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Abstract. The main topic of this paper is the composi-
tion of independent Poisson processes of which we study
the probability law (involving Bell polynomials), the gov-
erning equations, and its representation as a random
sum. Some compositions of Poisson processes with the
inverses of classical and fractional Poisson processes,
and with the inverse of the fractional linear birth process,
are examined and their pricipal features analysed.
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1 Introduction

The subordination of processes, first introduced in [1],
is a technique which permits us to introduce in various
stochastic models, further randomness. The so-called
Iterated Brownian motion, for instance, is a process
which was extensively studied in the past years (see for
example [2]).

Recently, the study of subordinated processes has been
extended to point processes. It has been proved that
the one-dimensional distributions of some subordinated
point processes satisfy fractional difference-differential
equations [3, 4]. This suggests us to study different kinds
of subordinated point processes. In particular, in this
paper, we study in details the iterated Poisson process
as well as some other subordinated Poisson processes.

In Section 2, the iterated Poisson process is presented
and analysed. Let N1(t) and N2(t), t > 0, be two
independent homogeneous Poisson processes with rates
λ > 0 and β > 0, respectively. The iterated Posson
process is defined as N̂(t) = N1(N2(t)), t > 0. The state
probabilities p̂k(t) = Pr{N̂(t) = k}, k ≥ 0, have the
form

p̂k(t) =
λk

k!
e−βt(1−e−λ)

Bk

(

βte−λ
)

, (1)

with k ≥ 0, t > 0, and where Bk(x) is the nth order
Bell polynomials.

By considering that the probability generating function

of the process N̂(t) = N1(N2(t)) turns out to be

Ĝ(u, t) = eβt(e
λ(u−1)

−1), t > 0, |u| ≤ 1,

we establish the useful representation:

N1(N2(t))
d
= X1 + · · ·+XN2(t), (2)

where the Xj are i.i.d. Poisson-distributed random vari-
ables with parameter λ. The iterated Poisson process is
thus, a compound Poisson process with Poisson compo-
nents.

The difference-differential equations solved by the state
probabilities is also derived and reads

d

dt
p̂k(t) = −βp̂k(t) + βe−λ

k
∑

m=0

λm

m!
p̂k−m(t). (3)

In Section 3 a Poisson process N1(t), t > 0, is subordi-
nated to the inverse process of a second Poisson process
N2(t) (Erlang process), independent of N1(t), i.e.

N1(τk), k ≥ 0, (4)

where

τk = inf(t : N2(t) = k), k ≥ 0, (5)

and the explicit form of the state probabilities is given
and discussed.

The last two sections are devoted to the study of Pois-
son processes subordinated to inverse processes of the
fractional Poisson and fractional Yule process.

2 First results on subordinated Poisson

processes

Consider two independent homogeneous Poisson pro-
cesses, say N1(t), t > 0, with rate λ > 0, and N2(t),
t > 0, with rate β > 0. We are interested in the subor-
dinated process N̂(t) = N1(N2(t)), t > 0. The subordi-
nation (see [1]) permits us to introduce in the system
further randomness, thus allowing to model phenomena
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which exhibit either a speeded up or a slowed down be-
haviour. In particular, the type of subordination consid-
ered in this section is a little different. Poisson processes
have a countable state space, therefore the inner Poisson
process N2(t), t > 0, in addition to randomize the time,
operates a sampling of the external process N1(t), t > 0.
Note that this sampling allows the subordinated process
to have jumps of arbitrary positive size. In addition,
N̂(t), t > 0, can be regarded as a Poisson process N1(t),
t > 0, running on the sample paths of the independent
Poisson process N2(t), t > 0.

The state probabilities p̂k(t) = Pr{N1(N2(t)) = k},
k ≥ 0, t > 0, can be determined as follows.

p̂k(t) =

∞
∑

r=0

e−λr(λr)k

k!
·
e−βt(βt)r

r!
(6)

=
λk

k!
e−βt

∞
∑

r=0

e−λrrk(βt)r

r!
.

By considering that

Bk(x) = e−x

∞
∑

r=0

rkxr

r!
, (7)

is the nth order Bell polynomial (for a review of Bell
polynomials, the reader can consult for example [5]), we
obtain that

p̂k(t) =
λk

k!
e−βt(1−e−λ)

Bk

(

βte−λ
)

, k ≥ 0, t > 0.

(8)

The following alternative form of the state probabilities
is immediately calculated:

p̂k(t) (9)

=
λk

k!
e−βt

∞
∑

r=0

e−λrrk(βt)r

r!

