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Abstract

We introduce a new class of functions, called the Np-spaces and study the boundedness

and compactness of composition operators on Np-spaces as well as between Np-spaces and

Bergman-type spaces. The paper is intended to give a self-contained introduction the the

Np-spaces.

1 Introduction

Let H(D) denote the space of analytic functions on the unit disk D. In this paper, in order
to simplify some calculations, we will identify functions differing by a constant. Thus, the
word function will from here on mean an equivalence class of functions modulo constants. The
Qp-spaces (with p ∈ (0,∞)) were introduced by Aulaskari, Xiao and Zhao [1] and consist of
functions in H(D) such that

‖f‖Qp
:= sup

a∈D

(∫

D
|f ′(z)|2(1 − |σa(z)|

2)pdA(z)
) 1

2

<∞.

Here σa(z) := (a − z)/(1 − az) is the automorphism of D that changes 0 and a, while dA
denotes the Lebesgue area measure on the plane, normalized so that A(D) = 1. The Qp-spaces
coincide with the classical Bloch space B for p ∈ (1,∞), while Q1 is equal to BMOA, the space
of analytic functions on D with bounded mean oscillation. For p ∈ (0, 1), the Qp-spaces are all
different and of independent interest. A good source of information about the Qp-spaces are
the Springer Lecture Notes by Xiao [12].

The Bergman-type spaces A-q (with q ∈ (0,∞)) consist of functions in H(D) such that

‖f‖A-q := sup
z∈D

|f(z)|(1 − |z|2)q <∞.
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These Banach spaces have been intensively studied in many papers (see for example [4] and
the related references therein).

Throughout the paper ϕ ∈ H(D) will denote a non-constant function satisfying ϕ(D) ⊆ D,
while ψ ∈ H(D) will be any function not identically equal to zero. The composition operator
Cϕ and the multiplication operator Mψ are the linear maps on H(D) defined by Cϕf := f ◦ ϕ
and Mψf := ψf , respectively. The weighted composition operator Wϕ,ψ is obtained by a
combination of these operators by defining Wϕ,ψ := MψCϕ. Classical books on composition
operators are [9] and [3].

In this paper we formally introduce the Np-spaces, (with p ∈ (0,∞)), of which N1 was
introduced in [5] (see also [7, Remark 4.4]). The Np-spaces consist of functions in H(D) such
that

‖f‖Np := sup
a∈D

(∫

D
|f(z)|2(1 − |σa(z)|

2)pdA(z)
) 1

2

<∞.

As we will see, the Np-spaces coincide with A-1 for p ∈ (1,∞) and are all different and of
independent interest for p ∈ (0, 1]. Since the Qp-spaces have been studied intensively for over
a decade now and due to both the similarities and the differences between B and A-1, it is only
natural to also study the Np-spaces. In fact, N1 was already of significant help in [5], where
the authors studied the spectra of composition operators on BMOA. The Np-spaces were also
informally used in [7] to obtain a characterization of a special branch of weighted composition
operators with closed range on A-q.

In Section 2, we give some background information needed for the rest of the paper, while
we in Section 3 state some basic facts about the Np-spaces and give some inclusion results. In
Section 4 we study composition operators Cϕ acting on Np-spaces and relate operator-theoretic
properties, like boundedness and compactness, to function-theoretic properties of the inducing
function ϕ. Finally, in Section 5 we discuss some interesting open problems.

2 Preliminaries

We will always assume that {p, q} ⊂ (0,∞) unless stated otherwise. The notation A . B
implies that there is a positive constant c such that A ≤ cB, while A ≈ B indicates that there
are positive constants c1 and c2, such that c1A ≤ B ≤ c2A. In both cases, the constants don’t
depend on crucial properties of A and B (which will be clear from the context). The boundary
of the unit disk will be denoted by ∂D. We will frequently use the following easily verified
equality (without any further reference):

1 − |σa(z)|
2 =

(1 − |a|2)(1 − |z|2)

|1 − az|2
.

An analytic function f(z) =
∑∞
k=0 akz

nk (with nk ∈ N for all k ∈ N) is said to belong to the
Hadamard gap class (also known as Lacunary series) if there exists a constant c > 1 such that
nk+1/nk ≥ c for all k ∈ N.

