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Abstract

In discrete time, every time-consistent dynamic monetary risk measure can be written as a
composition of one-step risk measures. We exploit this structure to give new dual represen-
tation results for time-consistent convex monetary risk measures in terms of one-step penalty
functions. We first study risk measures for random variables modelling financial positions at
a fixed future time. Then we consider the more general case of risk measures that depend on
stochastic processes describing the evolution of financial positions or cumulated cash flows. In
both cases the new representations allow for a simple composition of one-step risk measures
in the dual. We discuss several explicit examples and provide connections to the recently
introduced class of dynamic variational preferences.

Key words: Dynamic monetary risk measures, time-consistency, dual representations.

1 Introduction

Following the introduction of coherent, convex and monetary risk measures in [1, 2, 17, 18, 19],
different dynamic extensions were proposed. This has led to the study of conditional representations
and time-consistency properties of dynamic risk measures in various setups. We refer to [3, 29, 28,
30, 33, 12, 9, 31, 6, 23, 26, 16] for the discrete time case and [20, 11, 28, 4, 5, 26] for risk measures
in continuous time; see also [14] and [27] for related results for dynamic preferences in discrete
time.

In this paper we provide representations of time-consistent dynamic monetary risk measures in
discrete time that are similar in spirit to the continuous-time representations of [20], [28] and [4, 5].
Rather than looking at general dynamic monetary risk measures and trying to establish conditions
for time-consistency, we here only consider time-consistent ones and view them as compositions of
one-step risk measures. For time-consistent dynamic convex monetary risk measures, we exploit
this structure to derive new dual representations in terms of the penalty functions of the one-step
risk measures. These representations permit a simple construction of time-consistent dynamic
convex monetary risk measures by composing one-step risk measures in the dual.

∗Supported by NSF grant DMS-0505932
†Supported by the Swiss National Science Foundation
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The structure of the paper is as follows: Section 2 explains the notation. In Section 3, we study
time-consistent dynamic monetary risk measures for random variables. They can be written as
simple concatenations of one-step risk measures. In Theorem 3.4, Lemma 3.7 and Corollary 3.8 we
give dual representations for time-consistent dynamic convex monetary risk measures for random
variables. The time-consistency is reflected by an additive structure in the dual. We illustrate this
with examples and provide connections to the dynamic variational preferences of [27]. In Section
4, we consider dynamic monetary risk measures that depend on stochastic processes describing the
evolution of financial positions over time. In this case, the composition of one-step risk measures
involves the aggregation of current and future risk. For time-consistent dynamic convex monetary
risk measures, we translate this structure into a dual representation in terms of supermartingales;
see Theorem 4.4, Lemma 4.8 and Corollary 4.9. We conclude by introducing a special class of
one-step aggregators of composed form and discussing several related examples of risk measures
that depend on the whole path of a stochastic process.

2 Notation

We fix a finite time horizon T ∈ N and let (Ω,F , (Ft)T
t=0,P) be a filtered probability space such

that P[A] ∈ {0, 1} for all A ∈ F0. P is not necessarily understood as a physical probability
measure. We use it as reference measure that specifies the negligible events. Equalities and
inequalities between random variables or stochastic processes are understood in the P-almost
sure sense. For instance, X ≥ Y for two stochastic processes X and Y means Xt ≥ Yt P-
almost surely for all t = 0, . . . , T . For p ∈ [1,∞] and t ∈ {0, . . . , T}, Lp(Ft) is the space of all
(equivalence classes of) Ft-measurable random variables with finite Lp-norm. R∞ denotes the
space of (equivalence classes of) adapted stochastic processes X on (Ω,F , (Ft)T

t=0,P) such that
‖X‖R∞ := ess inf

{
m ∈ R | sup0≤t≤T |Xt| ≤ m

}
< ∞. Finally, P consists of all probability mea-

sures which are absolutely continuous with respect to P.

3 Dynamic monetary risk measures for random variables

In this section the risky objects are financial positions at time T modelled by the set L∞(FT ). We
assume that there exists a money market account and use it as numeraire, that is, money at later
times is expressed in multiples of the value of one dollar put into the money market account at
time 0. A risk measure at time t is a mapping ρt : L∞(FT ) → L∞(Ft). ρt(X) is interpreted as
a capital requirement at time t for the financial position X conditional on the information given
by Ft. For the study of dynamic risk measures, it is more convenient to work with the negative
φt = −ρt of a monetary risk measure. We call φt a monetary utility function. Alternative names
are risk adjusted valuation ([3]) or acceptability measure ([30]).

Definition 3.1 Let t ∈ {0, . . . , T}. We call a mapping φt : L∞(FT ) → L∞(Ft) a monetary utility
function at time t, if it has the following properties:

(N) Normalization: φt(0) = 0

(M) Monotonicity: φt(X) ≥ φt(Y ) for all X, Y ∈ L∞(FT ) such that X ≥ Y

(T) Translation property: φt(X + m) = φt(X) + m for all X ∈ L∞(FT ) and m ∈ L∞(Ft)

We call φt a concave monetary utility functions at time t, if it also satisfies

(C) Ft-concavity: φt(λX + (1− λ)Y ) ≥ λφt(X) + (1− λ)φt(Y )
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for all X,Y ∈ L∞(Ft) and λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1.

A dynamic monetary utility function is a family of monetary utility functions (φt)T
t=0. If all φt are

concave, then we call (φt)T
t=0 a dynamic concave monetary utility function.

The normalization property (N) is convenient for the study of time-consistency questions. Every
function φt : L∞(FT ) → L∞(Ft) satisfying (M) and (T) can readily be normalized by passing to
φt(.)−φt(0). It satisfies (N), (M), (T) and induces the same conditional preference order on L(FT )
as φt. The properties (M) and (T) imply

(LP) Local property: 1Aφt(X) = 1Aφt(1AX) for all X ∈ L∞(FT ) and A ∈ Ft .

Indeed, by (M) and (T), we have

φt(1AX)− 1Ac ‖X‖∞ = φt(1AX − 1Ac ‖X‖∞) ≤ φt(X)
≤ φt(1AX + 1Ac ‖X‖∞) = φt(1AX) + 1Ac ‖X‖∞ ,

and (LP) follows by multiplying through with 1A. Under (N), (LP) is equivalent to

1Aφt(X) = φt(1AX) for all X ∈ L∞(FT ) and A ∈ Ft .

Definition 3.2 We call a dynamic monetary utility function (φt)T
t=0 time-consistent if

φt+1(X) ≥ φt+1(Y ) implies φt(X) ≥ φt(Y ) (3.1)

for all X, Y ∈ L∞(FT ) and t = 0, . . . , T − 1.

Due to the properties (N), (M) and (T), time-consistency of dynamic monetary utility functions
on L∞(FT ) is equivalent to the dynamic programming principle

φt(X) = φt(φt+1(X)) for all X ∈ L∞(FT ) and t = 0, . . . , T − 1 . (3.2)

Concepts equivalent or similar to (3.1) or (3.2) have been studied in different contexts, see for
instance, [24, 25, 15, 13, 32, 14, 11, 3, 29, 28, 4, 5, 30, 33, 12, 9, 31, 23, 26, 16, 27].

