it is not appropriate to allow a direct [forwards] attach-

ment to a relationship between composite elements, as this relationship

affects all elements at levels lower in the subject tree, not just the element

causing the ambiguity. See Figure 42 for an illustration.

Figure 41: Forwarding Ambiguous References with Attachment to Relationship

Com posit ion Relationship: An extension to the UML Metam odel Chapter Summ ary

125

5.4. Chapter Summary
This chapter defines a composition relationship as an extension to the UML

metamodel, using the same language and style as the specification of the

semantics of the UML itself. Meta-class models describe the constructs asso-

ciated with a composition relationship, and together with defined well-

formedness rules, constraints on the syntax of composition relationships are

specified.

Composing design subjects entails identifying corresponding elements within

the design subject, and integrating the elements within the input subjects to a

composed result in an output subject. This chapter also defines the semantics

of identifying corresponding elements. Integration of elements is defined in

the abstract so that concrete integration strategies may be seamlessly added

to the metamodel. Common semantics for all kinds of integration are defined

- that is, the integration of elements to an output subject, and the forwarding

of references to elements in input subjects to appropriate references in the

output subject.

Further extensions to the metamodel are required for each individual integra-

tion strategy that may be required. This thesis describes two kinds of integra-

tion, override and merge, and the extensions to the metamodel to support

Figure 42: Forwarding to Implicit Composition Output as Default

Com posit ion Relationship: An extension to the UML Metam odel Chapter Summ ary

126

these integration strategies are included in “Chapter 6: Override Integration”

on page 127, and “Chapter 7: Merge Integration” on page 155.

127

Chapter 6: Override Integration

Override integration is used when elements in an existing design subject need

to be changed. For example, new requirements may indicate that the behav-

iour specified in the existing design subject is no longer appropriate to the

needs of end-users of the computer system. Therefore the behaviour as speci-

fied in the existing design subject needs to be updated to reflect the new

requirements. Another possible scenario requiring override integration is

when separate groups are working on individual subjects, where one group’s

element(s) specification(s) may change another group’s specifications. Over-

riding an existing design subject, or elements within a design subject, is

specified with composition relationships with override integration. These

composition relationships are specified between the design subject requiring

change, and a different design subject containing the new elements.

Composition relationships with override integration specify which design

elements in the existing design subject are to be overridden by design ele-

ments in the new design subject. Any design elements in the existing design

subject that are not overridden by design elements in the new design subject

are added to the result unchanged. Any design elements in the new design

subject that do not override design elements in the existing design subject are

added to the result. This section details the semantics of composition rela-

tionships with override integration, and has the following subsections1:

• a subsection with UML class diagrams describing the constructs of the

override, and their relationships

• a subsection containing the well-formedness rules describing the con-

straints on instances of overrides

• a subsection containing descriptions of the semantics of override

1. Only changes to the syntax and semantics of composition relationships (as specified in
“Chapter 5: Composition Relationship: An extension to the UML Metamodel” on page
109) that are appropriate for override integration are described in this chapter.

Over ride In tegrat ion Syntax

128

6.1. Syntax
Override integration specifies that the specification of one design element is

overridden by the specification of its corresponding element. Override inte-

gration is defined as a subclass of the Integration metaclass from the compo-

sition relationship (see Figure 43).

The semantics of override integration require that the cardinalities of the

composable elements that may participate in a composition relationship are

changed. As specified in “5.3. Composition Relationship” on page 113, a

composition relationship may be specified between two or more composable

elements. However, this is not appropriate when the integration strategy is

override, as the semantics of override dictate that one composable element is

overridden by one other composable element.

CompositionRe-

lationship Meta-

class

Override integration overrides one element with the specification of its cor-

responding element. This restricts the cardinalities of the composable ele-

ments related by the composition relationship to which the override

integration specification is attached.

Associations

Override Meta-

class

Override integration specifies that the specification of the overridden ele-

ment is replaced by the specification of the overriding element.

6.2. Well-Formedness Rules
Override integration imposes more stringent restrictions on the number of

composable elements that may participate in a composition relationship than

are defined for the general case (see “Composition Relationship” on

page 113). In the general case, two or more composable elements may be

Figure 43: Override Integration

overridden The composable element whose specification is overridden

overriding The composable element whose specification overrides the

overridden element

Over ride In tegrat ion Wel l-Forme dness Rules

129

related by a single composition relationship. However, for a composition

relationship with override integration, this is restricted to one composable

element overriding one other (see Figure 43). This restriction means that the

well-formedness rules must specify the replacements for a number of the

rules defined for the general case. For each of the rules defined in this sec-

tion, there is an indication, where appropriate, of which general rule is re-

written to suit a composition relationship with override integration. Every

general rule defined in “Composition Relationship” on page 113 not explic-

itly replaced here applies to ensure the well-formedness of composition rela-

tionships with override integration.

[1] The composition relationship to which override is attached relates com-

posable elements based on its overridden and overriding associations

only.

self.owner.compose =

 self.owner.overriding->union(self.owner.overridden :

 ComposableElement) : Set(ComposableElement)

where

• self is an instance of Override

• and compose is an operation defined in the well-formedness rules for

general composition relationships in “Additional Operations” on page 120

[2] The overriding and overridden elements are different.

self.owner.overridden <> self.owner.overridding

where self is an instance of Override

This rule is included as it does not make sense to override an element with

itself. From the perspective of override semantics, this results in a design ele-

ment that is unchanged in any way.

[3] Within the context of a single composition, a composable element may

only participate in one composition relationship as the overridden element.

self.owner.context.providesContextFor->

 forAll(cr1, cr2 |

 cr1 <> cr2 implies cr1.overridden <>

 cr2.overridden)

where

• self is an instance of Override

Over ride In tegrat ion Semantics

130

• and providesContextFor is an operation defined in the well-

formedness rules for general composition relationships in “Additional

Operations” on page 120

Override integration changes the specification of an element to be overrid-

den. This rule is included because without it (that is to allow an element to be

overridden multiple times by different elements) there may be unanticipated

results. Without explicit ordering of the different integrations, it is not possi-

ble to predict the final specification of the overridden element. General

ordering of multiple compositions is currently not supported in the subject-

oriented design model.

6.3. Semantics
As stated previously, override integration is used to override design specifi-

cations in an existing design subject with design specifications in a design

subject that reflect a change to the requirements since the existing design

subject was created. Overrides indicate which elements in the existing design

subject are to be overridden by which elements in the overriding design sub-

ject.

This section first discusses, in “General Semantics” on page 130, the general

semantics of override that apply to all types of elements. Sections “Impact of

Override on Subjects” on page 132 to “Impact of Override on Collabora-

tions” on page 148 then consider the impact of override on each of the differ-

ent types of elements, highlighting any differences with the general

semantics.

General

Semantics

The identification of correspondences is the same as for all composition rela-

tionships and is described in “Semantics for Identifying Corresponding Ele-

ments” on page 122.

[1] For each element in the overridden subject, the existence of a correspond-

ing element in the overriding subject results in the specification of that ele-

ment to be changed to that of the corresponding element. From Figure 44, the

following overrides occur:

• The specification of class S2.ClassA is changed to the specification of

S1.ClassA as a result of override

• The specification of attribute S2.ClassA.a is changed to the specifica-

tion of S1.ClassA.a as a result of override

Over ride In tegrat ion Semantics

131

• The specification of operation S2.ClassA.op1 is changed to the speci-

fication of S1.ClassA.op1, as a result of override.

• The specification of operation S2.ClassA.op2 is changed to the speci-

fication of S1.ClassA.op2, as a result of override.

• The specification of operation S2.ClassA.op3 is changed to the speci-

fication of S1.ClassA.op2, as a result of override.

[2] Elements in an overridden composite that are not involved in a corre-

spondence match remain unchanged. For example, from Figure 44, the

attribute S2.ClassA .c has no corresponding elements, and so is added to

the result unchanged.

[3] Elements that are components of an overriding composite and are not

involved in a correspondence match are added to the overridden composite.

For example, from Figure 44, the attribute S1.ClassA.b has no correspond-

ing elements in S2. Since it is a component of an overriding class named

ClassA, it is added to the specification of ClassA as a result of override.

[4] Changes to an overridden subject, either as a result of overriding of corre-

sponding elements, or as a result of adding elements directly to the overrid-

den subject, may not result in name clashes. In the event of name clashes,

renaming of clashing elements occurs. For example, from Figure 44, overrid-

ing both S2.ClassA.op3 and S2.ClassA.op2 with S1.ClassA.op2

Figure 44: General Semantics for Override Integration

Over ride In tegrat ion Semantics

132

results in a name clash. To avoid this, the name of one of the overridden

operations is changed.

[5] All references to elements in the result that may have changed from the

specification in the input subject are changed as described in “Semantics for

Forwarding References to Composed Elements” on page 123.

[6] The composed subject must conform to the well-formedness rules of the

UML.

Impact of

Override on

Subjects

This section discusses what happens to subject specifications as a result of

override. (See “Appendix A: Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Package, from which

Subject is stereotyped). The following are illustrated with an example:

• How correspondences are established

• The results of override on elements both corresponding and non-corre-

sponding

• Checking the UML Well-Formedness Rules on the results of override

• Consideration of deviations from (or additions to) the general semantics

defined in the previous section.

When the composition relationship between subjects does not have general

correspondence matching criteria associated with it, there is not considered

to be any corresponding elements in the subject’s contents, unless specified

with additional relationships between its contents. The following subsections

describe the impact of override on the example illustrated in Figure 45:

Correspon-

dences

• [Eg6.1] S1 corresponds with S2 because of the composition relationship

between the two. This relationship specifies matching on name for identi-

fication of correspondence between the components, and is the contextual

relationship for this composition example.

• [Eg6.2] S1.S3 corresponds with S2.S3 (Eg6.1)

• [Eg6.3] S1.S4 corresponds with S2.S5 (because of the relationship

between the two.)

Over ride In tegrat ion Semantics

133

• [Eg6.4] S1.ClassA corresponds with S2.ClassA (Eg6.1)

Result of Over-

ride

Elements with correspondences:

• The specification of S2 is changed to the specification of S1. This

excludes the ownedElements and the importedElements as these

are components of subjects. In addition, naming for subjects in the result

is by appending the names of the overriding and overridden subjects. This

conforms to the specification of the namespace of the output of the com-

position as defined by the contextual composition relationship and

described in “Well-Formedness Rules” on page 117.

• The specification of S3 in the resulting subject is that of the specification

of S1.S3. The components of S3 (in ownedElements and import-

edElements) are considered separately.

• The specification of S5 in the resulting subject is that of the specification

of S1.S4, with the names of the two concatenated. The components of

both (in ownedElements and importedElements) are considered

separately, with the resulting components contained in the S4 in the

result.

• The specification of ClassA in the resulting subject is that of the specifi-

cation of S1.ClassA (see “Impact of Override on Classifiers” on

page 134 for more details on classifiers). The components of ClassA are

considered separately.

Elements with no correspondences:

Figure 45: Impact of Override on Subject Specifications

Over ride In tegrat ion Semantics

134

• S1.S6, and S1.ClassB have no corresponding elements in S2. They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components.

• S2.S7, and S2.ClassC have no corresponding elements in S1. They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components.

Check on UML

Well-Formed-

ness Rules

The well-formedness rules for packages are not broken in this example.

Differences with

General

Semantics for

Override

The semantics for overriding Subjects conforms to the general semantics for

override, except for the naming of the result of composing subjects even

when the composition relationship between those subjects is not the contex-

tual composition relationship. Instead of overriding the name as per the gen-

eral semantics for all composable elements, the names of subjects are always

concatenated. The reason for this is to distinguish between the result and the

overridden subject, and to make clear which subjects are composed.

Impact of

Override on

Classifiers

This section discusses what happens to classifier specifications as a result of

override. (See “Appendix A: Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Classifier). With an

example, the impact of override on Classifiers is illustrated.

When the override relationship between classifiers does not have general cor-

respondence matching criteria associated with it, there are not considered to

be any corresponding elements in the classifier’s contents, unless specified

Figure 46: Impact of Override on Classifier Specifications

Over ride In tegrat ion Semantics

135

with additional overrides between its contents. The subsections that follow

describe the impact of override on the example illustrated in Figure 46.

Correspon-

dences

• [Eg6.5] S1 corresponds with S2 because of the composition relationship

between the two. This relationship specifies matching on name for identi-

fication of correspondence between the components

• [Eg6.6] S1.ClassA corresponds with S2.ClassA (Eg6.5)

• [Eg6.7] S1.ClassB corresponds with S2.ClassB (Eg6.5)

• [Eg6.8] S1.ClassD corresponds with S2.ClassC (from the composi-

tion relationship between the two)

• [Eg6.9] S1.ClassD also corresponds with S2.ClassD (from Eg6.5).

Recall that composable elements may participate in multiple composition

relationships (see “Participation in multiple composition relationships” on

page 86) and override integration only restricts the overridden element,

not the overriding element (see “Well-Formedness Rules” on page 128).

Any correspondence not required which occurs implicitly as a result of a

matching specification attached to a relationship at a higher level in the

subject tree must be explicitly excluded with a composition relationship

with a dontMatch attachment.

Result of Over-

ride

Elements with correspondences:

• In the result, ClassC has the specification of S1.ClassD, with one

change. Since there is already a ClassD in S2, S1.ClassD is renamed

to avoid a name clash. S1.ClassD is renamed to “S1_ClassD”.

• The specification of ClassD in the resulting subject is that of the specifi-

cation of S1.ClassD. The components of ClassD are considered sepa-

rately.

• The specification of ClassA in the resulting subject is that of the specifi-

cation of S1.ClassA. The components of ClassA are considered sepa-

rately.

• The specification of ClassB in the resulting subject is that of the specifi-

cation of S1.ClassB. The components of ClassB are considered sepa-

rately.

Elements with no correspondences:

Over ride In tegrat ion Semantics

136

• S1.ClassE has no corresponding elements in S2. It is therefore added

to the resulting subject, unchanged in any way, and without further con-

sideration of its components.

Check on UML

Well-Formed-

ness Rules

The example illustrated in Figure 46 does not result in a breakage of the well-

formedness rules of the UML.

However, with a small change as illustrated in Figure 47, it is easy to see

where a breakage might occur. The illustration highlights (with a big X)

where a breakage of the well-formedness rules of the UML may occur.

This example results in one breakage of the UML well-formedness rules.

Classifier is a subtype of GeneralizableElement (see “Appendix A: Partial

Illustrations of UML Metamodel” on page 269), and must conform to the

well-formedness rules of all generalizable elements. One rule for generaliza-

ble elements states that “A root cannot have any Generalizations” [UML

Semantics Guide page 2-53, GeneralizableElement, Rule [1]]. The overriding

ClassB specifies ClassB as being a root class, but ClassB in S2 is spe-

cialised from ClassA. It is the responsibility of the designer to decide what

action is appropriate. In this case, the designer could either remove the gen-

eralization, or change the value of isRoot in ClassB.

Differences with

General

Semantics for

Override

• The semantics for overriding Classifiers must also take into consideration

the impact of override on association ends. See “ Impact of Override on

Associations and Generalizations” on page 140 for more details.

• The semantics for overriding Classifiers must also take into consideration

the impact on role specifications for collaborations. See “ Impact of Over-

ride on Collaborations” on page 148 for more details.

Figure 47: Breaking Well-Formedness Rules for Classifiers

Over ride In tegrat ion Semantics

137

Impact of

Override on

Attributes

This section discusses what happens to attribute specifications as a result of

override. (See “Appendix A: Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Attribute). The

impact of override on Attributes is illustrated with an example.

The following subsections describe the impact of override on the example

illustrated in Figure 48.

Correspon-

dences

• [Eg6.10] S1 corresponds with S2 because of the composition relationship

between the two. This relationship specifies matching on name for identi-

fication of correspondence between the components

• [Eg6.11] S1.ClassA corresponds with S2.ClassA (Eg6.10)

• [Eg6.12] S1.ClassB corresponds with S2.ClassC (from the relation-

ship between the two. This relationship specifies matching on name for

identification of correspondence between the components)

• [Eg6.13] S1.ClassA .a corresponds with S2.ClassA.a (Eg6.10)

• [Eg6.14] S1.ClassB .a corresponds with S2.ClassC.a (Eg6.12)

• [Eg6.15] S1.ClassB.f corresponds with S2.ClassC.f (Eg6.12)

• [Eg6.16] S1.ClassB.f corresponds with S2.ClassC.e (from the

composition relationship between the two)

Result of Over-

ride

Elements with correspondences:

• The specification of ClassA in the resulting subject is that of the specifi-

cation of S1.ClassA. The components of ClassA are considered sepa-

rately.

• The specification of the attribute a in the resulting ClassA is that of

S1.ClassA.a.

• In the result, S2.ClassB has the specification of S1.ClassC. The

components of S1.ClassC and S2.ClassB are considered separately.

• The specification of the attribute a in the resulting ClassB is that of

S1.ClassB.a.

• The specification of the attribute f in the resulting ClassB is that of

S1.ClassB.f.

• In the result, S2.ClassC.e has the specification of S1.ClassB.f

with one change. Since there is already an attribute f in ClassC (which

Over ride In tegrat ion Semantics

138

is overridden by ClassB.f), renaming of attribute f occurs to avoid a

name clash. Attribute f is renamed to “S1_ClassB_f”.

Elements with no correspondences:

• Attributes S1.ClassA.c and S1.ClassB.d have no corresponding

attributes and so are added unchanged to the resulting ClassA and

ClassB.

• Attribute S2.ClassA.d has no corresponding attribute and so is added

unchanged to the resulting ClassA .

Elements requiring change as a result of “forwarding” semantics

• Attribute S2.ClassA.b has a type of ClassC in S2. However,

S2.ClassC is overridden by S1.ClassB and, therefore, all references

to ClassC in S2 must be changed to its new specification, which is

ClassB.

Check on UML

Well-Formed-

ness Rules

The well-formedness rules for attributes are not broken with this example.

Differences with

General

Semantics for

Override

The semantics for overriding Attributes conforms to the general semantics

for override.

Figure 48: Impact of Override on Attribute Specifications

Over ride In tegrat ion Semantics

139

Impact of

Override on

Operations

This section discusses what happens to operation specifications as a result of

override. (See “Appendix A: Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Operation) The

impact of override on Operations is illustrated with an example in Figure 49.

Correspon-

dences

• [Eg6.17] S1 corresponds with S2 because of the composition relationship

between the two. This relationship specifies matching on name for identi-

fication of correspondence between the components

• [Eg6.18] S1.ClassA corresponds with S2.ClassA (Eg6.17)

• [Eg6.19] S1.ClassB corresponds with S2.ClassC (from the composi-

tion relationship between the two. This relationship specifies matching on

name for identification of correspondence between the components)

• [Eg6.20] S1.ClassA.op1 corresponds with S2.ClassA.op1 (from

Eg6.17)

• [Eg6.21] S1.ClassB.op3 corresponds with S2.ClassC.op3 (from

Eg6.19)

• [Eg6.22] S1.ClassB.op3 corresponds with S2.ClassC.op5 (from

the composition relationship between the two)

Result of Over-

ride

Elements with correspondences:

• The specification of ClassA in the resulting subject is that of the specifi-

cation of S1.ClassA. The components of ClassA are considered sepa-

rately.

Figure 49: Impact of Override on Operation Specifications

Over ride In tegrat ion Semantics

140

• The specification the operation op1 in the resulting ClassA is that of

S1.ClassA.op1.

• In the result, ClassB has the specification of S1.ClassC. The compo-

nents of S1.ClassC and S2.ClassB are considered separately.

• In the result, ClassC.op3 has the specification of S1.ClassB.op3.

• In the result, ClassC.op5 has the specification of S1.ClassB.op3

with one change. Since there is already an operation op3 in ClassC

(which is overridden by ClassB.op3), renaming of operation op3

occurs to avoid a name clash. Operation op3 is renamed to

“S1_ClassB_op3”.

Elements with no correspondences:

• Operations S1.ClassA.op2, S1.ClassB.op1 and S1.ClassB.op2

have no corresponding operations and so are added unchanged to the

resulting ClassA and ClassB.

• Operation S2.ClassA.op4 has no corresponding operations and so are

added unchanged to the resulting ClassA.

Elements requiring change as a result of “forwarding” semantics

• Operation S2.ClassA.op3 has a parameter type of ClassC in S2.

However, S2.ClassC is overridden by S1.ClassB and, therefore, all

references to ClassC in S2 must be changed to its new specification,

which is ClassB .

Check on UML

Well-Formed-

ness Rules

The well-formedness rules for operations are not broken with this example.

Differences with

General

Semantics for

Override

The semantics for overriding Operations must also take into consideration

the impact on collaborations. See “ Impact of Override on Collaborations” on

page 148 for more details.

Impact of

Override on

Associations

and Generali-

zations

This section discusses what happens to the association and generalization

specifications as a result of override. (See “Appendix A: Partial Illustrations

of UML Metamodel” on page 269 for an illustration of the UML specification

of Relationship). The impact of override on Associations and Generalizations

Over ride In tegrat ion Semantics

141

is illustrated with a series of examples. In this section, for brevity, only the

correspondences particular to associations are considered in detail.

Result of Over-

ride for Example

1 Figure 50

Associations are manifested in code as attributes of a class, so the first exam-

ple, in Figure 50 illustrates how the semantics for overriding are similar to

attributes.

• S1.assoc1 and S2.assoc1 correspond because of the match-by-name

composition relationship between S1 and S2. The specification of

S2.assoc1 is changed to that of S1.assoc1 in the result.

Result of Over-

ride for Example

2 Figure 51

As with all elements, associations with no corresponding associations are

added unchanged to the result (see Figure 51).

Result of Over-

ride for Example

3 Figure 52

One exception to the general semantics for associations is that associations

may override other associations even if the classifiers that are the types of

Figure 50: Example 1: Impact of Override on Associations

Figure 51: Example 2: Impact of Override on Associations

Over ride In tegrat ion Semantics

142

the association ends are not corresponding, without changing the association

end type classifiers of the overridden association (see Figure 52).

• S1.assoc3 and S2.assoc3 correspond because of the match-by-name

composition relationship between S1 and S2. The specification of

S2.assoc3 is changed to that of S1.assoc3 in the result. The types of

the classifiers of the association ends are excluded from the full specifica-

tion for override, and remains the same as S2.assoc3.

• S1.assoc3, the association between S1.ClassB and S1.ClassE is

added unchanged to the result.

Result of Over-

ride for Example

4 Figure 53

Associations may also be overridden using an explicit override (see Figure

53).

• S1.assoc3 and S2.assoc4 correspond because of the override

between the two. The specification of S2.assoc4 is changed to that of

S1.assoc3 in the result. The types of the classifiers of the association

ends are excluded from the full specification for override, and remains the

same as S2.assoc4.

• S1.assoc3, the association between S1.ClassB and S1.ClassE is

also added unchanged to the result.

Figure 52: Example 3: Impact of Override on Associations

Over ride In tegrat ion Semantics

143

Matching Un-

named Associa-

tions

Associations without names are commonly used within UML design models.

The UML semantics ([UML 1999] page 2-21) has the following description

of an association’s name:

"The name of an association which, in combination with its
Classifiers, must be unique within the enclosing namespace (usually
a Package)."

This implies that there may be only one association without a name between

the same set of classifiers, but that there may be many associations without a

name between different sets of classifiers. Associations with no name present

a dilemma for the subject-oriented design model. Conceptually, it is unlikely

that un-named associations between different classifiers are corresponding,

even if they “match” based on a match by name attachment. Therefore, it is

tempting to make an exception for associations without a name, and exclude

them from name-match checking for correspondence. On the other hand,

more than one association without a name between the same set of classifiers

appears to contradict the uniqueness description of association names in the

UML.

To cope with both, the subject-oriented design model makes the correspond-

ence general matching by name exception for associations with no name,

except for (some) associations between the same classifier sets. In other

words, associations with no name between different classifier sets do not cor-

Figure 53: Example 4: Result of Override on Associations

Over ride In tegrat ion Semantics

144

respond. As for associations with no name between the same classifier sets,

consideration is taken in conjunction with the specification of its Associatio-

nEnds. As defined by the UML, the “bulk of the structure of an Association

is defined by its AssociationEnds” ([UML 1999] page 2-21, connection

association). Association ends also have names, which are described in

[UML 1999], page 2-23 as:

"The rolename of the end. When placed on a target end, provides a
name for traversing from a source instance across the association to
the target instance or set of target instances. It represents a pseudo-
attribute of the source classifer (i.e., it may be used in the same way
as an Attribute) and must be unique with respect to Attributes and
other pseudo-attributes of the source classifier."

This definition suggests that consideration of the correspondence of associa-

tions without names should be in conjunction with the names of the associa-

tion ends. Therefore, associations between the same set of classifiers are

considered to be corresponding if all of their association end names are the

same. Otherwise, the associations are deemed to be non-corresponding.

Generalizations A generalization is a relationship between a more general element and a more

specific element. A generalization is not a composable element, but this sec-

tion considers the impact of override on generalizations. All generalizations

in the scope of an override are added to the result. As illustrated in Figure 54,

this may result in a multiple inheritance graph, where single inheritance was

specified in the overriding and overridden subjects.

In Figure 54, the resulting ClassC is generalised from ClassF through two

routes – directly, and from ClassE. This does not break the well-formedness

Figure 54: Example 1: Impact of Override on Generalizations

Over ride In tegrat ion Semantics

145

rules as defined by the UML, but may not be the desired semantics. As with

all design effort using generalizations, care should be taken with override to

ensure that the result is as desired.

