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Abstract. A new technique for proving the adaptive indistinguishabil-
ity of two systems, each composed of some component systems, is pre-
sented, using only the fact that corresponding component systems are
non-adaptively indistinguishable. The main tool is the definition of a
special monotone condition for a random system F, relative to another
random system G, whose probability of occurring for a given distin-
guisher D is closely related to the distinguishing advantage ε of D for
F and G, namely it is lower and upper bounded by ε and ε(1 + ln 1

ε
),

respectively.
A concrete instantiation of this result shows that the cascade of two ran-
dom permutations (with the second one inverted) is indistinguishable
from a uniform random permutation by adaptive distinguishers which
may query the system from both sides, assuming the components’ secu-
rity only against non-adaptive one-sided distinguishers.
As applications we provide some results in various fields as almost k-wise
independent probability spaces, decorrelation theory and computational
indistinguishability (i.e., pseudo-randomness).

1 Introduction

1.1 Random Systems and the Distinguishing Problem

The statistical distance δ of two random variables A and B has a natural in-
terpretation: The success probability of an optimal distinguisher in telling apart
the two random variables A and B is (1 + δ)/2.

It is much more intricate to deal with the indistinguishability of random
systems1 which take inputs X1, X2, . . . and generate, for each new input Xi,
an output Yi which depends probabilistically on the inputs and outputs seen
so far. As always, we consider a distinguisher D which may interactively query
a random system and, after some number k of queries, outputs a decision bit.
For two random systems F and G and a distinguisher D one considers the two
random experiments where D queries F and where D queries G, respectively,
1 The term “random” is used here in the same sense as it is used in the term “random

variable”. It does not imply some kind of uniformity.
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for some k ≥ 1 queries. The advantage of D in distinguishing F and G is defined
as difference of the probabilities of D outputting 1, in both random experiments.

Usually one is interested in the indistinguishability of a random system from
some perfect random system with respect to any distinguisher from some general
class of distinguishers (e.g. the class of all adaptive or the class of all non-adaptive
distinguishers). In this work we will consider the problem of whether one can
compose two or more random systems to obtain a new system whose security is
superior to the security of any of its components. This is best illustrated by an
example.

1.2 Composition of Random Systems: An Example

Let E (and likewise F) be a random permutation2 where the advantage of any
non-adaptive distinguisher3 for E and a uniform random permutation (URP) P
is at most εk (where k is the number of queries). We can build a new random
permutation E ◦ F by using E and F in a cascade (see Figure 1). Intuitively,
this construction should be even “closer” to P than E or F individually. Indeed,
Vaudenay [7] proved that the non-adaptive indistinguishability of E ◦ F is 2ε2k,
i.e., the distinguishing advantages are multiplied. The same statement holds if
we replace (both occurrences) of non-adaptive with adaptive in the above [8].

If E and F are secure against non-adaptive distinguishers, can we say some-
thing about the adaptive security of E ◦F? The intuition here is that adaptivity
cannot help too much as the output of E in the cascade is obscured by F and
the input to F is randomized by the leading E. This intuition is indeed correct.
We will prove that if the non-adaptive security of E and F is εk, then E ◦F has
adaptive security 2εk(1 + ln 1

εk
). A lower bound of Ω(εk) for this advantage can

easily be shown, in contrast to the above stated O(ε2k) when only non-adaptive
security is required. This leaves us (as an open problem) a gap on the order of
ln 1

εk
between the upper and lower bound.

1.3 From Indistinguishability to Monotone Conditions and Back

The framework of [3] is based on the concept of monotone conditions defined for
a random system. Intuitively, after each query to the system, such a condition
can either be satisfied or can fail to be satisfied. Monotonicity means that once
the condition has failed, it is never satisfied in the future. For example, such a
condition could be that at a certain point internally in the system, for example at
the input to a component, no collision has occurred. This no-collision condition
is obviously monotone.

2 By a random permutation (over some set X ) we mean a system which was chosen
according to some distribution from all possible permutations over this set. If this
distribution is uniform this system is called a uniform random permutation (URP).

3 A non-adaptive distinguisher must choose the queries without seeing the outputs of
the invoked system.
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Consider two random systems F and G with compatible input and output
alphabets. In this paper we will consider a monotone condition A for F, denoted
FA, such that for any fixed input-output behaviour, the probability that F shows
this behaviour and the condition occurs is upper bounded by the probability that
G shows this behaviour. This will be denoted as FA � G. Lemma 6 shows that
if FA � G, then for any distinguisher, its advantage in distinguishing F from G
is upper bounded by the probability that it can make the condition A fail in F.

One can intuitively think of such a monotone condition as a lamp placed
on the system which goes on as soon as the condition fails. More radically, one
could think of failure of the condition as a trigger for the system to explode. If
the failure of a condition in a system F is interpreted as such a visible effect,
then distinguishing F from another system G (without such a trigger) is trivial,
provided the trigger event occurs, i.e., the condition fails.