3.1 Generators

For a dynamic monetary utility function (φt)T
t=0, we denote by Ft the restriction of φt to L∞(Ft+1)

and call (Ft)T−1
t=0 the generators of (φt)T

t=0. It follows from (3.2) that a time-consistent dynamic
monetary utility function is uniquely given by its generators. One can also start with an arbitrary
family

Ft : L∞(Ft+1) → L∞(Ft) , t = 0, . . . , T − 1 ,

of monetary utility functions and define the time-consistent monetary utility function (φt)T
t=0 by

backwards induction:

φT (X) := X

φt(X) := Ft(φt+1(X)) , t ≤ T − 1 .

It is clear that every φt is Ft-concave if and only if each Ft is so.
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3.2 Duality

In this section we provide duality results for time-consistent dynamic concave monetary utility
functions on L∞(FT ) in terms of one-step penalty functions. In order to define them, we first have
to introduce for t = 1, . . . , T , the set of one-step transition densities

Dt :=
{
ξ ∈ L1

+(Ft) | EP [ξ | Ft−1] = 1
}

.

Every sequence (ξt+1, . . . , ξT ) ∈ Dt+1 × · · · × DT induces a P-martingale (M ξ
r )T

r=0 by

M ξ
r :=

{
1 for r ≤ t

ξt+1 · · · · · ξr for r = t + 1, . . . , T

and a probability measure Qξ in P with density

dQξ

dP
= M ξ

T .

On the other hand, every probability measure Q in P leads to a non-negative martingale

MQ
t := EP

[
dQ
dP

| Ft

]
, t = 0, . . . , T .

Then, {
MQ

t−1 = 0
}
⊂

{
MQ

t = 0
}

for all 1 ≤ t ≤ T ,

and the sequence

ξQt :=





MQ
t

MQ
t−1

on
{

MQ
t−1 > 0

}

1 on
{

MQ
t−1 = 0

} for t = 1, . . . , T ,

is an element in D1 × · · · × DT that induces the measure Q.
We will work with the convention

EQ [X | Ft] := EP
[
ξQt+1 · · · · · ξQT X | Ft

]
, X ∈ L(FT ) , t = 0, . . . T − 1 .

EP
[
ξQt+1 · · · · · ξQT X | Ft

]
is a version of EQ [X | Ft] that is defined up to P-almost sure equality,

whereas EQ [X | Ft] is only defined up to Q-almost sure equality.
By L̄+(Ft) we denote all Ft-measurable functions from Ω to [0,∞]. The conditional expectation

of a random variable X ∈ L̄+(Ft) is, as usual, understood as

EP [X | Ft] := lim
n→∞

EP [X ∧ n | Ft] .

Definition 3.3 For t ∈ {0, . . . , T − 1}, we call a mapping

ϕt : Dt+1 → L̄+(Ft)

a one-step penalty function if it satisfies the following two conditions:

(i) ess infξ∈Dt+1 ϕt(ξ) = 0

(ii) ϕt(1Aξ + 1Acξ′) = 1Aϕt(ξ) + 1Acϕt(ξ′) for all ξ, ξ′ ∈ Dt+1 and A ∈ Ft.

For Q ∈ P, we set
ϕt(Q) := ϕt(ξ

Q
t+1) .

A dynamic penalty function on D consists of a sequence (ϕt)T−1
t=0 of one-step penalty functions.
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The following theorem shows that every dynamic penalty function on D induces a time-
consistent dynamic concave monetary utility function on L∞(FT ). Note that (3.7) below is a
dual representation of a whole family of risk measures (φt)T

t=0 in terms of a single penalty function.
It is an extension of the dual representation of a time-consistent dynamic coherent risk measure in
terms of one m-stable (or rectangular) set of probability measures (see [3, 11, 29, 14, 9]). Formula
(3.5) can be seen as a discrete version of the continuous-time representation (37) in [5].

Theorem 3.4 Let (ϕt)T−1
t=0 be a dynamic penalty function on D. Then

Ft(X) := ess inf
Q∈P

{EQ [X | Ft] + ϕt(Q)} , t = 0, . . . , T − 1 , (3.3)

defines generators of a time-consistent concave monetary utility function (φt)T
t=0 with the following

representations:

φt(X) = ess inf
Q∈P

EQ


X +

s∑

j=t+1

ϕj−1(Q) | Ft


 (3.4)

= ess inf
Q∈P

EQ


X +

T∑

j=t+1

ϕj−1(Q) | Ft


 (3.5)

= ess inf
Q∈P

EQ


X +

s∑

j=1

ϕj−1(Q) | Ft


 (3.6)

= ess inf
Q∈P

EQ


X +

T∑

j=1

ϕj−1(Q) | Ft


 (3.7)

for 0 ≤ t < s ≤ T and X ∈ L∞(Fs).

Proof. It can easily be checked that for all t = 0, . . . , T − 1,

Ft(X) := ess inf
Q∈P

{EQ [X | Ft] + ϕt(Q)}

defines a concave monetary utility function from L∞(Ft+1) to L∞(Ft). Therefore, the family
(Ft)T−1

t=0 induces a time-consistent dynamic concave monetary utility function (φt)T
t=0. It remains

to show (3.4)–(3.7). To do this we define the mappings φ̃t : L∞(FT ) → L∞(Ft) by

φ̃t(X) := ess inf
Q∈P

EQ


X +

T∑

j=1

ϕj−1(Q) | Ft


 , X ∈ L∞(FT ) .
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If X ∈ L∞(Fs) for 0 ≤ t < s ≤ T , then

φ̃t(X) = ess inf
(ξ1,...,ξT )∈D1×···×DT

EP


ξt+1 · · · · · ξT


X +

T∑

j=1

ϕj−1(ξj)


 | Ft




=
t∑

j=1

ess inf
ξj∈Dj

ϕj−1(ξj) (3.8)

+ ess inf
(ξt+1,...,ξs)∈Dt+1×···×Ds



EP


ξt+1 · · · · · ξs


X +

s∑

j=t+1

ϕj−1(ξj)


 | Ft




+ ess inf
(ξs+1,...,ξT )∈Ds+1×···×DT

T∑

j=s+1

EP [ξt+1 · · · · · ξj−1 ϕj−1(ξj) | Ft]



 (3.9)

The terms (3.8) and (3.9) are both equal to 0. For (3.8) this follows directly from condition (i) of
Definition 3.3. For (3.9) we prove it by induction over T : Fix (ξt+1, . . . , ξs) ∈ Dt+1 × · · · × Ds. If
T = s + 1, then (3.9) equals

ess inf
ξs+1∈Ds+1

EP [ξt+1 · · · · · ξs ϕs(ξs+1) | Ft] . (3.10)

By condition (ii) of Definition 3.3, the family {ϕs(ξs+1) | ξs+1 ∈ Ds+1} is directed downwards.
Therefore, it follows by Beppo Levi’s dominated convergence theorem that ess inf in (3.10) can
be taken inside the conditional expectation. By condition (i) of Definition (3.3), this shows that
(3.10) is equal to zero. Now, assume T ≥ s + 2 and

ess inf
(ξs+1,...,ξT−1)∈Ds+1×···×DT−1

T−1∑

j=s+1

EP [ξt+1 · · · · · ξj−1 ϕj−1(ξj) | Ft] = 0 .

Then, to prove that (3.9) is equal to zero, it is enough to show that for fixed (ξt+1, . . . , ξT−1) ∈
Dt+1 × · · · × DT−1, the term

ess inf
ξT∈DT

EP [ξt+1 · · · · · ξT−1 ϕT−1(ξT ) | Ft]

is zero. As above, this follows because ϕT−1 satisfies condition (ii) of Definition 3.3 and therefore,
the ess inf can be taken inside the conditional expectation.