The generalized Nevanlinna counting function, introduced by Shapiro [8], is defined by

Nϕ,γ(z) :=







∑

w∈ϕ−1{z}

(

log
1

|w|

)γ

if z ∈ ϕ(D)

0 if z ∈ D \ {ϕ(0)}

,
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where ϕ−1{z} denotes the sequence of preimages of z, counting multiplicity and where γ > 0.
By choosing γ = 1 we get the classical Nevanlinna counting function. In [8], the author used
the classical and the generalized Nevanlinna counting function to study composition operators
on H2 and on weighted Bergman spaces, respectively.

For later use, we will now gather some known results related to the generalized Nevanlinna
counting function and to the so called “Change of variable formula” (see [8] and [10] for more
details).

Proposition 2.1.

(i) [10, Proposition 2.4] For γ ≥ −1,

∫

D
|(f ◦ ϕ)(z)|q(1 − |z|2)γdA(z) ≈

∫

D
|f(z)|q−2|f ′(z)|2 Nϕ,2+γ dA(z).

(ii) [10, Lemma 2.3] For γ > −1,

∫

D
|f(z)|q(1 − |z|2)γdA(z) ≈

∫

D
|f(z)|q−2|f ′(z)|2(1 − |z|2)2+γdA(z).

(iii) [8, Corollary 6.7] For γ > 1 and r ∈ (0, |ϕ(0)|),

Nϕ,γ(0) ≤
1

r2

∫

rD
Nϕ,γ(z)dA(z).

3 Basic properties and inclusion

In this section we state some basic Banach space properties of the Np-spaces as well as some
inclusions. In particular, we show that for p ∈ (0, 1), the Np-spaces are all different and of
independent interest. We also show the intuitively evident fact that the Np-spaces form a
much bigger class of functions than the Qp-spaces. Some of the techniques we use are highly
inspired by the corresponding ones for the Qp-spaces in [12]. We have chosen to give the proofs
for the Np-spaces directly instead of trying to use the isomorphism f 7→ f ′ together with
the corresponding results by Xiao in order to give a more self-contained introduction to these
spaces.

Proposition 3.1 (Basic facts about the Np-spaces).

(i) For p ∈ (0,∞) we have that ‖ · ‖A-1 . ‖ · ‖Np. That is, Np ⊆ A-1.

(ii) For p ∈ (1,∞) we have that ‖ · ‖A-1 ≈ ‖ · ‖Np. That is, Np = A-1.

(iii) The Np-space, endowed with the norm ‖ · ‖Np, is a Banach space and the norm topology
of Np is finer than the compact-open topology.

Proof. Part (ii) is a direct consequence of [7, Lemma 4.3], while only minor modifications of
the proofs of [5, Fact 1.1, Fact 1.2] give parts (i) and (iii). �

The following result is simple but important. For our convenience we state it formally as a
lemma.
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Lemma 3.2 (Test functions in Np). For w ∈ D we define

kw(z) :=
1 − |w|2

(1 − wz)2
.

Then kw ∈ Np and sup
w∈D

‖kw‖Np ≤ 1.

Proof. Trivially, kw ∈ H(D). It is also easy to see that

‖kw‖
2
Np

= sup
a∈D

∫

D
|σ′
w(z)|2(1 − |σa(z)|

2)pdA(z) ≤
∫

D
|σ′
w(z)|2dA(z) = 1. �

Theorem 3.3. Let f(z) =
∑∞
k=0 bkz

nk be in the Hadamard gap class. Then for

(i) p ∈ (0, 1] : f ∈ Np if and only if
∞∑

k=0

1

2k(1+p)
∑

2k≤nj<2k+1

|bj |
2 <∞,

(ii) p ∈ (1,∞) : f ∈ Np if and only if sup
k

|bk|

nk
<∞.

Proof. (i) Assume that
∑∞
k=0

1
2k(1+p)

∑

2k≤nj<2k+1 |bj |2 <∞. Then, using Hölder’s inequality,

‖f‖2
Np

. sup
a∈D

(1 − |a|2)p
∫ 1

0

(
∞∑

k=0

|bk|r
nk

)2

(1 − r)p
(
∫ 2π

0

1

|1 − areiθ|2
dθ

)p

dr

= sup
a∈D

(1 − |a|2)p
∫ 1

0

(
∞∑

k=0

|bk|r
nk

)2

(1 − r)p
(

2π

1 − |a|2r2

)p

dr

.
∫ 1

0

(
∞∑

k=0

|bk|r
nk

)2

(1 − r)pdr.