UML Well-

Formedness

Rules

Override integration may result in breakages to the well-formedness rules for

generalizations. In “Impact of Override on Classifiers” on page 134, one

example was illustrated relating to the specification of root classes. Another

example is illustrated in Figure 55 and relates to the well-formedness rule

“Circular inheritance is not allowed” (See UML Semantics Guide in [UML

1999] page 2-53, GeneralizableElement, Rule [3]).

There has been some work in the area of eliminating cycles in composed

hierarchies which could be incorporated here. In [Walker 2000], there is a

proposal to eliminate cycles based on separating the type hierarchy from the

implementation hierarchy in the input subjects. Generalizations are main-

tained in the type hierarchy, but only the implementation classes are deemed

to correspond for the purposes of integration. In this way, cycles are not cre-

ated in the composed implementation classes. Further investigation into the

inclusion of such an approach is added to future work.

Differences with

General

Semantics for

Override

• The type classifiers of association ends are not included in the full speci-

fication for override. This means that the result of overriding classifiers is

that for every AssociationEnd ae where ae.type = overridden classi-

fier, this is changed to be the overriding classifier.

• The semantics for overriding Associations must also take into considera-

tion the impact on role specifications for collaborations. See “ Impact of

Override on Collaborations” on page 148 for more details.

Figure 55: Example 2: Impact of Override on Generalizations

Over ride In tegrat ion Semantics

146

Impact of

Override on

Dependen-

cies

This section discusses what happens to dependency specifications as a result

of override. (See “Appendix A: Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Dependency). The

impact of override on Dependencies is illustrated with an example. In this

section, for brevity, only the correspondences particular to dependencies are

considered in detail.

A dependency is a “using” relationship, which states that the implementation

or functioning of one or more elements requires the presence of one or more

elements. Dependency is not a composable element, but this section consid-

ers the impact of override on dependencies.

As illustrated in Figure 56, all dependencies in the scope of an override are

added to the result.

Result of Over-

ride:

• Dependency between S1.ClassB and S1.ClassE added to result

• Dependency between S2.ClassB and S2.ClassF added to result –

dependency will be from overridden ClassB to overridden ClassF

(from match-by-name override between S1 and S2).

Check on UML

Well-Formed-

ness Rules

The UML defines no well-formedness rules for Dependency.

Impact of

Override on

Constraints

This section discusses what happens to constraint specifications as a result of

override. (See “Appendix A: Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Constraint). The

impact of override on Constraints is illustrated with a series of examples. In

this section, for brevity, only the correspondences particular to constraints

are considered in detail.

Figure 56: Impact of Override on Dependencies

Over ride In tegrat ion Semantics

147

A constraint is a boolean expression on an associated element, which must be

true for the model to be well formed. Some constraints are predefined in the

UML, others may be user defined. All constraints are included in the rule for

override, which states that the resulting model must be well-formed. Con-

straint is not a composable element, but this section considers the impact of

override on constraints.

Result of Over-

ride in Figure 57

As illustrated in Figure 57, all constraints in the scope of an override are

added to the result.

• Constraints on attributes S1.ClassA.a and S2.ClassA.b added to

result

Result of Over-

ride in Figure 58

As with the direct writing of constraints on a model, care should be taken to

ensure the constraints in the result of an override remain as intended. Adding

constraints in this manner may result in unanticipated or conflicting implica-

tions.

Figure 57: Example 1: Impact of Override on Constraints

Figure 58: Example 2: Impact of Override on Constraints

Over ride In tegrat ion Semantics

148

For example, in Figure 58, constraints on ClassA.a imply that ClassA.c

must always be negative.

• Constraints on attributes S1.ClassA.a+S1.ClassA.c and

S2.ClassA.a are added to result.

Result of Over-

ride in Figure 59

Constraints on relationships behave in the standard way during overriding.

Relationships that are overridden also have their constraints overridden (see

Figure 59).

Check on UML

Well-Formed-

ness Rules

Constraints are included in the well-formedness specification of a model.

Impact of

Override on

Collabora-

tions

This section discusses what happens to collaboration specifications as a

result of override. (See “Appendix A: Partial Illustrations of UML Meta-

model” on page 269 for a partial illustration of the UML specification of Col-

laboration). The impact of override on Collaborations is illustrated with a

series of examples. In this section, for brevity, only the correspondences

related to collaborations are considered in detail.

A collaboration specifies how objects interact with each other to complete a

particular task. Through a series of messages specifying the communication

between the objects, actions are activated (which result in the activation of

operations) to complete the collaboration. According to the UML semantics,

collaborations may be presented at two different levels – the specification

level or the instance level. This thesis considers collaborations at only the

specification level.

Figure 59: Example 3: Impact of Override on Constraints

Over ride In tegrat ion Semantics

149

Collaborations are named model elements within the model, and represent

either a single operation or a single classifier. Operations and classifiers may

have several collaborations defined. A single collaboration may have multi-

ple interactions defined, which are themselves named model elements. Col-

laborations are therefore composites (as defined for override), and

interactions are primitives. As with all composable elements, collaborations

and interactions are overridden with corresponding collaborations and inter-

actions.

Result of Over-

ride in Figure 60

Figure 60 illustrates an example of the impact of override on collaborations

where corresponding operations do not have corresponding collaborations.

• Operation S1.ClassA.op1 overrides S2.ClassA.op1. The specifi-

cation of S1.ClassA.op1 is added to the result.

• Collaboration S1.Collab1 (giving a definition of a collaboration for

S1.ClassA.op1) has no corresponding collaboration in S2.

S1.Collab1 is added to the result.

• Collaboration S2.Collab2 (giving a definition of a collaboration for

S1.ClassA.op1) has no corresponding collaboration in S1.

S2.Collab2 is added to the result.

Figure 60: Example 1: Impact of Override on Collaborations

Over ride In tegrat ion Semantics

150

Given that the collaborations are named differently, they are not deemed to

correspond. However, the result is ambiguous as to the correct collaboration

for op1, and so the designer needs to assess what to do. One approach based

on using an additional composition relationship is described in Figure 62.

Result of Over-

ride in Figure 61

Figure 61 illustrates an example of the impact of override on collaborations

where corresponding collaborations exist.

• Operation S1.ClassA.op1 overrides S2.ClassA.op1. The specifi-

cation of S1.ClassA.op1 is added to the result.

• Collaboration S1.Collab1 overrides S2.Collab1. S1.Collab1 is

added to the result.

Result of Over-

ride Figure 62

Figure 62 illustrates an example of the impact of override on collaborations

with overrides specified between them. This approach solves the ambiguity

difficulty in Figure 60.

• Operation S1.ClassA.op1 overrides S2.ClassA.op1. The specifi-

cation of S1.ClassA.op1 is added to the result.

• Collaboration S1.Collab1 overrides S2.Collab2 because of the

override between the two. S1.Collab1 is added to the result.

Figure 61: Example 2: Impact of Override on Collaborations

Over ride In tegrat ion Semantics

151

Result of Over-

ride in Figure 63

Operations are invoked as a result of the messages that are defined in collab-

orations. If an operation invoked on receipt of a particular message is over-

ridden, and its signature is changed in any way, the operation invoked on

receipt of the same message is also changed.

In Figure 63, operation S2.ClassC.op5 is overridden by

S1.ClassC.op2 as illustrated. There is the possibility that overriding

Figure 62: Example 3: Impact of Override on Collaborations

Figure 63: Example 4: Impact of Override on Collaborations

Over ride In tegrat ion Semantics

152

operations will have an impact on collaborations. Figure 63 illustrates this

possibility and highlights the potential problem with a “?”. The following

supporting text answers the implied question by describing the result of over-

ride.

• Operation S1.ClassC.op2 overrides S2.ClassC.op5. The specifi-

cation of S1.ClassC.op2 is added to the result. S2.ClassC.op5 has

been overridden and does not appear in the result.

• Collaboration S2.Collab1 has no corresponding collaboration and so is

added to the result.

• Each collaboration in S1 is examined so that every interaction i in every

collaboration c, where c.i.message.action.operation =

S2.ClassC.op5, is changed so that c.i.message.action.oper-

ation = S1.ClassC.op2.

The approach to changing references to S2.ClassC.op5 to

S1.ClassC.op2 is in keeping with standard forwarding semantics. How-

ever, the question remains: what is to be done with the message? There are

two options as to the approach to take for c.i.message . First, the message

could remain unchanged, and this approach would be in keeping with the

clear separation of message and operation in the metamodel. The operation

has been overridden, which need not have any impact on the message. How-

ever, while this approach is true to the UML metamodel (and indeed, the

object-oriented paradigm), it is not in keeping with standard usage of the lan-

guage. “Standard usage” may be safely assumed here as even the UML nota-

tion does not define a mechanism to distinguish between message and

operation in interaction diagrams. Therefore, in order to take this approach, a

new notation would need to be invented to support the separation. While this

would not, in itself, be a problem, there is the disadvantage of going against

standard usage of the UML as defined by the UML notation. This has associ-

ated difficulties in comprehension for designers used to using interactions in

the UML in the way they are currently defined. Furthermore, the distinction

is not carried through to object-oriented programming models such as C++ or

Java. Therefore, override semantics takes a second approach. In addition to

forwarding the appropriate operation name change, the corresponding mes-

sage is also updated to reflect the change to the operation. This result, there-

fore, answers the question in the illustration - the operation related to the call

action of the message is overridden, and the message changed correspond-

ingly.

Over ride In tegrat ion Chapter Summ ary

153

Collaboration

Roles

Collaborations also provide a context for participants playing different roles

within the collaborations. See “Appendix A: Partial Illustrations of UML

Metamodel” on page 269 for a partial illustration of the UML specification of

Collaboration that shows the metaclasses that represent roles for associations

and classifiers. These roles are in the context of sending and receiving mes-

sages

When classifiers are overridden, related collaborations for that classifier will

now define their roles for the overriding classifier. Each collaboration is

examined so that:

every interaction i in every collaboration c

• where c.i.message.sender.base = overridden classifier, this is

changed so that it now refers to the overriding classifier

• where c.i.message.receiver.base = overridden classifier, this is

changed so that it now refers to the overriding classifier

• where c.ownedElement.base = overridden classifier, this is changed

so that it now refers to the overriding classifier

When associations (with association ends) are overridden, related collabora-

tions for that association will now define their roles for the overriding associ-

ation. Each collaboration is examined so that:

every interaction i in every collaboration c

• where c.i.message.communicationConnection.base = over-

ridden association, this is changed so that it now refers to the overriding

association

• where c.i.message.communicationConnection.base = over-

ridden association end, this is changed so that it now refers to the overrid-

ing association end

• where c.ownedElement.base = overridden association, this is

changed so that it now refers to the overriding association

6.4. Chapter Summary
This chapter defines the syntax and semantics of composition relationships

with override integration. Changes to the UML metamodel to support the

syntax are illustrated as an extension to the composition relationship meta-

model as described in “Composition Relationship” on page 113. Well-

formedness rules for composition relationships with override integration are

given. These rules primarily restrict the cardinalities of composition relation-

Over ride In tegrat ion Chapter Summ ary

154

ships between composable elements, imposing a rule which ensures that

override integration is the overriding of one composable element with one

other. Other than the rules explicitly replaced in this chapter for composition

relationships with override integration, all rules for general composition rela-

tionships, defined in “Well-Formedness Rules” on page 117, apply for the

relationships with override integration.

The semantics for override integration is defined by illustrating the impact of

overriding on each of the design elements currently supported in the thesis.

First, general semantics for overriding are defined, which are, in summary,

that the specifications of elements are replaced by corresponding, overriding

elements, and any elements without corresponding elements are added

unchanged to the result. However, some of the different kinds of design ele-

ments are treated slightly differently in some cases. In order to fully define

the semantics, the impact of override on each construct is examined, with any

change from the general semantics highlighted as appropriate.

The next chapter details the semantics of the second integration strategy

described in this thesis -- merge integration.

155

Chapter 7: Merge Integration

Merge integration is used when separate design models (subjects) contain

specifications for different requirements of a computer system. This may

have occurred for several reasons. For example, within a system development

effort, separate design teams may have worked on different requirements

concurrently. In this case, merge is especially useful where a requirement has

an impact across the whole design – for example a requirement stipulating

that objects reside in a distributed environment is likely to affect all objects.

Distribution behaviour may be designed separately and merged with the rest

as required. Another use of merge integration is the case where designs may

exist for requirements from a previous version of the system. These require-

ments are still appropriate for the system, and therefore need to be merged

with new requirements. Also, designs may be reused from sources outside the

current development effort. The full system design is obtained by merging

the designs of the separate design subjects.

Composition relationships, with merge integration, are the means to specify

how subjects should be merged. Composition relationships identify the sub-

jects to be merged, and the design elements within those subjects that specify

the same concept (i.e. correspond to each other) and should be considered as

one. For many elements (for example, classifiers and attributes) this means

that the corresponding elements appear once in the merged result. In cases

where differences in the specifications of corresponding design elements

need to be resolved, composition relationships with merge integration specify

guidelines for the reconciliation.

Merging operations essentially means joining behaviours, and so, with

merged operations, the receipt of a message that may have activated one of

the operations in an input subject now results in the execution of all of the

merged operations. Collaborations may be attached to a composition relation-

ship with merge integration to determine the order of execution.

This chapter is divided up into three sections:

Merge In tegration Descript ion

156

• Description: This section gives a general overview of merge integration,

introducing each of the different concerns.

• Metamodel Extensions: This section defines the extensions required to the

composition metamodel to support merge integration.

• Semantics: This section gives details of the semantics of merge integra-

tion in terms of its impact on the supported UML constructs.

7.1. Description
Composition relationships with merge integration may be specified between

subjects, between model elements that are owned or referenced by a subject,

and, in general, between model elements that are owned or referenced by

those elements – for example, classifiers owns operations between which

composition relationships may be specified. The kinds of elements between

which it makes sense to specify composition relationships are listed in the

rules. The relationship may only be specified between elements of the same

type – for example, a classifier with a classifier, a subject with a subject, etc.

For brevity, merge integration will hereafter be referred to as “merge”.

Merge as a

Simple Union

At the simplest level, where there are no corresponding elements in the sub-

jects, merge results in the merged subject containing all the design elements

of both subjects. For example, in Figure 64, S1 has two classes, S1.ClassA

and S1.ClassB. S2 has two classes, S2.ClassC and S2.ClassD . Merg-

ing S1 and S2 results in a subject with four classes.

Figure 64: Simple Merging of Subjects

Merge In tegration Descript ion

157

Merge with

Correspond-

ing Classes,

Attributes

When subjects have corresponding classes and attributes, those elements

appear once in the merged subject. See Figure 65 for an example, which

yields the following result:

• S1.ClassA and S2.ClassA correspond from the match[name] com-

position relationship between S1 and S2. Since they are corresponding,

ClassA only appears once in the result.

• S1.ClassA.a and S2.ClassA.a correspond from the match[name]

composition relationship between S1 and S2. Since they are correspond-

ing, ClassA.a only appears once in the resulting ClassA.

• S1.ClassB and S2.ClassD have no corresponding elements and are

added unchanged to the result.

Merge with

Conflicts in

Correspond-

ing Elements

Of course, merging corresponding elements like classifiers and attributes

where one element appears in the result1 is only simple when the specifica-

tions of the corresponding elements are exactly the same. Since the subjects

are designed separately, there is potential for differences in the specifications

of corresponding elements. Figure 66 illustrates some examples of where

conflicts may exist. In the example, the elements where conflicts occur are

highlighted with a “?”. “Reconciling Conflicts in Corresponding Elements”

on page 158 gives answers to these questions.

In this example, we have two cases where the specifications of corresponding

attributes conflict.

Figure 65: Merge with Corresponding Classes and Attributes

1. This applies to all elements except operations, constraints and collaborations

Merge In tegration Descript ion

158

• S1.ClassA.a and S2.ClassA.a correspond from the match[name]

composition relationship between S1 and S2. However, their specifica-

tions are different, and so which specification appears in the merged sub-

ject?

• S1.ClassA.b and S2.ClassA.c correspond from the merge relation-

ship between the two. Again, their specifications are different (they have

different names), and so which specification appears in the merged sub-

ject?

To resolve these questions, the different specifications must be reconciled

before being added to the result of the merge.

Reconciling

Conflicts in

Correspond-

ing Elements

When subjects are merged, elements that are specified to support correspond-

ing concepts are identified, and will be merged in the composed subject –

that is, for most kinds of elements (except, for example, operations), they

will appear once in the merged subject. However, since corresponding ele-

ments may have been specified separately, there may be differences in those

specifications. These differences must be reconciled for the composed sub-

ject.

Assigning Pre-

cedence to a

Subject in the

event of a Con-

flict:

One approach to reconciling conflict is to assign precedence to one of the

subjects involved in the merge. When a conflict occurs, the specification of

the element in the subject with precedence is deemed to be the specification

for the merged element.

By adding a precedence indicator to S1 (see Figure 67), the result of the

merge is now:

Figure 66: Conflicts in Corresponding Elements

Merge In tegration Descript ion

159

• S1.ClassA.a and S2.ClassA.a correspond from the match[name]

composition relationship between S1 and S2. Since their specifications

are different, and precedence has been specified for S1 (from composition

relationship between S1 and S2), S1.ClassA.a is added to the result.

• S1.ClassA.b and S2.ClassA.c correspond from the merge relation-

ship between the two. Again, since their specifications are different, and

precedence has been specified for S1, S1.ClassA.c is added to the

result.

Other Reconcili-

ation Possibili-

ties

It is possible to attach other kinds of reconciliation strategies to a composi-

tion relationship with merge integration. These strategies work similarly to

the precedence strategy in that once a conflict is detected, the appropriate

strategy determines the specification of the element that is added to the

result. Other examples of reconciliation strategies are:

• Attach an explicit specification for the merged element to be used in the

event of a conflict. For example, in anticipation of the conflict in

attributes, a specific attribute specification may be attached to the compo-

sition relationship. An element specification attached to a composite

merge is applied to a specific conflict between particular named compo-

nent elements. An element specification attached to a primitive merge is

applied directly to the elements related. The named component elements

are assumed to correspond, either explicitly or implicitly, as defined by

the composition relationship. Explicitly named components that do not

correspond as defined by the composition relationship are ignored - that

Figure 67: Reconciliation with Subject Precedence

Merge In tegration Descript ion

160

is, they do not specify additional corresponding elements. The notation for

this attachment is:

reconcil[explicit [{list_of_input_elements} , {values}]]

• Attach default values for different types of constructs that should be used

in the event of a conflict between corresponding elements of that type. For

example, one of the properties of an attribute is “owner scope”. If one

attribute specifies its owner scope as instance and its corresponding

attribute specifies its owner scope as classifier, then a default speci-

fication for conflicts for attributes may reconcile this conflict as default-

ing to instance. The notation for this attachment is:

reconcil[default [construct_name, {values}]]

• Attach a transformation function to be applied to conflicting correspond-

ing elements to determine the specification for the merged element. This

specification of such a transformation function is the responsibility of the

designer specifying merge, and should result in a valid element specifica-

tion. The notation for this attachment is:

reconcil[transform [{list_of_input_elements}, program_name]]

Reconciliation

Semantics -

General

A designer attaches reconciliation strategies to a composition relationship,

and indicates the order in which each of the attached strategies should be

examined. When the integration process encounters a conflict between corre-

sponding elements that requires a reconciliation, each of the reconciliation

strategies attached to the composition relationship that specifies those corre-

sponding elements is examined, in order, to find the appropriate reconcilia-

tion. However, if the attached reconciliation strategies (or indeed, if there

has been none attached) do not result in a reconciled element, then each of

the corresponding elements is added to the output separately. Elements

are renamed to avoid a name clash.

Merge with

Correspond-

ing Opera-

tions

Merging operations means joining behaviours and so, or operation elements,

merge means that on receipt of any message that resulted in the execution of

an operation in an input subject, all corresponding operations are now exe-

cuted. This means that all corresponding operations are added to the result.

This section introduces:

• How a collaboration is generated as a result of a merge, to specify that all

corresponding operations are executed on receipt of an appropriate mes-

Merge In tegration Descript ion

161

sage. In this case, the order of execution is not important, and so the

designer need not specify the order by attaching a collaboration.

• How a collaboration may be attached to a composition relationship with

merge integration to specify an order of execution for corresponding oper-

ations.

Composition

relationship with

No Attached

Collaboration

Where no collaboration is attached to a composition relationship with merge

integration, the behaviour of the output subject in relation to the merged

operations is automatically specified with a new collaboration specification

(see Figure 68). This collaboration specifies that an invocation of one of the

corresponding operations results in the invocation of all corresponding oper-

ations. In this case, it is assumed that the order of execution is not important.

In addition, where new collaborations are automatically specified as

described here, each of the corresponding operations must have the same

argument list. For options relaxing this restriction, see “Merging Operations

with Attached Collaborations” on page 191.

In this example, the result of the merge is:

• S1.ClassA and S2.ClassA correspond from the match[name] com-

position relationship between S1 and S2. No conflict exists between the

specifications, and so ClassA is added to the result.

• S1.ClassA.a and S2.ClassA.a correspond from the match[name]

composition relationship between S1 and S2. No conflict exists between

the specifications, and so ClassA.a is added to the result.

Figure 68: Merging Corresponding Operations

Merge In tegration Descript ion

162

• S1.ClassA.op1 and S2.ClassA.op1 correspond from the

match[name] composition relationship between S1 and S2 . After

renaming to avoid a name clash, both operations are added to the result. A

new collaboration is created and added to the result indicating that on

receipt of an op1 message, both S1.op1 and S2.op1 are executed.

New Opera-

tions created to

capture merged

collaborative

behaviour

The approach to capturing the behaviour of merged operations is based on

renaming corresponding operations from the input subjects, and creating new

operations with the same name as those in the input subjects. These new

operations may be used to create collaborations that define the execution of

all the corresponding (now renamed) operations, without any ambiguity. The

ambiguity avoided with this approach is one which would cause an infinite

loop. For example, the specification of a collaboration for op1 that specifies

that op1 is one of a number of operations executed is the specification of an

infinite loop.

A different approach is possible based on the clear separation of message and

operation in the UML metamodel. Using this separation, collaborations could

be defined specifying that on receipt of a particular message, all the corre-

sponding operations would execute. However, while this separation is

explicitly defined in the UML metamodel, the UML notation does not sup-

port the specification of messages on collaborations. This problem could be

solved by inventing a notation to support messages, which would mean that

additional operations would not have to be added to the composed class (as in

Figure 68), and a solution could be defined that is “pure” in relation to the

object-oriented paradigm. However, it goes against standard usage of the

UML, and therefore has corresponding difficulties relating to how designers

expect to use, and their general understanding of, interaction diagrams. It is

therefore decided to use the approach illustrated in Figure 68 (and subse-

quent examples of merging operations) as it uses the standard UML language.

The approach taken based on creating new operations to define the delegation

behaviour is open to some refinement using forwarding semantics. This is

described in “Merged Operations and Forwarding of References” on

page 195.

Attaching a Col-

laboration to a

composition

relationship

When the order of execution of corresponding operations is important, a col-

laboration specifying this order should be attached to the composition rela-

tionship. In this case, the attached collaboration is added to the merged

subject as the specification of the behaviour of corresponding operations (see

Merge In tegration Descript ion

163

Figure 69). All operations in the corresponding operation set must be

included in the collaboration. For options relating to operations with differ-

ent argument lists, see “Merging Operations with Attached Collaborations”

on page 191.

In this example, the result of the merge is:

• S1.ClassA and S2.ClassA correspond from the match[name] com-

position relationship between S1 and S2. No conflict exists between the

specifications, and so ClassA is added to the result.

• S1.ClassA.a and S2.ClassA.a correspond from the match[name]

composition relationship between S1 and S2. No conflict exists between

the specifications, and so ClassA.a is added to the result.

S1.ClassA.c and S2.ClassA.b have no corresponding attributes and

so are added to the result.

• S1.ClassA.op3, S2.ClassA.op1 and S2.ClassA.op2 corre-

spond from the composition relationship between them. All the operations

are added to the result, and renamed to avoid ambiguity with operations

added (op1 , op2 and op3) to support the specification of the merged

behaviour. The collaborations attached to the composition relationship are

added to the result indicating that on execution of op1, op2 or op3,

S2_op1 followed by S1_op3 followed by S2_op2 are executed.

Figure 69: Attaching Collaborations to Composition Relationship

Merge In tegration Merge In tegrat ion Syntax

164

• S1.ClassA.op4 has no corresponding operations and is therefore sim-

ply added to the result.

The remainder of this chapter discusses the semantics of merge for design

models. Using the UML metamodeling style, the section has the following

subsections:

• A subsection with UML class diagrams describing the constructs of

merge, and their relationships.

• A subsection containing the well-formedness rules describing the con-

straints on instances of merge.

• A subsection containing descriptions of the semantics of merge.

7.2. Merge Integration Syntax
This section describes merge integration using UML class diagrams to repre-

sent the metaclasses relevant for its description, and their relationships. The

class diagram includes metaclasses from the UML metamodel with which

composition relationships interact, and new metaclasses representing merge

integration itself. The description of the constructs in the metamodel does not

include descriptions of those constructs that are already described in the

UML semantics.