In very many indistinguishability proofs in the literature, such monotone
conditions lie at the core of the argument, although this is sometimes obscured
in complicated arguments. In [3] it is shown how complex systems with several
internal subsystems, each with a monotone condition, can be analysed. However,
if one only knows that the two systems are ε-indistinguishable from a URF,
without knowing a corresponding condition, then the technique of [3] fails. A
main goal of this paper is therefore to define a special monotone condition A
(called the maximum condition) for a random system F, relative to a system
G, such that FA � G and such that its probability ρ of not occurring (for any
distinguisher D) is closely related to the distinguishing advantage ε of F and
G (for D). More precisely, we provide two lemmas (Lemma 6 mentioned before
and Lemma 9) which show that ε ≤ ρ ≤ ε(1 + ln 1

ε ). This allows to prove the
indistinguishability of two systems consisting of subsystems, knowing only that
the subsystems are indistinguishable from a certain ideal system, but using the
powerful framework based on monotone conditions.

Continuing the example of Section 1.2, let us discuss intuitively how this
maximum condition allows to upper bound the adaptive security εk of E ◦ F
assuming that the non-adaptive security of E (and likewise of F) is at least γk

(the k refers to the number of queries the distinguisher is allowed to make).
Let A be the maximum condition for E relative to a URP P, and let B be the
maximum condition for F relative to P. One can show (using Lemma 6) that
εk ≤ αk, where αk is an upper bound on the maximal success probability of
any adaptive distinguisher in making either A or B fail when querying EA ◦FB.
Then using EA � P and FB � P one can show that this probability is at most
the success probability of any adaptive distinguisher in making A fail in EA ◦P
plus the probability of making B fail in P ◦ FB. But in EA ◦P (and likewise in
P ◦FB) adaptive strategies cannot be better than non-adaptive ones in making
A fail as the output of EA ◦ P is completely independent of the output of the
internal system E on which A is defined. So εk ≤ 2βk where βk is an upper
bound on the probability of any non-adaptive distinguisher in making A fail in
E (and likewise B in F). As A and B are maximum conditions we now obtain
(from Lemma 9) βk ≤ γk(1 + ln 1

γk
) and thus εk ≤ 2γk(1 + ln 1

γk
).
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1.4 Outline of the Paper

In Section 2 the definitions of random systems, monotone conditions, the �
relation and of distinguishers are given. In Section 3 first the maximum condition
for two random systems is defined. Then we lower and upper bound (Lemmas
6 and 9) the success probability of a distinguisher in making the maximum
condition fail (as described in Section 1.3).

As an application of our framework, in Section 4 we provide two theorems
bounding the adaptive security of two systems (parallel execution and XOR of
random functions and cascades of permutations) in terms of the non-adaptive
security of the component systems. We also give an application for each of the
theorems, the first is about k-wise independent sample spaces, the second about
the cascade of random involutions. Section 5 discusses some more implications
of the results. Section 6 states some open problems.

1.5 Notation

We denote sets by capital calligraphic letters (e.g. X ) and the corresponding cap-
ital letter X denotes a random variable taking values in X . Concrete values for
X are usually denoted by the corresponding small letter x. For a set X we denote
by X k the set of ordered k-tuples of elements from X . Xk = (X1, X2, . . . , Xk)
denotes a random variable taking values in X k and a concrete value is usually
denoted by xk = (x1, x2, . . . , xk).

Because we will consider different random experiments where the same ran-
dom variables appear, we extend the standard notation for probabilities and
expectations (e.g. PV (v), PV |W (v, w), E[V ]) by explicitly writing the consid-
ered random experiment E as a superscript, e.g. PE

V (v), PE
V |W (v, w) and EE [V ].

Equality of distributions means equality for all arguments, e.g.

PE1
V = PE2

V ⇐⇒ ∀v ∈ V : PE1
V (v) = PE2

V (v).

We sometimes use the notation PE
ξ instead of PE(ξ) to denote the probability of

the event ξ.

2 Random Systems, Conditions, and Distinguishers

2.1 Random Systems

Many cryptographic systems correspond to a probabilistic, possibly stateful (but
often stateless) system which takes inputsX1, X2, . . . and generates, for each new
input Xi, an output Yi which depends probabilistically on Xi and the internal
state.

In communication theory, a memoryless (i.e., stateless) communication chan-
nel with input X and output Y is modelled by a conditional probability distribu-
tion PY |X . In other words, PY |X precisely captures the input-output behaviour
of the channel, and it is unnecessary to consider the internals of the channel. In
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the same spirit, a possibly stateful and probabilistic system F that takes inputs
X1, X2, . . . and generates an output Yi for each new input Xi is modelled as
a so-called random system [3], defined as a sequence of conditional probability
distributions PYi|X1···Xi,Y1···Yi−1 .

Definition 1 An (X ,Y)-random system F is a (generally infinite) sequence of
conditional probability distributions PF

Yi|XiY i−1 , for i ≥ 1. Two systems F and G
are equivalent, denoted F ≡ G, if they correspond to the same random system,
i.e., if PF

Yi|XiY i−1 = PG
Yi|XiY i−1 for all i ≥ 1.

The sequence PF
Yi|XiY i−1 for i ≥ 1 also defines the sequence PF

Y i|Xi by

PF
Y i|Xi =

i∏

j=1

PF
Yj |XjY j−1 ,

and vice versa by

PF
Yi|XiY i−1 =

PF
Y i|Xi

PF
Y i−1|Xi−1

.