By [6, Theorem 1] we know that if α > 0, β > 0 and ak ≥ 0 for all k ∈ N, then

∫ 1

0

(
∞∑

k=0

akr
k

)β

(1 − r)α−1dr ≈
∞∑

k=0

2−kα




∑

2k≤j<2k+1

aj





β

,

where the constants only depend on α and β. This very useful tool can now be applied to the
calculation above to obtain

‖f‖2
Np

.
∞∑

k=0

1

2k(1+p)




∑

2k≤nj<2k+1

|bj |





2

.

Since f is in the Hadamard gap class, there exists a constant c > 1 such that nj+1 ≥ c nj for
all j ∈ N. Hence, the maximum number of nj ’s between 2k and 2k+1 for any k ∈ N is the
integer part of logc 2+1. Using this together with the fact that, for any n ∈ N, we always have
(a1 + . . .+ an)

2 ≤ n(a2
1 + . . .+ a2

n), we get that

‖f‖2
Np

.
∞∑

k=0

1

2k(1+p)
∑

2k≤nj<2k+1

|bj|
2 <∞.
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Conversely, assume that f ∈ Np. Using Parseval’s formula and Stirling’s formula, we see that

‖f‖2
Np

&
∫ 1

0

∫ 2π

0

∣
∣
∣
∣
∣

∞∑

k=0

bkr
nk(eiθ)nk

∣
∣
∣
∣
∣

2

dθ(1 − r)prdr

≈
∞∑

k=0

|bk|
2
∫ 1

0
r2nk+1(1 − r)pdr

=
∞∑

k=0

Γ(2nk + 2)Γ(p+ 1)

Γ(2nk + p+ 3)
|bk|

2

&
∞∑

k=0

n
−(1+p)
k |bk|

2.

Thus,

∞ > ‖f‖2
Np

&
∞∑

k=0

∑

2k≤nj<2k+1

n
−(1+p)
j |bj |

2 &
∞∑

k=0

1

2k(1+p)
∑

2k≤nj<2k+1

|bj |
2.

(ii) Assume that f ∈ A-1. Using the Cauchy integral formula, we get that for any r ∈ (0, 1),

|bk| .
∫

r∂D

|f(z)|

|z|nk+1
|dz| .

‖f‖A-1

rnk(1 − r)
.

Without loss of generality we may assume that n0 ≥ 2. Choose r = 1 − 1/nk. Then

sup
k

|bk|

nk
. sup

k

‖f‖A-1
(

1 − 1
nk

)nk
≤

‖f‖A-1

(

1 − 1
2

)2 . ‖f‖A-1.

Conversely, assume that supk |bk|/nk <∞. Then

|f(z)| ≤
∞∑

k=0

|bk| |z|
nk .

∞∑

k=0

nk|z|
nk .

Thus,

|f(z)|

1 − |z|
.

(
∞∑

k=0

nk|z|
nk

)(
∞∑

k=0

|z|k
)

=
∞∑

k=0

k∑

j=0

nj |z|
nj+k−j =

∞∑

k=0




∑

nj≤k

nj



|z|k.

Again, since f is in the Hadamard gap class, there exists a constant c > 1 such that nj+1 ≥ c nj
for all j ∈ N. A straightforward calculation shows that

1

k

∑

nj≤k

nj ≤
c

c− 1
.

Hence,
|f(z)|

1 − |z|
.

∞∑

k=0

k|z|k ≤
1

(1 − |z|)2
,

which clearly implies that f ∈ A-1. �
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Corollary 3.4. For 0 < p1 < p2 ≤ 1 we have that B ( Np1 ( Np2 ( A-1.

Proof. For f ∈ B we have the well-known estimation

|f(z)| . log
2

1 − |z|
‖f‖B, z ∈ D,

which easily gives that ‖ · ‖Np . ‖ · ‖B for all p ∈ (0,∞). The other inclusions are obvious from
the definition of the Np-spaces and Proposition 3.1 (i). Therefore it remains to show that the
inclusions are strict. Define

f1(z) :=
∞∑

k=0

2kz2k

, f2(z) :=
∞∑

k=0

2
k(1+p1)

2 z2k

, f3(z) :=
∞∑

k=0

(
3

2

) k
2

z2k

.

Then by using Theorem 3.3 and [12, Theorem 1.2.1 (ii)], it is easy to see that

f1 ∈ A-1 \Np2, f2 ∈ Np2 \Np1, f3 ∈ Np1 \B. �

4 Composition operators

In this section we study composition operators acting on Np-spaces. The techniques we use are
inspired by the ones in [10] and [12].