A composition relationship with merge integration specifies design elements

that are to be merged. For some design elements (e.g. classifiers, attributes),

merging corresponding elements means one of the elements is copied to the

result. A composition relationship may attach reconciliation specifications

for possible conflicts between such corresponding elements. For operations,

constraints and collaborations, all corresponding elements are added to the

result. A composition relationship may attach a collaboration to specify the

order of execution of corresponding operations. To handle each of these situ-

ations, the syntax of a composition relationship has the following parts:

• Identification of corresponding elements for composition relationships.

This is described in “5.3. Composition Relationship” on page 113 and

applies to composition relationships with merge integration.

• The basic composition relationship with merge integration, as described

in “Merge Integration” on page 165

• The syntax associated with attaching reconciliation specifications to a

composition relationship with merge integration, as described in “Recon-

ciliation of Conflicts” on page 165.

Merge In tegration Merge In tegrat ion Syntax

165

• The syntax associated with attaching collaborations to specify the order of

operation execution, as described in “ Collaborations for Merged Opera-

tions” on page 167

Merge Inte-

gration

Figure 70 describes merge integration as a subclass of the Integration meta-

class described in “5.3. Composition Relationship” on page 113.

Merge Meta-

class

Merge integration specifies that corresponding elements are merged. The

semantics of merge integration depends on the kind of elements being

merged.

Reconcilia-

tion of Con-

flicts

For some design elements (e.g. classifiers, attributes), merging correspond-

ing elements means one of the elements is copied to the result. Merge inte-

gration specifications may attach reconciliation specifications for possible

conflicts between such corresponding elements (Figure 71).

Merge Meta-

class

An additional property to support reconciliation is its association with Rec-

onciliation.

Figure 70: Merge Integration

Figure 71: Reconciliation Specification

Merge In tegration Merge In tegrat ion Syntax

166

Associations

Reconciliation

Metaclass

Reconciliation specifies the manner in which conflicts between the specifica-

tions of corresponding elements should be reconciled. There are four kinds of

reconciliation supported: Precedence, Explicit, Default and TransformFunc-

tion.

Reconciliation is an abstract metaclass.

Precedence

Metaclass

Precedence reconciliation specifies a composable element whose values take

precedence in the event of a conflict between specifications of corresponding

elements.

Associations

Explicit Meta-

class

An explicit reconciliation provides the specification that is to be used in the

composed subject instead of the specifications of particular corresponding

elements that are participating in the merge composition.

Associations

ExplicitValue

Metaclass

An explicit value contains the names of the corresponding elements for

which an explicit specification is specified, and defines the explicit values

using a reference to the element to be used in the composed result. The

named component elements are assumed to correspond, either explicitly or

implicitly, as defined by the composition relationship. Explicitly named com-

ponents that do not correspond as defined by the composition relationship are

ignored - that is, they do not specify additional corresponding elements.

reconcile The reconcile association is an ordered association with recon-

ciliation strategies. The ordering defines the order in which rec-

onciliation strategies are used to reconcile conflicts between

elements. The order defined as a default is: 1) Explicit 2) Trans-

formFunction 3) Precedence 4) Default. This order is customis-

able.

precedentEle-

ment

The element that should take precedence in the event of a con-

flict. This is generally specified as a subject, but may be any ele-

ment participating in the relationship.

explicit The element contains the references to the named elements for

which an explicit specification is required, and an associated

specification of the explicit values.

Merge In tegration Merge In tegrat ion Syntax

167

Attributes

Associations

Default Meta-

class

Default reconciliation specifies the default values for elements of a particular

type, and so, in the event of a conflict between elements of that type, the

default values are used

Associations

DefaultValue

Metaclass

A default value contains the default value of a particular property belonging to a par-

ticular construct.

Attributes

TransformFunc-

tion Metaclass

Transform function reconciliation specifies a function to be executed against

conflicting corresponding elements to determine the reconciled specification.

Associations

Collabora-

tions for

Merged Oper-

ations

For operations, constraints and collaborations, all corresponding elements

are added to the result. Merge integration specifications may attach a collab-

oration to specify the order of execution of corresponding operations (Figure

72).

element1 The name of one of the corresponding elements

element2 The name of another of the corresponding elements

reconciled The specification that is to be used in the composed subject

instead of the corresponding elements’ specifications.

default The default values for properties of composable elements.

construct The default is specified for this construct

property The default is specified for this property of the construct

value The default value for the property

transform-

Function

The function to be run to determine the reconciled specification.

This makes use of the UML uninterpreted data type to refer to

the reconciliation specific function.

Merge In tegration Wel l-Forme dness Rules

168

Merge Meta-

class

Associations

7.3. Well-Formedness Rules
This section lists the well-formedness rules for merge composition relation-

ships. These rules are in addition to the rules specified for composition rela-

tionships in general in “5.3. Composition Relationship” on page 113.

Reconciliation

Specification

[1] Reconciliations attached to a composition relationship apply to all ele-

ments except operations, constraints and collaborations.

[2] There can only be one of each of the kinds of reconciliation in the ordered

set of reconciliations attached to a merge. For example, only one precedent

element is possible. Each of the other three kinds (explicit, default and trans-

form function) maintain their own relevant set of explicit, default and trans-

form function specifications, respectively, but only one set of each per merge

is necessary.

Collaboration

Specification for

Operation

Merge

[3] All operations in a corresponding set must be referenced in any collabora-

tion specifying the order of execution for that corresponding set (see Figure

73). Note, not all operations must be realised by a collaboration. Any opera-

tion which is not realised by a collaboration attached to the composition rela-

tionship will not exhibit collaborative behaviour. In this way, it is possible to

specify that some operations result in the execution of all the corresponding

operations, but not necessarily all of those operations have that effect.

Figure 72: Collaborations for Merged Operations

interaction A collaboration that specifies the order of execution of opera-

tions related by a composition relationship.

Merge In tegration Semantics

169

7.4. Semantics
As stated previously, merge integration is used to merge design specifica-

tions in different design subjects. Composition relationships with merge inte-

gration indicate which elements in the design subjects are corresponding, and

should be considered as one element.

This section first discusses the general semantics of merge in “ General

Semantics” on page 169. Sections “Impact of Merge on Subjects” on

page 170 to “Impact of Merge on Collaborations” on page 195 then consider

the impact of merge on each of the different types of supported elements.

General

Semantics

[1] Corresponding elements are identified as described for composition rela-

tionships in “Semantics for Identifying Corresponding Elements” on

page 122. These semantics apply to composition relationships with merge

integration.

[2] For elements not involved in correspondence matching in different sub-

jects, merge integration is a simple union of those elements in the composed

subject.

[3] For all corresponding elements except operations, constraints and collab-

orations, one element representing the corresponding elements appears on the

composed result.

[4] Component elements of composites may only be merged if their owning

composites are corresponding and therefore, are merged.

[5] Where conflicts exist in the specifications of corresponding elements

(except operations, constraints and collaborations) those conflicts are recon-

Figure 73: All corresponding operations referenced in attached collaborations

Merge In tegration Semantics

170

ciled based on the reconciliation option specified by the composition rela-

tionship.

[6] All corresponding operations appear on the merged result, but are merged

in the sense that the specification dictates that an invocation of one of the

corresponding operations results in the invocation of all corresponding oper-

ations. Where ordering is important, a collaboration may be attached to the

appropriate composition relationship.

[7] All constraints are added to the result. Where only one representative ele-

ment of a corresponding set of elements is added to the result, all constraints

on the corresponding elements are added to the result for that representative

element.

[8] Adding elements to a composed result from different source subjects may

not result in name clashing. In the event of name clashes, renaming of clash-

ing elements occurs.

[9] All references to elements in the result that may have changed from the

specification in the input subject are changed as described in “Semantics for

Forwarding References to Composed Elements” on page 123.

[10] The composed result must conform to the well-formedness rules of the

UML.

Impact of

Merge on

Subjects

This section discusses what happens to subject specifications as a result of

merge (See “Appendix A: Partial Illustrations of UML Metamodel” on page

269 for an illustration of the UML specification of Package, from which Sub-

ject is stereotyped). Then, with an example, the following are illustrated:

• How correspondences are established

• The results of merge on corresponding subjects with no conflicts

• The results of merge on corresponding subjects that require specification

reconciliation

• Checking the UML Well-Formedness Rules on the results of merge

• Further examples of reconciliation of conflicts in subjects.

The following subsections describe the impact of merge on the example illus-

trated in Figure 74

Merge In tegration Semantics

171

Correspon-

dences:

• [Eg7.1] S1 corresponds with S2 because of a composition relationship

between the two. This relationship is the contextual composition relation-

ship (see “Composition Relationship” on page 113 for details) This rela-

tionship specifies matching on name for identification of correspondence

between the components

• [Eg7.2] S1.S3 corresponds with S2.S3 (Eg7.1)

• [Eg7.3] S1.S4 corresponds with S2.S5 (because of the composition

relationship between the two.)

• [Eg7.4] S1.ClassA corresponds with S2.ClassA (Eg7.1)

Result of Merge Elements with correspondences and no conflicts:

• With subjects, the result of the merge is to name the resulting subject by

concatenating the names of the input subjects2. The specification of the

resulting subject is therefore S1S2 with the values of the other properties

copied from one of the input subjects. Since there is no conflict, it is not

important which subject’s values are copied. This excludes the values for

ownedElements and importedElements as these are components of

subjects.

• The specification of the subject resulting from the merge of S1.S4 and

S2.S5 is named S4S5. The values of the other properties are copied

from one of the input subjects (since they are the same). The components

of both (in ownedElements and importedElements) are considered

Figure 74: Impact of Merge on Subjects

2. When the names of the input subjects are the same, concatenating is still performed
(e.g. S1S1) to distinguish the result from the input subjects.

Merge In tegration Semantics

172

separately, with the resulting components contained in S4S5 in the

result.

• The specifications of S1.ClassA and S2.ClassA are merged in the

resulting subject (see section “Impact of Merge on Classifiers” on

page 173 for more details on classifiers). The components of ClassA are

considered separately.

Elements with correspondences and conflicts in their specifications:

• The specifications of S2.S3 and S1.S3 are merged. The name of the

resulting subject is S3S3. However, the values of isRoot and isAb-

stract are different, so a reconciliation strategy is required. The com-

position relationship governing this correspondence (that is, between S1

and S2) indicates that S1 has precedence in the event of a conflict. There-

fore, the values of isRoot and isAbstract from S1.S3 are copied to

the result. The components of S3 (in ownedElements and import-

edElements) are considered separately.

Elements with no correspondences:

• S1.S6, and S1.ClassB have no corresponding elements in S2. They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components.

• S2.S7, and S2.ClassC have no corresponding elements in S1. They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components.

Check on UML

Well-Formed-

ness Rules

The well-formedness rules for packages are not broken in this example.

Other Reconcili-

ation Possibili-

ties

The previous example showed how a subject can be set as the precedent sub-

ject, which means that in the event of a conflict between specifications of

corresponding component elements, the values from the element in the prece-

dent subject are copied to the result. Figure 75 illustrates the use of other rec-

onciliation strategies.

Merge In tegration Semantics

173

Elements with correspondences and conflicts in their specifications:

• The specifications of S2.S3 and S1.S3 are merged. The name of the

resulting subject is S3S3. However, the values of isRoot , isLeaf and

isAbstract are different, so a reconciliation strategy is required. The

composition relationship between S1 and S2 has two kinds of reconcilia-

tion strategies attached. First, a search through the explicit reconciled ele-

ments shows that there is no explicit reconciliation for S3. However,

default values for subjects are included, and so the values of isRoot,

isLeaf and isAbstract in the resulting subject are set to the defaults

listed. The components of S3 (in ownedElements and import-

edElements) are considered separately.

• The specifications of S2.S4 and S1.S4 are merged. The name of the

resulting subject is S4S4. However, the values of isRoot and isAb-

stract are different, so a reconciliation strategy is required. The com-

position relationship between S1 and S2 has two kinds of reconciliation

strategies attached. A search through the explicit reconciled elements

shows that an explicit reconciliation for S4 has been defined. Therefore

values of isRoot , isLeaf and isAbstract in the resulting subject

are set to the explicit values listed. The components of S4 (in

ownedElements and importedElements) are considered sepa-

rately.

Impact of

Merge on

Classifiers

This section discusses what happens to subject specifications as a result of

merge (See “Appendix A: Partial Illustrations of UML Metamodel” on page

Figure 75: Reconciling Conflicts in Subject Specifications

Merge In tegration Semantics

174

269 for an illustration of the UML specification of Classifier). The following

subsections describe the impact of merge on the example illustrated in Figure

76.

Correspon-

dences

• [Eg7.5] S1 corresponds with S2 because of the composition relationship

between the two. This relationship specifies matching on name for identi-

fication of correspondence between the components

• [Eg7.6] S1.ClassA corresponds with S2.ClassA (Eg7.5)

• [Eg7.7] S1.ClassB corresponds with S2.ClassB (Eg7.5)

• [Eg7.8] S1.ClassD corresponds with S2.ClassC (from the relation-

ship between the two)

• [Eg7.9] S1.ClassD also corresponds with S2.ClassD from (Eg7.5).

Recall that composable elements may participate in multiple composition

relationships (see “Participation in multiple composition relationships” on

page 86). Any correspondence not required which occurs implicitly as a

result of a matching specification attached to a relationship at a higher

level in the subject tree must be explicitly excluded with a composition

relationship with a dontMatch attachment.

Result of Merge Elements with correspondences and no conflicts:

• In the result, S2.ClassC is merged S1.ClassD . Since their names are

different, the names are appended with the result class called “ClassC-

ClassD”. The components of S2.ClassC and S1.ClassD (in fea-

ture) are considered separately.

• S1.ClassD is merged S2.ClassD. Their components are considered

separately.

Figure 76: Impact of Merge on Classifiers

Merge In tegration Semantics

175

Elements with correspondences and conflicts in their specifications:

• The specifications of S1.ClassA and S2.ClassA are merged. Since

the names are the same, the name of the resulting class is ClassA . How-

ever, the values of isRoot and isAbstract are different, so a recon-

ciliation strategy is required. The composition relationship between S1

and S2 indicates that S1 has precedence in the event of a conflict. Since

this merge applies here, the values of isRoot and isAbstract from

S1.ClassA are copied to the result. The components of ClassA (in

feature) are considered separately.

• The specifications of S1.ClassB and S2.ClassB are merged. Since

the names are the same, the name of the resulting class is ClassB . How-

ever, the values of isActive are different, so a reconciliation strategy is

required. The composition relationship between S1 and S2 indicates that

S1 has precedence in the event of a conflict. Since this relationship

applies here, the value of isActive from S1.ClassB is copied to the

result. The components of ClassB (in feature) are considered sepa-

rately.

Elements with no correspondences:

• S1.ClassE has no corresponding elements in S2. It is therefore added

to the resulting subject, unchanged in any way, and without further con-

sideration of its components.

Check on UML

Well-Formed-

ness Rules

The example illustrated in Figure 76 does not result in a breakage of the well-

formedness rules of the UML.

However, with a small change as illustrated in Figure 77, it is easy to see

where a breakage might occur. The illustration highlights (with a big X)

where a breakage of the well-formedness rules of the UML may occur.

Figure 77: Breaking Well-Formedness Rules for Classifiers

Merge In tegration Semantics

176

This example results in one breakage of the UML well-formedness rules.

Classifier is a subtype of GeneralizableElement (see “Appendix A: Partial

Illustrations of UML Metamodel” on page 269), and must conform to the

well-formedness rules of all generalizable elements. One rule for generaliza-

ble elements states that “A root cannot have any Generalizations” [UML

Semantics Guide page 2-53, GeneralizableElement, Rule [1]]. The

S1.ClassB which has precedence, specifies ClassB as being a root class,

but ClassB in S2 is generalised to ClassA and this generalization is cop-

ied to the result.

This application of the general precedence resolution strategy results in a

breakage of the well-formedness rules of the model. See “Other Reconcilia-

tion Possibilities” on page 176 for how a different reconciliation strategy

might have been more appropriate here.

Other Reconcili-

ation Possibili-

ties

The previous example showed how a subject can be set as the precedent sub-

ject, which means that in the event of a conflict between specifications of

corresponding component elements (in this case, Classes), the values from

the class in the precedent subject are copied to the result. Figure 78 illus-

trates the use of other reconciliation strategies.

Elements with correspondences and conflicts in their specifications:

• The specifications of S2.ClassA and S1.ClassA are merged. Since

the names are the same, the name of the resulting subject is ClassA.

However, the values of isRoot and isAbstract are different, so a

reconciliation strategy is required. The composition relationship between

Figure 78: Reconciling Conflicts in Classes

Merge In tegration Semantics

177

S1 and S2 has two kinds of reconciliation strategies attached. A search

through the explicit reconciled elements shows that there is an explicit

reconciliation for ClassA defined. Therefore values of isRoot,

isLeaf, isAbstract and isActive in the resulting class are set to

the explicit values listed. The components of ClassA (in feature) are

considered separately.

• The specifications of S2.ClassB and S1.ClassB are merged. Since

the names are the same, the name of the resulting subject is ClassB.

However, the value of isRoot is different, so a reconciliation strategy is

required. The composition relationship between S1 and S2 has two kinds

of reconciliation strategies attached. First, a search through the explicit

reconciled elements shows that there is no explicit reconciliation for

ClassB. However, default values for classifiers are included, and so the

values of isRoot , isLeaf, isAbstract and isActive in the

resulting subject are set to the defaults listed. The components of ClassB

(in feature) are considered separately.

Revisiting Well-

formedness

Rules:

The example in the previous section as illustrated in Figure 77 resulted in a

breakage of the well-formedness rules of the UML when the reconciliation

automatically made the values of elements in S1 take precedence in the event

of a conflict. However, the example shown in Figure 78 illustrates how spec-

ifying defaults with the most flexible of values avoids problems with well-

formedness rules. Here, the values of the defaults for isRoot and isLeaf

are both false, which mean that a class with these values may participate as it

wishes in generalization relationships.

Impact of

Merge on

Attributes

This section discusses what happens to attribute specifications as a result of

merge (See “Appendix A: Partial Illustrations of UML Metamodel” on page

269 for an illustration of the UML specification of Attribute).

The following subsections describe the impact of merge on the example illus-

trated in Figure 79.

Correspon-

dences

• [Eg7.10] S1 corresponds with S2 because of the composition relationship

between the two. This relationship specifies matching by name for identi-

fication of correspondence between the components

• [Eg7.11] S1.ClassA corresponds with S2.ClassA (Eg7.10)

Merge In tegration Semantics

178

• [Eg7.12] S1.ClassB corresponds with S2.ClassC (from the composi-

tion relationship between the two. This relationship specifies matching on

name for identification of correspondence between the components)

• [Eg7.13] S1.ClassA.a corresponds with S2.ClassA.a (Eg7.10)

• [Eg7.14] S1.ClassB.a corresponds with S2.ClassC.a (Eg7.12)

• [Eg7.15] S1.ClassB.f corresponds with S2.ClassC.e (from the

composition relationship between the two)

• [Eg7.16] S1.ClassB.f also corresponds with S2.ClassC.f from

(Eg7.12). Recall that composable elements may participate in multiple

composition relationships (see “Participation in multiple composition

relationships” on page 86). Any correspondence not required which

occurs implicitly as a result of a matching specification attached to a rela-

tionship at a higher level in the subject tree must be explicitly excluded

with a composition relationship with a dontMatch attachment.

Result of Merge Elements with correspondences and no conflicts:

• In the result, S2.ClassA is merged with S1.ClassA. Since their

names are the same, the name of the result class is ClassA.

• In the result, S2.ClassC is merged with S1.ClassB. Since their

names are different, the names are concatenated with the result class

called “ClassBClassC”.

• In the result, S2.ClassB.f is merged with S1.ClassC.e. Since their

names are different, the names are concatenated with the result attribute

called “ef”.

Figure 79: Impact of Merge on Attributes

Merge In tegration Semantics

179

• In the result, S2.ClassB.f is merged with S1.ClassC.f. Since their

names are the same, the name of the result attribute is “f”.

Elements with correspondences and conflicts in their specifications

• The specifications of S1.ClassA.a and S2.ClassA.a are merged.

Since the names are the same, the name of the resulting attribute is a.

However, the value of the visibility property is different, so a recon-

ciliation strategy is required. The composition relationship between S1

and S2 indicates that S1 has precedence in the event of a conflict. Since

this relationship applies here, the value of visibility (and all other

properties) from S1.ClassA.a is copied to the result.

Elements with no correspondences:

• Attributes S1.ClassA.c and S1.ClassB.d have no corresponding

attributes and so are added unchanged to the resulting ClassA and

ClassBClassC.

• Attributes S2.ClassA.b and S2.ClassA.d have no corresponding

attributes and so are added unchanged to the resulting ClassA .

Elements requiring change as a result of “forwarding” semantics

• Attribute S2.ClassA.b has a type of ClassC in S2. However,

S2.ClassC is merged with S1.ClassB and, therefore, all references

to ClassC in S2 must be changed to its new specification, which is

ClassBClassC.

Check on UML

Well-Formed-

ness Rules

The well-formedness rules for attributes are not broken with this example.

Other Reconcili-

ation Possibili-

ties

The previous example showed how a subject can be set as the precedent sub-

ject, which means that in the event of a conflict between specifications of

corresponding component elements (in this case, Attributes), the values from

the attribute in the precedent subject are copied to the result. Figure 80 illus-

trates the use of other reconciliation strategies.

Elements with correspondences and conflicts in their specifications

• The specifications of S1.ClassA.a and S2.ClassA.a are merged.

Since the names are the same, the name of the resulting attribute is a.

However, the value of the visibility property is different, so a recon-

ciliation strategy is required. The composition relationship between S1

and S2 has two kinds of reconciliation strategies attached. A search

Merge In tegration Semantics

180

through the explicit reconciled elements shows that an explicit reconcilia-

tion for ClassA.a has been defined. Therefore the values of owner-

Scope, visibility, multiplicity, changeability,

targetScope, type and initialValue in the resulting attribute

are set to the explicit values listed.

• The specifications of S1.ClassA.b and S2.ClassA.b are merged.

Since the names are the same, the name of the resulting attribute is b.

However, the values of the ownerScope, visibility and type prop-

erties are different, so a reconciliation strategy is required. The composi-

tion relationship between S1 and S2 has two kinds of reconciliation

strategies attached. First, a search through the explicit reconciled ele-

ments shows that there is no explicit reconciliation for b. However,

default values for attributes are included, and so the values of owner-

Scope, visibility, multiplicity, changeability, tar-

getScope, type and initialValue in the resulting attribute are set

to the defaults listed. Note that if no defaults had been listed for attribute,

and no other precedence strategy attached to the composition relationship

that applied here, then both b attributes would be added to the result,

renamed by concatenating the subject name to avoid a name clash.

Impact of

Merge on

Associations

and Generali-

zations

This section discusses what happens to association and generalization speci-

fications as a result of merge (See “Appendix A: Partial Illustrations of UML

Metamodel” on page 269 for an illustration of the UML specification of

Relationship). Then, with an example, the following are illustrated:

• How correspondences are established

• The results of merge on corresponding associations with no conflicts

Figure 80: Reconciling Conflicts in Attribute Specifications

Merge In tegration Semantics

181

• The results of merge on corresponding associations that require specifica-

tion reconciliation

• Further examples of reconciliation of conflicts in associations.

• The results of merge on corresponding generalizations.

• Checking the UML Well-Formedness Rules on the results of merge

Result of Merge

for Figure 81

The first example, in Figure 81, illustrates the merging of associations with

the same name (with name match correspondence specification) but different

association ends.

Elements with correspondences and conflicts in their specifications

• The specifications of S1.assoc1 and S2.assoc1 are merged. Since

the names are the same, the name of the resulting association is assoc1.

However, the values of the name properties of the association ends are

different, so a reconciliation strategy is required. The composition rela-

tionship between S1 and S2 indicates that S2 has precedence in the event

of a conflict. Since this merge applies here, the values of name at both

ends (and all other properties) from S2.assoc1 is copied to the result

Result of Merge

for Figure 82

As with other elements where reconciliation may be required, defaults may

be used to reconcile differences in specifications. In Figure 82, differences in

the specifications of the associations in different subjects, and in one of the

association ends occur. (Note, for space reasons, all the default properties for

reconciliation of association ends are not listed in the diagram).

Elements with correspondences and conflicts in their specifications

• The specifications of S1.assoc1 and S2.assoc1 are merged. Since

the names are the same, the name of the resulting association is assoc1.

However, the values of the isRoot property of the association, and of

Figure 81: Example 1: Impact of Merge on Associations

Merge In tegration Semantics

182

the isNavigable, ordering, targetScope and visibility

properties of the association ends named x are different, so a reconcilia-

tion strategy is required. The composition relationship between S1 and S2

includes defaults for association and association ends in the event of a

conflict. Since this relationship applies here, the values of the conflicting

properties are taken from the default and copied to the result. There are no

conflicts in the specification of the association end y, and so the result is

copied from either of the subjects. Similarly, explicit values for the asso-

ciation and its association ends may be specified with the composition

relationship, which would be used for their reconciliation in the result.

Result of Merge

for Figure 83

As with all elements, associations with no corresponding associations are

added to the result (see Figure 83). Like-named associations between differ-

ent sets of classifiers are deemed not to correspond.