= Pr{N1(t) = k}eλt
∞
∑

r=0

e−λr
(r

t

)k

Pr{N2(t) = r}.

In Figure 1, we can appreciate the plots of the first four
state probabilities for N̂(t), t > 0, with λ = 1 and β = 1.
By recalling that the exponential generating function
for Bell polynomials is

∞
∑

k=0

zk

k!
Bk(x) = ex(e

z
−1), (10)

it is immediate to check that
∑

∞

k=0 p̂k(t) = 1. The mean
value is directly calculated as follows.

E
[

N1(N2(t))
]

=

∞
∑

k=0

k

∞
∑

r=0

e−λr(λr)k

k!

e−βt(βt)r

r!
(11)
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Figure 1: Graphs of the first four state probabilities for
the Bell process. The parameters here have the values
λ = 1, β = 1.

=
∞
∑

r=0

e−βt(βt)r

r!
e−λr

∞
∑

k=0

k
(λr)k

k!

=
∞
∑

r=0

e−βt(βt)r

r!
e−λrλr

∞
∑

k=0

(λr)k

k!

= e−βt

∞
∑

r=0

λr(βt)r

r!

= e−βtλβt
∞
∑

r=0

(βt)r

r!

= λβt, t > 0.

To determine the variance we first calculate the second
order moment:

µ2 =

∞
∑

k=0

k2
∞
∑

r=0

e−λr(λr)k

k!

e−βt(βt)r

r!
(12)

= e−βt

∞
∑

r=0

(βt)r

r!
e−λr

∞
∑

k=0

k2
(λr)k

k!
.

Considering that

∞
∑

k=0

k2
(λr)k

k!
=

∞
∑

k=1

k
(λr)k

(k − 1)!
=

∞
∑

k=0

(k + 1)
(λr)k+1

k!

(13)

=

∞
∑

k=1

k
(λr)k+1

k!
+

∞
∑

k=0

(λr)k+1

k!

=

∞
∑

k=0

(λr)k+2

k!
+ λreλr

= λreλr(λr + 1),

we have

µ2 = e−βt

∞
∑

r=0

λr(λr + 1)(βt)r

r!
(14)

14



Enzo Orsingher, Federico Polito 3

= e−βtλ

∞
∑

r=1

(λr + 1)(βt)r

(r − 1)!

= e−βtλ

∞
∑

r=0

(λr + λ+ 1)(βt)r+1

r!

= e−βtλ

[

(λ+ 1)

∞
∑

r=0

(βt)r+1

r!
+ λ

∞
∑

r=1

r
(βt)r+1

r!

]

= λ(λ+ 1)βt+ e−βtλ2
∞
∑

r=0

(βt)r+2

r!

= λ(λ+ 1)βt+ (λβt)2.

Therefore, the variance of the process reads

Var
[

N1(N2(t))
]

= λ(λ+ 1)βt, t > 0. (15)

The probability generating function

Ĝ(u, t) =

∞
∑

k=0

ukN̂(t) (16)

can be found in the following way:

Ĝ(u, t) =
∞
∑

k=0

uk
∞
∑

r=0

e−λr(λr)k

k!

e−βt(βt)r

r!
(17)

= e−βt(1−e−λ)
∞
∑

k=0

uk
λk

k!
B

(

βte−λ
)

= e−βt(1−e−λ)eβte
−λ(euλ

−1)

= eβt(e
λ(u−1)

−1), t > 0, |u| ≤ 1.

Result (17) implies that

N1(N2(t))
d
= X1 + · · ·+XN2(t), (18)

where the random variables Xj are i.i.d. with Poisson
distribution with parameter λ. In other words, the
subordinated process N̂(t), t > 0, is a compound Poisson
process with Poisson components.

The difference-differential equations solved by the state
probabilities p̂k(t), t > 0, is

d

dt
p̂k(t) = −βp̂k(t) + βe−λ

k
∑

m=0

λm

m!
p̂k−m(t), (19)

and can be derived with the following steps.

d

dt
p̂k(t) (20)

= − βp̂k(t) + β
λk

k!
e−βt

∞
∑

r=1

e−λr r
k(βt)r−1

(r − 1)!

= − βp̂k(t) + β
λk

k!
e−βt

∞
∑

r=0

e−λ(r+1) (r + 1)k(βt)r

r!

10
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Figure 2: A possible path of the external Poisson process
N1(t), t > 0.

= − βp̂k(t) + βe−βtλ
k

k!
e−λ

×

k
∑

m=0

k!

m!(k −m)!

∞
∑

r=0

e−λrrm
(βt)r

r!