As special classes of random systems we will consider random functions and
random permutations, which are stateless random systems.

Definition 2 A random function X → Y (random permutation on X ) is a ran-
dom variable which takes as values functions X → Y (permutations on X ).
Throughout the paper the symbols R and P are used for the set of all random
functions and the set of all random permutations respectively.

A uniform random function (URF) R : X → Y (A uniform random permu-
tation (URP) P on X ) is a random function with uniform distribution over all
functions from X to Y (permutations on X ). Throughout the paper, the symbols
R and P are used exclusively for the systems defined above.

2.2 Monotone Conditions

The concept of monotone conditions for random systems was introduced in [3].
A monotone condition A for a random-system F is a sequence a0, a1, a2, . . . of
events, where a0 is the certain event and where ai (ai) denotes the event that
the condition is satisfied (failed) after the i’th query to F has been processed.
As described above, monotone means that once the condition has failed, it can
never hold again (i.e., ai ⇒ ai−1). A natural example of a monotone condition is
a no-collision condition. As we are not interested in the behaviour of a random
system after the condition has failed, and in fact this behaviour need in general
not be defined, the definition below specifies the probability distribution of Yi,
given Xi and Y i−1, only together with the event ai, and conditioned on ai−1.
More formally, a random system with a monotone condition is defined like a
random system, but the (conditional) probability distributions generally do not
sum to 1. We use the term “partial” to denote such distributions which are not
actually probability distributions.
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Definition 3 An (X ,Y)-random system F with a monotone condition A, de-
noted FA, is an infinite sequence of partial conditional probability distributions
PFA

aiYi|XiY i−1ai−1
for i ≥ 1.

For any xi and yi−1 we have

PFA
ai|XiY i−1ai−1

(xi, yi−1) =
∑

yi∈Y
PFA

aiYi|XiY i−1ai−1
(yi, x

i, yi−1) ≤ 1.

The sequence PFA
aiYi|XiY i−1ai−1

for i ≥ 1 also defines the sequence PFA
aiY i|Xi by

PFA
aiY i|Xi =

i∏

j=1

PFA
ajYj |XjY j−1aj−1

,

and vice versa.

Definition 4 We introduce a partial order � on input-output compatible ran-
dom systems with monotone conditions, as follows:

FA � GB ⇐⇒ ∀i ≥ 1 : PFA
aiY i|Xi ≤ PGB

biY i|Xi .

In other words, FA � GB if for all i ≥ 1 and all xi ∈ X i, yi ∈ Yi, the
probability that FA outputs yi on input xi and the condition A holds is at most
the probability that GB will output yi on input xi and the condition B holds.
We also define FA � G (here one may think of G having a condition which
never fails):

FA � G ⇐⇒ ∀i ≥ 1 : PFA
aiY i|Xi ≤ PG

Y i|Xi .

2.3 Distinguishers and Their Advantage

Definition 5 A distinguisher for an (X ,Y)-random systems is a (Y,X )-random
system D which can interactively query (X ,Y)-random systems and finally out-
puts a bit.4 For an (X ,Y)-random system F we denote by D�F the random
experiment where D interactively queries F.

This definition refers to adaptive distinguishers. A non-adaptive distinguisher
must fix all inputs X1, . . . , Xk before seeing the outputs Y1, . . . , Yk.

For the case of random permutations, we will consider mono-directional and
bidirectional distinguishers (the latter only in the adaptive version). A bidirec-
tional distinguisher can query the system from both sides.

Definition 6 The advantage of D in distinguishing F from G, after k queries,
denoted ∆D

k (F,G), is the absolute value of the difference of the probability of
D outputting 1 in the two random experiments D�F and D�G.
4 An initial random variable X1 ∈ X must also be defined.
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Assuming without loss of generality that, after the query phase, D makes
the optimal decision based on Xk and Y k, we have5

∆D
k (F,G) =

1
2

∑

X k×Yk

∣∣PD�F
XkY k − PD�G

XkY k

∣∣ .

We denote the advantages of the best adaptive and the best non-adaptive dis-
tinguisher as follows:

∆k(F,G) def= max
D

∆D
k (F,G)

and

δk(F,G) def= max
non−adaptive D

∆D
k (F,G)

= max
xk∈X k

1
2

∑

yk∈Yk

∣∣∣PF
Y k|Xk(yk, xk)− PG

Y k|Xk(yk, xk)
∣∣∣ .

Definition 7 For a random system FA with a monotone condition, we let

νD
k (F, ak) def= 1− PD�F

ak

be the probability that D makes the condition fail with at most k queries.
Furthermore, let

νk(F, ak) def= max
D

νD
k (F, ak)

be the maximal probability in provoking ak using any adaptive D, and analo-
gously for non-adaptive D:

µk(F, ak) def= max
non−adaptive D

νD
k (F, ak).