Figure 82: Example 2: Using Defaults to Reconcile Conflicts in Associations

Merge In tegration Semantics

183

Generalizations A generalization is a relationship between a more general element and a more

specific element. A generalization is not a composable element, but this sec-

tion considers the impact of merge on generalizations. All generalizations in

the scope of a merge are added to the result. As illustrated in Figure 84, this

may result in a multiple inheritance graph, where single inheritance was

specified in the input subjects.

In Figure 84, the resulting ClassC is generalised from ClassF through two

routes – directly, and from ClassE. This does not break the well-formed-

ness rules as defined by the UML, but may not be the desired semantics. As

with all design effort using generalizations, care should be taken with merge

to ensure that the result is as desired.

Figure 83: Example 3: Impact of Merge on Associations

Figure 84: Example 1: Impact of Merge on Generalizations

Merge In tegration Semantics

184

UML Well-

Formedness

Rules

As with all elements, merge may result in breakages to the well-formedness

rules for generalizations. In section “Impact of Merge on Classifiers” on

page 173, one example was illustrated relating to the specification of root

classes. Another example is illustrated in Figure 85 and relates to the well-

formedness rule “Circular inheritance is not allowed” [UML Semantics

Guide page 2-53, GeneralizableElement, Rule [3]].

As described previously in the semantics for override integration relating to

generalizations (“Generalizations” on page 144), ideas described in [Walker

2000] could be incorporated here to eliminate cycles in composed hierar-

chies. This is added to future work.

Impact of

Merge on

Dependen-

cies

This section discusses what happens to dependency specifications as a result

of merge (See “Appendix A: Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Dependency). The

impact of merge on dependencies is illustrated with an example.

A dependency is a “using” relationship, which states that the implementation

or functioning of one or more elements requires the presence of one or more

elements. Dependency is not a composable element, but this section consid-

ers the impact of merge on dependencies.

In general, all dependencies in the scope of a merge are added to the result.

Where there are duplicate dependencies in merging subjects, only one will

appear in the result. Duplicate dependencies are of the same kind and stereo-

type and have the same supplier and client. Figure 86 illustrates an example.

Figure 85: Example 2: Impact of Merge on Generalizations

Merge In tegration Semantics

185

Result of Merge • All dependencies are added to the result.

Impact of

Merge on

Constraints

This section discusses what happens to constraint specifications as a result of

merge (See “Appendix A: Partial Illustrations of UML Metamodel” on page

269 for an illustration of the UML specification of Constraint). The impact of

merge on constraints is illustrated with an example.

A constraint is a boolean expression on an associated element, which must be

true for the model to be well formed. Some constraints are predefined in the

UML, others may be user defined. All constraints are included in the rule for

merge, which states that the resulting model must be well-formed. Predefined

stereotypes of constraint are invariant, precondition and postcondition.

Constraint is not a composable element, but this section considers the impact

of merge on constraints (invariants). In general, all constraints in the scope

of a merge are added to the result. Where there are corresponding elements

where only one representative element is added to the result (e.g. classifier,

attributes), constraints on those elements are all added to the result, with the

effect of a boolean and across the constraints that were defined for corre-

sponding elements in the input subjects. Care should be taken when merging

constraints to ensure that the semantics of the constraints do not conflict or

have unanticipated implications. In some cases, merging of some constraints

may break the well-formedness rules of the model.

Pre and post conditions are discussed with operations in “Impact of Merge on

Operations” on page 188.

Figure 86: Impact of Merge on Dependencies

Merge In tegration Semantics

186

Result of Merge

on Figure 87

In the first case, user-defined constraints in the separate subjects are added to

the merged subject.

• Constraints on attributes S1.ClassA.a and S2.ClassA.b added to

result

Result of Merge

in Figure 88

As with the direct writing of constraints on a model, care should be taken to

ensure the constraints in the result of a merge integration remain as intended.

Adding constraints in this manner may result in unanticipated or conflicting

implications. For example, in Figure 88, constraints on ClassA.a imply

that ClassA.c must always be negative.

• Constraints on attributes S1.ClassA.a+A1.ClassA.c and

S2.ClassA.a added to result

Figure 87: Example 1: Impact of Merge on Constraints

Figure 88: Example 2: Result of Merge on Constraints

Merge In tegration Semantics

187

Result of Merge

in Figure 89

Figure 88 illustrated an example of an unanticipated implication of merging

constraints. There is also the possibility that merging constraints will result

in incorrect and conflicting constraints. Figure 89 illustrates this possibility

and highlights the problems with a “?”. The supporting text following the

diagram answers the implied question by describing the policy of merge.

• Constraints on the generalizations to S1.ClassC and S2.ClassC are

added to result. However, these constraints now conflict, as a generaliza-

tion cannot be both disjoint and overlapping, and cannot be both

complete and incomplete.

• The constraints on the associations S1.a1 and S2.a1 are added to the

result. However, an association cannot be both a global and a local

association.

• The xor constraint between S1.a1 and S1.a2 is added to the result.

This causes no conflict.

As described previously, the general policy of composition is to perform the

composition as specified, and to highlight breakages of the UML well-

formedness rules as a result. Unlike classifiers and operations, the policy for

merging constraints is to add all specified constraints. Conflicts in, for exam-

ple, attributes can have reconciliation applied since only one representative

attribute of corresponding ones appears in the result. Since this is not the

case for constraints, such reconciliation does not apply, and so conflicts may

exist in the composed result.

Figure 89: Example 3: Impact of Merge on Constraints

Merge In tegration Semantics

188

In this case, however, there is a strong temptation to attempt to automatically

“fix” the problems that are illustrated in Figure 89. Possible approaches to

such fixes might be to automatically add the more flexible constraints in the

event of a conflict (e.g. making the generalization incomplete and over-

lapping) or perhaps the opposite by adding the more restrictive options.

With whatever policy that might be adopted for automating fixes, there

remain two fundamental problems:

• Domain Semantics: It is not always possible to reason about the intentions

of the designer. In this example, it is not possible to decide whether the

designer who specified the generalization as disjoint and complete ,

and the association global , was correct in reflecting the constraints of

the domain in S1, or the decisions the designer of S2 made were correct.

Possibly, they were both correct for their own subjects. But, what is cor-

rect in the merged subject? Since the answer to this question lies in the

semantics of the domain, it is therefore safer to highlight the conflict in

the result, and ensure that an informed choice is made based on the

requirements.

• Consistency: Constraints in UML models may be pre-defined by the

UML, or user-defined constraints. Where constraints are user-defined, it

is more difficult to define an automatic policy to adopt to handle con-

flicts, and therefore, if there was a policy for those constraints pre-defined

for the UML, there would be an inconsistency in the behaviour of compo-

sition – some constraint conflicts “fixed” and some not.

Check on UML

Well-Formed-

ness Rules

Constraints are included in the well-formedness specification of a model.

Impact of

Merge on

Operations

This section discusses what happens to operation specifications as a result of

merge (See “Appendix A: Partial Illustrations of UML Metamodel” on page

269 for an illustration of the UML specification of Operation).

Then, with an example, the following are illustrated:

• How correspondences are established

• The results of merge on corresponding operations when no collaboration

is attached to the merge

• The results of merge on corresponding operations with a collaboration

attached.

• Checking the UML Well-Formedness Rules on the results of merge

Merge In tegration Semantics

189

Merging Opera-

tions with no

Attached Col-

laborations

Merging operations means that corresponding operations’ behaviours are

joined together. This means that the execution of any one of the correspond-

ing operations results in the execution of all of the corresponding operations.

Specification of this behaviour is achieved within the subject-oriented design

model by generating interaction diagrams realising the composed operation

as delegating to each of the corresponding input operations on invocation of

the composed operation. Input operations may be renamed to avoid a name-

clash. Re-naming is achieved by pre-pending the name of the input subject,

followed by an underscore, to the operation name. Input operations are also

given protected visibility in the output.

In Figure 90, examples of merging corresponding operations are illustrated,

showing:

• The re-naming of corresponding input operations and the creation of oper-

ations used to specify the behaviour of merged operations - that is, that all

corresponding operations are executed when any one of them is executed.

See “Composition relationship with No Attached Collaboration” on

page 161 for a discussion on different solutions considered here.

• Use of a primitive composition relationship to indicate correspondences

between particular operations.

• Correspondences between operations are only established within classifi-

ers that correspond.

• Collaborations are generated to specify the combined behaviour of corre-

sponding operations.

Correspondences:

• [Eg7.17] S1 corresponds with S2 because of the composition relationship

between the two. This relationship specifies matching on name for identi-

fication of correspondence between the components

• [Eg7.18] S1.ClassA corresponds with S2.ClassA (Eg7.17)

• [Eg7.19] S1.ClassB corresponds with S2.ClassB (Eg7.17)

• [Eg7.20] S1.ClassA.op1 corresponds with S2.ClassA.op1, and

S1.ClassB.op4 corresponds with S2.ClassB.op4 (Eg7.17)

• [Eg7.21] S1.ClassA.op3 corresponds with S2.ClassA.op2 (from

the composition relationship between the two)

Merge In tegration Semantics

190

Result:

• After renaming, S1.ClassA.op1 and S2.ClassA.op1 are added to

the result. A new op1 is created and added to the result, realised by a new

collaboration which is also created. This collaboration indicates that on

execution of an op1 operation, both S1_op1 and S2_op1 are executed.

S1_op1 and S2_op1 have protected visibility.

• S1.ClassA.op3 and S2.ClassA.op2 are renamed and added to the

result. Two new operations op2 and op3 are created, realised by two new

collaborations which are also created. These collaborations indicate that

on receipt of either an op2 or an op3 message, both S1_op3 and

S2_op2 are executed. S1_op3 and S2_op2 have protected visibility.

• After renaming, S1.ClassB.op4 and S2.ClassB.op4 are added to

the result. A new op4 is created and added to the result, realised by a new

collaboration which is also created. This collaboration indicates that on

receipt of an op4 message, both S1_op4 and S2_op4 are executed.

S1_op4 and S2_op4 have protected visibility.

Operations

involved in Mul-

tiple Composi-

tions

The composition of designs model allows for composable elements to partic-

ipate in multiple composition relationships (see “Participation in multiple

composition relationships” on page 86). For merging operations, this has the

potential to cause some ambiguity. For example, in Figure 91 the operation

Figure 90: Impact of Merge on Operations

Merge In tegration Semantics

191

S1.ClassA.op3 corresponds with two different operations. One is as a

result of an explicit composition relationship between S1.ClassA.op3 and

S2.ClassA.op2, and the other is as a result of the matching by name crite-

ria specified in the composition relationship between S1 and S2. The

semantics of merging operations states that the execution of any one of a cor-

responding set of operations means the execution of each of the operations in

the corresponding set. However, since there are two corresponding sets of

operations for op3, there is ambiguity as to which interaction is appropriate.

As with specifying composition relationships in general, care should be taken

to ensure that the behaviour in the output is as required, though this ambigu-

ity can be resolved by attaching additional collaborations to the composition

relationship.

Merging Opera-

tions with

Attached Col-

laborations

When the order of execution of corresponding operations is important, a col-

laboration(s) specifying this order should be attached to the composition

relationship. In this case, the attached collaboration is added to the merged

subject as the specification of the behaviour of corresponding operations.

Result of merge in Figure 92:

• S1.ClassA.op3, S2.ClassA.op1 and S2.ClassA.op2 are cor-

responding and are renamed and added to the result. The three collabora-

tions attached to the composition relationship are added to the result

indicating that on execution of an op1 or an op2 or an op3 operation,

S2_op1, S1_op3 and S2_op2 are executed in that order.

Figure 91: Operations involved in Multiple Compositions

Merge In tegration Semantics

192

Where an operation is part of a corresponding group of operations, and is not

realised by a collaboration attached to the composition relationship, a call to

that operation does not result in delegation to all of the operations in the cor-

responding group. This is only the case where at least one collaboration is

explicitly attached to the composition relationship. Where no collaboration is

attached, then collaborations are generated for all of the operations. This

behaviour supports the designer excluding a specific operation in the corre-

sponding group as always resulting in all of the operations being executed.

Conflict Rules

for Merging

Operations

There are various ways in which the specifications of operations may be dif-

ferent, and this section looks at the impact of merge when the specifications

of operations defined as corresponding are different.

Conflicting Parameter Lists:

The general rule relating to merging operations is that they must have the

same parameter list. On execution, values input to the composed operation

may then be used in the calls to each of the corresponding operations.

One exception to this rule is included. Where one of the corresponding oper-

ations has parameters whose values may be used in other corresponding oper-

ations with a subset of the parameters in the called operation, these

operations may be defined as corresponding. In this case, the designer must

Figure 92: Merging Operations with Attached Collaborations

Merge In tegration Semantics

193

attach a collaboration to the composition relationship indicating how the

operations are called. Without such a collaboration, the operations will be

deemed to conflict, therefore treated as non-corresponding, and will not be

merged. Figure 93 illustrates how a designer may merge operations with con-

flicting parameter lists.

Other conflicting properties:

There is other potential for apparently conflicting properties in operations

that have been specified as corresponding. For example, in Figure 94, op1,

op2 and op3 are private , protected and public respectively. Other

differences are illustrated for each of the other properties of operation. It is

the policy of merge integration that operations with conflicting properties are

deemed to be non-corresponding. In this case, they are treated as any non-

corresponding elements, and not merged.

Concerns with the rigidity of this approach are discussed in “Incompatible

Elements” on page 100. Here, it is concluded that a taxonomy of rules to

guard against integration of truly incompatible elements, but allow some pos-

Figure 93: Merging Operations with Different Parameters

Figure 94: Merging Operations with Other Conflicting Properties

Merge In tegration Semantics

194

sibilities, is the best approach. This is added to future work for composition

of design models.

Pre and Post conditions for corresponding operations:

As with constraints in general, each pre and post condition for each corre-

sponding operation is added to the result, which may have unpredictable

results. In the example in Figure 95, the only time that op2()will execute is

if op3() changes the value of a to be > 50 . This may or may not be what is

required. The general advice for constraints applies here. Care must be taken

when merging operations with pre and post conditions, that the combination,

if not disjoint, makes sense.

Merged Opera-

tions with

Return Types

Where corresponding input operations each have a return type, what type

should the composed operation return? The subject-oriented programming

domain, as described for Hyper/J in [Tarr & Ossher 2000], supports what

they call summary functions, which synthesise the return values of each of

the methods to return a value appropriate for the collaborating methods. A

summary function, defined by the developer, takes as input an “array of val-

ues” that were returned by the composed methods, and uses them to compute

a single return value. Where a summary function is not defined, the default

behaviour is that the value returned by the last of the methods executed is the

one returned by the composed method.

Figure 95: Merging Operations with Pre/Post conditions

Merge In tegration Semantics

195

This is also an issue within the subject-oriented design domain. Further

research is required to assess the feasibility of a “summary function” equiva-

lent solution. This may require an additional attachment to a composition

relationship, but should be examined further to define the best solution. Cur-

rently, behaviour similar to the default behaviour defined in Hyper/J is

defined within the subject-oriented design model. The value returned by the

last input operation executed is the value returned by the composed opera-

tion. Which operation this is may be manipulated by the composition

designer with a collaboration attached to the composition relationship speci-

fying which operation is executed last.

Merged Opera-

tions and For-

warding of

References

References to operations input to merge integration are forwarded to the out-

put operation that delegates to the corresponding set of operations. These

operations are the ones with the same signature as the input operations, cre-

ated to be realised by interaction models defining the delegating semantics.

There is potential here for reducing the number of operations that need to be

created to be realised as delegating to each of a set of corresponding input

operations. For example, in Figure 90 on page 190, two operations (and inter-

action specifications) are created to define the delegation to both

S1.ClassA.op3() and S2.ClassA.op2() . Here S1.ClassA.op3()

forwards to S1S2.ClassA.op3() in the result, and S2.ClassA.op2()

forwards to S1S2.ClassA.op2() in the result, each of which is realised

by a collaboration. Since each defines the same behaviour, there is some rep-

etition here. Research is required to assess the potential for extending this

semantics to all multiple input operations forward to a single delegating

operation.

Impact of

Merge on

Collabora-

tions

Since all corresponding operations are added to the result, so also are all col-

laborations added to the result. Re-naming may be required in some cases

where collaborations have a name clash. Figure 96 illustrates the result of

merging collaborations.

Result of Merge • After renaming, S1.ClassA.op1 and S2.ClassA.op1 are added to

the result. A new collaboration is created and added to the result indicat-

ing that on execution of op1 , both S1_op1 and S2_op1 are executed.

• After renaming to avoid a name clash, S1Collab1 and S2Collab1 are

added to the result. The changed names of S1_op1 and S2_op1 are

reflected in the added collaborations for the two operations.

Merge In tegration Chapter Summ ary

196

7.5. Chapter Summary
This chapter defines the syntax and semantics of composition relationships

with merge integration. Changes to the UML metamodel to support the syn-

tax are illustrated as an extension to the composition relationship metamodel

as described in “Composition Relationship” on page 113. Well-formedness

rules for composition relationships with merge integration are given. These

rules are primarily related to the specification of reconciliation strategies for

conflicting elements, and the attachment of collaborations to composition

relationships. All rules for general composition relationships, defined in

“Well-Formedness Rules” on page 117, apply for the relationships with

merge integration.

The semantics for merge integration are defined by illustrating the impact of

merging each of the design elements currently supported in the thesis. First,

general semantics for merge are defined. For some elements (for example

classifiers and attributes) one element, representative of all corresponding

elements, is copied to the output. In this case, it is important to assess

whether there are any conflicts in the properties of the corresponding ele-

ments. It is illustrated and described how different kinds of reconciliation

strategies may be used to resolve any conflicts.

Figure 96: Impact of Merge on Collaborations

Merge In tegration Chapter Summ ary

197

The semantics for merging operations is different in that all corresponding

operations are added to the output, because execution of an operation in the

output means that all corresponding operations are executed. This behaviour

is specified by the creation of an interaction for inclusion in the output. The

order may be controlled by attaching an interaction to the appropriate compo-

sition relationship, which is then copied to the output.

In general, in order to fully define the semantics, the impact of merge on each

construct is examined, with any change from the general semantics high-

lighted as appropriate.

The next chapter looks at the kinds of requirements that may impact multiple

classes in multiple different design models. The manner in which their

behaviour impacts these different models is similar in every case, and there-

fore can be seen as patterns. The notion of composition patterns, supporting

the capture of patterns of cross-cutting behaviour into a separate design

model, is described. It is illustrated that the design of such a requirement may

be achieved without explicit reference to any class it may impact. Composi-

tion patterns are based on merge integration semantics, and on UML tem-

plates.

198

Chapter 8: Composition Patterns

One of the benefits of subject-oriented design is that a requirement that has

an impact across multiple classes in the system design, i.e., a cross-cutting

requirement, may be decomposed into a separate design model. “Chapter 7:

Merge Integration” on page 155 discusses the semantics of merging different

design subjects. This chapter discusses how patterns of composition may

occur, and presents a solution based on a combination of the subject-oriented

design merge integration model and UML templates. Patterns of composition

occur when a design subject with cross-cutting behaviour is likely to be

merged with other design subjects in the same manner each time. Specifica-

tion of such a design subject is deemed to be a composition pattern.

As discussed throughout this thesis, some kinds of requirements may have an

impact on multiple classes in a design model. For example, a requirement for

an audit trail of operation execution has an impact on all operations in a

model. In this case, if the audit trail requirement states that an operation’s

execution entry should be logged and its execution exit should also be

logged, then the specification of this logging behaviour is the same for all

operations. Similarly to any requirement, logging functionality may be

designed separately in a subject; in such a subject, operations are likely to be

included to handle the logging before execution, and to handle the logging

after execution. One approach to merging this subject with any other subject

is to design collaborations to be attached to a composition relationship (as

described in “Attaching a Collaboration to a composition relationship” on

page 162) that specify the appropriate order for execution for each operation

to be logged. While this would work, it is a cumbersome solution to a merge

integration that is the same in every case – every operation would need its

own collaboration specifying the same order of execution with the logging

operations. Where a merge like the logging one described is the same for

every merge case, it is considered to be pattern of cross-cutting behaviour.

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

199

8.1. Composition Patterns Model
Patterns of cross-cutting behaviour may be abstracted and designed sepa-

rately from the other design elements this behaviour may impact. Within this

thesis, such separated designs of patterns of behaviour are called composition

patterns. Composition patterns make use of template parameters from the

UML, and combine them with merge integration semantics. This section

looks at how this is achieved.

Merge Inte-

gration

The subject-oriented design composition model essentially takes a set of

input subjects and integrates them according to the strategy defined by a (set

of) composition relationship(s), producing an output subject. Different inte-

gration semantics define how elements specified as corresponding are com-

posed. The particular integration strategy relevant for composition patterns is

merge. Merge integration effectively joins the input subjects, reconciling dif-

ferences in element specifications (except for operations) based on specified

reconciliation strategies. Merged operations combine the behaviours realized

by each corresponding operation. This is achieved with the generation of an

interaction model realizing the composed operation as delegating to each of

the corresponding input operations.

For example, Figure 97 illustrates two subjects, each with one class. The

composition relationship between the two specifies that the subjects are to be

merged (denoted by arrowheads at each end of the arc) and that elements

with the same name correspond to each other (denoted by match[name]

attachment to the relationship).

Figure 97: Merge Integration Example

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

200

In the result in Figure 97, the classes S1.A and S2.A are merged because

they have the same name. Each of those classes has an op1() specification

which are deemed to be corresponding. Merge semantics defines the output

op1() as delegating to the two input specifications of op1() , which have

been re-named to avoid a name-clash. Renaming is by pre-pending the name

of the input subject, followed by an underscore, to the operation name. An

interaction diagram is generated to define the delegation behaviour. Where

the order of execution is important, the designer may attach an interaction to

the composition relationship defining the required order. See “Chapter 7:

Merge Integration” on page 155 for details of the semantics of merging sub-

jects.

UML Tem-

plates

Template parameters may be seen as dummy model elements that are

designed to be replaced by “real” model elements as needed. The UML

defines a template as a parameterized model element that cannot be used

directly in a design model. Instead, it may be used as the basis to generate

other model elements using a “Binding” dependency relationship. A Binding

relationship defines arguments to replace each of the template parameters of

the template model element. The UML restricts the binding of arguments to

template parameters as one-to-one for instantiation. Parameterized collabora-

tions are supported to capture the structure of a pattern, where the base clas-

sifiers are templates. This, however, does not cater for combining patterns of

behaviour with behaviour in replacing classifiers – in other words, combining

patterns of cross-cutting behaviour with the behaviour it cross-cuts.

Combining

the Two:

Composition

Patterns

A composition pattern is a design subject in which at least one pattern class

(a class that is a placeholder to be replaced by a real class element) has been

specified. Composition patterns harness the strengths of both the subject-ori-

ented design merge composition model and UML templates. Using composi-

tion patterns, patterns of collaboration may be defined for cross-cutting

behaviours. Within pattern classes, both template parameter elements, and

non-template elements may be defined. Merge integration semantics, with a

bind[params] attachment to the composition relationship, specify the

replacement elements for template parameters, and how they are integrated.

In the remainder of this section, the following parts of the composition pat-

tern model are described:

• Composition Pattern Specification: Here, how a designer specifies a com-

position pattern is described.

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

201

• Composition Binding Specification: Here, how a designer defines which

elements replace all pattern template elements is described – i.e., how a

composition pattern should be composed with (an)other design subject(s).

• Composition Output: Here, the result of a composition process involving a

composition pattern is described.

Composition

Pattern Spec-

ification

As discussed previously, composition patterns are based on subject-oriented

design merge semantics, and UML templates. This combination requires

some extensions to template specifications as defined by the UML, and also

requires the composition designer to be more aware of the details of delega-

tion and renaming of merged operations semantics than is required of a

standard model composition designer. For example, in Figure 97, the

designer simply indicated, with the composition relationship match[name]

specification, that the op1()s corresponded, and the composition process

took care of the re-naming and delegation specification. In this section, how

a designer can harness this semantics to define reusable cross-cutting behav-

iour is described. First though, how does a designer specify templates within

a composition pattern?

Specifying Tem-

plates

As with any object-oriented design, the design of a cross-cutting requirement

may require multiple classes and operations to support its design. A cross-

cutting requirement may also impact different kinds of classes in different

ways. Therefore, a composition patterns designer needs to be able to specify

any number of classes within the composition pattern subject that contain

properties to be merged with any replacing class. These are pattern classes.

The designer also needs to be able to specify that there are operations within

a pattern class that are expected to be replaced on composition because the

composition pattern has defined behaviour to be merged with these opera-

tions. These are template parameters. Both of these are analogous to the pat-

tern classes and template parameters within the UML.

The UML represents template parameters in a template box on the template

class, ordered to support a Binding relationship. Since a composition pattern

is a subject with potentially multiple pattern classes, the representation of all

the template parameters for all pattern classes is combined in a single box

and placed on the subject box. Within this box, template parameters are

grouped by pattern class (each class grouped by <> brackets). Similarly to

templates in the UML, ordering of pattern class groups, and template param-

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

202

eters within the pattern class groups, is important to support composition

specification.

This chapter uses the observer pattern [Gamma et al. 1994] for the purposes

of demonstrating the composition patterns model. This pattern defines a

“one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated immediately”. Such behav-

iour may be considered as “cross-cutting”, as behaviour defining that the

change of state of one object (a subject) initiates the notification and update

of its dependent objects (observers), affects both subjects and observers. In

addition, this behaviour is not specific to any business domain, but is rele-

vant for any domain.

Figure 98 illustrates a composition pattern supporting the observer pattern.