Since (3.8) and (3.9) are both equal to zero, we have

φ̃t(X) = ess inf
Q∈P

EQ


X +

s∑

j=1

ϕj−1(Q) | Ft




= ess inf
Q∈P

EQ


X +

T∑

j=t+1

ϕj−1(Q) | Ft




= ess inf
Q∈P

EQ


X +

s∑

j=t+1

ϕj−1(Q) | Ft


 . (3.11)
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Next, we show φt = φ̃t by induction over s. If s = t + 1, then we obtain from (3.11) that

φt(X) = Ft(X) = ess inf
Q∈P

EQ [X + ϕt(Q) | Ft] = φ̃t(X) for all X ∈ L∞(Fs) .

Now, assume s ≥ t + 2 and φt(Y ) = φ̃t(Y ) for all Y ∈ L∞(Fs−1). If X ∈ L∞(Fs), then
Fs−1(X) ∈ L∞(Fs−1), and we get

φt(X) = φt(Fs−1(X)) = φ̃t(Fs−1(X))

= ess inf
(ξt+1,...,ξs−1)∈Dt+1×···×Ds−1

EP


(ξt+1 · · · · · ξs−1)


Fs−1(X) +

s−1∑

j=t+1

ϕj−1(ξj)


 | Ft




= ess inf
(ξt+1,...,ξs−1)∈Dt+1×···×Ds−1

EP [(ξt+1 · · · · · ξs−1)

ess inf

ξs∈Ds

EP [ξsX | Fs−1] +
s∑

j=t+1

ϕj−1(ξj)


 | Ft


 . (3.12)

By condition (ii) of Definition 3.3, the family

EP [ξsX | Fs−1] + ϕs−1(ξs) , ξs ∈ Ds

is directed downwards. Therefore, we can take the ess inf in (3.12) outside the conditional expec-
tation and arrive at

φt(X) = ess inf
(ξt+1,...,ξs)∈Dt+1×···×Ds

EP


(ξt+1 · · · · · ξs)


X +

s∑

j=t+1

ϕj−1(ξj)


 | Ft


 = φ̃t(X) ,

which concludes the proof. ¤
It can easily be checked that generators of the form (3.3) and the corresponding dynamic

monetary utility functions (3.4)–(3.7) have the following continuity property:

Definition 3.5 For 0 ≤ t ≤ s ≤ T , we call a mapping I : L∞(Fs) → L∞(Ft) continuous from
above if

I(Xn) → I(X) P-almost surely

for every sequence (Xn)n≥1 in L∞(Fs) that decreases P-almost surely to X ∈ L∞(Fs).
We call a dynamic monetary utility function (φt)T

t=0 on L∞(FT ) continuous from above if all
φt are continuous from above.

On the other hand, every time-consistent dynamic concave monetary utility function with
generators that are continuous from above has a representation of the form (3.4). This will be
shown in Corollary 3.8 below. But first we need the following definition and lemma.

Definition 3.6 For a time-consistent dynamic concave monetary utility function (φt)T−1
t=0 with

generators (Ft)T−1
t=0 that are continuous from above we define for all t = 0, . . . , T − 1 and ξt+1 ∈

Dt+1,
ϕmin

t (ξt+1) := ess sup
X∈L∞(Ft+1)

{Ft(X)− EP [ξt+1X | Ft]}

and call (ϕmin
t )T−1

t=0 the minimal dynamic penalty function of (φt)T
t=0.
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In the subsequent lemma we provide a conditional dual representation result for concave generators
Ft in terms of ϕmin

t . Similar results are proved in [29, 3, 12, 9, 6, 31, 26]. Since our setup is slightly
different, we provide a proof that is adapted to it.

Lemma 3.7 Let (φt)T
t=0 be a time-consistent dynamic concave monetary utility function on L∞(FT )

with generators (Ft)T−1
t=0 that are continuous from above. Then (ϕmin

t )T−1
t=0 is the smallest dynamic

penalty function such that

Ft(X) = ess inf
Q∈P

{
EQ [X | Ft] + ϕmin

t (Q)
}

(3.13)

for all t = 0, . . . , T − 1 and X ∈ L∞(Ft+1).

Proof. We fix t ∈ {0, . . . , T − 1} and introduce the sets

Bt := {X ∈ L∞(Ft+1) | Ft(X) ≥ 0}
and

Ct :=
{
X ∈ L∞(Ft+1) | EQ [X | Ft] + ϕmin

t (Q) ≥ 0 for all Q ∈ P}
.

It follows directly from the definition of ϕmin
t that

EQ [X | Ft] + ϕmin
t (Q) ≥ Ft(X)

for all X ∈ L∞(Ft+1) and Q ∈ P. This shows that Bt is contained in Ct. In the following we are
going to show Ct ⊂ Bt. Assume this is not the case. Then there exists X∗ ∈ Ct \ Bt. Hence, the
set A := {Ft(X∗) < 0} has positive P-measure and 1AX∗ is still in Ct \ Bt. The mapping

X 7→ I(X) := E [Ft(X)]

is a concave monetary utility function from L∞(Ft+1) to R that is continuous from above. Hence,
it can be deduced from the Krein–Šmulian theorem that

B := {X ∈ L∞(Ft+1) | I(X) ≥ 0}
is σ(L∞(Ft+1), L1(Ft+1))-closed, see for instance, the proof of Theorem 3.2 in Delbaen [10] or
Remark 4.3 in Cheridito et al. [9]. Since it does not contain 1AX∗, it follows from the separating
hyperplane theorem that there exists a Q ∈ P such that

EQ [1AX∗] < inf
X∈B

EQ [X] ≤ inf
X∈Bt

EQ [X] . (3.14)

Since the family {EQ [X | Ft] | X ∈ Bt} is directed downwards, we obtain from Beppo Levi’s mono-
tone convergence theorem that

inf
X∈Bt

EQ [X] = EQ

[
ess inf
X∈Bt

EQ [X | Ft]
]

.

Moreover, by the translation property of Ft, ϕmin
t can be written as

ϕmin
t (Q) = ess sup

X∈Bt

EQ [−X | Ft] .

Therefore, it follows from (3.14) that

EQ [1AX∗] < EQ
[−ϕmin

t (Q)
]

,
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and hence,
EQ

[
EQ [1AX∗ | Ft] + ϕmin

t (Q)
]

< 0 .

But this contradicts 1AX∗ ∈ Ct. Thus, we must have Bt = Ct. Note that for all X ∈ L∞(Ft+1),

Ft(X) = ess sup {m ∈ L∞(Ft) | X −m ∈ Bt} ,

and therefore,

Ft(X) = ess sup
{
m ∈ L∞(Ft) | EQ [X −m | Ft] + ϕmin

t (Q) ≥ 0 for all Q ∈ P}

= ess sup
{
m ∈ L∞(Ft) | EQ [X | Ft] + ϕmin

t (Q) ≥ m for all Q ∈ P}

= ess inf
Q∈P

EQ [X | Ft] + ϕmin
t (Q) .