= − βp̂k(t) + βλke−λ

k
∑

m=0

λ−m

(k −m)!
p̂m(t)

= − βp̂k(t) + βe−λ

k
∑

m=0

λm

m!
p̂k−m(t).

From result (19), the differential equation governing
the probability generating function is easily derived and
reads

∂

∂t
Ĝ(u, t) = −βĜ(u, t) + βe−λĜ(u, t)eλu. (21)

With initial condition Ĝ(u, 0) = 1 this yields result (17).

Remark 1 (A note on paths). It is interesting to de-
scribe the path behaviour of the subordinated process
N̂(t) = N1(N2(t)), t > 0. In Figure 2, a possible path
of the external Poisson process N1(t), t > 0, is depicted.
Since the internal process has discrete state space, it
produces a discretisation of the time argument of the
external process. Furthermore the process N1(N2(t)) ad-
mits arbitrarily high jumps. After the appearance of
the first component, the process behaves as a pure birth
process with a random number of offsprings.

3 Poisson process subordinated to the

inverse of a second independent

Poisson process

We now consider the inverse process (hitting time) of
the Poisson process N2(t), t > 0:

τk = inf(t : N2(t) = k), k ≥ 0. (22)

The process τk, k ≥ 0, is a discrete time process with con-
tinuous state-space. It is a non-decreasing process with

15
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Figure 3: Construction of the path of the subordinated
process N̂(t) = N1(N2(t)), t > 0, starting from the path
of the internal process N2(t), t > 0.

scattered jumps. In practice it can also be considered
as the waiting time until the kth event:

Pr(τk ≤ t) = Pr(N2(t) ≥ k) (23)

=
∞
∑

j=k

e−βt(βt)j

j!

= 1−

k−1
∑

j=0

e−βt(βt)j

j!
.

Clearly τk, k ≥ 1, is Erlang-distributed:

Pr(τk ∈ dt)/dt =
β(βt)k−1

(k − 1)!
e−βtdt. (24)

Our aim is to study the subordinated process Ñ(k) =
N1(τk), k ≥ 0.

Pr(N1(τk) = r) (25)

=

∫

∞

0

e−λs(λs)r

r!

β(βs)k−1

(k − 1)!
e−βsds

=
λrβk

r!(k − 1)!

∫

∞

0

e−(λ+β)ssr+k−1ds

=
λrβk

r!(k − 1)!

∫

∞

0

e−yyr+k−1 1

(λ+ β)r+k
dy

=
λrβkΓ(r + k)

r!(k − 1)!(λ+ β)r+k

=
(r + k − 1)!

r!(k − 1)!

λrβk

(λ+ β)r+k

=

(

r + k − 1

r

)

λrβk

(λ+ β)r+k

=

(

r + k − 1

r

)(

λ

λ+ β

)r (

1−
λ

λ+ β

)k

,

(r ≥ 0, k ≥ 0) which is a negative binomial distribution
with parameter λ/(λ+ β). We can, therefore, immedi-
ately obtain that

EÑ(k) =
λ

β
k, (26)

and

VarÑ(k) =
λ(λ+ β)

β2
k. (27)

Note that the subordinated process N1(τk), k ≥ 0, can
be interpreted as follows:

N1(τk)
d
= X1 + · · ·+XN , (28)

where N is a Poisson random variable with parameter
equal to

µ = log

(

λ+ β

β

)k

, (29)

and the Xjs are i.i.d. random variables with logarithmic
distribution with parameter α = λ/(λ+ β).

Remark 2 (A note on paths). The subordinated process
Ñ(k), has increasing paths with jumps. The jumps are
of positive integer-valued size. It can thus possibly used
to model branching phenomena in discrete-time, when
an arbitrary number of offsprings is permitted.

4 Poisson and Yule–Furry processes

subordinated to the inverse of an

independent fractional Poisson

process

In this section we introduce the inverse process of a
fractional Poisson process independent of N1(t), t > 0.
For in-depth information on the latter we refer to [6]
or, more recently [3]. In the following, the fractional
Poisson process will be indicated as Nν(t), t > 0, where
ν ∈ (0, 1] is the index of fractionality.