There are two pattern classes, Subject and Observer defined, the first to

represent subjects whose changes in state is observed, and the second to rep-

resent any classes observing a subject’s state. Two standard classes are also

defined, Vector and Object .

As defined in the template box, the template parameter for pattern class

Subject is operation _aStateChange(..). Within the pattern, this tem-

plate is utilised to represent any state-changing operation within a subject

class. The “..” specification of the parameters denotes that any operation

signature may replace _aStateChange(..) (see “Template Scope” on

page 204 for details).

As also defined in the template box, the template parameters for pattern class

Observer are operations update() , _start(..,Subject,..) and

_stop(..,Subject,..). Within the pattern, update() represents the

Figure 98: Specifying Templates in a Composition Pattern

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

203

operation to be called to update observers as a result of a state change in the

observed subject. _start(..,Subject,..) and _stop(..,Sub-

ject,..) represent the triggers that begin and end, respectively, an

observer’s interest in a subject’s state. The “..,Subject,..” specifica-

tion of the parameters denotes that this template operation requires a parame-

ter of type Subject somewhere in the pattern list (see “Template Scope” on

page 204 for more details).

Pattern classes need not specify additional templates within the pattern class,

as the pattern class may simply specify elements to be merged into a substitu-

tion class.

Utilising Opera-

tion Merge

Semantics

As discussed previously, where an operation’s behaviour cross-cuts opera-

tions in a different design subject, a composition relationship specifies that

these operations are corresponding in order to merge their behaviours. To

achieve this, merge integration produces an output operation realised by a

collaboration specifying delegation to each of the corresponding (re-named

and protected) input operations (see Figure 97 on page 199).

A composition patterns designer needs to be able to explicitly define how the

cross-cutting behaviour collaborates with merged behaviour, and that this

collaboration is appropriate for all compositions with the pattern subject. To

achieve this, the semantics for merging operations can be utilized. Using

interaction diagrams, the composition pattern designer may explicitly refer to

the output and input operations separately. The designer defines an input

operation as a template parameter and refers to an actual, replacing operation

by pre-pending an underscore to the template name (see Figure 99). The gen-

erated output operation is referenced with the same name, but without the

pre-pended underscore.

As specified by the composition pattern in Figure 99 for pattern class Sub-

ject, execution of any operation that replaces _aStateChange(..) will,

in the output subject, result in the execution of notify() after the execu-

tion of the replacing operation. Note, _aStateChange(..) was also

given protected visibility as defined by merge integration (see Figure 98 on

page 202). Similarly, addObserver(Subject) will be executed after any

operation replacing _start(..,Subject,..), and removeOb-

server(Subject) will be executed before any operation replacing

_stop(..,Subject,..).

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

204

Where no additional behaviour is required for a template operation, use of an

additional protected operation pre-pended with an underscore is not required.

One example of this here is the update() operation.

Template

Scope

When specifying template operations, we have seen different kinds of param-

eter possibilities defined for those operations. The different possibilities

relate to the scope within which the replacing operation is executed. For

example, in Figure 99, the active period of the execution of aState-

Change(..) defines the scope for this operation, and any parameters

defined may be used within this scope. There are three possibilities for this

specification as follows:

Figure 99: Specifying Patterns of Cross-Cutting Behaviour

Parameter Usage

opTemp() In this case, the replacing operation must have no parameters. This is used

when the replacing operation is called within a pattern interaction, but it is not

possible to ensure that any required parameters are possible to supply when

executed within the pattern interaction.

opTemp(..) In this case, the replacing operation may have any parameters defined. Here,

the pattern interaction is defined entirely within the scope of the replacing

operation.

Table 2: Template Parameters Scope

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

205

Further Poten-

tial for Tem-

plate Rule

Specification

In the current composition patterns model, the properties of pattern classes

and template operations are entirely replaced by classes and operations

replacing them (i.e., those properties whose impact is considered for integra-

tion semantics -- see “Impact of Merge on Classifiers” on page 173 and

“Impact of Merge on Operations” on page 188). For example, a template

operation whose visibility is defined as private will not impose a pri-

vate visibility in a replacing operation whose visibility is not defined pri-

vate. The visibility of the replacing operation (and all other properties) take

precedence in the result.

This, however, is an area where an examination of the feasibility of extend-

ing the capabilities of composition patterns is appropriate. Further research is

required to explore extensions to this model. For example, a composition

designer could specify constraints on the kinds of elements that may replace

templates, and the conditions under which different kinds of elements may

replace templates.

Composition

Binding

Specification

The subject-oriented design model defines a composition relationship to sup-

port the specification of how different subjects may be integrated to a com-

posed output, and the UML defines a Binding relationship between template

specifications and the elements that are to replace those templates. The com-

position patterns model combines the two notions by extending standard

composition relationships with a bind[] attachment that defines the ele-

ments that replace the templates within the composition pattern. The ordering

of parameters in the bind[] attachment matches the ordering of the tem-

plates in the pattern’s template box. Any individual parameter surrounded by

brackets {} indicates that a set of elements, with a potential size > 1, replace

the corresponding template parameter. The possibilities for parameters to the

bind[] attachment are as follows:

opTemp(..,

TypeName,..)

In this case, the replacing operation may have any parameters defined, but one

of the parameters must be of type TypeName. Here, the pattern interaction is

defined entirely within the scope of the replacing operation, but an operation

call is made to a TypeName instance which must be supplied. Where there is

more than one parameter of type TypeName , the first is used.

Table 2: Template Parameters Scope

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

206

There is considerable potential for further work in extending the capabilities

of the parameters to the bind[] attachment. Sophisticated matching criteria

for selection of replacement candidates for pattern classes and template oper-

ations are possible. This work should be done in conjunction with the work

extending the rules for template specification previous discussed in “Further

Potential for Template Rule Specification” on page 205.

Parameter Usage

< params > Parameters to the bind[] attachment are grouped by pattern class. For

each pattern class specified in the composition pattern, a set of

parameters defining replacements for that pattern class and any of its

template operations are grouped in <> brackets.

<{className},

params>

The first parameter within a pattern class set is the name of the class that

replaces the pattern class. This may also be a comma-separated list of class

names, bounded by {} to denote a set.

{className.

opName}

For each template operation defined for the pattern class, a replacing operation

may be defined with the operation’s name. Where this may be ambiguous - for

example, when there are multiple classes replacing the pattern class, and there

are some operations of the same name within those replacing classes - the

operation name may be supplemented with its class name. Replacements for

each template operation may also be a comma-separated list of operation

names, bounded by {} to denote a set.

{*} When specified as a replacement for a pattern class, this denotes that all

classes within the input subject are replacements for the pattern class.

When specifed as a replacement for a template operation, this denotes all

operations within each replacing class are replacements for the template oper-

ation.

{meta:

metatest}

The meta keyword, used inside {} denoting a set, denotes that a test

against the metaproperties of elements determines their eligibility to

replace the template. When specified as a replacement for a pattern

class, class properties of every class within the input subject are

examined against the test criteria. When specifed as a replacement for

a template operation, operation properties of every operation within

each replacing class are examined against the test criteria. In both

cases, valid metaproperties and valid values for those properties,

must be defined, as specified by the UML semantics.

Table 3: bind[] parameters

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

207

We now look at an example of defining a binding specification for the

observer composition pattern. As illustrated in Figure 100, the binding speci-

fication is:

• S1.ClassA is a replacement for pattern class Subject , with every

operation that is a non-query operation replacing template parameter

_aStateChange(..).

• S1.ClassB replaces pattern class Observer

• S1.ClassB.op2() replaces update()

• op3(ClassA) and op4(ClassA) from S1.ClassB are supple-

mented with the pattern behaviour specified for start(..,Sub-

ject,..) and stop(..,Subject,..) , respectively.

Composition

Output

As illustrated in Figure 100, a composition relationship’s bind[] attach-

ment may specify multiple replacements for pattern classes and template

operations within those classes. Where multiple replacements are specified

for pattern classes, each replacement class is supplemented with the proper-

ties (and behaviour) of the pattern class in the output subject. For example, in

Figure 101, classes ObserverS1.ClassA has Observer.Subject’s

properties. Where a pair of operations has been defined (e.g., aState-

Change(..) and _aStateChange(..)) and referenced within the same

scope in a composition pattern (that is, inside the same pattern class), and

one is a template parameter for that class, composition applies merge opera-

tion semantics. For each operation substituting the template parameter, each

reference to _aStateChange(..) is replaced by the suitably re-named

substituting operation, and a new aStateChange(..) operation is also

Figure 100: Specifying Binding for Composition

Com posit ion Pat te rns Compos it ion Pat t erns Mode l

208

defined. Each operation’s delegation semantics is realised by a new collabo-

ration as specified within the composition pattern. Each pattern class refer-

enced within an interaction diagram is also re-named as appropriate.

In this example, the result of the composition is:

• Two non-pattern classes, Vector and Object , are defined in subject

Observer, and are added unchanged to the result.

• ClassA is a replacement class for Subject, and so all non-template

properties of Subject are added to ClassA in the result. Therefore,

operations addObserver(Object), removeObserver(Object)

and notify() are added unchanged to ClassA. If there had been

(an)other class(es) replacing Subject, then each of these operations

would also be added to each replacing class.

• Within ClassA , the {meta:isQuery=false} bind parameter indi-

cates that the set of operations replacing the aStateChange(..) tem-

plate operation is selected by examination of the isQuery meta-

property of all operations within ClassA. Those whose value for

isQuery=false are added to the replacing set. In this case, operations

op1() and op2() are non-query operations, and therefore both are

added to the replacing set. Where multiple replacements are specified for

Figure 101: Output from Composition with Pattern Subject

Com posit ion Pat te rns Compos it ion Pat t erns Metamode l

209

operations, each operation is supplemented with the behaviour defined

within the pattern subject. This is specified in the result with both op1()

and op2() having interaction diagrams realising the supplementary

behaviour, with re-naming of the replacement operations in line with the

delegation of corresponding operations semantics.

• Since ClassA is a Subject class, it also has an observers associ-

ation with Vector added. Every class replacing Subject has such an

association with Vector added (in this example, this is just ClassA).

• ClassB is a replacement class for Observer, and so all non-template

properties of Observer are added to ClassB in the result. Since all

properties of the Observer pattern class used in the Observer com-

position pattern are templates, this does not add any additional properties

to ClassB.

• ClassB.op2() is defined as the replacing operation for update() .

This means that it is added unchanged to the result, and called from the

notify() operation in the observer pattern for both ClassA.op1()

and ClassA.op2().

• ClassB.op3(ClassA) and ClassB.op4(ClassA) are defined as

the replacing operations for start(..,Subject,..) and

stop(..,Subject,..), respectively. These are valid replacements as

ClassA is a Subject, and therefore the pattern has a valid Subject

to work with. The interaction diagrams for start(..,Subject,..)

and stop(..,Subject,..) are updated to realise the replacement

operations.

Additional composition relationships between levels lower in the subject tree

may be specified within a composition pattern, though only one subject in a

particular composition context may have templates defined. Further research

is required to assess the impact of merging multiple subjects where more than

one subject contains template elements. It may be possible to relax this

restriction, but without fully assessing the impact, the results are not defined,

and therefore the restriction is applied in this thesis.

8.2. Composition Patterns Metamodel
The composition patterns model, at the specification level, differs from the

UML templates model in two primary ways:

Com posit ion Pat te rns Compos it ion Pat t erns Metamode l

210

• Templates within a composition pattern are centred around pattern classes

within a subject first, which (may) have additional template parameters

defined.

• Binding actual classes and model elements from (an)other subject(s) is

achieved with an extension to a composition relationship with merge inte-

gration defined. This composition relationship’s arguments define which

classes replace the pattern classes, and which elements within the replac-

ing classes replace a pattern class’s template parameters.

These differences are demonstrated at the meta-level in Figure 102, which is

an extension to the metamodels defined in “5.3. Composition Relationship”

on page 113, and “7.2. Merge Integration Syntax” on page 164.

Subject Meta-

class

Associations

PatternClass

Metaclass

The PatternClass metaclass defines the relationship between a subject

and its pattern classes. By definition, a subject with a relationship to at least

one pattern class is a composition pattern.

PatternMerge

Metaclass

A pattern merge is a kind of merge integration that also handles merging ele-

ments with template specifications. It is sub-classed from the Merge meta-

class because it also conforms to merge integration semantics.

Figure 102: Composition Patterns Metamodel

patternClass An ordered list of classifiers which are deemed to be pattern

classes. Each parameter is a dummy classifier designated as a

placeholder for (a) real classifier(s) to be substituted during

composition.

Com posit ion Pat te rns Chapter Summ ary

211

Associations

Replacement-

Set Metaclass

The composition patterns model supports the specification of multiple

replacements for each pattern class and template parameter. The Replace-

mentSet metalass defines a multiple replacement set.

Attributes

Associations

Well-Formed-

ness Rules

[1] Only one subject involved in a single contextual composition relationship

may contain template elements.

[2] Only a contextual composition relationship may have pattern match inte-

gration defined - that is, when the composition relationship is between two or

more subjects.

[3] All templates must have at least one replacement defined.

[4] Replacements defined for pattern classes must be contained within the

subject input to the composition.

[5] Replacements defined for a template operation must be contained within a

replacement for its owning pattern class.

8.3. Chapter Summary
This chapter describes how patterns of cross-cutting behaviour can be

decomposed into a separate design model, and designed without explicit ref-

parameterSet The replacement set specification for elements that replace the

corresponding template elements.

bindTest Boolean expression checking values of properties of each input

element (that is, each element contained in the subject composed

with the pattern, or contained in the subject’s classes) to decide

whether that element is to be substituted for the template ele-

ment. Any combination of properties of elements may be used

for test purposes. This attribute may be null, where an explicit

list of elements is defined for the replacement set.

parameter A list of elements that replace a template. This list may be based

on the specification within the replacement set, or an explicit list

of elements.

Com posit ion Pat te rns Chapter Summ ary

212

erence to any design elements the behaviour may cross-cut. This is achieved

using a combination of merge integration semantics and UML templates, in

what is described in this chapter as composition patterns. A composition pat-

tern is a design subject with at least one pattern class defined. Within a pat-

tern class, template operations may be referenced. These template operations

represent operations that replace them at composition time, and that specify

behaviour to be supplemented with pattern behaviour as defined in the com-

position pattern (that is, cross-cutting behaviour). A composition relationship

with merge integration may be defined between a composition pattern and

subjects requiring the pattern behaviour. A bind[] attachment to such a

composition relationship defines the replacement elements for the pattern

classes and template operations.

Composition patterns require extensions to the subject-oriented design meta-

model which are described here. These extensions are based on specification

of pattern classes and template parameters within composition patterns, and

on specifying the replacement classes and operations for the templates with a

composition relationship.

Having described in detail the syntax and semantics of the subject-oriented

design model in the previous chapters, the next chapter applies the model to

the motivating example from “Chapter 2: Motivation” on page 11. This

example was based on the design of a simple software engineering environ-

ment (SEE) for programs consisting of expressions. This problem is re-

designed using subject-oriented design, demonstrating improvements to the

problems motivating the work. A further example of the application of sub-

ject-oriented design is demonstrated and evaluated in “Chapter 10: Case

Study and Evaluation” on page 225.

213

Chapter 9: Applying the Subject-
Oriented Design Model

This thesis proposes a new approach to object-oriented design based on pro-

viding additional means of decomposing design artefacts by matching the

structure of features and other user-level concerns, encapsulating those con-

cerns within the design. The approach addresses the structural misalignment

between requirements, designs and code that is the cause of considerable dif-

ficulties with the use of design as described in “Chapter 2: Motivation” on

page 11. At the core of this model is composition specification, that allows

differences in views of overlapping concepts within different design subjects

to be identified and resolved, and supports the understanding of the design as

a whole by integration.

In this chapter, the small, motivating example described in “Chapter 2: Moti-

vation” on page 11 is re-designed based on the subject-oriented design

model. By applying the model to the construction and evolution of the

expression SEE, it is illustrated that the design addresses the misalignment

problem, and achieves better, more flexible system design.

9.1. SEE System Design, Version 1.0
Revisiting the motivating example, the requirements specification stated:

“The required SEE supports the specification of simple expression programs.

It contains a set of tools that share a common representation of expressions.

The initial tool set should include an evaluation capability, which determines

the result of evaluating expressions; a display capability, which depicts

expressions textually; and a check capability, which optionally determines

whether expressions are syntactically and semantically correct. The SEE

should permit optional logging of operations”. For further details of the

grammar and abstract syntax tree implementation of expressions, see “2.2.

Example: Software Engineering Environment” on page 19.

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

214

To align design with requirements, a design subject per feature identified in

the requirements specification is defined. Thus, as illustrated in Figure 103,

there is a Kernel subject supporting the representation of expressions; an

Evaluate subject; a Check subject; a Display subject; and a subject, Log,

responsible for logging of operations.

Design Sub-

jects

Each of the structure diagrams for the chosen design subjects is now illus-

trated1.

Kernel The Kernel subject is illustrated in Figure 104. As in the original design,

expressions are represented as abstract syntax trees. Notice, however, that

the kernel design subject only defines the AST classes and their primitive

accessor methods - it does not tangle support for any of the required SEE fea-

tures with the expression representation.

Figure 103: Design Subjects for SEE

1. The interaction diagrams which complete the design of each subject are not
illustrated, but are assumed to exist. As described in “Impact of Merge on Col-
laborations” on page 195, all interaction diagrams are added to the output,
unchanged.

Figure 104: Kernel Subject Class Diagram

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

215

Check The design for the check subject, illustrated in Figure 105, maintains a view

of expressions relevant for checking purposes, with only those properties that

are required by the checking behaviour.

Evaluate The design for the evaluate subject, illustrated in Figure 106, maintains a

view of expressions relevant for evaluation purposes, with only those proper-

ties that are required by the evaluation behaviour.

Display The design for the display subject, illustrated in Figure 107, maintains a view

of expressions relevant for display purposes, with only those properties that

are required by the display behaviour.

Figure 105: Check Subject Class Diagram

Figure 106: Evaluate Subject Class Diagram

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

216

Log The design for the logger subject, illustrated in Figure 108, can be designed

independently of the operations to be logged, as the ability to log operations

is not particular to expressions or ASTs. An interaction specification for log-

ging behaviour is included in this subject, as its specification is central to

how the subject will be composed with other subjects. This is not the case

with interactions in the other SEE subjects. Logging behaviour impacts all

operations in the SEE, and therefore, the Log subject is designed as a compo-

sition pattern (see “Chapter 8: Composition Patterns” on page 198).

Characteris-

tics of SEE

Design Sub-

jects

These design subjects illustrate some important characteristics of subject-ori-

ented design.

Figure 107: Display Subject Class Diagram

Figure 108: Log Subject Design

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

217

Features are

Encapsulated

First, the kernel, check, evaluate and display subjects realise and encapsulate

their respective SEE tools in a standard object-oriented manner, with appro-

priate properties - attributes and operations - in each of the AST classes.

Given that requirements are structurally different to object-oriented designs,

and each subject is designed using an object-oriented language, there is una-

voidable scattering of tool support across classes within each subject. None-

theless, encapsulation is achieved by each subject as a whole. This provides

clear alignment of the design to the requirements, as each subject represents

the design of a particular feature in total, and contains no reference to any

other feature; all cross-feature interactions are specified by means of compo-

sition relationships. Encapsulation of the logger feature also avoids tangling

of logger functionality with the rest of the design.

Features have

Different Views

A second important feature of this subject-oriented design approach is that

each of the subjects specifies its own view of overlapping design elements.

For the SEE, the AST structure of an expression is manifested in each sub-

ject, except the Logger subject. Yet each subject defines a slightly different

view of the AST class hierarchy; for example, the Check subject does not

define the BinaryOperator, UnaryPlusOp, and UnaryMinusOp

classes in its hierarchy, as they are not affected directly by the checking

methods. Similarly, the Evaluation subject and the Display subject do not

include the BinaryOperator and UnaryOperator classes. The design-

ers of the individual subjects need not be concerned about these differences,

as identification and resolution of any differences is supported by composi-

tion relationships. This increases the amount of concurrent design that is pos-

sible. It also enables each subject to include whatever model of AST it finds

most appropriate to its task, rather than requiring commitment to a single

AST definition. This property helps to improve the individual subjects, to

insulate each designer from the effects of changes in other subjects, and to

eliminate coupling across subjects.

Cross-Cutting

Feature

Designed Inde-

pendently

The Logger subject illustrates another interesting feature of subject-oriented

design. The SEE requirements specification imposed a requirement for

optional logging of operations. The ability to log operations is not particular

to expressions or ASTs, however, so the Logger subject can be designed inde-

pendently of the operations to be logged (see Figure 108). Composition rela-

tionships will establish connections between the SEE subjects (or any others)

and Logger, thereby specifying exactly when logging is to take place. This

approach has the advantage of separating design of logging from that of the

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

218

SEE, addressing the tangling problem that manifests itself primarily in the

behavioural specifications for operations that are to be logged (see Figure 8

on page 25). It also results in a subject that is generally reusable for any

application that requires logging of operations.

Composition

Relation-

ships for

Design Syn-

thesis

Taken together, the collection of design subjects described in the previous

section defines a family of SEEs. That is, the set of features encapsulated in

the individual design subjects can be integrated in a number of different com-

binations - e.g. some versions of SEEs might include the evaluation feature,

but not the checking feature, and some might include logging while others

might not. This ability to “mix-and-match” features is another benefit of sub-

ject-oriented design. It requires only the specification of composition rela-

tionships among whatever design subjects are to be included in any given

member of the SEE family. For example, Figure 109 illustrates the composi-

tion relationships required to define a SEE that includes the features display,

check and evaluation. The composition relationship with merge integration

specified between the kernel, check, evaluate and display subjects indicate

match[name] correspondence.

A match[name] correspondence with merge integration means that in a

composed design subject, classes and attributes having the same name in dif-

ferent design subjects would appear only once, and operations having the

same name would be aggregated. The composition designer has also deemed

that, should a conflict occur in any corresponding elements, the Kernel sub-

ject contains the specifications that should appear in the result. This compo-

sition relationship is complete and sufficient to specify the composed design

as illustrated in Figure 110 and Figure 111.

Figure 109: Composition Relationship for Merging SEE Subjects

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

219

This composition to a complete design is useful, particularly to a developer

attempting to understand the full semantics of a composed design and all the

ramifications of a set of composition relationships. In this case, there is an

example of how the one simple composition relationship illustrated in Figure

109 has some undesirable behaviour. Merging corresponding operations

means that on execution of any one of the operations, each of the corre-

sponding operations is executed. Because of the matching by name specifica-

tion of the composition relationship, the asString() operation from

Evaluate.NumberExpression corresponds with the operation of the

same name from Display.NumberExpression. Both of the operations

are added to the result, and both are executed when there is a call to

asString(). However, these operations provide the same service in that a

string representation of the class is returned, and so it does not need to be

executed twice. To avoid this behaviour, an additional composition relation-

ship may be added within the context of the relationship in Figure 109, indi-

cating that one of the asString() operations overrides the other.

As illustrated in Figure 111, all of the associations and generalizations are

added to the result. Where there are associations of the same name, they are

deemed to be corresponding, and therefore only one representative associa-

tion is added to the result. Nonetheless, there are some redundant associa-

tions and generalizations as a result of the differing generalization

hierarchies designed for each of the different subjects. For example, the

Evaluate subject did not generalize the PlusOperator and MinusOp-

Figure 110: Composed SEE Design (Class Details Only)

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

220

erator to a BinaryOperator class, as the evaluation behaviour is dif-

ferent for both operators. In Evaluate , two associations each were added

relating to the Expression class for the operands of plus and minus. How-

ever, in the Kernel subject, these were generalized to a BinaryOperator

where these associations were added once. Since Evaluate and Kernel

are merged in this example, all the associations are added. Similarly for the

generalization relationships in this case, each of the generalization relation-

ships are added to the result. which means that, for example, PlusOpera-

tor inherits from Expression both directly, and through

BinaryOperator. This is a design equivalent to flattening behaviour in

merging code subjects in subject-oriented programming. In subject-oriented

programming, each class is fully expanded to include all the elements from

its superclasses prior to integration. Instead of flattening the design elements,

the subject-oriented design model adds all the generalization (and associa-

tion) relationships to the result. Flattening the output of design composition

yields the same result as flattening the output of code composition as in sub-

ject-oriented programming.

Not surprisingly, the fully composed design has the scattering and tangling

characteristics of the original SEE design depicted in Figure 3 on page 21.

All of the requirements are scattered across the design, and it is difficult to

identify the exact elements that support a particular requirement. A single

design class has support for multiple requirements tangled up within it. It is

therefore considered to be useful only for the designer who needs to under-

stand the design as a whole to work with the composed design. In general, it

Figure 111: Composed SEE Design with Relationships

Applying the Subject -Or ie nted Des ign Model SEE System De sign, Ver sion 1.0

221

is simpler to work with, understand and explain the input subjects that sup-

port a single requirement.

Producing an SEE that excludes any of the features is equally simple to pro-

ducing an SEE with all the features - the subject supporting the excluded

requirement is therefore excluded from the composition relationships.

Because each requirement is encapsulated in a separate subject, removal of a

feature does not impact the design of any other feature.

Composition

Pattern

The “generally reusable” property of the Logger subject presents a good sce-

nario for the use of composition patterns. Figure 108 illustrates the design of

logging functionality using UML templates as placeholders for any operation

requiring logging. An example of merging this subject with another subject

(that is, a small extract from the Kernel subject with one operation) is illus-

trated in Figure 112.