Finally note that for every function ϕt from Dt+1 to L̄+(Ft) that satisfies

Ft(X) = ess inf
ξt+1∈Dt+1

{EP [ξt+1X | Ft] + ϕt(ξt+1)}

for all X ∈ L∞(Ft+1), we have

Ft(X)− EP [ξt+1X | Ft] ≤ ϕt(ξt+1)

for all X ∈ L∞(Ft+1) and ξt+1 ∈ Dt+1, and therefore, ϕmin
t ≤ ϕt. ¤

The following corollary is an immediate consequence of Theorem 3.4 and Lemma 3.7.

Corollary 3.8 Let (φt)T
t=0 be a time-consistent dynamic concave monetary utility function that is

continuous from above. Then

φt(X) := ess inf
Q∈P

EQ


X +

s∑

j=t+1

ϕmin
j−1(Q) | Ft




= ess inf
Q∈P

EQ


X +

T∑

j=t+1

ϕmin
j−1(Q) | Ft




= ess inf
Q∈P

EQ


X +

s∑

j=1

ϕmin
j−1(Q) | Ft




= ess inf
Q∈P

EQ


X +

T∑

j=1

ϕmin
j−1(Q) | Ft




for all 0 ≤ t < s ≤ T and X ∈ L∞(Fs).

The following theorem is related to Corollary 4.8 in [9], which shows that a relevant time-
consistent monetary utility function (φt)T

t=0 is completely determined by φ0.

Theorem 3.9 Let (ϕt)T−1
t=0 be a dynamic penalty function on D with corresponding time-consistent

dynamic concave monetary utility function (φt)T
t=0 on L∞(FT ). Assume there exists an X ∈

L∞(FT ) and a probability measure QX equivalent to P such that

φ0(X) = EQX


X +

T∑

j=1

ϕj−1(QX)


 .
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Then

φt(X) = EQX


X +

T∑

j=t+1

ϕj−1(QX) | Ft




for all t = 1, . . . , T − 1.

Proof. By Theorem 3.4, we have

φt(X) ≤ EQX


X +

T∑

j=t+1

ϕj−1(QX) | Ft




for all t = 0, . . . , T − 1. Now, assume that there exists a t ∈ {1, . . . , T − 1} such that

φt(X) < EQX


X +

T∑

j=t+1

ϕj−1(QX) | Ft




on a set with positive P-measure. Then,

φ0(X) = EQX


X +

T∑

j=1

ϕj−1(QX)




= EQX


EQX


X +

T∑

j=t+1

ϕj−1(QX) | Ft


 +

t∑

j=1

ϕj−1(QX)




> EQX


φt(X) +

t∑

j=1

ϕj−1(QX)




≥ ess inf
(ξ1,...,ξT )∈D1×···×DT

EP


ξ1 · · · · · ξT


X +

T∑

j=1

ϕj−1(ξj)







= φ0(X) ,

which is absurd. ¤

3.3 Examples

3.3.1 Time-consistent dynamic Average-Value-at-Risk

For every t = 0, . . . , T − 1, let αt be an element of L∞(Ft) such that 0 < αt ≤ 1. Consider the
generators

Ft(X) := ess inf
ξt+1∈Dt+1 , ξt+1≤α−1

t

EP [ξt+1 X | Ft] , X ∈ L∞(Ft+1).

Then, −Ft is a conditional Average-Value-at-Risk on L∞(Ft+1) at the level αt; see [18] for the
definition of the unconditional Average-Value-at-Risk. The minimal dynamic penalty function
(ϕmin

t )T−1
t=0 of the induced time-consistent dynamic concave monetary utility function (φt)T

t=0 is
given by

ϕmin
t (ξt+1) = ess supX∈L∞(Ft+1) {Ft(X)− EP [ξt+1X | Ft]} =

{
0 if ξt+1 ≤ α−1

t

∞ else .
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Hence,

ϕmin(Q) :=
T∑

j=1

ϕmin
j−1(Q) =

{
0 if ξQj ≤ α−1

j−1 for all j = 1, . . . , T

∞ else

and
φt(X) = ess inf

Q∈P
EQ

[
X + ϕmin(Q) | Ft

]
= ess inf

Q∈Q
EQ [X | Ft] ,

where
Q :=

{
Q ∈ P | ξQj ≤ α−1

j−1 for all j = 1, . . . , T
}

.

(ρt)T
t=0 = (−φt)T

t=0 is a time-consistent dynamic Average-Value-at-Risk at the dynamic level
(α0, . . . , αT−1).

3.3.2 Time-consistent dynamic entropic risk measure

For all t = 0, . . . , T − 1, let αt ∈ L∞(Ft) with αt > 0 and define Ft by

Ft(X) = −α−1
t log EP [exp(−αtX) | Ft] , X ∈ L∞(Ft+1) .

Then, −Ft is a conditional entropic risk measure on L(Ft+1) with risk aversion parameter αt; see
[17, 18, 4, 5, 12, 9]. It is well known that the minimal dynamic penalty function (ϕmin

t )T−1
t=0 of the

induced time-consistent concave monetary utility function (φt)T
t=0 is given by

ϕmin
t (ξt+1) = α−1

t EP [ξt+1 log(ξt+1) | Ft]

Hence,

ϕmin(Q) :=
T∑

j=1

ϕmin
j−1(Q) =

T∑

j=1

EQ

[
log

((
ξQt+1

)α−1
t

)
| Ft

]

and

φt(X) = ess inf
Q∈P

EQ
[
X + ϕmin(Q) | Ft

]
, X ∈ L∞(FT ) , t = 0, . . . , T .

3.3.3 Dynamic variational preferences

Recall thatR∞ denotes the space of all essentially bounded adapted processes (Xt)T
t=0 on (Ω,F , (Ft)T

t=0,P).
We here understand Xt as a cashflow at time t. Let (φt)T

t=0 be a time-consistent dynamic concave
monetary utility function on L∞(FT ) and β > 0 a depreciation factor. The transform

Wt(.) := β−tφt(βt.) , t = 0, . . . , T ,

is still a dynamic concave monetary utility function on L∞(FT ). It satisfies the β-modified time-
consistency condition

Wt+1(X) ≥ Wt+1(Y ) implies Wt(βX) ≥ Wt(βY ) ,

or equivalently, the β-modified dynamic programming principle

Wt(X) = Wt(βWt+1(β−1X)) for all X ∈ L∞(FT ) and t = 0, . . . , T − 1 .
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Now, let u be an increasing continuous function from R to R. Then, the functionals

Vt(X) := Wt




T∑

j=t

βj−tu(Xj)


 , X ∈ R∞ , t = 0, . . . , T ,

satisfy the recursive relation

Vt(X) = u(Xt) + Wt(β Vt+1(X)) , t = 0, . . . , T − 1 .

This class of dynamic preferences is axiomatized in [27], where they are called dynamic variational
preferences.

4 Dynamic monetary risk measures for stochastic processes

In this section the risky objects are stochastic processes X ∈ R∞ modelling discounted value
processes or discounted cumulated cash flows; for instance, the discounted market value of a
portfolio, the discounted equity value of a firm or the discounted surplus of an insurance company.
This interpretation of X ∈ R∞ is the same as in [3, 7, 8, 9, 23] but different from the one in
Subsection 3.3.3 above or the one in [21], where X is understood as a sequence of cash flows.
As before, we are interested in monetary risk measures ρt but find it more convenient to work
with the corresponding monetary utility functions φt = −ρt. In the following, we generalize the
definitions of Section 3 to this more general setup. For 0 ≤ t ≤ s ≤ T , we define the projection
πt,s : R∞ →R∞ by

πt,s(X)r := 1{t≤r}Xr∧s , r = 0, . . . , T .

and denote
R∞t,s := πt,s(R∞) .

