
Composition of Password-based Protocols

Stéphanie Delaune1, Steve Kremer1 and Mark Ryan2

1 LSV, ENS de Cachan, CNRS & INRIA, France

2 School of Computer Science, University of Birmingham, UK

CSF’08, Pittsburgh
June 2008

Password-based protocols and Guessing attacks

Handshake protocol

A B
new r sencw (r)−−−−−−−−−−−→

sencw (f (r))←−−−−−−−−−−−

Encrypted key exchange

A B
new k sencw (pk(k))−−−−−−−−−−−→

new r
sencw (aencpk(k)(r))←−−−−−−−−−−−

Guessing attack on w :

Guess w

Let x = sdecw (sencw (r))

Let y = sdecw (sencw (f (r)))

Confirm guess of w by
checking y = f (x)

No guessing attack on w
(assuming it is possible to encode
pk(k) so it looks indistinguishable
from a random bitstring).

Password-based protocols and Guessing attacks

Handshake protocol

A B
new r sencw (r)−−−−−−−−−−−→

sencw (f (r))←−−−−−−−−−−−

Encrypted key exchange

A B
new k sencw (pk(k))−−−−−−−−−−−→

new r
sencw (aencpk(k)(r))←−−−−−−−−−−−

Guessing attack on w :

Guess w

Let x = sdecw (sencw (r))

Let y = sdecw (sencw (f (r)))

Confirm guess of w by
checking y = f (x)

No guessing attack on w
(assuming it is possible to encode
pk(k) so it looks indistinguishable
from a random bitstring).

Password-based protocols and Guessing attacks

Handshake protocol

A B
new r sencw (r)−−−−−−−−−−−→

sencw (f (r))←−−−−−−−−−−−

Encrypted key exchange

A B
new k sencw (pk(k))−−−−−−−−−−−→

new r
sencw (aencpk(k)(r))←−−−−−−−−−−−

Guessing attack on w :

Guess w

Let x = sdecw (sencw (r))

Let y = sdecw (sencw (f (r)))

Confirm guess of w by
checking y = f (x)

No guessing attack on w
(assuming it is possible to encode
pk(k) so it looks indistinguishable
from a random bitstring).

Composing protocols

“EKE++”

A B
new k sencw (pk(k))−−−−−−−−−−−→

new rsencw (aencpk(k)(r))←−−−−−−−−−−−
sencr (w)−−−−−−−−−−−→

“EKE+++”

A B
new k sencw (pk(k))−−−−−−−−−−−→

new rsencw (aencpk(k)(r))←−−−−−−−−−−−
x−−−−→

sdecr (x)←−−−−−

Each of them resists guessing attack separately

Attack (even without guessing!) if they are run together:
let x = sencr (w)

Composing protocols

“EKE++”

A B
new k sencw (pk(k))−−−−−−−−−−−→

new rsencw (aencpk(k)(r))←−−−−−−−−−−−
sencr (w)−−−−−−−−−−−→

“EKE+++”

A B
new k sencw (pk(k))−−−−−−−−−−−→

new rsencw (aencpk(k)(r))←−−−−−−−−−−−
x−−−−→

sdecr (x)←−−−−−

Each of them resists guessing attack separately

Attack (even without guessing!) if they are run together:
let x = sencr (w)

Outline

Define guessing attacks in the formal model

active and passive attacks

Study composition of protocols that share the password

if the individual protocols resist guessing attacks, does the
composed protocol also resist?

Terms and equational theories

Describe processes in a simple language inspired by applied pi
calculus. Messages are modeled using terms.