In this example, the (partially illustrated) Kernel subject is merged with the

Log subject containing a pattern class with an operation template. The

<{*},{*}> parameters of the bind annotation to the composition relation-

ship indicate that all classes in the merging subject, and all operations within

those classes, should (separately) replace the pattern class and template oper-

ation, respectively. A collaboration is added for each operation indicating the

changed behaviour as a result of the merge with logging functionality. This is

illustrated for the setOperand() operation in Figure 112. In the output

subject, the new interaction specifies that a call to the setOperand()

Figure 112: Applying Composition Pattern for Logging

Applying the Subject -Or ie nted Des ign Model Evolving the SEE System Des ign

222

operation means that beforeInvoke() is executed before execution of

setOperand(), and afterInvoke() is executed immediately after-

wards.

An interesting example of the usefulness of separate design and composition

of subjects is in the design of the logger. In the original logger design, two

methods, turnLoggingOn() and turnLoggingOff(), had to be

included to support this feature. The approach to the optional nature of log-

ging is to include or exclude the Logger subject from compositions depend-

ing on whether or not logging is required. This approach has the benefit of

not requiring any modifications to the design subjects.

For full details of the composition patterns model see “Chapter 8: Composi-

tion Patterns” on page 198.

Producing

Code from

the Design

This chapter has shown how subject-oriented design aligns with require-

ments. There are two approaches to aligning this design with code. The first

approach is to code each individual design subject as a code subject in the

subject-oriented programming paradigm, and then compose the code subjects

with a composition rule [Ossher et al. 1996] derived from the composition

specifications in the design. The second approach is for the designers to con-

struct an integrated design, and then write standard object-oriented code

based on it. In either case, however, the two-way alignment of subject-ori-

ented design supports the realisation of one of software design’s primary pur-

poses - to bridge the gap between requirements and code. The first approach

is preferred, however, because it results in code that is directly aligned with

requirements, and that therefore has the same properties of traceability, and

especially, evolvability, described earlier for subject-oriented designs.

9.2. Evolving the SEE System Design
The design of the SEE from “SEE System Design, Version 1.0” on page 22

suffered from the problem that what appeared to be simple, additive changes

ended up being pervasive and invasive - See “Evolving the SEE System

Design” on page 29. Specifically, clients requested the inclusion of different

forms of optional checking, thus rendering the check feature a “mix-and-

match” capability. The solutions considered either resulted in combinatorial

explosion of classes (using a non-invasive, sub-classing approach), or

required invasive changes to all of the AST classes (retrofitting design pat-

terns). The subject-oriented design avoids all of these problems. Each differ-

Applying the Subject -Or ie nted Des ign Model Chapter Summ ary

223

ent kind of checking is designed in a separate subject. Effecting the change

request simply requires the definition of two new subjects: one to support the

design of a def/use checker, and one to support verifying conformance to

local naming conventions.

Selective use of composition relationships permits designers to decide what

kind(s) of check(s) are to be performed in any particular system produced

from the design. For example, in Figure 113 all of the checking subjects (par-

tially represented) are included in the composition, with the resulting behav-

iour specification indicating that any check() operation results in each of

the three kinds of checking being executed.

This example illustrates the general point that subject-oriented design facili-

tates additive rather than invasive, changes, significantly increasing the ease

of system evolution.

9.3. Chapter Summary
This chapter revisits the design of the SEE, using the subject-oriented design

model. The approach illustrates how the structural misalignment between

requirements, design and code can be solved by the encapsulation of features

in design subjects. In comparison with the design of the SEE illustrated in

“Chapter 2: Motivation” on page 11, the subject-oriented design demon-

strates how scattering and tangling properties have been removed. Individual

design subjects encapsulate the design of their own requirement, and may

have different specifications of common concepts.

Figure 113: Evolving SEE with New Check Requirements

Applying the Subject -Or ie nted Des ign Model Chapter Summ ary

224

Support for integration of overlapping concepts, even where there are differ-

ing specifications is achieved with the specification of composition relation-

ships. Composition relationships supporting the composition of the SEE

design subjects are illustrated and discussed. A composition relationship with

merge integration between the kernel, evaluate, display and check subjects is

illustrated. The output of this composition illustrates that only one other

composition relationship is required to handle the duplication of the

asString() operation, which appears in two different subjects. This illus-

trates how an analysis of the output of the composition assists the designer in

verifying composition relationships. In many cases, where the designer is

familiar with the details of input design subjects, the initial composition may

include the exceptions to a contextual composition relationship that governs

the composition of all the components of the input subjects.

It is also illustrated how generally reusable subjects may have composition

patterns defined, simplifying the process of composition specification. A

composition pattern to support logging functionality illustrates how logging

operations may be designed with reference to template operations, as

opposed to the actual operations to be logged. This supports the simple com-

position of multiple subjects with operations to be logged, as illustrated.

Scattering of the design for requirements across a full system design, and

tangling of the design for multiple requirements in a single design element

have been illustrated to be the root of many of the difficulties with standard

object-oriented designs. These properties make the designs difficult to under-

stand, difficult to change and difficult to reuse. Removal of scattering and

tangling properties therefore eases the difficulties that they cause. Even in a

small example such as the SEE, separation of the support for different

requirements makes it easier to trace the design for each of the requirements.

In particular, the design of logging functionality without reference to any

expression operations makes this subject reusable in any domain where the

design includes operations.

225

Chapter 10: Case Study and
Evaluation

This chapter demonstrates the use of the subject-oriented design model using

a Library Management System case study. Throughout, any decision that is

available uniquely because of the application of the subject-oriented design

model is highlighted. Differences with possible alternatives using standard

UML are evaluated.

The case study, though relatively small compared with most software prod-

ucts, nonetheless illustrates the capabilities of the subject-oriented design

model. An initial system is designed using different design subjects for dif-

ferent requirements. Both functional and cross-cutting requirements are

included, with a demonstration of how their composition may be specified,

and the output of composing different subjects. The chapter then shows how

changes to the borrowing rules, that demonstrate the evolution of the library

system, may be designed separately and composed with the existing system.

Functional holes in the system design, the kind likely to be found during sys-

tem test, are encountered and may also be designed separately and composed

with the existing system. The case study demonstrates the strengths of the

subject-oriented design model, but also highlights some interesting weak-

nesses.

10.1. Requirements Specification
A library management systems manages the resources within a university

library, and the activities relating to those resources. The subset of such a

system examined in this case study is the management of books and periodi-

cals. This is essentially managing their ordering and physical locations

within the library, and managing their borrowing and return. A full library

management system would be a far larger system, probably including, for

example, management of client and vendor information and history. Archi-

tecturally, the portion of the system included in the case study may be seen as

Cas e Study and Evaluat ion Requi rem ents Speci fi cat ion

226

the business model layer, in a “layered architecture” ([Shaw & Garlan 1996])

separating the user interface from the objects that support the base library

concepts.

Functional

Requirements

A library’s resources are multiple copies of both books and periodicals.

Users of the library are librarians and borrowers, but only librarians use the

library management system. The actors and their uses of the library manage-

ment system are:

Add library

resource

The librarian may add library resources to the library management system

(LMS). These may be additional copies of an existing title, or copies of a

new title. The following information is maintained by the LMS:

• The ISBN, title, author(s) and publisher information of the title

• The staff member(s) and course number(s) that use the title

• The library-assigned numbers and physical locations of all copies

Remove library

resource

The librarian may remove all copies of a title from the LMS. This is only

possible if all borrowed copies of the title have been returned.

Order library

resource

The librarian may record an order for multiple copies of a resource through

the LMS. The following information is maintained:

• The ISBN, title, author(s), and publisher information of the title

• The number of copies ordered

• The vendor information and date of ordering

Search for

library resource

All users of the library may search for the physical location of copies of a

particular title. The search may be on ISBN, title or author information.

Wildcard searches are required, which may result in multiple items returned

from the search.

Actors Librarians, Staff, Students, Public

Library resources: Multiple copies of books and periodicals

Uses of system: Add/remove library resource

Order library resource

Search for library resource

Borrow/return library resource

Pay late return fine

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

227

Borrow library

resource

The only library resources which may be borrowed are copies of books.

Restrictions exist for different kinds of borrowers:

• Librarians may borrow any number of books

• Staff may borrow up to ten books

• Postgraduate students may borrow up for eight books

• Undergraduate students may borrow up to four books

• Members of the public may borrow up to two books

Return library

resource

The librarian may record when borrowers return books. If the on-loan period

is greater than the allowed period for the type of borrower, then a fine is

imposed as follows:

• Librarians may borrow their books for a period of two months, staff for

two months, postgraduate students for six weeks, undergraduate students

for two weeks, and members of the public for one week.

• Some titles have their own time restrictions on amount of time copies may

be borrowed which take precedence over the period restrictions for type

of borrower.

Pay late-return

fine

The librarian may record the payment of fines by the borrower.

Technical

Requirements

It is required that the services for managing resources are available concur-

rently. However, those services that change the objects (add resource and

remove resource) should only run one at a time, and should also lock out the

query services (search for resource). On the other hand, multiple query serv-

ices should be allowed run concurrently, but only when there are no changing

services running.

10.2. Design with Structural Matching to Require-
ments

This section discusses the options for decomposing the design of the library

problem domain for potentially different design teams. The structural mis-

match of the requirements specifications with object-oriented specifications

of the library concepts is illustrated. A design of the system using the decom-

position capabilities provided by subject-oriented design is presented.

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

228

Decomposi-

tion

This thesis does not include a discussion on how the subject-oriented design

model impacts the software development process, but recognises that this is

an important area for future work. Therefore, for the purposes of this case

study, some assumptions are made as to the “process” a development project

manager may follow to assign tasks to different people/teams.

Without the benefit of subject-oriented design, a project manager must look

at the design domain as well as the requirements domain in order to carve up

the design domain area appropriately. Given that only one person/team may

work on an object-oriented class at one time, it is reasonable to assume that a

project manager would attempt to group classes with group(s) of require-

ments as much as possible. To achieve this, it is likely that a project manager

and lead designer(s) would meet (with, possibly, white board aids) to attempt

a high-level assessment of a workable division of classes. Such an effort is

likely to result in the information illustrated in Figure 114.

The efforts of a development project manager and lead designer(s) as illus-

trated in Figure 114 demonstrate the scattering and tangling properties that

are at the core of the motivation for the research described in this thesis. Any

attempt to divide up the work by requirement leads to overlapping usage of

classes, requiring complicated scheduling and critical path management. Any

attempt to divide up the work by classes leads to a need for designers to com-

municate for the purposes of clear interface definitions. Where any require-

ment “colour” (Figure 114) touches multiple classes, the interface between

those classes must be clearly defined for that requirement. Communication

between designers costs time.

Figure 114: Initial Assessment of Project Classes and Tasks

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

229

On the other hand, with subject-oriented design, it appears at this stage that a

clean division of work may be achieved by assigning one design subject for

each requirement.

Design Sub-

jects

A project development manager using the subject-oriented design model need

not attempt to anticipate the internals of the design for the purposes of divi-

sion of the tasks. So again, making some assumptions as regards “process”,

the manager may decide on a one-to-one structural matching of the require-

ments with the design models, yielding the separate design subjects illus-

trated in Figure 115.

It is, however, likely that the development manager would meet with the sen-

ior designer(s) for the purposes of estimating the size of the task of designing

each subject. This information is likely to impact the size of teams working

on each one. For the purposes of this case study, we assume that separate

teams work on different subjects, and that the number of designers in each

team is not relevant for the purposes of assessing the subject-oriented design

model.

The following subsections illustrate some details of the designs of each of

the design subjects. It is not, however, the intent of this chapter to discuss

detailed motivation for choosing and naming particular design elements, or to

discuss individual design decisions for each subject. It is assumed that stand-

ard design practices and decision-making processes apply inside each indi-

vidual design subject. The following subsections will, however, point out any

interesting decisions that may impact subsequent composition of those sub-

jects. A further assumption with this case study is that the “Actor” manage-

ment is catered for outside this case study. That is, information relating to

Figure 115: Division of Tasks into Design Subjects

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

230

library staff, academic staff, postgraduates, undergraduates and members of

the public is maintained outside the library management business model.

Add Resource The AddResource subject handles the structural and behavioural implica-

tions of storing books and periodicals in the library. In the structural design

illustrated in Figure 116, the commonalities of Book and Periodical are

abstracted to a Resource class, from which each of them inherits. The

designer of this subject deems that it is appropriate for Resource class to

be abstract.

Figure 116: Add Resource Class Diagram

Figure 117: Add Resource Interactions

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

231

The behavioural interactions of adding a resource to the system is illustrated

in Figure 117. This design illustrates the interactions for adding a Book

instance. The interactions for adding a periodical are similar and since they

provide no additional points of interest to the design, they are not illustrated.

Remove

Resource

The RemoveResource subject handles the structural and behavioural

implications of removing books and periodicals from the library. Figure 118

illustrates the structural and behavioural design. Removing a book and

removing a periodical are the behaviourally the same, and so the designer of

the RemoveResource subject need only reference and use the Resource

class. This is a feature of the subject-oriented design model, where a designer

need only specify details of elements that are relevant for the particular

requirement under design.

Here we can also see a difference in the specifications of the Resource

classes in the AddResource and RemoveResource subjects. In the

AddResource subject, Resource was defined as being abstract, while

here in the RemoveResource subject, it is not. Here, the designer has no

reason to set the Resource class as being abstract. Designers working inde-

pendently will not communicate this difference of opinion, and therefore, in

a composition of these two subjects, the details of the Resource classes

will clash, requiring reconciliation. The subject-oriented design model pro-

vides the means to resolve this conflict, discussed in “Composing Resource

Management Subjects” on page 237.

Figure 118: Remove Resource Class Diagram and Interactions

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

232

Order Resource Figure 119 and Figure 120 illustrate a structural and an interaction design,

respectively, for ordering resources for the library. The designer works with

only those elements that are relevant for ordering resources.

However, comparing this design with the design of the AddResource sub-

ject highlights a weakness with the subject-oriented design model. The

AddResource class diagram states that a resource must be stored in one

location. However, the OrderResource design uses the Resource class

to store the on-order information as well, and therefore it is not stored any-

where until it has been received. This designer does not even consider loca-

tions as they are not relevant for ordering. This is an example of where

knowledge of the domain is required to assess the impact of joining con-

straints from different models. The impact of this on composition is dis-

cussed in “Composing Resource Management Subjects” on page 237.

There is one more interesting point to note with the OrderResource sub-

ject, that the subject-oriented design model does cater for. The interaction

diagram illustrated in Figure 120 shows a setCourse() operation that sets

Figure 119: Order Resource Class Diagram

Figure 120: Order Resource Interactions

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

233

the orderedFor relationship with Course . A look at the AddResource

subject shows that here also is a setCourse() operation that sets the use-

dIn relationship with Course. Here are two operations with the same name

that are essentially different operations, and therefore the composition

designer must cater for this. How this is achieved is discussed further in

“Composing Resource Management Subjects” on page 237.

Search for

Library

Resource

A structural design for searching for library resources is illustrated in Figure

121. This design does not highlight any additional interesting points for the

subject-oriented design model.

Borrow Library

Book

Figure 122 and Figure 123 illustrate a structural and an interaction design,

respectively, for borrowing library books. Since only books may be bor-

rowed, the designer need only reference and include elements relating to

books. This design does not highlight any further additional interesting

points for the subject-oriented design model.

Figure 121: Search Resource Class Diagram

Figure 122: Borrow Book Class Diagram

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

234

Return Library

Book

Figure 124 and Figure 125 illustrate a structural and an interaction design,

respectively, for returning library books. This includes a calculation of the

appropriate fine for late return.

From a subject-oriented design model perspective, this design highlights

another interesting issue. The ReturnBook subject has two operations that

also appear in the BorrowBook subject. These are search() and setOn-

Loan(boolean), and are calls to the same operations in both cases. From

an integration perspective, the subject-oriented design model described in

this thesis has discussed merge and override. Merging operations means that

all merged operations are executed when any one is. Overriding operations

means that one operation’s specification is overridden by another. Conceptu-

ally, neither merge nor override applies. For example, it is not appropriate to

Figure 123: Borrow Book Interactions

Figure 124: Return Book Class Diagram

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

235

call the setOnLoan(boolean) operation twice if these operations are

merged. On the other hand, conceptually, overriding does not apply, as nei-

ther specification is an updated version of the other. “Composing Resource

Management Subjects” on page 237 discusses a work-around using override

integration, where one of the operations is arbitrarily chosen as the overrid-

den operation and the other as the overriding one. However, the subject-ori-

ented design model should include a mechanism for stating the operations are

not just corresponding, but are the same, and therefore only one should

appear in the result.

Pay Late-return

Fine

Figure 126 illustrates a design for recording the payment of fines. This

design does not highlight any further additional interesting points for the

subject-oriented design model.

Figure 125: Return Library Book Interactions

Figure 126: Pay Fine Class Diagram and Interactions

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

236

Concurrency The requirement for concurrency outlines specific library services which

should run concurrently, and how they should be synchronized. The designer

assigned to this subject could explicitly provide a concurrent design for just

those services that are specified. However, this designer recognises that con-

currency is not a requirement that is specific to any service in a library, but

that it potentially applies outside the library management system, and indeed,

to other services within the library management system. This requirement is

therefore better designed as a composition pattern, where it can be re-used

both inside and outside the current library system under design.

The Synchronize composition pattern illustrated in Figure 127 has one

pattern class, SynchronizedClass , representing any class requiring syn-

chronization behaviour. Within this pattern class, two template parameters

are defined, called _read(..) and _write(..), to represent reading and

writing operations. Synchronization behaviour introduces a number of ele-

ments, both structural and behavioural, to synchronized classes. Structural

properties activeReaders and activeWriters maintain counts of the

number of read and write requests currently in process (for write, this number

will never be > 1). Two interaction patterns define the required behaviour for

reading and writing. The read pattern ensures that any currently writing proc-

ess is complete prior to processing a read request. The write pattern ensures

that all currently reading and writing processes are complete prior to process-

ing a write request. In this example, and as described in “Chapter 8: Compo-

sition Patterns” on page 198, the designer utilizes operation merge semantics

by representing the actual replacing read and write operations with an “_”

pre-pended to the template parameter name – that is, using _read(..) and

_write(..). In this way, when the actual operation is executed in the con-

Figure 127: Synchronize Pattern Classes and Interactions

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

237

text of synchronization, the required behaviour is clearly defined within the

interactions.

Composition This section discusses the use of composition relationships to specify how to

compose the different library management system design subjects, and exam-

ines the output of such composition. With multiple, independent design sub-

jects, there are multiple possibilities for choosing which ones to compose at

any particular time. Research into a supporting design process for the sub-

ject-oriented design model should define guidelines to aid this choice. For

the purposes of illustration, and to aid discussion, the composition task is

divided up into: the composition of subjects specific to resource manage-

ment; the composition of subjects specific to borrowing and returning books;

the composition of the Synchronize pattern where appropriate.

Composing

Resource Man-

agement Sub-

jects

The design subjects appropriate to managing resources are AddResource ,

RemoveResource, SearchResource and OrderResource. Merge

integration is appropriate for composing these subjects, as all of the structure

and behaviour for each subject is required in the composed subject. In addi-

tion, a look at the separate designs shows that each designer generally used

names from the requirements specification, and so, generally, the same

names were used for the same base concepts. Therefore, a match[name]

attachment is appropriate for establishing correspondence between elements.

The issues and interesting points discussed within the design sections for

each subject were:

• The RemoveResource subject defines the Resource class as non-

abstract while the other subjects define it as abstract.

• The AddResource subject specifies that a Resource instance must be

storedIn one Location . The OrderResource subject uses the

Resource class for ordering information, and does not consider the

implications of its relationship with Location, as it does not concern

ordering.

• AddResource and OrderResource both have operations called set-

Course(), that are different.

Each of these issues may or may not have been noticed by the composition

designer. For the purposes of this study of the subject-oriented design model

we assume that the likelihood of differences in the specifications of elements

has been considered. To cater for it, the composition designer assigns a prec

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

238

attachment to the composition relationship, as illustrated in Figure 128. This

specifies that the specifications of elements in AddResource take prece-

dence in the event of a conflict. The remaining two issues are discussed in

the examination of the output of this composition specification.

The composition relationship defined in Figure 128 states that the

AddResource, RemoveResource, SearchResource and OrderRe-

source subjects are to be merged. Elements with the same name are corre-

sponding, and element specifications in AddResource take precedence in

the event of a conflict. This specification yields the output illustrated in Fig-

ure 129.

An examination of this output shows that the operations setCourse()

have been merged. That means, they have been deemed to correspond (based

on the match[name] attachment to the composition relationship) and there-

Figure 128: Specify Composition of Resource Management Subjects

Figure 129: Output of Composition of Resource Management Subjects

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

239

fore an execution of either one results in the execution of both. The composi-

tion process specifies this behaviour with the interaction diagram illustrated

in Figure 130.

As discussed previously, however, these operations are different, and should

not be considered to correspond. The subject-oriented design provides a

means to specify exceptions to a general name-matching correspondence

specification. It can be achieved by adding a relationship, with a dont-

Match attachment, between the two operations. This is illustrated in Figure

131.

The final previously identified issue relates to the cardinality constraint

between Resource and Location , specified in the AddResource sub-

ject, that states that a resource must be storedIn one location. This con-

straint causes a problem when AddResource is composed with

OrderResource. It is not appropriate that such a cardinality constraint is

put on resources that are only on order. This problem currently cannot be

solved using composition relationships, and requires domain knowledge to

identify. In such a case, the designer must solve the problem as appropriate

in the output subject. Alternatively, the designer may design a separate sub-

ject defining the appropriate association between Resource and Loca-

tion, and override the association in the composed subject in Figure 129.

Figure 130: Generated Interaction

Figure 131: Specifying Exception to General Matching

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

240

A final observation may be made on the output of this composition. The

semantics for merging subjects states that the name of the output subject is

the concatenation of each of the input subjects. In this case, the output sub-

ject’s name of AddResourceRemoveResourceOrderResource-

Search is not ideal. While it is possible to see at a glance which subjects

were included in the composition process, it is nonetheless a very long name

to work with. This may not be an issue for some domains, but research is

required to assess whether it is appropriate to provide a facility to the compo-

sition designer to specify the name of the output subject.

Composing Bor-

rowing Subjects

The design subjects appropriate to borrowing and returning books are Bor-

rowBook, ReturnBook and PayFine. Merge integration is appropriate

for composing these subjects, as all of the structure and behaviour for each

subject is required in the composed subject. In addition, a look at the separate

designs shows that each designer generally used names from the require-

ments specification, and so, generally, the same names were used for the

same base concepts. Therefore, a match[name] attachment is appropriate

for establishing correspondence between elements.

One interesting issue for the subject-oriented design was previously raised in

the description of the design of these subjects. The ReturnBook subject

and the BorrowBook subject both reference setOnLoan(boolean)

operations, which are the same. As previously discussed in “Return Library

Book” on page 234, neither merge integration nor override integration is con-

ceptually appropriate as the integration strategy. However, the end result the

composition designer wants is one setOnLoan(boolean) operation in the

output. This end result can be achieved using a composition relationship with

override integration as illustrated in Figure 132. The composition designer

arbitrarily nominates one of the operations as the one to be overridden, and

Figure 132: Specify Composition of Borrowing Subjects

Cas e Study and Evaluat ion D esign wi th S t ructura l Matching to Requir ements

241

the other as the overriding one. As required, and as illustrated in Figure 133,

only one setOnLoan(boolean) operation appears in the result.

While the required end result has been achieved, this nonetheless highlights a

gap within the subject-oriented design model which reinforces the need for

additional integration strategies.

Composition

with Synchroni-

zation Pattern

The output of a composition process is itself a design subject, and so the out-

put of the composition of the resource management subjects may be com-

posed with the Synchronize composition pattern subject. For

convenience, the output from the resource management composition is named

ResourceMgmt in this section.

Specifying how to compose the ResourceMgmt design subject with the

Synchronize composition pattern is achieved with the definition of a com-

position relationship between the two. The bind attachment denotes which

class(es) are to be supplemented with synchronization behaviour, and which

read and write operations are to be synchronized. As illustrated in Figure

134, ResourceMgmt’s ResourceManager class replaces the pattern

class in the output, addBook(), addPeriodical() and removeRe-

source() operations are defined as write operations, and search() is

defined as read.

Figure 133: Output of Composition of Borrowing Subjects

Figure 134: Specify Composition with Synchronization

Cas e Study and Evaluat ion Evolving the LMS

242

In the output subject illustrated in Figure 135, only the class impact by syn-

chronization is illustrated. All the other classes and relationships are added

unchanged.

This section has demonstrated how the initial design of a system may be

decomposed based on the requirements specifications, and how each design

model may be designed separately, and composed later. “10.4. Evaluation”

on page 247 assesses this design based on the criteria for assessing design

techniques used to motivate this work, described in “Chapter 2: Motivation”

on page 11. We now look at how to use the subject-oriented design model for

designing changes to a system.

10.3. Evolving the LMS
One of the benefits of using the subject-oriented design model stated in this

thesis is that its use eases the extensibility of software designs. In this sec-

tion, we examine the impact of extension requirements on the library man-

agement system, and assess the assertion that the subject-oriented design

model eases their inclusion into the software design. One requirement is

received as a result of the change to the business process associated with bor-

rowing rules. The second requirement arose as a result of a problem with the

existing design identified in system test.