Definition 4.1 Let t ∈ {0, . . . , T}. A monetary utility function on R∞t,T is a mapping φt : R∞t,T →
L∞(Ft) with the following properties:

(N) Normalization: φt(0) = 0

(M) Monotonicity: φt(X) ≥ φt(Y ) for all X, Y ∈ R∞t,T such that X ≥ Y

(T) Translation property: φt(X + m1[t,T ]) = φt(X) + m for all X ∈ R∞t,T and m ∈ L∞(Ft)

We call φt Ft-concave if it satisfies

(C) Ft-concavity: φt(λX+(1−λ)Y ) ≥ λφt(X)+(1−λ)φt(Y ) for all X, Y ∈ R∞t,T and λ ∈ L∞(Ft)
such that 0 ≤ λ ≤ 1

For X ∈ R∞ we set
φt(X) := φt ◦ πt,T (X) .

A dynamic monetary utility function on R∞ is a family (φt)T
t=0 such that each φt is a monetary

utility function on R∞t,T . If all φt satisfy (C), then we call (φt)T
t=0 a dynamic concave monetary

utility function on R∞.

As in the case of risk measures for random variables, it can be deduced from (M) and (T) that φt

satisfies the

(LP) Local property: 1Aφt(X) = 1Aφt(1AX) for all X ∈ R∞ and A ∈ Ft

12



Definition 4.2 We call a dynamic monetary utility function (φt)T
t=0 on R∞ time-consistent if for

all X, Y ∈ R∞ and t = 0, . . . , T − 1,

Xt = Yt and φt+1(X) ≥ φt+1(Y )

implies
φt(X) ≥ φt(Y ) .

It can easily be deduced from (N), (M) and (T) that time-consistency of a dynamic monetary risk
measure on R∞ is equivalent to the following dynamic programming principle:

φt(X) = φt(Xt1{t} + φt+1(X)1[t+1,T ]) for all X ∈ R∞ and t = 0, . . . , T − 1 . (4.15)

4.1 Aggregators and generators

For a time time-consistent dynamic monetary utility function (φt)T
t=0 on R∞, we define the aggre-

gators
Gt : L∞(Ft)× L∞(Ft+1) → L∞(Ft) , t = 0, . . . , T − 1

by
Gt(Xt, Xt+1) := φt(X) ,

where X is the process in R∞t,t+1 given by

Xr :=





0 for r < t
Xt for r = t

Xt+1 for r ≥ t + 1
.

Clearly, Gt has the following three properties:

(G1) Gt(0, 0) = 0
(G2) Gt(Xt, Xt+1) ≥ Gt(Yt, Yt+1) if Xt ≥ Yt and Xt+1 ≥ Yt+1

(G3) Gt(Xt + m,Xt+1 + m) = Gt(Xt, Xt+1) + m for all m ∈ L(Ft),

and it can be seen from (4.15) that the whole dynamic functional (φt)T
t=0 is uniquely determined

by the aggregators (Gt)T−1
t=0 . In fact, every sequence of functionals (Gt)T−1

t=0 satisfying (G1)–(G3)
defines a time-consistent dynamic monetary utility function (φt)T

t=0 by

φT (X) = X

φt(X) = Gt(Xt, φt+1(X)) , t ≤ T − 1 .

(Notice the formal similarities to the aggregators in the theory of recursive utilities for consumption
streams, see for instance, [24] and [15].)

It is clear that (φt)T
t=0 is concave if and only if all Gt satisfy

(G4) Gt(λXt + (1− λ)Yt, λXt+1 + (1− λ)Yt+1) ≥ λGt(Xt, Xt+1) + (1− λ)Gt(Yt, Yt+1)
for all Xt, Yt ∈ L∞(Ft), Xt+1, Yt+1 ∈ L∞(Ft+1) and λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1.

By (G3), we can write Gt as

Gt(Xt, Xt+1) = Xt + Gt(0, Xt+1 −Xt) = Xt + Ht(Xt+1 −Xt) , (4.16)

for the mapping Ht : L∞(Ft+1) → L∞(Ft) given by

Ht(X) := Gt(0, X) .
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It follows from (G1)–(G3) that Ht has the following three properties:

(H1) Ht(0) = 0
(H2) Ht(X) ≥ Ht(Y ) for X, Y ∈ L∞(Ft+1) with X ≥ Y
(H3) Ht(X + m) ≤ Ht(X) + m for all X ∈ L∞(Ft+1) and m ∈ L∞+ (Ft)

(H1) and (H2) are clear, and (H3) holds because for X ∈ L∞(Ft+1) and m ∈ L∞+ (Ft),

Ht(X + m) = Gt(0, X + m) = m + Gt(−m,X) ≤ m + Gt(0, X) = m + Ht(X) .

On the other hand, every sequence (Ht)T−1
t=0 of mappings satisfying (H1)–(H3) induces aggregators

(Gt)T−1
t=0 of a time-consistent dynamic monetary utility function (φt)T

t=0 on R∞. Indeed, if Ht

satisfies (H1)–(H3) and Gt is given by

Gt(Xt, Xt+1) = Xt + Ht(Xt+1 −Xt) ,

then it clearly satisfies (G1) and (G3). (G2) follows from (H2) and (H3) because for Xt, Yt ∈
L∞(Ft) such that Xt ≥ Yt and Xt+1, Yt+1 ∈ L∞(Ft+1) such that Xt+1 ≥ Yt+1, we get from (H2)
and (H3) that

Gt(Xt, Xt+1) = Xt + Ht(Xt+1 −Xt) ≥ Xt + Ht(Yt+1 −Xt)
≥ Xt + Ht(Yt+1 − Yt)− (Xt − Yt) = Yt + Ht(Yt+1 − Yt) .

We call (Ht)T−1
t=0 the generators of (φt)T

t=0. It is clear that Gt satisfies (G4) if and only if Ht fulfils

(H4) Ht(λX + (1− λ)Y ) ≥ λHt(X) + (1− λ)Ht(Y ) for all λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1.

4.2 Duality

For t = 1, . . . , T , we define the set

Et :=
{
ξ ∈ L1

+(Ft) | EP [ξ | Ft−1] ≤ 1
}

.

Every sequence (ξt+1, . . . , ξT ) ∈ Et+1 × · · · × ET induces a P-supermartingale (M ξ
r )T

r=0 by

M ξ
r :=

{
1 for r ≤ t

ξt+1 · · · · · ξr for r = t + 1, . . . , T

Definition 4.3 A one-step penalty function on Et+1 is a mapping

ψt : Et+1 → L̄+(Ft)

that satisfies the two properties:

(i) ess infξ∈Et+1 ψt(ξ) = 0

(ii) ψt(1Aξ + 1Acξ′) = 1Aψt(ξ) + 1Acψt(ξ′) for all ξ, ξ′ ∈ Et+1 and A ∈ Ft

A dynamic penalty function on E is a sequence (ψt)T−1
t=0 of one-step penalty functions.