Abstract algebra given by a signature,
i.e. a set of function symbols with arities

Equivalence relation (=E) on terms
induced by an equational theory

Example (equational theory)

Consider the signature
Σenc = {sdec, senc, adec, aenc, pk, 〈 〉, proj1, proj2}

sdecy (sency (x)) = x
sency (sdecy (x)) = x

adecy (aencpk(y)(x) = x
proji (〈x1, x2〉) = xi i = 1, 2

Frames and deduction

As a process evolves, it may output terms which are available to
the attacker. The output of a process is called a frame:
a set of secrets + a substitution:

νñ.({M1/x1} | {M2/x2} | . . . | {Mn/xn})

Example: φ = νk, s1.{senck (〈s1,s2〉)/x1 ,
k/x2}

Definition (Deduction)

νñ.σ `E M iff there exists N such that fn(N) ∩ ñ = ∅ and
Nσ =E M. We call N a recipe of the term M.

Recipe

φ `Eenc k x2

φ `Eenc s1 proj1(sdecx2(x1))
φ `Eenc s2 s2

Frames and deduction

As a process evolves, it may output terms which are available to
the attacker. The output of a process is called a frame:
a set of secrets + a substitution:

νñ.({M1/x1} | {M2/x2} | . . . | {Mn/xn})

Example: φ = νk, s1.{senck (〈s1,s2〉)/x1 ,
k/x2}

Definition (Deduction)

νñ.σ `E M iff there exists N such that fn(N) ∩ ñ = ∅ and
Nσ =E M. We call N a recipe of the term M.

Recipe

φ `Eenc k x2

φ `Eenc s1 proj1(sdecx2(x1))
φ `Eenc s2 s2

Static equivalence

Definition (Static equivalence)

Two frames are statically equivalent if there is no “test” that tells
them apart.
φ and ψ are statically equivalent, φ ≈E ψ, when:

dom(φ1) = dom(φ2), and

for all terms M,N such that ñ ∩ (fn(M) ∪ fn(N)) = ∅,
Mφ =E Nφ iff Mψ =E Nψ

Example

φ = νk.{senck (s0)/x1 ,
k/x2} 6≈ νk.{senck (s1)/x1 ,

k/x2} = φ′

because of the test (sdecx2(x1), s0)
However,

νk.{senck (s0)/x1} ≈ νk.{senck (s1)/x1}

Guessing attacks (passive case)

A passive guessing or dictionary attack consists of two phases

1 the attacker eavesdrops on one or several sessions of a
protocol

2 the attacker tries offline each of the possible passwords (e.g.
using a dictionary) on the data collected during the first phase

We suppose the eavesdropping phase results in a frame νw .φ.

Definition (Passive guessing attacks)

νw .φ is resistant to guessing attacks against w iff

νw .(φ | {w/x}) ≈ νw .(φ | νw ′.{w ′
/x})

[Baudet05, Corin et al.03]

EKE resists guessing attacks?

EKE resists guessing attacks only if pk(k)
can be encoded indistinguishably from an
arb. bitstring.

Consider the equational theory:

sdecy (sency (x)) = x
sency (sdecy (x)) = x

adecy (aencpk(y)(x) = x
proji (〈x1, x2〉) = xi (i = 1, 2)

EKE

A B
new k sencw (pk(k))−−−−−−−−−−→

new r
sencw (aencpk(k)(r))←−−−−−−−−−−

We have

νw , k.({sencw (pk(k))/x1}, {w/x2}) ≈ νw ,w ′, k.({sencw (pk(k))/x1}, {w
′
/x2})

EKE resists guessing attacks?

EKE resists guessing attacks only if pk(k)
can be encoded indistinguishably from an
arb. bitstring.

Consider the equational theory:

sdecy (sency (x)) = x
sency (sdecy (x)) = x

adecy (aencpk(y)(x) = x
proji (〈x1, x2〉) = xi (i = 1, 2)

ispk(pk(x)) = true

EKE

A B
new k sencw (pk(k))−−−−−−−−−−→

new r
sencw (aencpk(k)(r))←−−−−−−−−−−

We have

νw , k.({sencw (pk(k))/x1}, {w/x2}) 6≈ νw ,w ′, k.({sencw (pk(k))/x1}, {w
′
/x2})

as witnessed by the test: ispk(sdecx2(x1)) = true.