2.4 Random Systems as Components in Random Experiments

In this section we propose two lemmas which we will need several times in the
sequel. Consider the random experiment E(F) where a random system F, defined
by a sequence of distributions PF

Yi|XiY i−1 , is interacting with an environment

E(·), given by a sequence of distributions PE(·)
Xi|Xi−1Y i−1 .6 Here E(·) sends a query

X1 to F which answers with Y1, then E(·) sends a query X2 and so on. So after
k queries this random experiment defines a random variable XkY k.
5 This definition has a natural interpretation in the random experiment where we

first toss a uniform random coin C ∈ {0, 1}. Then we let D (which has no a priori
information on C) make k queries to a system H where H ≡ F if C = 0 and H ≡ G
if C = 1. Here the expected probability that an optimal guess on C based on the k
inputs and outputs of H will be correct is 1/2 + ∆D

k (F,G)/2.
6 This definition of environment E(·) is exactly the definition of an adaptive distin-

guisher. We will consider environments where a distinguisher is part of the environ-
ment, so as to avoid ambiguities we introduce the term environment here.
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Lemma 1 For E(.) as just defined

PE(F)
XkY k = PE(·)

Xk|Y k−1PF
Y k|Xk .

Proof: This follows directly from the definition of this random experiment:

PE(F)
XkY k =

k∏

j=1

PE(·)
Xj |Xj−1Y j−1PF

Yj |XjY j−1 = PE(·)
Xk|Y k−1PF

Y k|Xk .

�

For example for the random experiment D�F (see Definition 5) we have

PD�F
XiY i = PD

Xi|Y i−1PF
Y i|Xi . (1)

For E(·) as just defined we can also consider the random experiment E(FA).7

It is straight-forward to prove the following lemma.

Lemma 2 For E(·) as above let τ be any event defined on E(·). Let aτ be the
event that the condition A holds at the timepoint where τ occurs. If FA � G
then

PE(FA)
τ∧aτ

≤ PE(G)
τ

3 The Maximum Condition

Definition 8 For two (X ,Y)-random systems F and G, F with the maximum
condition (relative to G) is the random system with monotone condition FA

defined by

PFA
ai|XiY i = min

1≤j≤i

∗
{

PG
Y j |Xj

PF
Y j |Xj

}

and
PFA

aiY i|Xi = PF
Y i|XiPFA

ai|XiY i

for i ≥ 1, where min∗ means that the constant 1 is included among the terms
to be minimised over, i.e., a min∗ expression is always upper bounded by 1. We
denote the maximum condition for F and G by F↓G and often give it a short
name (e.g. A := F↓G).

The term “maximum condition” is motivated by the following lemma.

Lemma 3 For A := F↓G,
FA � G.

Moreover, for all FB,
FB � G =⇒ FB � FA.

7 Note that formally, this is not a random experiment since it is only partially defined,
but the notion of a probability of an event in this random experiment is naturally
defined, provided the condition that A holds at the timepoint when the event occurs
is taken as part of the event.
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Proof: We first observe that the condition is monotone, because of the min-
imisation which implies PFA

ai|Y iXi ≤ PFA
ai−1|Y i−1Xi−1 . To prove FA � G, observe

that PFA
ai|Y iXi ≤ PG

Y i|Xi/PF
Y i|Xi implies PFA

aiY i|Xi = PF
Y i|XiPFA

ai|XiY i ≤ PG
Y i|Xi .

To see that FB � G implies FB � FA, note that for the maximum condition
A the distribution PFA

ai|Y iXi has everywhere the largest possible value still satis-

fying both requirements. So for any FB � G we have PFB
bi|Y iXi ≤ PFA

ai|Y iXi and
thus FB � FA. �

For the remainder of this section, let F and G be any (X ,Y)-random systems.
For each i ≥ 0 we define the function λF,G

i : X i × Yi → [0, 1] as

λF,G
i (xi, yi) def= max

{
PF

Y i|Xi(yi, xi)− PG
Y i|Xi(yi, xi)

PF
Y i|Xi(yi, xi)

, 0

}
.

In a random experiment where the random variables Xi and Y i are defined we
can consider the random variables Zi and Z̃i defined as

Zi
def= λF,G

i (Xi, Y i) and Z̃i
def= max

0≤j≤i
Zj . (2)

The next two lemmas state that the expectation of these random variables in
the random experiment D�F are the distinguishing advantage of D for F and
G and the probability that D provokes the maximum condition for F (relative
to G) to fail, respectively.

Lemma 4

∆D
k (F,G) = ED�F[Zk].

Proof:

∆D
k (F,G) =

1
2

∑

X k×Yk

|PD�F
XkY k − PD�G

XkY k |

=
∑

X k×Yk

max
{
PD�F

XkY k − PD�G
XkY k , 0

}

=
∑

X k×Yk

PD
Xk|Y k−1 max

{
PF

Y k|Xk − PG
Y k|Xk , 0

}

=
∑

X k×Yk

PD�F
XkY k max

{
PF

Y k|Xk − PG
Y k|Xk

PF
Y k|Xk

, 0

}

= ED�F[Zk].