Theorem 4.4 Let (ψt)T−1
t=0 be a dynamic penalty function on E. Then

Ht(X) := ess inf
ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)} , t = 0, . . . , T − 1 , (4.17)
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defines generators of a time-consistent dynamic concave monetary utility function (φt)T
t=0 on R∞

that has the following representations:

φt(X) = Xt + ess inf
(ξt+1,...,ξs)∈Et+1×···×Es

EP




s∑

j=t+1

M ξ
j ∆Xj + M ξ

j−1ψj−1(ξj) | Ft


 (4.18)

= Xt + ess inf
(ξt+1,...,ξT )∈Et+1×···×ET

EP




T∑

j=t+1

M ξ
j ∆Xj + M ξ

j−1ψj−1(ξj) | Ft


 (4.19)

for all 0 ≤ t < s ≤ T and X ∈ R∞t,s, where we used the notation ∆Xj := Xj −Xj−1.

Proof. It can easily be checked that for every t = 0, . . . , T − 1,

Ht(X) := ess inf
ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)}

defines an Ft-concave mapping from L∞(Ft+1) to L∞(Ft) that satisfies (H1)–(H3). Therefore, the
family (Ht)T−1

t=0 induces a time-consistent dynamic concave monetary utility function (φt)T
t=0 on

R∞. To show (4.18) and (4.19), we define the mappings φ̃t : R∞t,T → L∞(Ft) by

φ̃t(X) := Xt + ess inf
(ξt+1,...,ξT )∈Et+1×···×ET

EP




T∑

j=t+1

M ξ
j ∆Xj + M ξ

j−1 ψj−1(ξj) | Ft


 . (4.20)

Exactly as in the proof of Theorem 3.4, it can be deduced from conditions (i) and (ii) of Definition
4.3 that

φ̃t(X) = Xt + ess inf
(ξt+1,...,ξs)∈Et+1×···×Es

EP




s∑

j=t+1

M ξ
j ∆Xj + M ξ

j−1 ψj−1(ξj) | Ft


 (4.21)

for all X ∈ R∞t,s. Now, we can show φt = φ̃t by induction over s. First, assume that X ∈ R∞t,t+1.
Then, by (4.21),

φt(X) = Gt(Xt, φt+1(X)) = Gt(Xt, Xt+1) = Xt + Ht(∆Xt+1)
= Xt + ess inf

ξt+1∈Et+1
{EP [ξt+1∆Xt+1 | Ft] + ψt(ξt+1)} = φ̃t(X) .

Now, assume X ∈ R∞t,s for s ≥ t + 2 and φt(Y ) = φ̃t(Y ) for all Y ∈ R∞t,s−1. By (4.15), we have
φt(X) = φt(Y ) for

Y = 1[t,s−1)X + 1[s−1,T ]φs−1(X) ∈ R∞t,s−1 ,
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and therefore,

φt(X) = φt(Y ) = φ̃t(Y )

= ess inf
(ξt+1,...,ξs−1)∈Et+1×···×Es−1

EP




s−1∑

j=t+1

Mξ
j ∆Yj + Mξ

j−1ψj−1(ξj) | Ft




= ess inf
(ξt+1,...,ξs−1)∈Et+1×···×Es−1

EP




s−2∑

j=t+1

Mξ
j ∆Xj + M ξ

s−1[φs−1(X)−Xs−2]

+
s−1∑

j=t+1

Mξ
j−1ψj−1(ξj) | Ft




= ess inf
(ξt+1,...,ξs−1)∈Et+1×···×Es−1

EP




s−2∑

j=t+1

Mξ
j ∆Xj

+M ξ
s−1[∆Xs−1 + ess inf

ξs∈Es

{EP [ξs∆Xs | Fs−1] + ψs−1(ξs)}] (4.22)

+
s−1∑

j=t+1

M ξ
j−1ψj−1(ξj) | Ft


 .

where for s = t + 2, the term
∑s−2

j=t+1 M ξ
j ∆Xj is understood as 0. By condition (ii) of Definition

4.3, the family
EP [ξs∆Xs | Fs−1] + ψs−1(ξs) , ξs ∈ Es

is directed downwards. Therefore, we can take the ess inf in (4.22) outside of the conditional
expectation EP [. | Ft] and arrive at

φt(X) = ess inf
(ξt+1,...,ξs)∈Et+1×···×Es

EP




s∑

j=t+1

M ξ
j ∆Xj + M ξ

j−1ψj−1(ξj)


 = φ̃t(X) .

¤
It can easily be checked that aggregators of the form (4.17) are continuous from above in the

sense of Definition 3.5 and utility functions of the form (4.18)–(4.19) are continuous from above in
the following more general sense:

Definition 4.5 Let 0 ≤ t ≤ s ≤ T . We call a mapping I : R∞t,s → L∞(Ft) continuous from above
if I(Xn) → I(X) P-almost surely for all (Xn)n≥1 and X in R∞t,T such that Xn

r decreases to Xr

P-almost surely for all r = t, . . . , s.
We call a dynamic monetary utility function (φt)T

t=0 on R∞ continuous from above if every φt

is continuous from above.

Lemma 4.6 A time-consistent dynamic monetary utility function (φt)T
t=0 is continuous from above

if and only if all of the corresponding aggregators (Gt)T−1
t=0 are continuous from above, which is the

case if and only if all of the associated generators (Ht)T−1
t=0 are continuous from above.
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Proof. It is obvious that (φt)T
t=0 is continuous from above if and only if all aggregators (Gt)T−1

t=0

are continuous from above. Now, fix t and assume that Gt is continuous from above. If (Xn)n≥1

and X are in L∞(Ft+1) such that (Xn)n≥1 decreases to X P-almost surely, then we have

Ht(Xn) = Gt(0, Xn) ↘ Gt(0, X) = Ht(X) P− almost surely.

Hence, Ht is continuous from above. On the other hand, if we assume that Ht is continuous from
above, (Xn

t )n≥1 and X are in L∞(Ft) such that (Xn)n≥1 decreases to X P-almost surely and
(Xn

t+1)n≥1 and Xt+1 are in L∞(Ft+1) such that (Xn)n≥1 decreases to X P-almost surely, then

Gt(Xn
t , Xn

t+1) = Xn
t +Ht(Xn

t+1−Xn
t ) ≤ Xn

t +Ht(Xn
t+1−Xt) ↘ Xt+Ht(Xt+1−Xt) = Gt(Xt, Xt+1)

P-almost surely. This shows that Gt is continuous from above. ¤

Definition 4.7 For a time-consistent dynamic concave monetary utility function (φt)T
t=0 on R∞

with generators (Ht)T−1
t=0 that are continuous from above, we define for ξt+1 ∈ Et+1 and t =

0, . . . , T − 1,
ψmin

t (ξt+1) := ess sup
X∈L∞(Ft+1)

{Ht(X)− EP [ξt+1X | Ft]}

and call (ψmin
t )T−1

t=0 the minimal dynamic penalty function of (φt)T
t=0.

Lemma 4.8 Let (φt)T
t=0 be a time-consistent dynamic concave monetary utility function on R∞

with generators (Ht)T−1
t=0 that are continuous from above. Then (ψmin

t )T−1
t=0 is the smallest dynamic

penalty function on E such that

Ht(X) = ess inf
ξt+1∈Et+1

{
EP [ξt+1X | Ft] + ψmin

t (ξt+1)
}

(4.23)

for all t = 0, . . . , T − 1 and X ∈ L∞(Ft+1).