Business process change:

• The rule relating to the borrowing of books is changed. In the current

design, there is a maximum number of books each borrower may borrow.

A change to this rule states that, in addition to the maximum limit, a bor-

Figure 135: Output of Composition with Synchronization

Cas e Study and Evaluat ion Evolving the LMS

243

row may not borrow a book if there is a fine outstanding from the previ-

ous loan of a book to that borrower.

System test problem:

• During system test, it is found that there is no defined behavioural rela-

tionship between the adding of resources to the system, and the mainte-

nance of order information. Once a resource is received and added to the

system, a check against the order information of that resource should be

made, with receipt of the order recorded.

Subjects As supported by the subject-oriented design model, the project manager may

decide to assign the two new requirements to different design teams, working

on different design subjects. The CheckBorrow subject handles the new

rules for borrowing books. The OrderReceived subject handles updating

order information.

Changed Rules

for Borrowing

The CheckBorrow subject defines a new operation called check() to han-

dle checking that the borrower has not reached its maximum limit, and that

there are no fines outstanding. This is illustrated in Figure 136. There are no

interesting issues relating to the subject-oriented design model.

Update Order

Information

Figure 137 illustrates the design for updating order information based on

information based on the receipt of resources.

This design does not explicitly refer to any of the add resource properties,

but knowledge of the subsequent composition of this subject with the design

for adding resources does have some influence. In particular, merge integra-

tion semantics for integrating operations applies, and therefore, the scope of

the lifeline of adding resources is relevant for the specification of the param-

eters to the bookReceived() operation. As described in “Impact of

Merge on Operations” on page 188, merging operations with parameters is

Figure 136: Updating rules for borrowing

Cas e Study and Evaluat ion Evolving the LMS

244

only possible with compatible parameter lists. In other words, in order for

bookReceived() to execute, the information it requires through its

parameters must be available from the operation first called in the execution

combination, which, in this case, is addBook(). More details are illustrated

in their composition specification in Figure 140.

Composition The design subjects to be composed to include the new rules for borrowing

books are the CheckBorrow subject and the ReturnBookBorrow-

BookPayFine subject. Override integration is appropriate for composing

these subjects, as the ReturnBookBorrowBookPayFine subject con-

tains design which is now obsolete because of the new requirement, and the

CheckBorrow subject contains a design for the new requirement. A

match[name] attachment specifies how to identify corresponding ele-

ments. One exception to this is that the new check() operation is designed

to override the old checkMax() operation, and this must be explicitly spec-

ified with a composition relationship. This composition specification is illus-

trated in Figure 138.

The ability to simply override one operation with another operation with a

different name depends on the forwarding semantics discussed throughout

Figure 137: Order Received

Figure 138: Specify Composition of Borrow Checking Update

Cas e Study and Evaluat ion Evolving the LMS

245

this thesis. The checkMax() operation forwards to check() in the output,

and therefore any references to now checkMax() reference check() .

The output from this composition, illustrated in Figure 139, is the same as

output from Figure 133 except for its name, and that the checkMax() oper-

ation has been overridden. The interaction calling checkMax() is changed

to call check() (not illustrated), as defined by forwarding semantics.

The design subjects to be composed to include the updating of order informa-

tion on addition of resource information are the OrderReceived subject

and the composed resource management subjects. As before, and for conven-

ience, the output from the resource management composition is named

ResourceMgmt in this section.

Specification of how to compose the OrderReceived subject with the

ResourceMgmt subject is achieved with a composition relationship with

merge integration (see Figure 140). Merge is chosen as the integration strat-

egy as this is additional behaviour, designed to enhance already existing

Figure 139: Output of Composition of Borrow Checking

Cas e Study and Evaluat ion Evolving the LMS

246

behaviour. A match[name] attachment specifies how to identify corre-

sponding elements.

There are two exceptions to this general matching case. The bookRe-

ceived() operation and the addBook() operation are considered corre-

sponding as they as to be executed together. Similarly for the

periodicalReceived() operation and the addPeriodical() opera-

tion. The composition designer dictates the order of execution of these two

corresponding sets by attaching interactions to the appropriate composition

relationships. This order conforms to the rules associated with merging oper-

ations of different signatures described in “Impact of Merge on Operations”

on page 188. The calling operation must have the information to support the

calls to subsequent operations in the corresponding set.

Figure 140: Specify Composition with Receiving Orders

Cas e Study and Evaluat ion Evaluat ion

247

The output of the composition specification in Figure 140 is illustrated in

Figure 141.

This section has demonstrated how the subject-oriented design model sup-

ports the evolution of existing software designs. Changes may be designed

independently in separate design models, and subsequently composed with

the existing designs. We now evaluate the model against the criteria motivat-

ing this work described in “Chapter 2: Motivation” on page 11.

10.4. Evaluation
The criteria motivating this research described in “Chapter 2: Motivation” on

page 11 were: product flexibility; comprehensibility; and managerial con-

cerns. We now look at the experience of designing and evolving the library

management system case study against these criteria.

Product Flex-

ibility

As discussed in “Chapter 2: Motivation” , product flexibility is the “possibil-

ity of making drastic changes to one part of the system, without the need to

change others”. Here, it was illustrated that scattering and tangling of design

elements within traditional object-oriented models was an impediment for

ease of change. In this case study, the subject-oriented design model’s sup-

port for decomposition based on structural matching with requirements

showed itself to considerably reduce the negative effects scattering and elim-

inate tangling entirely. From a scattering perspective, support for a require-

ment still needs a design across multiple classes and design elements. This is

Figure 141: Output of Composition with Receiving Orders

Cas e Study and Evaluat ion Evaluat ion

248

the nature of object-oriented design. However, the negative impact of scatter-

ing, where it is difficult to find all the appropriate design elements for a par-

ticular requirement, is reduced. This is because all the design elements in a

particular subject are pertinent for the requirement under design, and all the

design elements required to support that requirement are contained in the

particular subject. This is the case for each of the design subjects in the

library management system. From a tangling perspective, this property is

eliminated, as for each of the library design subjects, only one requirement’s

design is contained in that subject. This is the case even where one of the

requirements, the concurrency one, impacts other requirements. The use of

composition patterns, such as the synchronization composition pattern in the

library management system, supports the clean separation of such cross-cut-

ting behaviour.

As regards traceability and evolvability, the ability to decompose design

models to structurally match requirements makes this easier. For each of the

library management system design subjects, it is clear which requirement is

supported. For each requirement, it is clear which design subject supports it.

The changes to the library design proved no more difficult to design sepa-

rately than did the original requirements. However, the case study did illus-

trate that the composition designer needed to be careful when merging

corresponding operations. Merging the recording of order receipt information

with the adding of resources to the system (Figure 140 on page 246) required

careful specification of the order of execution of corresponding operations.

Comprehen-

sibility

As discussed in “Chapter 2: Motivation” , comprehensibility is the “possibil-

ity of studying one part of the system at a time. The whole system can there-

fore be better designed because it is better understood”. The subject-oriented

design model does not guarantee that a design will be easy to understand.

Where a requirement is complex, it is likely its design will be complex, and

any designer not familiar with the details of such a requirement may find its

design details difficult to understand. What has been achieved with the sub-

ject-oriented design model, as illustrated in the library management system,

is that the design can be studied “one part at a time”. The reduction of the

negative impact of scattering, and the removal of tangling, both support the

study of the system one requirement at a time.

Managerial As discussed in “Chapter 2: Motivation” , managerial issues concern the

“length of development time, based on whether different groups can work on

Cas e Study and Evaluat ion Evaluat ion

249

different parts of the system with little need for communication”. This case

study has not proved that the length of development time using the subject-

oriented design model is less than the length of development time using tra-

ditional object-oriented approaches. To do this requires timing different

teams, of similar design experience, and with similar levels of familiarity

with the library management domain, creating two separate designs. What the

case study has illustrated though, is that “different groups can work on dif-

ferent parts of the system with little need for communication”. Without sub-

ject-oriented design, the project manager is faced with the situation

illustrated in Figure 114 on page 228, where designer access to classes must

be managed, requiring communication amongst designers. As illustrated in

the case study, each of the design teams may work independently of the oth-

ers, without communication.

Comment Not surprisingly, the subject-oriented design model performs well against the

stated criteria, since it was designed to do exactly that. However, this case

study identified some problems outside these criteria. First, conflicting con-

straints are not readily recognisable, and cannot be handled with composition

relationships. As illustrated in Figure 129 on page 238, the cardinality con-

straint imposing one location for each resource conflicts with resources only

on order, which do not yet have a location. As discussed, the designer must

notice this in order to fix it. It is likely that using traditional object-oriented

methods this problem would not occur. Whether it was the designer adding

orders to resources after the location was associated, or the designer associat-

ing locations to resources after the orders were associated, in either case, the

problem is likely to have been resolved. Further research is required to assess

whether this problem can be ameliorated with subject-oriented design.

Another problem identified is the limitations in the integration strategies cur-

rently supported. As illustrated in Figure 132 on page 240, there are times

when neither override nor merge is appropriate. In this particular case, a

workaround is achieved within the current subject-oriented design model, but

it is likely that other cases might not be so readily worked around. This pos-

sibility has been identified and catered for in the metamodel for subject-ori-

ented design described in “Chapter 5: Composition Relationship: An

extension to the UML Metamodel” on page 109, where the Integration

metaclass is abstract, supporting its extension by additional integration strat-

egies.

Cas e Study and Evaluat ion Chapter Summ ary

250

In addition, we must recognise that the approach has not been applied to a

large project, and therefore, unforeseen difficulties are possible. For exam-

ple, what might be the sociological impact of separating teams? Will teams

welcome the narrowing of design focus to a single requirement, as it may be

less challenging? Is it reasonable to assume that composition relationship

designers will have sufficient skill to assess the impact of composing design

subjects? All the implications of using subject-oriented design will only

become clear with its application to a large project.

Notwithstanding these issues and uncertainties, the benefits against the spec-

ified criteria are sufficiently encouraging for continuing research into this

area, and extending the model as described in “11.2. Future Work” on page

253.

10.5. Chapter Summary
This chapter illustrates and evaluates the design of a library management sys-

tem using the subject-oriented design model. Decomposition into design sub-

jects is based on a one-to-one mapping with the requirements specifications.

This approach to identifying design subjects is taken both for the initial sys-

tem, and for the new requirements received after the design of the initial sys-

tem is in place. Composition specifications using composition relationships

are demonstrated, with the output of each illustrated.

The design of the case study is evaluated against the criteria motivating this

research: product flexibility; comprehensibility; and managerial concerns.

Subject-oriented design structurally matches design models with the struc-

ture of requirements specifications. As a result, it is illustrated that each cri-

teria benefits from the considerable reduction in the negative impact of

scattering properties, and from the removal of tangling properties. However,

some issues are raised with the model. Composing separate design models

may lead to the existence of conflicting constraints in the composed design

model. This problem is currently not solvable within the subject-oriented

design model, and so the designer must be vigilant in investigating and solv-

ing such problems. In addition, the currently available integration strategies

are not sufficient to cater for all possibilities. This possibility was addressed

in the specification of the metamodel for subject-oriented design discussed in

“Chapter 5: Composition Relationship: An extension to the UML Meta-

model” on page 109.

251

Chapter 11: Summary, Conclu-
sions and Future Work

This thesis has addressed a number of issues relating to the current limita-

tions with object-oriented design techniques. While there are benefits to the

approach described as it is in this thesis, much work remains to be done. This

chapter summarises the research to date as defined in this thesis, draws con-

clusions as to its benefits and limitations, and details the current view of

remaining work in this area.

11.1. Summary
This thesis described a new approach to object-oriented design, which

addresses issues relating to the modularisation and composition capabilities

of existing approaches.

First, the thesis illustrates and highlights the problems caused by limitations

in the existing modularisation capabilities of the current object-oriented

design paradigm. At the root of the problems is the fundamental structural

difference between the way requirements are specified and the way object-

oriented designs are specified. Because of this structural difference, design

for a single requirement is scattered across the design elements of an object-

oriented model, and a single design element is tangled with support for mul-

tiple requirements. This leads to difficulties in model comprehension, and

difficulties relating to the ease of extensibility and re-use of object-oriented

design models.

The thesis then proposed a new approach to designing object-oriented sys-

tems that removes the structural mismatch with requirements by extending

the decomposition capabilities of object-oriented models. This extension sup-

ports the direct decomposition of object-oriented models to match the struc-

ture of a requirements specification. In other words, design models may be

defined separately for each requirement in a requirements specification. The

thesis illustrates how potential overlaps in the design of core concepts for

Summary, Conclus ions and Future Work Summary

252

different requirements are catered for. Cross-cutting requirements are also

supported within the model.

Decomposition in this manner requires supporting composition capabilities.

Therefore, the thesis defined a new kind of design relationship, called a com-

position relationship that supports the specification of how design models

may be composed. With composition relationships, areas of overlap in differ-

ent design models to be composed may be identified, along with specifying

how models should be integrated. The syntax and semantics of composition

relationships relative to the UML Metamodel are defined in detail. This is

achieved with meta-class models illustrating the constructs associated with

composition relationships, well-formedness rules denoting constraints on the

specification of composition relationships, and a detailed description of the

semantics of composition as defined by composition relationships.

The composition relationship metamodel is designed to support seamless

addition of integration strategies. The thesis illustrates how this may be

achieved by defining two integration strategies within the context of the

composition relationship metamodel. These strategies are override integra-

tion and merge integration.

The impact of override integration on the UML design elements supported in

this thesis is described in detail. Override integration essentially replaces

elements in one design model with corresponding elements in another design

model. Merge integration is also defined in detail, and entails the composi-

tion of design models where all of the design elements are relevant for inclu-

sion in the composed model.

For merge integration, the thesis also demonstrates how sophisticated merg-

ing of behaviour is possible by enabling the attachment of interaction dia-

grams to a composition relationship. In this manner, the behaviour of

corresponding operations may be explicitly defined as part of the composi-

tion specification. The thesis further expounds on this theme by supporting

the specification of patterns of composition, based on and extending the

notions of templates and binding that is already supported within the UML,

combined with the power of composition as defined within this thesis. The

thesis illustrates how composition patterns support the specification of how

cross-cutting behaviours, which impact design elements in a uniform manner,

may be composed wherever required. Merge integration also requires strate-

gies for reconciling possible conflicts between design elements. This thesis

defines a number of different possible strategies - subject precedence, default

Summary, Conclus ions and Future Work Future Work

253

specification, explicit value specification, and transform functions - and

includes these strategies in the context of the UML metamodel.

The thesis then illustrated how the subject-oriented model changes the design

for the motivating example, and asserts that the design is easier to under-

stand, illustrates the ease with which it may be extended, and asserts that the

design subjects are easier to reuse in different compositions.

11.2. Future Work
The work described in this thesis represents the initial “proof-of-concept” of

the subject-oriented design model. For a subset of the constructs in one

design language (the UML), the subject-oriented design model proves itself

to be valuable against some standard software engineering quality criteria -

comprehension, extensibility and reuse. However, much work remains to be

done to make the subject-oriented design model a formally sound and com-

mercially viable option for large projects. This section categorises the areas

where work is required as follows:

• Supporting Technologies: This section examines what is required for tool

support, and alignment with other technologies at the programming level

• Additional Features and Rules: This section considers additional features

which would extend the capabilities of the subject-oriented design model.

• Software Development Process Support: This section discusses how some

work into examining the impact of the availability of capabilities such as

those defined within the subject-oriented design model might change a

software development process.

• Formal Foundations: The description of the semantics of the subject-ori-

ented design model is non-formal. This section discusses the possible

need for a more mathematical foundation for the model.

Supporting

Technologies

There are two main areas in which supporting technologies are required to

make use of the subject-oriented design model viable for large projects: sup-

porting CASE tool environments at the design level; and automation of a link

from this design approach to supporting programming models.

First, CASE tool support for the design phase. Ideally, in order to make the

subject-oriented design model a commercially viable option, support would

need to be included in the major commercial CASE tools - for example,

Rational Rose or Together. It currently seems unlikely that this will occur

unless the extensions to the UML described in this language become part of

Summary, Conclus ions and Future Work Future Work

254

the standard language. Therefore, future work in this area will be focused on

including support for the model in an open source CASE tool, called Argo/

UML. Argo/UML was originally developed by a small group of people as a

research project, and this group now provides the source code for Argo/UML

publicly on the internet for review and customisation. The UML metamodel

is directly supported, and therefore, we intend to include extensions to the

tool to support subject-oriented design in a public manner that conforms to

the vision and publication standards of any other extension to the tool.

Secondly, links to supporting technologies at the programming level should

be considered. The most closely related programming model to subject-ori-

ented design is the subject-oriented programming model currently imple-

mented in a tool called Hyper/J [Tarr & Ossher 2000]. There are two parts to

linking the design model described in this thesis with the subject-oriented

programming model: programming the individual design subjects into sepa-

rate Java code subjects; and generating composition rules (the means for

specifying how programs should be composed) from composition relation-

ships. Programming code subjects from design subjects is the same process

as standard programming from a design. Generating composition rules from

composition relationships requires some investigation to determine the dif-

ferences between composition relationships and composition rules, and to

assess the exact mapping from composition relationship constructs to compo-

sition rules. An actual generation implementation is also required. Genera-

tion of composition rules from composition relationships should be

implemented within the context of the Argo/UML tool.

Another programming approach that is related to the subject-oriented design

model is the work on aspect-oriented programming currently implemented in

a tool called AspectJ [Kiczales & Lopes 1999]. Aspect-oriented program-

ming supports the separate implementation of cross-cutting requirements

from base programs implementing the core problem domain. In AspectJ,

aspect programs contain the implementation of methods for the cross-cutting

requirement, and an indication of the places within the base programs where

these methods should be included. Composition is achieved with an aspect

weaver that adds the cross-cutting methods to the base program as appropri-

ate. An interesting piece of future work is the extent to which composition

patterns, as defined in the subject-oriented design model, may be used as a

means to design cross-cutting aspects. It is conceivable that the combination

of a design subject containing placeholders for corresponding design ele-

ments, and composition relationships binding other subjects to a cross-cut-

Summary, Conclus ions and Future Work Future Work

255

ting subject specification (i.e. the combination that defines a composition

pattern) may be used to design aspect programs.

Additional

Features and

Rules

The most important extension required to the subject-oriented design model

as described in this thesis is to analyse and include support for all UML

design models. The scope of the work for this thesis was essentially class and

interaction models. Support for object, state, activity, use case, component

and deployment models is required.

Another interesting area that could extend the subject-oriented design model

is consideration of different kinds of relationships between design subjects.

These relationships could constrain the kinds of composition relationships

possible. For example, if two subjects support two mutually exclusive

requirements, then this relationship could be specified between the subjects,

thereby constraining their composition - that is, only one of the two subjects

may be involved in a particular composition context. As described in “Fea-

ture Interaction Problem” on page 106, investigation into this area might

yield interesting results in how to support the design of features whose inter-

actions are constrained. Relationships between subjects may also necessitate

that compositions are ordered in a particular way - that is, it is appropriate

for one set of subjects to be composed prior to composition with another (set

of) subject(s). This area needs to be investigated further, and if required, sup-

port for ordering of compositions included in the model.

From an integration perspective, some additional features could be included

to extend the capabilities of the model. For example:

• Override integration, as currently specified, replaces (some) design ele-

ments in one subject with corresponding design elements in another. In

some cases, there may also be design elements in the overridden subject

that are no longer required, but are not explicitly replaced by correspond-

ing elements in the overriding subject. An additional feature to support

this requirement is to provide a means to identify elements in the overrid-

den subject that are to be deleted as a result of composition - that is, not

explicitly integrated with corresponding elements, but nonetheless not

appearing in the output of the composition.

• Two kinds of integration strategies are defined in this thesis - override

and merge. There may be other kinds of integration strategies that are use-

ful for composing models. For example, a select integration strategy,

where a dynamic selection of the appropriate design elements from differ-

ent subjects is made based on the values of environment variables, is an

Summary, Conclus ions and Future Work Future Work

256

interesting additional feature which should be considered. A complete

investigation into requirements for different integration strategies is an

interesting area for future work.

• An area not considered in this thesis is the possibility of additional prop-

erties arising for the output of the composition. These are not defined in

any input subject, but arise as a result of the composition itself. This area

has not been investigated, but is included in future work.

• In both override integration and merge integration, it is possible that

cycles may be created in the output subject. Currently, this is treated as a

breakage of the well-formedness rules, and must be fixed by the designer.

A more helpful approach may be possible, using ideas from [Walker

2000].

The composition patterns model, discussed in “Chapter 8: Composition Pat-

terns” on page 198, also presented interesting opportunities for development.

These are:

• In the current model, a composition designer specifies pattern classes and

template parameters that are fully replaced on composition with those ele-

ments defined for replacement on the composition relationship. As dis-

cussed in “Further Potential for Template Rule Specification” on

page 205, there is considerable scope for extending the capabilities of the

composition patterns designer in the area of specifying constraints on the

replacing elements.

• Related to the previous item, there is also scope to broaden the capabili-

ties of the composition relationship defining the elements that replace

templates with its bind[] attachment. For example, sophisticated wild-

card matching is possible.

• In the current model, there is a restriction that only one of the subjects in

a single composition context is a composition pattern. Further investiga-

tion into whether there is a need to remove this restriction is required. If it

should be removed, an examination of the impact of its removal on the

model must be done.

From a more detailed perspective, there are other areas within the subject-

oriented design model’s features and rules that may be extended to expand

the usefulness of the model. Those areas are:

• In “Forwarding of References” on page 96, there is a discussion on how

references to elements which may have changed as a result of composition

may be forwarded to refer to the changed elements in the output subject.

Summary, Conclus ions and Future Work Future Work

257

Within the current model, a single specification of forwarding covers all

elements within a particular subject. An area worth investigating is the

need for, and usefulness of, supporting separate forwarding options for

individual elements.

• Also related to forwarding, there is a discussion, in “Merged Operations

and Forwarding of References” on page 195 , of how the process for crea-

tion of operations to define the delegation to corresponding, merged oper-

ations might be refined to only require one such operation, to which all

the input corresponding operations forward. This area requires investiga-

tion to determine any possible impact on the semantics of forwarding in

general.

• In “Incompatible Elements” on page 100, there is a discussion on how the

current subject-oriented design model restricts composition of operations

with any conflicting properties (excluding parameter lists). Further work

is required to define a full set of appropriate rules guarding, on the one

hand, against loss of any input subject constraints in the composed model,

while not being overly restrictive.

• In “Merged Operations with Return Types” on page 194, there is a discus-

sion relating to the difficulties associated with return values from merged

operations. Support, similar to that provided in Hyper/J, for allowing a

designer to work with the return values of all executed operations to pro-

vide the most appropriate result should be included in the subject-oriented

design model.

• Within the current subject-oriented design model, a rule has been defined

restricting corresponding elements to being of the same type. An interest-

ing area for future work is to analyse whether this rule is too restrictive.

Within the database schema integration field, some different kinds of

fields may be integrated. An analysis of the impact of removing this rule

on integration of subjects is included in future work for the subject-ori-

ented design model.

• More flexible means for general specification of matching for correspond-

ing elements needs to be included in the model. Currently, general match-

ing is supported based on a name-match of elements. Other possibilities

need to be examined, and if appropriate, included in the model.

Summary, Conclus ions and Future Work Future Work

258

Software

Develop-

ment Pro-

cess Support

The impact of the subject-oriented design model on the software develop-

ment process has not been explored in this thesis. This is an important area

requiring examination. Some of the areas in which a software process may

aid the subject-oriented design model are:

• in the initial selection of the appropriate design subjects based on the

requirements specification. For example, further guidelines beyond “one

requirement, one subject” may be appropriate as to whether there should

be a separate subject designed for a particular problem versus whether the

design should be included as part of another subject.

• in the decision as to whether to design a change/update to a particular sub-

ject as a separate subject in its own right (and use composition with over-

ride integration), or whether to simply change the subject directly. Work

into assessing the impact of maintaining multiple subjects versus making

some small changes directly will assist in the development of a set of

guidelines to assist such a decision.

• in the decision as to the extent of the autonomy of separate design teams

for separate overlapping subjects. Where there is no communication

between teams on overlapping elements, conflicts may require complex

composition relationships for the specification of composition. Where

there is some communication, composition relationships may be less com-

plex. Guidelines to find the most appropriate balance for a particular

project are required.

A complete assessment of the impact of the subject-oriented design model on

the full software development process is required.

Another major area that has not been addressed in this thesis is the possibili-

ties associated with the “harvesting” of design subjects from design models

not designed using the subject-oriented design model. Object-oriented design

has been around for some time, and therefore there may be many models

which contain the design for problems/requirements that could potentially be

reused elsewhere. An interesting area for future work is to analyse whether it

is possible to extract design subjects from legacy design models, that contain

the complete design for only one problem/requirement.

Formal Foun-

dations

The specification of the subject-oriented design model in this thesis is infor-

mal, and therefore it has not been proven that it is mathematically sound. A

formal, mathematical foundation for the model might therefore be useful.

Work in this area will align itself with any formalisation of the UML itself.

Summary, Conclus ions and Future Work Conclusions

259

An interesting extension to such a formal foundation is the scope for defining

an algebra relating to subject composition. This could include the specifica-

tion of a composition operator, on which properties such as associativity,

commutativity, and transitivity might be defined.