�

Lemma 5 For A := F↓G,

νD
k (FA, ak) = ED�F[Z̃k].
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Proof:

νD
k (FA, ak) = 1−

∑

X k×Yk

PD�FA
akXkY k

=
∑

X k×Yk

PD�F
XkY k(1− PA

ak|XkY k)

=
∑

X k×Yk

PD�F
XkY k

(
1− min

1≤j≤k

∗
{

PG
Y j |Xj

PF
Y j |Xj

})

=
∑

X k×Yk

PD�F
XkY k max

1≤j≤k

∗
{

PF
Y j |Xj − PG

Y j |Xj

PF
Y j |Xj

}

= ED�F[Z̃k].

Here max∗ means that the constant 0 is included among the terms to be min-
imised over, i.e., a max∗ expression is always non-negative. �

Lemma 6 If FA � G, then

∆D
k (F,G) ≤ νD

k (FA, ak).

Proof: Let B := F↓G. Using the Lemmas 4 and 5 we get

∆D
k (F,G) = ED�F[Zk]

≤ ED�F[Z̃k]
= νD

k (FB, bk)
≤ νD

k (FA, ak).

The last step is easily verified using FA � FB, which follows from Lemma 3. �

Definition 9 A sequence of random variables V0, V1, . . ., is a sub-martingale if
for all i ≥ 0

E[Vi+1|V0, . . . , Vi] ≥ Vi.

The proofs of the Lemmas 7 and 8 below can be found in Appendix A.

Lemma 7 Let V0, V1, . . . be a sub-martingale where 0 ≤ Vi ≤ 1 for all i, and let
Ṽn

def= max0≤j≤n Vj . Then

E[Ṽn] ≤ E[Vn] · (1− ln(E[Vn])) .

Lemma 8 The sequence Z0, Z1, . . . as defined in (2) is a sub-martingale se-
quence in the random experiment D�F, i.e.,

∀i ≥ 0 : ED�F[Zi+1|Z0, . . . , Zi] ≥ Zi.
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Fig. 1. The random systems E � F (left) and E ◦ F (right).

Lemma 9 For A := F↓G,

νD
k (FA, ak) ≤ ∆D

k (F,G)
(
1− ln

(
∆D

k (F,G)
))
.

Proof: Using Lemmas 8 and 7 we get

ED�F[Z̃k] ≤ ED�F[Zk] · (1− ln
(
ED�F[Zk]

))
.

Now one can apply the Lemmas 4 and 5. �

4 Stronger Security by Composition

Definition 10 A composition operator � for a class of random systems Q is
a binary operator Q × Q → Q which, given two random systems E,F ∈ Q,
defines how to combine E and F into a random system E � F ∈ Q where, on
any invocation of E�F, the internal random systems E and F are invoked once.
In this paper we will consider the two composition operators  and ◦ described
below.

– Let E,F ∈ R be random functions X → Y (see Definition 2) and let  denote
some group operation on Y. We denote by E  F ∈ R the random function
defined by applying the input to E and F and then applying  to the outputs
(see Figure 1, left).

– Let E,F ∈ P be random permutations over X (see Definition 2). We denote
by E ◦ F ∈ P the random permutation defined by applying the input to E
and F to the output of E (see Figure 1, right).

Lemma 10 Consider a classQ of random systems and a composition operator �

on Q. If there is a random system I ∈ Q such that for all F ∈ Q the following
two conditions are satisfied

1. I � I ≡ I.
2. νk(EA � I, ak) = µk(EA � I, ak) and νk(I � FB, bk) = µk(I � FB, bk).8

8 This means that whenever one of the two system � takes as input is the “perfect”
system I, then the best adaptive distinguisher has no advantage over the best non-
adaptive distinguisher in provoking some event defined on the other system.
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Then for any E,F ∈ Q and any k ≥ 1 we have

δk(E, I) ≤ ε ∧ δk(F, I) ≤ ε =⇒ ∆k(E � F, I) ≤ 2ε(1 + ln 1
ε ).

Proof: Let A (B) be the maximum condition for E (F), relative to I, i.e.,

A := E↓I and B := F↓I.

Now we have (here ba, and likewise ab, denote the event that at any timepoint
where the condition B holds, also the condition A holds)

∆k(E � F, I) = ∆k(E � F, I � I)
≤ νk(EA � FB, ak ∨ bk)
≤ νk(EA � FB, ak ∧ ba) + νk(EA � FB, bk ∧ ab)

≤ νk(EA � I, ak) + νk(I � FB, bk)
= µk(EA � I, ak) + µk(I � FB, bk)
≤ µk(EA, ak) + µk(FB, bk)
≤ δk(E, I) (1− ln (δk(E, I))) + δk(F, I) (1− ln (δk(F, I)))
≤ 2ε

(
1 + ln 1

ε

)
.

The first step above follows from the first condition in the statement of the
lemma. As for the second step, let (E � F)M be given by the partial distributions

∀i : P(E�F)M

miY i|Xi := PEA�FB
ai∧biY i|Xi .