Theorem 4.1. Cϕ : Np → A-q is bounded if and only if sup
z∈D

(1 − |z|2)q

1 − |ϕ(z)|2
<∞.

Proof. Assume that supz∈D
(1−|z|2)q

1−|ϕ(z)|2
<∞. Then

‖f ◦ ϕ‖A-q ≤ sup
z∈D

(1 − |z|2)q

1 − |ϕ(z)|2
sup
z∈D

|f(ϕ(z))|(1 − |ϕ(z)|2)
︸ ︷︷ ︸

≤‖f‖
A-1

. ‖f‖Np .

Conversely, assume that Cϕ : Np → A-q is bounded. Fix z0 ∈ D and let kw be the test function
in Lemma 3.2 with w = ϕ(z0). Then

1 ≥ ‖kw‖Np & ‖kw ◦ ϕ‖A-q ≥
1 − |w|2

|1 − wϕ(z0)|2
(1 − |z0|

2)q =
(1 − |z0|2)q

1 − |ϕ(z0)|2
. �

Even though Theorem 4.1 gives a complete characterization of the bounded composition
operators on Np for p > 1, it doesn’t give us any information about p ∈ (0, 1].

Theorem 4.2.

(i) (Sufficiency) If sup
z∈D

Nϕ,2+p(z)

(1 − |z|2)2+2p
<∞, then Cϕ is bounded on Np.

(ii) (Necessity) If Cϕ is bounded on Np, then sup
z∈D

Nϕ,2+p(z)

(1 − |z|2)2
<∞.
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Proof. (i) Using Hölder’s inequality and a well-known integral formula (see for example
[4, Theorem 1.7]), we get that

‖f ◦ ϕ‖2
Np

= sup
a∈D

∫

D
|(f ◦ ϕ)(z)|2(1 − |z|2)

2p

2+p
(1 − |a|2)p(1 − |z|2)

p2

2+p

|1 − az|2p
dA(z)

≤
(∫

D
|(f ◦ ϕ)(z)|2+p(1 − |z|2)pdA(z)

) 2
2+p

sup
a∈D

(1 − |a|2)p
(
∫

D

(1 − |z|2)p

|1 − az|4+2p
dA(z)

) p

2+p

.

(∫

D
|(f ◦ ϕ)(z)|2+p(1 − |z|2)pdA(z)

) 2
2+p

.

Hence, by using Proposition 2.1 (i) and (ii) we obtain

‖f ◦ ϕ‖2
Np

.

(∫

D
|f(z)|p|f ′(z)|2 Nϕ,2+p(z)dA(z)

) 2
2+p

≤
(∫

D
|f(z)|p|f ′(z)|2(1 − |z|2)2+2pdA(z)

) 2
2+p

≤ ‖f‖
2p

2+p

A-1

(∫

D
|f ′(z)|2(1 − |z|2)2+pdA(z)

) 2
2+p

. ‖f‖
2p

2+p

Np

(
∫

D
|f(z)|2(1 − |z|2)pdA(z)

︸ ︷︷ ︸

≤‖f‖2
Np

) 2
2+p

.

(ii) Fix w ∈ D and let kw be the test function in Lemma 3.2. Then by using Proposi-
tion 2.1 (i) we get that

1 ≥ ‖kw‖
2
Np

& sup
w∈D

‖Cϕkw‖
2
Np

≥
∫

D
|(kw ◦ ϕ)(z)|2(1 − |z|2)pdA(z)

≈
∫

D
|k′w(z)|2 Nϕ,2+p(z)dA(z)

=
∫

D
4|w|2

(1 − |w|2)2

|1 − wz|6
Nϕ,2+p(z)dA(z).

A change of variable z 7→ σw(z), followed by an elementary estimation, then produce

1 &
∫

1
2

D
|w|2

|1 − wz|2

(1 − |w|2)2
Nϕ,2+p(σw(z))dA(z)

&
|w|2

(1 − |w|2)2

∫

1
2

D
Nσw◦ϕ,2+p(z)dA(z)

Without loss of generality, we may assume that |w| is close to 1 and hence that |(σw◦ϕ)(0)| > 1
2
.

Thus, by using Proposition 2.1 (iii) we apprehend

1 &
Nσw◦ϕ,2+p(0)

(1 − |w|2)2
=

Nϕ,2+p(w)

(1 − |w|2)2
.