11.3. Conclusions
The objective of this thesis was to realise more of the benefits of object-ori-

ented software design than are currently evident with existing approaches.

For small scale examples, with a subset of the UML language, this is

achieved with the addition of a decomposition capability supporting the

structuring of object-oriented designs with requirements specifications.

Within this scope, design models are easier to understand, extend and reuse.

Understanding the design of a single requirement necessitates understanding

the design of only one design model, without having to consider elements not

relevant for that requirement. Alternatively, understanding a particular

design model necessitates understanding only one requirement. Changing a

design is simpler, as any change may be made separately, to be integrated

later, as specified with a composition relationship. Re-use of design models

is more achievable because of the lack of tangling of design elements sup-

porting multiple requirements. With composition patterns, reuse of cross-cut-

ting requirements is supported.

Though no evidence is presented to prove the same results are achievable for

large-scale commercial projects or for all kinds of design models, the results

illustrated are sufficiently encouraging to warrant further focus. As a prior-

ity, all the UML design models must be examined to assess the impact of

composition on them. Another priority, without which the subject-oriented

design model is arguably not usable, is the inclusion of support for the model

in a CASE tool that is sufficient to handle large-scale projects. When these

two areas have been handled, then the subject-oriented design model may be

tested for its effectiveness in achieving the required benefits of software

design. Results illustrated in this thesis lend encouragement and hope that the

toolbox of the software engineer is considerably strengthened when the sub-

ject-oriented design model is included.

260

Bibliography

[Aksit et al. 1992] Mehmet Aksit, Lodewijk Bergmans, Sinan Vural “An Object-Oriented Lan-

guage-Database Integration Model: The Composition-Filters Approach” In

proceedings of European Conference on Object-Oriented Programming

(ECOOP) 1992

[Alencar et al. 1996] Paolo Alencar, Donald Cowan, Torsten Nelson, Carlos Lucena. “Towards a

formal link between viewpoints in analysis and implementation” In proceed-

ings of Object-Oriented Programming Systems, Languages and Applications

(OOPSLA) Workshop on Subjectivity, 1996

[Andersen & Reen-
skaug 1992]

Egil Andersen, Trygve Reenskaug. “System Design by Composing Struc-

tures of Interacting Objects” In proceedings of European Conference on

Object-Oriented Programming (ECOOP) 1992

[Atkinson et al. 1990] Malcolm Atkinson, François Bancilhon, David DeWitt, Klaus Dittrich,

David Maier, Stanley Zdonik. “The Object-Oriented Database System Man-

ifesto” Deductive and Obkect-Oriented Databases, Elsevier Science Publish-

ers, 1990

[Batini et al. 1986] C. Batini, M. Lenzerini, S.B.Navathe. “A Comparative Analysis of Method-

ologies for Database Schema Integration” ACM Computing Surveys, Vol.

18, No. 4, 1986

[Bell & Grimson 1992] David Bell, Jane Grimson. “Distributed Database Systems” Addison-Wes-

ley, 1992

[Bertino & Illarra-
mendi 1996]

Elisa Bertino, Arantza Illarramendi. “The Integration of Heterogeneous

Data Management Systems: Approaches Based on the Object-Oriented Par-

adigm” In Object-Oriented Multidatabase Systems - A solution for

Advanced Applications, Eds: Bukhres, Elmagarmid. Prentice-Hall 1996

[Booch 1994] Grady Booch. “Object-Oriented Analysis and Design with Applications”

2nd Edition, The Benjamin/Cummings Series in Object-Oriented Software

Engineering, 1994

[Booch et al. 1998] Grady Booch, James Rumbaugh, Ivar Jacobson. “The Unified Modeling

Language” The Object Technology Series, Addison-Wesley, 1998

261

[Bright et al. 1992] M.W.Bright, A.R.Hurson, Simin H. Pakzad. “A Taxomony and Current

Issues in Multidatabase Systems” IEEE Computer, March 1992

[Bright et al. 1994] M.W.Bright, A.R.Hurson, Simin H. Pakzad. “Automated Resolution of

Semantic Heterogeneity in Multidatabases” ACM Transactions on Database

Systems, Vol. 19, No. 2, June 1994

[Carmichael 1994] Andy Carmichael (Editor) “Object Development Methods” SIGS Books,

1994

[Chambers 1993] Craig Chambers. “Predicate Classes” In proceedings of European Confer-

ence on Object-Oriented Programming (ECOOP) 1993

[Chiba & Masuda
1993]

Shigeru Chiba, Takashi Masuda. “Designing an Extensible Distributed Lan-

guage with a Meta-Level Architecture” In proceedings of European Confer-

ence on Object-Oriented Programming (ECOOP) 1993

[Clarke 2000a] Siobhán Clarke. “Extending UML Metamodel for Design Composition” In

proceedings of the International Conference on Software Engineering

(ICSE) Workshop on Multi-Dimensional Separation of Concerns in Object-

Oriented Systems, 2000

[Clarke 2000b] Siobhán Clarke. “Composing Design Models: An extension to the UML” In

proceedings of the 3rd Unified Modeling Language (UML) conference,

2000

[Clarke 2000c] Siobhán Clarke. “Designing Reusable Patterns of Cross-Cutting Behaviour

with Composition Patterns” In proceedings of Object-Oriented Program-

ming Systems, Languages and Applications (OOPSLA) Workshop on

Advanced Separation of Concerns, 2000

[Clarke et al. 1999a] Siobhán Clarke, William Harrison, Harold Ossher, Peri Tarr. “Subject-Ori-

ented Design: Towards Improved Alignment of Requirements, Design and

Code” In proceedings of Object-Oriented Programming Systems, Lan-

guages and Applications (OOPSLA) 1999

[Clarke et al. 1999b] Siobhán Clarke, William Harrison, Harold Ossher, Peri Tarr. “The Dimen-

sion of Separating Requirements Concerns for the Duration of the Develop-

ment Lifecycle” In proceedings of Object-Oriented Programming Systems,

Languages and Applications (OOPSLA) Workshop on Multi-Dimensional

Separation of Concerns in Object-Oriented Systems, 1999

[Clarke et al. 1999c] Siobhán Clarke, William Harrison, Harold Ossher, Peri Tarr. “Subject-Ori-

ented Design: Support for Evolution from the Design Stage” In proceedings

of the Workshop on Software and Organisation Co-Evolution (SOCE) 1999

262

[Clarke et al. 1999d] Siobhán Clarke, William Harrison, Harold Ossher, Peri Tarr. “Separating

Concerns Throughout the Development Lifecycle” In proceedings of Euro-

pean Conference on Object-Oriented Programming (ECOOP) Workshop on

Aspect-Oriented Programming, 1999

[Clarke et al. 1999e] Siobhán Clarke, William Harrison, Harold Ossher, Peri Tarr. “Designing for

Evolution with Subjects” In proceedings of the International Conference on

Software Engineering (ICSE) Workshop on Software Change and Evolution,

1999

[Clarke & Murphy
1998a]

Siobhán Clarke, John Murphy. “Composition of UML Design Models: A

tool to support the resolution of conflicts” In proceedings of Object-Ori-

ented Information Systems (OOIS) 1998

[Clarke & Murphy
1998b]

Siobhán Clarke, John Murphy. “Developing a Tool to Support Aspect-Ori-

ented Programming principles at the Design Phase” In proceedings of the

International Conference on Software Engineering (ICSE) Workshop on

Aspect-Oriented Programming, 1998

[Clarke & Murphy
1998c]

Siobhán Clarke, John Murphy. “Verifying Components under development

at the design stage: A tool to support the composition of component design

models” In proceedings of the International Conference on Software Engi-

neering (ICSE) Workshop on Component-Based Software Engineering,

1998

[Clarke & Murphy
1997]

Siobhán Clarke, John Murphy. “Developing a Tool to support Composition

of the Components in a Large-Scale Development” In proceedings of

Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA) Workshop on Object-Oriented Behavioural Semantics, 1997

[Coleman et al. 1994] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena

Gilchrist, Fiona Hayes, Paul Jeremes. “Object-Oriented Development. The

Fusion Method” Prentice Hall 1994

[Collet et al. 1991] Christine Collet, Michael Huhns, Wei-Min Shen. “Resource Integration

Using a Large Knowledge Base in Carnot” IEEE Computer, December

1991

[Cook & Daniels 1994] Steve Cook, John Daniels. “Designing Object Systems. Object-Oriented

Modelling with Syntropy” Prentice-Hall, 1994

[deChampeaux & Faure
1992]

Dennis de Champeaux, Penelope Faure. “A Comparative Study of Object-

Oriented Analysis Methods” Journal of Object-Oriented Programming,

March/April 1992

[D’Souza & Wills
1998]

Desmond D’Souza, Alan Cameron Wills. “Objects, Components and

Frameworks with UML. The Catalysis Approach” Addison-Wesley, 1998

263

[Easterbrook 1991] Steve Easterbrook. “Elicitation of Requirements from Multiple Perspec-

tives” Ph.D. thesis, Department of Computing, Imperial College, London.

1991

[Engels & Groenewe-
gen 2000]

Gregor Engels, Luuk Groenewegen. “Object-Oriented Modeling: A Road-

map” In proceedings of “The Future of Software Engineering 2000”, Editor:

Anthony Finkelstein, International Conference on Software Engineering.

[Gamma et al. 1994] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. “Design Pat-

terns. Elements of Object-Oriented Software” Addison-Wesley 1994

[García-Solaco et al.
1996]

Manual García-Solaco, Fèlix Saltor, Malú Castellanos. “Semantic Heteroge-

neity in Multidatabase Systems” In Object-Oriented Multidatabase Systems

- A solution for Advanced Applications, Eds: Bukhres, Elmagarmid. Pren-

tice-Hall 1996

[Gosling et al. 1996] James Gosling, Bill Joy, Guy Steele “The Java™ Specification Language”

Addison-Wesley 1996

[Gotthard et al. 1992] Willi Gotthard, Peter C. Lockemann, Andrea Neufeld. “System-Guided

View Integration for Object-Oriented Databases” IEEE Transactions on

Knowledge and Data Engineering, Vol.4, No. 1, February 1992

[Gowing & Cahill
1996]

Brendan Gowing, Vinny Cahill. “Meta-Object Protocols for C++: The

Iguana Approach” In proceedings of Reflection’96, San Francisco, USA,

1996

[Graham 1993] Ian Graham “Object Oriented Methods” Addison-Wesley, 1993

[Griss et al. 1998] Martin Griss, John Favaro, Massimo d’Alessandro “Integrating Feature

Modeling with the RESB” In proceedings of International Conference on

Software Reuse (ICSR) 1998

[Hailpern & Ossher
1990]

Brent Hailpern, Harold Ossher “Extending Objects to Support Multiple

Interfaces and Access Control” IEEE Transactions on Software Engineering

16(11), pp 1247-1257, 1990

[Härder et al. 1999] Theo Härder, Günter Sauter, Joachim Thomas. “The intrinsic problems of

structural hetergeneity and an approach to their solution” The VLDB Jour-

nal, 8: 25-43, Springer-Verlag, 1999

[Harrison & Ossher
1993]

William Harrison, Harold Ossher. “Subject-Oriented Programming (a cri-

tique of pure objects)” In proceedings of Object-Oriented Programming

Systems, Languages and Applications (OOPSLA) 1993

[Harrison et al. 1996] William Harrison, Haim Kilov, Harold Ossher, Ian Simmonds. “From

dynamic supertypes to subtypes: A natural way to specify and develop sys-

tems” IBM Systems Journal, 35, 244-256, 1996

264

[Helm et al. 1990] Richard Helm, Ian Holland, Dipayan Gangopadhyay “Contracts: Specifying

Behavioral Compositions in Object-Oriented Systems” In proceedings of

Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA) 1990

[Holland 1992] Ian Holland. “Specifying Reusable Components Using Contracts” In pro-

ceedings of European Conference on Object-Oriented Programming

(ECOOP) 1992

[Hutt 1994] Andrew Hutt (Editor) “Object Analysis and Design. Comparison of Meth-

ods” Object Management Group, John Wiley & Sons, 1994

[IBMa 2000] “IBM Business Management Workbench” IBM Corporation, 2000

[IBMb 2000] “Worldwide Project Management Method” IBM Corporation, 2000

[Jackson & Zave 1998] Michael Jackson, Pamela Zave. “Distributed Feature Composition: A Vir-

tual Architecture for Telecommunications Services” IEEE TSE Special

Issue on Feature Interaction, 1998

[Jacobson 1994] Ivar Jacobson. “Time for a Cease-Fire in the Methods War” Panel on

“Methodology Standards: Help or Hindrance?” In proceedings of Object-

Oriented Programming Systems, Languages and Applications (OOPSLA)

1994

[Jacobson et al. 1999] Ivar Jacobson, Grady Booch, James Rumbaugh. “The Unified Software

Development Process” Addison-Wesley, 1999

[Jacobson et al. 1992] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Övergaard.

“Object-Oriented Software Engineering. A Use-Case Driven Approach”

Addison-Wesley, 1992

[Kiczales et al. 1991] Gregor Kiczales, Jim des Rivières, Daniel G. Bobrow. “The Art of the

Metaobject Protocol” Massachusetts Institute of Technology 1991

[Kiczales et al. 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, John Irwin. “Aspect-Oriented Programming”

In proceedings of European Conference on Object-Oriented Programming

(ECOOP) 1997

[Kiczales & Lopes
1999]

Gregor Kiczales, Cristina Lopes. “Aspect-Oriented Programming with

AspectJ™” http://www.aspectj.org

[Kilov & Ross 1994] Haim Kilov, James Ross. “Information Modeling. An object-oriented

approach” Prentice-Hall 1994

[Kim & Seo 1991] Won Kim, Jungyun Seo. “Classifying Schematic and Data Heterogeneity in

Multidatabase Systems” IEEE Computer, December 1991

265

[Klas et al. 1996] Wolfgang Klas, Peter Fankhauser, Peter Muth, Thomas Rakow, Erich Neu-

hold. “Database Integration Using the Open Object-Oriented Database Sys-

tem VODAK” In Object-Oriented Multidatabase Systems - A solution for

Advanced Applications, Eds: Bukhres, Elmagarmid. Prentice-Hall 1996

[Kristensen & Øster-
bye 1996]

Bent Bruun Kristensen, Kasper Østerbye. “Roles: Conceptual Abstraction

Theory and Practical Language Issues” Theory and Practice of Object Sys-

tems, Volume 2(3), 143-160, 1996

[Kristensen 1997] Bent Bruun Kristensen. “Subject Composition by Roles” In proceedings of

Object-Oriented Information Systems (OOIS) 1997

[Kuno & Runden-
steiner 1996]

Harumi Kuno, Elke Rundensteiner “The MultiView OODB View System:

Design and Implementation” Theory and Practice of Object Systems, Vol-

ume 2(3), 203-225, 1996

[Lieberherr 1995] Karl Lieberherr. “Adaptive Object-Oriented Software. The Demeter Method

with Propagation Patterns” PWS Publishing Company, 1995

[Lopes & Kiczales
1997]

Cristina Lopes, Gregor Kiczales. “D: A Language Framework for Distrib-

uted Programming” Technical Report Number SPL97-010 P9710047,

Xerox Parc, 1997

[Lunau 1997] Charlotte Pii Lunau. “A Reflective Architecture for Process Control Appli-

cations” In proceedings of European Conference on Object-Oriented Pro-

gramming (ECOOP) 1997

[Maughan & Durnota
1994]

G. Maughan, B. Durnota. “MON: An object relationship model incorporat-

ing roles, classification, publicity and assertions” In proceedings of Object-

Oriented Information Systems (OOIS) 1994

[Minsky & Rozensh-
tein 1987]

Naftaly Minsky, David Rozenshtein. “A Law-Based Approach to Object-

Oriented Programming” In proceedings of Object-Oriented Programming

Systems, Languages and Applications (OOPSLA) 1987

[Mowbray & Zahavi
1995]

Thomas Mowbray, Ron Zahavi. “The Essential CORBA: Systems Integra-

tion Using Distributed Objects” Object Management Group, John Wiley &

Sons, 1995

[Mulet et al. 1995] Philippe Mulet, Jacques Malenfant, Pierre Cointe. “Towards a Methodology

for Explicit Composition of MetaObjects” In proceedings of Object-Ori-

ented Programming Systems, Languages and Applications (OOPSLA) 1995

[Navathe & Savasere
1996]

Shamkant Navathe, Ashoka Savasere. “A Schema Integration Facility Using

Object-Oriented Data Model” In Object-Oriented Multidatabase Systems -

A solution for Advanced Applications, Eds: Bukhres, Elmagarmid. Prentice-

Hall 1996

266

[Nierstrasz &
Tsichritzis 1995]

Oscar Nierstrasz, Dennis Tsichritzis. “Object-Oriented Software Composi-

tion” Prentice-Hall 1995

[Nuseibeh 1994] Bashar Nuseibeh. “A Multi-Perpsective Framework for Method Integra-

tion” Ph.D. thesis, Department of Computing, Imperial College, London.

1994

[Nuseibeh et al. 1994] Bashar Nuseibeh, Jeff Kramer, Anthony Finkelstein. “A Framework for

Expressing the Relationships Between Multiple Views in Requirements Spec-

ification” IEEE Transactions on Software Engineering, 20(10):760-773,

October 1994

[OED 1989] The Concise Oxford Dictionary

[Okamura & Ishikawa
1994]

Hideaki Okamura, Yutaka Ishikawa. “Object Location Control Using Meta-

Level Programming” In proceedings of European Conference on Object-

Oriented Programming (ECOOP) 1994

[Ossher et al. 1996] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harrison, Vin-

cent Kruskal. “Specifying Subject-Oriented Composition” Theory and Prac-

tice of Object Systems, Volume 2(3), 179-202, 1996

[Parnas 1974] D.L. Parnas “On the criteria to be used in decomposing systems into mod-

ules” Communications of the ACM, 15(12):1053-1058, December 1972

[Pedersen 1989] Claus Pedersen “Extending Ordinary Inheritance Schemes to Include Gen-

eralization” In proceedings of Object-Oriented Programming Systems, Lan-

guages and Applications (OOPSLA) 1989

[Pólya 1957] George Pólya, “How to Solve It: A New Aspect of Mathematical Method”

2nd edition, NY, USA, Doubleday, 1957

[Reenskaug et al. 1995] Trygve Reenskaug, Per Wold, Odd Arild Lehne. “Working with Objects.

The OOram Software Engineering Method” Manning Publications Co. 1995

[Rumbaugh et al. 1991] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

William Lorensen. “Object-Oriented Modeling and Design” Prentice-Hall,

1991

[Shaw & Garlan 1996] Mary Shaw, David Garlan. “Software Architecture. Perspectives on an

Emerging Discipline” Prentice Hall, 1996

[Sheth & Larson 1990] Amit Sheth, James Larson. “Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases” ACM Computing

Surveys, Vol. 22, No. 3 1990

[Sheth et al. 1993] Amit Sheth, Sunit Gala, Shamkant Navathe. “On Automatic Reasoning for

Schema Integration” International Journal of Intelligent and Cooperative

Information Systems, Vol. 2 No. 1 1993

267

[Shilling & Sweeney
1989]

John J. Shilling, Peter F. Sweeney. “Three steps to views: Extending the

object-oriented paradigm” In proceedings of Object-Oriented Programming

Systems, Languages and Applications (OOPSLA) 1989

[Shlaer & Mellor 1988] Sally Shlaer, Stephen Mellor. “Object-Oriented Systems Analysis. Modeling

the World in Data” Yourdon Press Computing Series, 1988

[Siegel 1996] Jon Siegel. “CORBA Fundamentals and Programming” Object Manage-

ment Group, John Wiley & Sons, 1996

[Smith & Ungar 1996] Randall Smith, David Ungar. “A Simple and Unifying Approach to Subjec-

tive Objects” Theory and Practice of Object Systems, Volume 2(3), 161-

178, 1996

[Spaccapietra & Parent
1994]

Stefano Spaccapietra, Christine Parent. “View Integration: A Step Forward

in Solving Structural Conflicts” IEEE Transactions on Knowledge and Data

Engineering, Vol. 6, No. 2, April 1994

[Spaccapietra et al.
1992]

Stefano Spaccapietra, Christine Parent, Yann Dupont. “Model Independent

Assertions for Integration of Heterogeneous Schemas” VLDB Journal, 1,

81-126 1992

[Stonebraker et al.
1991]

Michael Stonebraker, Lawrence Rowe, Bruce Lindsay, James Gray, Michael

Carey, Michael Brodie, Philip Bernstein, David Beech. “Third-Generation

Database System Manifesto” Object-Oriented Databases: Analysis, Design

& Construction, Elsevier Science Publishers, 1991

[Stroustrup 1991] Bjarne Stroustrup “The C++ Programming Language Second Edition”

Addison-Wesley 1991

[Szyperski 1998] Clemens Szyperski. “Component Software. Beyond Object-Oriented Pro-

gramming” Addison-Wesley, 1998

[Tarr et al. 1999] Peri Tarr, Harold Ossher, William Harrison, Stanley Sutton. “N Degrees of

Separation: Multi-Dimensional Separation of Concerns” In proceedings of

the International Conference on Software Engineering (ICSE) 1999

[Tarr & Ossher 2000] Peri Tarr, Harold Ossher. “Hyper/J™ User and Installation Manual”

http://www.research.ibm.com/hyperspace

[Turner 1999] C. Reid Turner “Feature Engineering of Software Systems” PhD Thesis,

Department of Computer Science, University of Colorado, 1999

[Turner et al. 1999] C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, Alexander L. Wolf “A

Conceptual Basis for Feature Engineering” In the Journal of Systems and

Software, December 1999.

[Ungar & Smith 1987] David Ungar, Randall Smith. “Self: The Power of Simplicity” In proceed-

ings of Object-Oriented Programming Systems, Languages and Applications

(OOPSLA) 1987

268

[UML 1999] “OMG Unified Modeling Language Specification (draft)” Version 1.3. beta

R7, June 1999

[Vlissides 1998] John Vlissides. “Pattern Hatching. Design Patterns Applied” Software Pat-

terns Series, Addison-Wesley 1998

[Walker 2000] Robert J. Walker. “Eliminating Cycles in Composed Class Hierarchies”

Technical Report TR-00-07, Department of Computer Science, University

of British Columbia, 2000

[Warmer & Kleppe
1999]

Jos Warmer, Anneke Kleppe. “The Object Constraint Language. Precise

Modeling with the UML”. Addison-Wesley, 1999

[Wieringa et al. 1996] Roel Wieringa, Wiebren de Jonge, Paul Spruit. “Using Dynamic Classes

and Role Classes to Model Object Migration” Theory and Practice of Object

Systems, Volume 1(1), 61-83, 1995

[Wirfs-Brock et al.
1990]

Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. “Designing Object-

Oriented Software” Prentice-Hall 1990

[Zave 1997] Pamela Zave “Classification of Research Efforts in Requirements Engineer-

ing” ACM Computing Surveys XXIX(4):315-321, 1997

[Zave 1999] Pamela Zave “FAQ Sheet on Feature Interaction” available from htttp://

www.research.att.com/~pamela/faq.html

269

Appendix A: Partial Illustrations
of UML Metamodel

This appendix presents a reproduction of the class models that represent the

UML metamodel from a different perspective to how they are described in

[UML 1999]. Here, each construct that is interesting for composition (gener-

ally, all composable elements) is presented from its own perspective.

Package
Figure 142 illustrates the part of the UML metamodel that refers to Packages.

The definition of Subject for the purposes of this thesis is as specified in

“Scope of Work” on page 72, and is that:

 “a subject is a stereotyped Package, stereotyped for the purposes

of restricting its contents to subjects, classifiers, associations, gener-

alizations, dependencies, constraints and collaborations”.

This stereotype definition restricts the kinds of model elements that may be

“owned elements” (see Figure 142). Further scoping restrictions for these

elements are discussed with their detail.

Figure 142: Partial UML Metamodel for Package

270

Classifier
Figure 143 illustrates the part of the UML metamodel that refers to Classifi-

ers. For the purposes of scoping this work, the only classifiers considered in

this thesis are Class, Interface and Datatype.

Attribute
Figure 144 illustrates the part of the UML Metamodel that refers to

Attributes

Operation
Figure 145 illustrates the part of the UML Metamodel that refers to Opera-

tions.

Figure 143: Partial UML Metamodel for Classifiers

Figure 144: Partial UML Metamodel for Attributes

Figure 145: Partial UML Metamodel for Operations

271

Relationship
Figure 146 illustrates the part of the UML Metamodel that refers to Relation-

ships.

Dependency
Figure 147 illustrates the part of the UML Metamodel that refers to Depend-

ency

Figure 146: Partial UMl Metamodel for Relationship

Figure 147: Partial UML Metamodel for Dependency

272

Constraint
Figure 148 illustrates the part of the UML Metamodel for Constraint.

Collaboration
Figure 149 illustrates a partial specification of Collaboration as defined by

the UML.

Collaborations also provide a context for participants playing different roles

within the collaborations. Figure 150 illustrates a partial meta-model for col-

laborations that shows the metaclasses that represent roles for associations

and classifiers. These roles are in the context of sending and receiving mes-

sages.

Figure 148: Partial UML Metamodel for Constraint

Figure 149: Partial UML Metamodel for Collaborations

273

Figure 150: Partial UML Metamodel for Collaboration Roles