Here (E � F)M � I � I (which follows from EA � I and FB � I) and we
can apply Lemma 6 as (E � F)M ≤ νk(EA � FB,mk) = νk(EA � FB, ak ∨
bk). The third step uses the union bound. Note that ak ∧ bak

is the event that
the A-condition fails before the B-condition fails. The fourth step follows from
Lemma 2. The fifth step follows by the second condition in the statement of the
lemma. The sixth step follows as a non-adaptive distinguisher which queries EA

(and likewise FB) can simply “simulate” the system EA � I (I � FB).9 The
seventh step follows from Lemma 9, and the final step from the assumption of
the lemma. �

Theorem 1 For random functions E,F ∈ R and  as in Definition 10,

δk(E,R) ≤ ε ∧ δk(F,R) ≤ ε =⇒ ∆k(E  F,R) ≤ 2ε
(
1 + ln 1

ε

)
.

Proof: The Theorem follows from Lemma 10 by setting I ← R, Q ← R and
�← . We only have to verify that the two points required by Lemma 10 are
satisfied. As for the first point, R R ≡ R clearly holds. For the second point,
9 Here we need that a query to EA � I results in exactly one invocation of each

subsystem. This guarantees we have no feedback which could not be simulated by a
non-adaptive distinguisher.
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note that the output of EA  R is independent of the output of the internal
system EA on which our event is defined. So seeing the output cannot help in
making the condition fail and we have νk(EA  R, ak) = µk(EA  R, ak). By
symmetry, also νk(R  FB, bk) = µk(R  FB, bk) holds. �

As an application for this theorem one can consider an adaptive version of
almost k-wise independent distributions (see [5], and [1] for simpler construc-
tions). These are distributions over {0, 1}n such that the bits at any k fixed
positions are close (say some ε > 0 far away) to uniform.

It is natural to consider an adaptive version of ε-almost k-wise independence
where the positions can be chosen adaptively by a distinguisher.

Definition 11 A distribution over {0, 1}n is adaptively ε-almost k-wise indepen-
dent if even an adaptive distinguisher, selecting the k positions adaptively, can-
not distinguish the k bits from uniformly random with advantage more than ε.

Corollary 1. The distribution over {0, 1}n defined by XOR-ing two ε-almost
k-wise independent distributions is adaptively 2ε(1 + ln 1

ε )-almost k-wise inde-
pendent.

The following theorem is inspired by Lemma 3 from [4]. We use the notation
of [3] to denote bidirectional random permutations. If F is a random permuta-
tion, then 〈F〉 is like F, but it can be queried from both sides. The distinguisher
can thus also issue a direction bit, in addition to the query, to indicate from
which side it is supposed to be applied as input.

Theorem 2 For two random permutations E,F ∈ P and ◦ as in Definition 10,

δk(E,P) ≤ ε ∧ δk(F,P) ≤ ε =⇒ ∆k(E ◦ F,P) ≤ 2ε
(
1 + ln 1

ε

)
.

If we take the inverse F−1 of F as the second element in the cascade, we addi-
tionally obtain security against bidirectional distinguishers:

δk(E,P) ≤ ε ∧ δk(F,P) ≤ ε =⇒ ∆k(〈E ◦ F−1〉, 〈P〉) ≤ 2ε
(
1 + ln 1

ε

)
.

Proof: The first statement of the theorem follows from Lemma 10 by setting
Q ← P, I ← P and �← ◦. For the second statement we must set Q ← P,
I← 〈P〉 and � to be the mapping E,F→ 〈E ◦ F−1〉.

We will only prove the (slightly more involved) second statement of the the-
orem. Note that this statement is somewhat stronger than a direct application
of Lemma 10 would imply: the precondition is δk(E,P) ≤ ε ∧ δk(F,P) ≤ ε, and
not δk(〈E〉, 〈P〉) ≤ ε ∧ δk(〈F〉, 〈P〉) ≤ ε as one would expect (we will come back
to that point later).

We must verify that the two points required by Lemma 10 are satisfied. As
for the first point, 〈P◦P−1〉 ≡ 〈P〉 clearly holds. For the second point, note that
in 〈EA ◦P−1〉 a query from the P−1 side results in a random value on the input
and output of EA. Thus a query from this side can be replaced by a random
query from the EA side without changing the probability of an event defined on
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EA, and we have νk(〈EA ◦ P−1〉, ak) = νk(EA ◦ P−1, ak). Now the output of
EA ◦ P−1 is completely independent of the output of the internal system EA.
So adaptive strategies cannot help in provoking an event defined on EA, i.e.,
νk(EA ◦P−1, ak) = µk(EA ◦P−1, ak). We have shown that νk(〈EA ◦P−1〉, ak) =
µk(EA ◦ P−1, ak), and by symmetry we get νk(〈P ◦ (FB)−1〉, ak) = µk(FB ◦
P−1, ak). This is more than what is actually required by the second condition
of Lemma 9. An inspection of the proof of the lemma shows that with this we
also get a stronger statement (as mentioned before). �

As an application of this theorem, consider the cascade of two uniform ran-
dom involutions over X . An involution is a permutation which is its own inverse,
and a uniform random involution (URI) on X is a permutation selected at ran-
dom from the set of all involutions on X . A URI I is non-adaptively indistin-
guishable from a URP P (the advantage is very small even for a large number of
queries, actually O(

√|X |) queries are required to achieve a constant advantage),
but an adaptive distinguisher can easily distinguish I from P simply by using
any query X1, setting X2 := Y1, and checking whether Y2 = X1. For a URI,
this condition is always satisfied, whereas for a URP, it is satisfied only with
exponentially small probability. We get the following corollary from Theorem 2

Corollary 1 Any adaptive bidirectional distinguisher must make in the order
of
√|X | queries to achieve a constant distinguishing advantage for a cascade of

two uniform random involutions over X and a uniform random permutation over
X .