Proof. Fix t ∈ {0, . . . , T − 1} and consider Ω̂ := {t, t + 1} × Ω with the σ-algebra F̂t+1 generated
by all sets of the form {j} × Aj for j = t, t + 1 and Aj ∈ Fj . Let P̂ be the probability measure
on (Ω̂, F̂t+1) given by P̂[{j} × Aj ] := 1

2P[Aj ] for j = t, t + 1 and Aj ∈ Fj . By F̂t we denote the
σ-algebra on Ω̂ generated by all sets of the form {t, t + 1} ×At for At ∈ Ft. Then we have

L∞(Ft)× L∞(Ft+1) = L∞(Ω̂, F̂t+1, P̂) ,

and the aggregator Gt can be viewed as a concave monetary utility function from L∞(Ω̂, F̂t+1, P̂)
to L∞(Ω̂, F̂t, P̂). Clearly, it is continuous from above. Therefore, it follows from Lemma 3.7 that

Gt(Xt, Xt+1) = ess inf
(a,ξt+1)∈L∞0,1(Ft)×Dt+1

{EP [(1− a)Xt + aξt+1Xt+1 | Ft] + ζt(a, ξt+1)} , (4.24)

where
L∞0,1(Ft) := {a ∈ L∞(Ft) | 0 ≤ a ≤ 1}

and

ζt(a, ξt+1) := ess sup
(Xt,Xt+1)∈L∞(Ft)×L∞(Ft+1)

{Gt(Xt, Xt+1)− EP [(1− a)Xt + a ξt+1Xt+1 | Ft]}

= ess sup
(Xt,Xt+1)∈L∞(Ft)×L∞(Ft+1)

{Gt(0, ∆Xt+1)− EP [a ξt+1∆Xt+1 | Ft]}

= ess sup
X∈L∞(Ft+1)

{Ht(X)− EP [a ξt+1X | Ft]} .
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This shows that

Ht(X) = Gt(0, X) = ess inf
ξt+1∈Et+1

{
EP [ξt+1X | Ft] + ψmin

t (ξt+1)
}

for all X ∈ L∞(Ft+1). The minimality of ψmin
t follows because every function ψt : Et+1 → L̄+(Ft)

that fulfills

Ht(X) = ess inf
ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)} for all X ∈ L∞(Ft+1)

must also satisfy

Ht(X)− EP [ξt+1X | Ft] ≤ ψt(ξt+1) for all X ∈ L∞(Ft+1) and ξt+1 ∈ Et+1 ,

and therefore, ψmin
t ≤ ψt. ¤

The following corollary is an immediate consequence of Theorem 4.4 and Lemma 4.8.

Corollary 4.9 Let (φt)T
t=0 be a time-consistent dynamic concave monetary utility function that is

continuous from above. Then

φt(X) = Xt + ess inf
(ξt+1,...,ξs)∈Et+1×···×Es

EP




s∑

j=t+1

M ξ
j ∆Xj + M ξ

j−1ψ
min
j−1(ξj) | Ft




= Xt + ess inf
(ξt+1,...,ξT )∈Et+1×···×ET

EP




T∑

j=t+1

M ξ
j ∆Xj + M ξ

j−1ψ
min
j−1(ξj) | Ft




for all 0 ≤ t < s ≤ T and X ∈ R∞t,s.

Our next result is the extension of Theorem 3.9 for risk measures that depend on stochastic
processes.

Theorem 4.10 Let (ψt)T−1
t=0 be a dynamic penalty function on E with corresponding time-consistent

dynamic concave monetary utility function (φt)T
t=0 on R∞. Assume there exists an X ∈ R∞ and

an element (ξX
1 , . . . , ξX

T ) in E1 × · · · × ET with M ξX

T > 0 such that

φ0(X) = X0 + EP




T∑

j=1

M ξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j )


 .

Then

φt(X) = Xt + EP




T∑

j=t+1

M ξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j ) | Ft




for all t = 1, . . . , T − 1.

Proof. By Theorem 4.4, we have

φt(X) ≤ Xt + EP




T∑

j=t+1

M ξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j ) | Ft



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for all t = 0, . . . , T − 1. If there exists a t ∈ {1, . . . , T − 1} such that

φt(X) < Xt + EP




T∑

j=t+1

M ξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j ) | Ft




on a set with positive P-measure. Then,

φ0(X) = X0 + EP




T∑

j=1

M ξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j )




= X0 + EP




t∑

j=1

MξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j ) + EP




T∑

j=t+1

M ξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j ) | Ft







> X0 + EP




t∑

j=1

MξX

j ∆Xj + M ξX

j−1ψj−1(ξX
j ) + φt(X)−Xt




≥ X0 + ess inf
(ξ1,...,ξT )∈E1×···×ET

EP




T∑

j=1

M ξ
j ∆Xj + M ξ

j−1ψj−1(ξj)




= φ0(X) ,

which is a contradiction. ¤

4.3 Composed generators

In this section we study generators of the composed form

Ht(X) = ht(Ft(X)) , (4.25)

where Ft : L∞(Ft+1) → L∞(Ft) is a monetary utility function from L∞(Ft+1) to L∞(Ft) and ht

a function from R to R satisfying

(h1) ht(0) = 0
(h2) ht is increasing
(h3) |ht(x)− ht(y)| ≤ |x− y| for all x, y ∈ R.

Then Ht = ht ◦ Ft : L∞(Ft+1) → L∞(Ft) satisfies the properties (H1), (H2) and (H3). Hence,
(ht, Ft)T−1

t=0 induces a time-consistent dynamic monetary utility function (φt)T
t=0 on R∞. If in

addition to (h1)–(h3), ht is concave and Ft Ft-concave, then Ht satisfies (H4), and (φt)T
t=0 is a

time-consistent dynamic concave monetary utility function on R∞.
By standard convex duality, every concave function h : R→ R can be represented as

h(x) = min
y∈R

{xy + h∗(y)} ,

where h∗ is the concave conjugate given by

h∗(y) := sup
x∈R

{xy − h(x)} .

As a consequence, we have the following
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Proposition 4.11 If Ft : L∞(Ft+1) → L∞(Ft) is given by

Ft(X) = ess inf
ξt+1∈Dt+1

{EP [ξt+1X | Ft] + ϕt(ξt+1)}

for a one-step penalty function ϕt on Dt+1 and ht is a concave function from R to R satisfying
(h1)–(h3). Then Ht = ht ◦ Ft can be represented as

Ht(X) = ess inf
ξt+1∈Et+1

{EP [ξt+1X | Ft] + ψt(ξt+1)} , X ∈ L∞(Ft+1) ,

for the one-step penalty function ψt on Et+1 given by

ψt(ξt+1) = EP [ξt+1 | Ft] ϕt

(
ξt+1

EP [ξt+1 | Ft]

)
+ h∗t (EP [ξt+1 | Ft]) .

Proof. Since ht satisfies (h2) and (h3), we have h∗t (y) = ∞ for all y /∈ [0, 1], and therefore

Ht(X) = ht(Ft(X))

= ht

(
ess inf

ξt+1∈Dt+1
{EP[ξt+1X | Ft] + ϕt(ξt+1)}

)

= inf
0≤y≤1

ess inf
ξt+1∈Dt+1

{
y {EP[ξt+1X | Ft] + ϕt(ξt+1)}+ h∗t (y)

}

= ess inf
ξt+1∈Et+1

{
EP[ξt+1X | Ft] + λϕt

(
ξt+1

λ

)
+ h∗t (λ)

}

for λ := EP[ξt+1 | Ft]. ¤
In the following we are going to discuss different specifications of the function ht. This leads

to extensions of some of the examples of Section 5 of Cheridito et al. [9].