The inverse process is

τνk = inf(t : Nν(t) = k), k ≥ 0. (30)

As in the classical case we can write that Pr(τνk ≤ t) =
Pr(Nν(t) ≥ k). From [7, formula (2.19)], the distribu-
tion is

Pr(τνk ∈ dt)/dt = βktνk−1Ek
ν,νk(−βt

ν), (31)

where β > 0 is the rate of the fractional Poisson process
and the function

Eδ
α,γ(z) =

∞
∑

r=0

(δ)rz
r

Γ(αr + γ)r!
, α, γ, δ ∈ C, R(α) > 0,

(32)

16
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is the so-called generalised Mittag–Leffler function [8,
page 91]. The distribution of the subordinated process
Ñν(k) = N1(τ

ν
k ) reads

Pr
(

Ñν(k) = r
)

(33)

=

∫

∞

0

e−λs(λs)r

r!
βksνk−1Ek

ν,νk(−βs
ν)ds

=
λrβk

r!

∫

∞

0

sνk+r−1e−λsEk
ν,νk(−βs

ν)ds

=
λrβk

r!

λ−νk−r

(k − 1)!
2ψ1

[

−β

λν

∣

∣

∣

∣

(k, 1), (νk + r, ν)
(νk, ν)

]

,

where the function

pψq

[

z

∣

∣

∣

∣

(ap, Ap)
(bq, Bq)

]

=

∞
∑

m=0

∏p
j=1 Γ(aj +mAj)

∏q
j=1 Γ(bj +mBj)

zm

m!
,

(34)

is the generalised Wright function. Notice that, in the
last step of (33), we used relation (2.3.23) of [8]. The
distribution (33) can be further simplified by writing
explicitly the Wright function.

Pr
(

Ñν(k) = r
)

=
1

r!

∞
∑

m=0

(

k +m− 1

m

)

(−1)m (35)

×

(

β

λν

)k+m
Γ (ν(k +m) + r)

Γ (ν(k +m))
.

From (35), when ν = 1, we retrieve formula (25):

Pr
(

Ñ1(k) = r
)

(36)

=

∞
∑

m=0

(−1)m
(

β

λ

)k+m
(k +m+ r − 1)!

r!m!(k − 1)!

=

(

k + r − 1

r

)

∞
∑

m=0

(

β

λ

)k+m

(−1)m
(

k +m+ r − 1

m

)

=

(

k + r − 1

r

)(

β

λ

)k ∞
∑

m=0

(

β

λ

)m (

−(k + r)

m

)

=

(

k + r − 1

r

)(

β

λ

)k (

1 +
β

λ

)

−(k+r)

=

(

k + r − 1

r

)(

λ

λ+ β

)r (

1−
λ

λ+ β

)k

.

Following the above calculation, it is also possible to
determine the distribution of a Yule–Furry process, in-
dicated here as Y (t), t > 0, with birth rate λ > 0,
subordinated to τνk , k ≥ 0, as follows.

Pr (Y (τνk ) = r) (37)

=

∫

∞

0

e−λs
(

1− e−λs
)r−1

βksνk−1Ek
ν,νk(−βs

ν)ds

= βk

r
∑

j=1

(

r − 1

j − 1

)

(−1)j−1

×

∫

∞

0

e−λjssνk−1Ek
ν,νk(−βs

ν)ds

= βk

r
∑

j=1

(

r − 1

j − 1

)

(−1)j−1 1

[(λj)
ν
+ β]

k
.

In the last step we exploited relation (2.3.24) of [8].

5 Poisson process subordinated to the

inverse of an independent fractional

Yule process

Let Y ν(t), t > 0, be a fractional Yule process with rate
β > 0 [4]. The probability density function of the kth
birth W ν

k , is [9]:

fφν

k
(t) (38)

=

k
∑

m=1

m
∑

l=1

(

m− 1

l − 1

)

(−1)l−1βltν−1Eν,ν(−βlt
ν),

where t > 0 and ν ∈ (0, 1]. It is also the prob-
ability density function of the right-inverse process
φνk = inf(t : Y ν(t) = k), k ≥ 1. In order to derive the
distribution of the subordinated process N1(φ

ν
k), k ≥ 1,

we proceed as in the preceding section.

Pr(N1(φ
ν
k) = r) (39)

=

∫

∞

0

e−λs(λs)r

r!

k
∑

m=1

m
∑

l=1

(

m− 1

l − 1

)

× (−1)l−1βlsν−1Eν,ν(−βls
ν)ds

=
λrβ

r!

k
∑

m=1

m
∑

l=1

(

m− 1

l − 1

)

l(−1)l−1

×

∫

∞

0

e−λssν+r−1Eν,ν(−βls
ν)ds

=
1

r!

k
∑

m=1

m
∑

l=1

(

m− 1

l − 1

)

(−1)l

×

∞
∑

n=0

(

−
βl

λν

)n+1
Γ(ν(n+ 1) + r)

Γ(ν(n+ 1))
.
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