5 Discussion

We discuss a few implications of the results of this paper.

5.1 Pseudorandomness

As discussed in [3], essentially all proofs of computational indistinguishability of
random systems consist basically of an information-theoretic indistinguishability
proof. The results of this paper therefore have direct applications to computa-
tional settings. For example, in order to design a bidirectionally secure pseu-
dorandom permutation (i.e., a block cipher secure against a combined chosen-
message and chosen-ciphertext attack) from any pseudorandom function, it suf-
fices to design an only non-adaptively secure random permutation F from a ran-
dom function, then to replace the random function by a pseudorandom function,
and to apply the construction twice with one of them inverted. More generally,
this paper allows for new constructions of quasi-random systems, as discussed
in [3].

5.2 Generalizing Indistinguishability Theory

This paper proposes two generalisations of the framework of [3], where the follow-
ing technique to bound the indistinguishability ∆k(F,G) of two random systems
F and G is used:
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– Find conditions A and B such that FA ≡ GB, which is defined as

FA ≡ GB ⇐⇒ ∀i ≥ 1 : PFA
aiYi|XiY i−1ai−1

= PGB
biYi|XiY i−1bi−1

.

– Prove an upper bound on νk(FA, ak), the success probability of any distin-
guisher in making the condition fail with k queries. Now (by Lemma 7 from
[3]) ∆k(F,G) ≤ νk(FA, ak) and we are done.

The first generalisation is that by Lemma 6 we may replace the requirement
FA ≡ GB with the weaker requirement FA � G and the second point still holds.
As FA ≡ GB implies FA � G but FA � G does not imply the existence of B
such that FA ≡ GB, this requirement is strictly weaker.

The second generalisation is that, due to Lemma 9, one can go from indistin-
guishability to monotone conditions: If ∆k(F,G) ≤ ε, then there always exists
a monotone condition (i.e. the maximum condition for F and G) A such that
FA � G and νk(FA, ak) ≤ ε(1 + ln 1

ε ). So using the above framework (with
FA � G instead of FA ≡ GB in the first step) does not inherently restrict the
set of provable statements.

This is in sharp contrast to the original FA ≡ GB requirement, as there are,
for any ε > 0, random systems F and G where (for some k, or rather some range
for k) ∆k(F,G) ≤ ε, but for any conditions A and B which satisfy FA ≡ GB

we have νk(FA, ak) ≥ 1− ε. For such systems this framework (with the original
FA ≡ GB requirement in the first step) is not applicable.

As an example for such systems, let the first be a source of uniform random
bits and the second be a source where each bit is not completely uniform but
has some small bias α. Here ∆k(F,G) ≈ √kα (see [6]) and νk(FA, ak) ≈ 1 −
(1 − α)k/2 ≈ αk/2. Thus choosing α small and k large enough we can achieve
any ε > 0 as described.

5.3 Decorrelation Theory

Decorrelation theory was introduced by Vaudenay as a tool to prove security of
block ciphers against d-iterated attacks, this class of attacks includes linear and
differential cryptanalysis. Loosely speaking, in a d-iterated attack a distinguisher,
which tries to distinguish the block cipher from a uniform random permutation,
is limited to look at blocks of at most d queries at the same time. Decorrelation
theory is based on different matrix norms. We refer to [7] for the definition of
these norms and note that

For a random permutation E over M let [E]d denote the Md ×Md matrix
where the (xd, yd) ∈ Md ×Md entry of [E]d is PE

Y d|Xd(xd, yd). Now let D be

a distance over the matrix space R
Md×Md

. The d-wise decorrelation bias of
the permutation E is the distance (C∗ denotes the distribution of the uniform
random permutation)

DecPd
D(E) = D([E]d, [C∗]d).



Composition of Random Systems: When Two Weak Make One Strong 425

In the above definition the distance D can be replaced by a matrix norm. The
matrix norms considered are denoted || · ||∞, || · ||a and || · ||s. These norms
have a natural interpretation as they are exactly twice the advantage of the best
(non-adaptive, adaptive or bidirectional) distinguisher making at most d queries
in distinguishing E from a URP, i.e. (note that here the first terms are in our
notation)

δd(E,P) =
1
2
||[E]d − [C∗]d||∞ =

1
2
DecPd

∞(E) (3)

∆d(E,P) =
1
2
||[E]d − [C∗]d||a =

1
2
DecPd

a(E) (4)

∆d(〈E〉, 〈P〉) =
1
2
||[E]d − [C∗]d||s =

1
2
DecPd

s(E) (5)

The main theorem of [7] states that if a block cipher has small 2d-wise (|| ·
||∞,|| · ||a or || · ||s) decorrelation bias it is secure against any d-iterated attack
performed by any (non-adaptive, adaptive or bidirectional) distinguisher.

We can plug in (3), (4) and (5) directly into Theorem 1 and get the first
nontrivial relations known among this norms.