4.3.1 Risk measures that depend only on the final value

If ht(x) = x, then the aggregators reduce to

Gt(Xt, Xt+1) = Xt + ht(Ft(Xt+1 −Xt)) = Ft(Xt+1)

and the corresponding (φt)T
t=0 is a time-consistent dynamic utility function on L∞(FT ) as in

Section 3.

4.3.2 Risk measures that depend on a weighted average over time

If ht(x) = γtx for a constant γt ∈ (0, 1), then

Gt(Xt, Xt+1) = Xt + ht(Ft(Xt+1 −Xt)) = (1− γt)Xt + γtFt(Xt+1) .

Consider the transformed generators F̃t(.) := γtFt(γ−1
t .) and the corresponding time-consistent

dynamic monetary utility function on L∞(FT ) given by

φ̃t = F̃t ◦ · · · ◦ F̃T−1 .

Then it can easily be checked that the time-consistent dynamic monetary utility function (φt)T
t=0

on R∞ induced by the aggregators (Gt)T
t=0 is given by

φt(X) = φ̃t




T∑

j=t

δt
jXj


 , t = 0, . . . T − 1 ,
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where

δt
j =





1− γt for j = t
γt · · · · · γj−1(1− γj) for t < j < T
γt · · · · · γT−1 for j = T

.

In particular, for γt = T−t
T−t+1 , t = 0, . . . , T − 1, we get

φt(X) = φ̃t


 1

T − t + 1

T∑

j=t

Xj


 .

4.3.3 Risk measures defined by worst stopping

For ht(x) = x ∧ 0, the aggregators become

Gt(Xt, Xt+1) = Xt + ht(Ft(Xt+1 −Xt)) = Xt ∧ Ft(Xt+1) (4.26)

and the φt are of the form

φt(X) = ess inf
τ∈Θt

φ̃t(Xτ ) , X ∈ R∞ ,

where Θt is the set of all {t, . . . , T}-valued stopping times and (φ̃t)T
t=0 is the time-consistent

dynamic concave monetary utility function on L∞(FT ) given by

φ̃t(X) = Ft ◦ · · · ◦ FT−1(X) , X ∈ L∞(FT ) .

This can directly be seen by checking that

ess inf
τ∈Θt

φ̃t(Xτ ) , t = 0, . . . , T

is a time-consistent dynamic monetary utility function on R∞ whose aggregators are given by
(4.26).

4.3.4 Trade-off functions

Instead of specifying the function ht directly, one can start with a continuous decreasing function
gt : R→ R such that gt(0) = 0 and define the corresponding aggregator Gt by

Gt(Xt, Xt+1) := ess sup {m ∈ L∞(Ft) | (Xt −m,Xt+1 −m) ∈ Bt} ,

where the one-step acceptance set Bt is given by

Bt = {(Xt, Xt+1) ∈ L∞(Ft)× L∞(Ft+1) | gt(Xt) ≤ Ft(Xt+1)} .

The function gt specifies the trade-off between risk at time t and t + 1 of an acceptable process
X ∈ R∞t,t+1. It can easily be checked that the inverse ht of the strictly increasing function gt(−x)+x
satisfies (h1)–(h3), and Bt can be written as

Bt = {(Xt, Xt+1) ∈ L∞(Ft)× L∞(Ft+1) | Xt + ht ◦ Ft(Xt+1 −Xt) ≥ 0} .

Hence, the generator Ht is given by ht ◦ Ft. Note ht is concave if and only if gt is convex.
For gt(x) = 0 we get ht(x) = x, and we are back in the case of Subsection 4.3.1. The case
gt(x) = (1 − 1/γt)x for 0 < γt < 1 corresponds to ht(x) = γtx of Subsection 4.3.2. The function
ht(x) = x∧ 0 of Subsection 4.3.3 is not bijective. Therefore, it cannot be obtained from a trade-off
function gt.
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Example 4.12 Our last example is built on trade-off functions of the form gt(x) := exp(−γtx)−1
for γt > 0. In this case there exists no closed form expression for ht. But we have the following
relation between the concave conjugates of g̃t = −gt and ht:

h∗t (y) =
{

yg̃∗t (1/y − 1) for y ∈ (0, 1]
∞ for y /∈ (0, 1] .

Indeed, h∗t (y) = ∞ for y /∈ (0, 1] is an immediate consequence of the fact that ht is bijective and
satisfies (h2) and (h3). For y ∈ (0, 1], we can write

h∗t (y) = sup
x∈R

{ht(x)− xy} = sup
x∈R

{
ht(h−1

t (−x))− h−1
t (−x)y

}

= y · sup
x∈R

{−x/y − h−1
t (−x)

}
= y · sup

x∈R

{
(1− 1/y)x− (h−1

t (−x) + x)
}

= y · sup
x∈R

{g̃t(x)− (1/y − 1)x} = yg̃∗t (1/y − 1) .

For y > 0, the concave conjugate of g̃t(x) = −gt(x) = 1− exp(−γtx) is given by

g̃∗t (y) = 1 +
y

γt
log

(
y

γt

)
− y

γt
.

Hence,

h∗t (y) = y +
1− y

γt
log

(
1− y

γty

)
− 1− y

γt
.

We now combine ht with the entropic generator

Ft(X) = −α−1
t log EP [exp(−αtX) | Ft] , X ∈ L∞(Ft+1)

with minimal penalty function

ϕmin
t (ξt+1) = α−1

t EP [ξt+1 log(ξt+1) | Ft] ,

Then it follows from from Proposition 4.11 that the minimal dynamic penalty function of the
dynamic concave monetary utility function (φt)T

t=0 on R∞ induced by (ht, Ft)T−1
t=0 is given by

ψt(ξt+1) = α−1
t EP [ξt+1 log(ξt+1) | Ft]− α−1

t λ log(λ) + λ +
1− λ

γt
log

(
1− λ

γtλ

)
− 1− λ

γt
,

for ξt+1 ∈ Et+1 and λ := EP [ξt+1 | Ft].
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[18] Föllmer, H., Schied, A., (2004). Stochastic Finance, An Introduction in Discrete Time. Second
Edition. de Gruyter Studies in Mathematics 27.

[19] Frittelli, M., Gianin, E.R. (2002). Putting order in risk measures. Journal of Banking and
Finance 26(7), 1473-1486

[20] Frittelli, M., Rosazza Gianin, E. (2004). Dynamic convex risk measures. Risk Measures for
the 21st Century, Chapter 12, Wiley Finance.

[21] Frittelli, M., Scandolo, G. (2005). Risk measures and capital requirements for processes. forth-
coming in Math. Finance.

[22] Gilboa, I., Schmeidler, D. (1989). Maxmin expected utility with non-unique priop. J.Math.
Econom. 18, 141–153.

23



[23] Jobert, A., Rogers, L.C.G. (2005). Valuations and dynamic convex risk measures. Preprint.

[24] Koopmans, T.C. (1960). Stationary ordinal utility and impatience. Econometrica, 28(2), 287–
309.

[25] Kreps, M.K., Porteus, E.L. (1978). Temporal resolution of uncertainty and dynamic choice
theory. Econometrica, 46(1), 185–200.
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