Composing protocols that are resistant to passive guessing
attacks

Proposition

The three following statements are equivalent:

1 νw .φ | {w/x} ≈ νw .φ | νw ′.{w ′
/x} [Baudet05]

2 φ ≈ νw .φ [Corin et al.03]

3 φ ≈ φ{w ′
/w}

Corollary

If νw .φ1 and νw .φ2 are resistant to guessing attacks against w
then νw .(φ1 | φ2) is also resistant to guessing attacks against w .

Thus, resistance to guessing attacks composes in the passive case.
In particular, resistance for one session implies resitance for
multiple sessions.

Composing protocols that are resistant to passive guessing
attacks

Proposition

The three following statements are equivalent:

1 νw .φ | {w/x} ≈ νw .φ | νw ′.{w ′
/x} [Baudet05]

2 φ ≈ νw .φ [Corin et al.03]

3 φ ≈ φ{w ′
/w}

Corollary

If νw .φ1 and νw .φ2 are resistant to guessing attacks against w
then νw .(φ1 | φ2) is also resistant to guessing attacks against w .

Thus, resistance to guessing attacks composes in the passive case.
In particular, resistance for one session implies resitance for
multiple sessions.

Active case

Syntax of the process language

P,Q,R := Plain processes
0 null process
P | Q parallel composition
in(x).P message input
out(M).P message output
if M = N then P else Q conditional

Extended processes A,B,C := P
∣∣ A | B

∣∣ νn.A ∣∣ {M/x}

Example:“EKE++”

A B
new k sencw (pk(k))−−−−−−−−−−−→

new rsencw (aencpk(k)(r))←−−−−−−−−−−−
sencr (w)−−−−−−−−−−−→

νw .(
νk.(out(sencw (pk(k))).in(x).
out(sencadeck (sdecw (x)))(w))

|
in(y).νr .out(sencw (aency (r))).
in(z). . . .

)

Semantics of the process language

Structural equivalence: the smallest equivalence relation closed by
application of evaluation contexts and such that

Par-0 A | 0 ≡ A New-Par A | νn.B ≡ νn.(A | B)
Par-C A | B ≡ B | A n 6∈ fn(A)
Par-A (A | B) | C ≡ A | (B | C) New-C νn1.νn2.A ≡ νn2.νn1.A

Operational semantics: smallest relation between extended
processes which is closed under structural equivalence (≡) and
such that

In in(x).P
in(M)−−−→ P{M/x}

Out out(M).P
out(M)−−−−→ P | {M/x} where x is a fresh variable

Then if M = N then P else Q
τ−→ P where M =E N

Else if M = N then P else Q
τ−→ Q where M 6=E N

Cont.
A

`−→ B

C [A]
`−→ C [B]

where C is an evaluation context
if ` = in(M) then φ(C [A]) `E M

Semantics of the process language

Structural equivalence: the smallest equivalence relation closed by
application of evaluation contexts and such that

Par-0 A | 0 ≡ A New-Par A | νn.B ≡ νn.(A | B)
Par-C A | B ≡ B | A n 6∈ fn(A)
Par-A (A | B) | C ≡ A | (B | C) New-C νn1.νn2.A ≡ νn2.νn1.A

Operational semantics: smallest relation between extended
processes which is closed under structural equivalence (≡) and
such that

In in(x).P
in(M)−−−→ P{M/x}

Out out(M).P
out(M)−−−−→ P | {M/x} where x is a fresh variable

Then if M = N then P else Q
τ−→ P where M =E N

Else if M = N then P else Q
τ−→ Q where M 6=E N

Cont.
A

`−→ B

C [A]
`−→ C [B]

where C is an evaluation context
if ` = in(M) then φ(C [A]) `E M

Example

Consider the handshake
protocol. In our calculus
it is modelled as:

A B
sencw (n)−−−−−−−−−−−→

sencw (f (n))←−−−−−−−−−−−

A = νn.out(sencw (n)). in(x). if sdecw (x) = f (n) then P

B = in(y). out(sencw (f (sdecw (y))))

which admits the execution

νw .(A | B)
out(sencw (n))−−−−−−−→ νw .νn.(B | {sencw (n)/x1} | in(x). if sdecw (x) = f (n) then P)
in(sencw (n))−−−−−−−→ νw .νn.(out(M) | {sencw (n)/x1} | in(x). if sdecw (x) = f (n) then P)

out(M)−−−−→ νw .νn.({sencw (n)/x1} | {M/x2} | in(x). if sdecw (x) = f (n) then P)
in(sencw (f (n)))−−−−−−−−→ νw .νn.({sencw (n)/x1} | {M/x2} | if sdecw (sencw (f (n))) = f (n)

thenP)
τ−−→ νw .νn.({sencw (n)/x1} | {M/x2} | P)

where M = sencw (f (sdecw (sencw (n)))) =E sencw (f (n))

Guessing attacks (active case)

Definition (Active guessing attacks)

A is resistant to guessing attack against w if, for every process B
such that A→∗ B, we have that φ(B) is resistant to guessing
attacks against w .

Frame of a process
φ(A) = result of replacing plain processes in A by 0.

Composing protocols that are resistant to active guessing
attacks

Contrary to passive case, resistance does not compose in general.

“EKE++”

A B
new k sencw (pk(k))−−−−−−−−−−−→

new rsencw (aencpk(k)(r))←−−−−−−−−−−−
sencr (w)−−−−−−−−−−−→

“EKE+++”

A B
new k sencw (pk(k))−−−−−−−−−−−→

new rsencw (aencpk(k)(r))←−−−−−−−−−−−
x−−−−→

sdecr (x)←−−−−−

After the execution in which x = sencr (w):

φ = νw , k, r .({sencw (pk(k))/x1}, {sencw (aencpk(k)(r))/x2},
{sencr (w)/x3}, {w/x4})

Well-taged protocols and composition

Intuitively, a protocol is well-tagged w.r.t. a secret w if all the
occurrences of w are of the form h(α,w)

Definition (well-tagged)

M is α-tagged w.r.t. w if there exists M ′ s.t. M ′{h(α,w)/w} =E M.
A term is said well-tagged w.r.t. w if it is α-tagged for some
name α.
A is α-tagged if any term occurring in it is α-tagged. An extended
process is well-tagged if it is α-tagged for some name α.

Well-tagged processes compose!

Theorem (composition result)

Let A1 be α-tagged and A2 be β-tagged w.r.t. w.
If νw .A1 and νw .A2 are resistant to guessing attacks against w
then νw .(A1 | A2) is also resistant to guessing attacks against w.

Well-taged protocols and composition

Intuitively, a protocol is well-tagged w.r.t. a secret w if all the
occurrences of w are of the form h(α,w)

Definition (well-tagged)

M is α-tagged w.r.t. w if there exists M ′ s.t. M ′{h(α,w)/w} =E M.
A term is said well-tagged w.r.t. w if it is α-tagged for some
name α.
A is α-tagged if any term occurring in it is α-tagged. An extended
process is well-tagged if it is α-tagged for some name α.

Well-tagged processes compose!

Theorem (composition result)

Let A1 be α-tagged and A2 be β-tagged w.r.t. w.
If νw .A1 and νw .A2 are resistant to guessing attacks against w
then νw .(A1 | A2) is also resistant to guessing attacks against w.

A secure transformation

Theorem

If νw .A is resistant to guessing attacks against w
then νw .(A{h(α,w)/w}) is also resistant to guessing attacks
against w.

Easy, syntactic transformation: thumbrule for good design?

Remark on other transformations:

replacing w by 〈w , α〉 does not guarantee composition

tagging encryptions (used in [CortierDelaitreDelaune07] to
ensure composition of other properties) would add guessing
attacks

Conclusion and future work

Passive guessing attacks do compose.

Active guessing attacks do not compose in general.

But for well-taged protocols:

Secure transformation to obtain well-tagged protocols

Future work

Avoid tags : are there (interesting) classes of protocols and
equational theories for which guessing attacks compose?

Other forms of composition :

composition for observational equivalence

sequential composition