Clearly this gives the desired condition. �
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Usually if a “big-oh” condition, like the one in Theorem 4.1, describes the bounded opera-
tors, the corresponding “little-oh” condition describes the compact operators. This is also the
case here. Recall that for composition operators the standard definition of compactness can be
reformulated on many spaces, including the Np-spaces and the Bergman-type spaces A-q (see
for example [3, Proposition 3.11]). Thus, in this case, Cϕ is compact if and only if for every
norm bounded sequence {fn} with fn → 0 uniformly on compact subsets of D, we have that
fn ◦ ϕ→ 0 with respect to the norm topology.

Theorem 4.3. Cϕ : Np → A-q is compact if and only if lim
r→1

sup
|ϕ(z)|>r

(1 − |z|2)q

1 − |ϕ(z)|2
= 0.

Proof. Assume that Cϕ : Np → A-q is compact and suppose that there exists ε0 > 0 and a
sequence {zn} ⊂ D such that

(1 − |zn|
2)q

1 − |ϕ(zn)|2
≥ ε0 whenever |ϕ(zn)| > 1 −

1

n
.

Clearly, we can assume that wn := ϕ(zn) tends to w0 ∈ ∂D as n → ∞. Let kwn
be the test

function in Lemma 3.2. Then kwn
→ kw0 with respect to the compact-open topology. Define

fn := kwn
− kw0. Then ‖fn‖Np ≤ 1 (see Lemma 3.2) and fn → 0 uniformly on compact subsets

of D. Thus, fn ◦ ϕ→ 0 in A-q by assumption. But, for n big enough,

‖Cϕfn‖A-q ≥ |kwn
(ϕ(zn)) − kw0(ϕ(zn))|(1 − |zn|

2)q

=
(1 − |zn|2)q

1 − |ϕ(zn)|2
︸ ︷︷ ︸

≥ ε0

∣
∣
∣
∣
∣
1 −

(1 − |w0|2)(1 − |wn|2)

|1 − w0wn|2

∣
∣
∣
∣
∣

︸ ︷︷ ︸

= 1

,

which is a contradiction. Conversely, assume that for all ε > 0 there exists δ ∈ (0, 1) such that

(1 − |z|2)q

1 − |ϕ(z)|2
< ε whenever |ϕ(z)| > δ.

Let {fn} be a norm bounded sequence in Np which converges to zero on compact subsets of D.
Clearly, we may assume that |ϕ(z)| > δ. Then

‖Cϕfn‖A-q = sup
z∈D

(1 − |z|2)q

1 − |ϕ(z)|2
|fn(ϕ(z))|(1 − |ϕ(z)|2).

Thus, by Proposition 3.1 (i), we have that

‖Cϕfn‖A-q ≤ ε‖fn‖A-1 . ε‖fn‖Np ≤ ε. �

5 Open problems

In this section we will mention some open problems related to the results in the preceding
sections. We will begin by proving a simple theorem of which the corresponding result for
the Qp-spaces is still unsolved. Indeed, in [11, Conjecture 1.5] (see also [12, p. 86]), Xiao
conjectured that Mψ is bounded on Qp if and only if

ψ ∈ H∞ and sup
a∈D

log2(1 − |a|)
∫

D
|ψ′(z)|2(1 − |σa(z)|

2)pdA(z) <∞.
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Theorem 5.1. Mψ is bounded on Np if and only if ψ ∈ H∞.

Proof. Assume that ϕ ∈ H∞. Clearly

‖Mψf‖
2
Np

≤ ‖ψ‖2
H∞‖f‖2

Np
.

Conversely, let kw be the test function in Lemma 3.2. Then for all w ∈ D,

1 ≥ ‖kw‖Np & ‖Mψkw‖Np & ‖Mψkw‖A-1 ≥
1 − |w|2

|1 − ww|2
|ψ(w)|(1 − |w|2) = |ψ(w)|. �

In [12, p. 22], Xiao also stated as an open problem to characterize the bounded composition
operators on Qp, which is to the best of our knowledge also still unsolved. Therefore we state
here as an open problem to give a full characterization of when Cϕ is bounded on Np. By doing
so, one should be able to combine this with Theorem 5.1 and thereby to give a full description of
when Wϕ,ψ is bounded on Np. Having done that, the open problem about bounded composition
operators onQp should be solvable. A similar interplay between weighted composition operators
(on Bergman-type spaces) and composition operators (on Bloch-type spaces) has been done for
example in [2] (see also [7]).
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