Corollary 2

DecPd
∞(E) ≤ ε ∧ DecPd

∞(F ) ≤ ε ⇒ DecPd
a(E ◦ F ) ≤ 2ε

(
1 + ln 2

ε

)

DecPd
∞(E) ≤ ε ∧ DecPd

∞(F ) ≤ ε ⇒ DecPd
s(E ◦ F−1) ≤ 2ε

(
1 + ln 2

ε

)
.

The second statement of the corollary now implies that using a block-cipher
with small 2d-wise decorrelation bias in the∞ norm against non-adaptive chosen
plaintext d-iterated attacks in a cascade (with independent keys, the second
time in decrypt mode) results in a block cipher which is secure against adaptive
combined chosen plaintext and ciphertext 2d-iterated attacks.

6 Conclusions and Open Problems

It would be interesting to have a similar framework as the one proposed in this
paper for the computational setting. For example, the computational analog of
Theorem 2 would state that the cascade of two block-ciphers, each secure against
non-adaptively chosen plaintext attacks, is secure against adaptive chosen plain-
text/ciphertext adversaries.

As already mentioned in the introduction, there is a gap in the order of ln 1
ε

between the O(ε ln 1
ε ) bound proven in Theorems 1 and 2 and an easy to show

Ω(ε) lower bound for the respective terms. However, Lemmas 6 and 9 can be
shown to be tight up to a (small) multiplicative constant, so we cannot hope
to close this gap (i.e. showing an upper bound of O(ε)) by improving on them.
But trying to find a concrete example (of random systems) for which a matching
Ω(ε ln 1

ε ) lower bound can be proven seems promising to us.
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A Martingales

In what follows, let Ṽn
def= max0≤j≤n Vj . The following lemma is known as the

Kolmogorov-Doob inequality.

Lemma 11 Let V0, V1, . . . be a sub-martingale sequence where the Vi are non-
negative. Then, for every n,

P[Ṽn ≥ λ] ≤ E[Vn]
λ

.

Proof of Lemma 7: We restate the lemma for the reader’s convenience: If
V0, V1, . . . is a sub-martingale sequence where 0 ≤ Vi ≤ 1 for all i, then

E[Ṽn] ≤ E[Vn] · (1− ln(E[Vn])).

Let ψ(r) denote the function

ψ(r) def=






1 if r < E[Vn]
E[Vn]/r if E[Vn] ≤ r ≤ 1
0 if r > 1

With Lemma 11 and 0 ≤ Ṽn ≤ 1 (which follows from 0 ≤ Vi ≤ 1) we see that

∀r : P[Ṽn ≥ r] ≤ ψ(r).
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So we can upper bound E[Ṽn] as

E[Ṽn] ≤ −
∫ ∞

−∞
ψ′(r) r dr

= −
∫ 1

E[Vn]

(
E[Vn]
r

)′
r dr + E[Vn]

=
∫ 1

E[Vn]

E[Vn]
r2

r dr + E[Vn]

= − ln(E[Vn]) · E[Vn] + E[Vn].

�

Proof of Lemma 8: We restate the lemma for the reader’s convenience:
Z1, Z2, . . . as defined in (2) is a sub-martingale sequence in the random ex-
periment D�F, i.e.,

∀i ≥ 0 : ED�F[Zi+1|Z0, . . . , Zi] ≥ Zi.

Because the Z0, . . . , Zi are determined by XiY i, we can prove the (stronger)
statement

∀i ≥ 0 : ED�F[Zi+1|XiY i] ≥ Zi

instead. Below the sums over X ×Y always apply to the random variables Xi+1
and Yi+1. Lemma 1 is used several times.

ED�F[Zi+1|XiY i]

=
∑

X×Y
PD�F

Xi+1Yi+1|XiY i

︸ ︷︷ ︸
PD

Xi+1|XiY iPF
Yi+1|Xi+1Y i

Zi+1︷ ︸︸ ︷

max
{PF

Y i+1|Xi+1 − PG
Y i+1|Xi+1

PF
Y i+1|Xi+1

︸ ︷︷ ︸
PF

Y i+1|Xi+1Y iPF
Y i|Xi

, 0
}

=
1

PF
Y i|Xi

∑

X×Y
PD

Xi+1|XiY i

︸ ︷︷ ︸
PD

Xi+1|Y i/PD
Xi|Y i

max
{

PF
Y i+1|Xi+1 − PG

Y i+1|Xi+1 , 0
}

=
1

PD
Xi|Y iPF

Y i|Xi

∑

X×Y
max

{
PD�F

Xi+1Y i+1 − PD�G
Xi+1Y i+1 , 0

}

≥ 1
PD

Xi|Y iPF
Y i|Xi

max
{ ∑

X×Y
PD�F

Xi+1Y i+1

︸ ︷︷ ︸
PD�F

XiY i

−
∑

X×Y
PD�G

Xi+1Y i+1

︸ ︷︷ ︸
PD�G

XiY i

, 0
}

=
PD

Xi|Y i

PD
Xi|Y i

max

{
PF

Y i|Xi − PG
Y i|Xi

PF
Y i|Xi

, 0

}

= Zi.
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