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COMPOSITION OPERATORS BETWEEN
BERGMAN AND HARDY SPACES

WAYNE SMITH

Abstract. We study composition operators between weighted Bergman
spaces. Certain growth conditions for generalized Nevanlinna counting func-
tions of the inducing map are shown to be necessary and sufficient for such
operators to be bounded or compact. Particular choices for the weights yield
results on composition operators between the classical unweighted Bergman
and Hardy spaces.

1. Introduction

Let D be the open unit disk in the complex plane and denote Lebesgue measure
on D by dA, normalized so that A(D) = 1. For p > 0, the Hardy space Hp is the
space of functions f that are analytic on D and satisfy

‖f‖pHp = lim
r→1−

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞,

and the Bergman space Ap consists of those analytic functions such that

‖f‖pAp =

∫
D

|f |pdA <∞.

It is clear that if p ≤ q, then Hq ⊂ Hp and Aq ⊂ Ap, and also Hp ⊂ Ap for all p.
Moreover, (when p < q) each of these inclusions is proper. Finally, H∞ is the space
of bounded analytic functions on D, with ‖f‖H∞ = sup{|f(z)| : z ∈ D}. Then
H∞ ⊂ Hp for all p, and this inclusion is proper if p <∞.

Let ϕ : D → D be an analytic self-map of D. It is a well known consequence
of Littlewood’s subordination principle [L] that ϕ induces through composition a
bounded linear operator on the classical Hardy and Bergman spaces (see for example
[MS], [Sh] or [Sh2]). That is, if we define Cϕ by Cϕ(f) = f ◦ϕ, then Cϕ : Hp → Hp

and Cϕ : Ap → Ap are bounded operators. Such operators are called composition
operators. Our goal here is to characterize those analytic functions ϕ : D → D
that induce bounded composition operators from one Bergman or Hardy space to
another such space.

As a simple first case, consider the problem of characterizing those ϕ that induce
a bounded composition operator from Ap to H∞. It is well known (see §4) that
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if p < ∞ and |zn| → 1−, then there are fn ∈ Ap such that ‖fn‖Ap = 1 and
|fn(zn)| → ∞. Thus ‖ϕ‖H∞ < 1 is necessary. This is also sufficient, since, by the
Closed Graph Theorem, we just need to check that Cϕ(f) ∈ H∞ for every f ∈ Ap.
Thus the answer in this simple first case is that Cϕ : Ap → H∞ is bounded if and
only if ϕ(D) is a relatively compact subset of D, and similar considerations provide
the same answer for Cϕ : Hp → H∞.

This suggests that the general problem, characterizing those ϕ that induce
bounded composition operators from Hp or Ap to Hq or Aq, should have a so-
lution that in some way expresses that ϕ(D) is a small subset of D. This turns
out to be correct, but not in the literal sense that the image of D under ϕ is a
small subset of D. Indeed, we will see in §6 that there is a univalent ϕ such that
Cϕ : Ap → Hq is bounded for all p > 0 and all q < ∞, and yet ϕ(D) = D. Our
solution involves a measure of how often, and where, ϕ assumes values near the
unit circle.

The classical Nevanlinna counting function for ϕ, Nϕ, provides such a measure.
It is defined by

Nϕ(w) =
∑

z∈ϕ−1{w}
log(1/|z|), w ∈ D \ {ϕ(0)}.

As is usual, z ∈ ϕ−1{w} is repeated according to the multiplicity of the zero of ϕ−w
at z. The counting function Nϕ was first used to study composition operators by
J. H. Shapiro in [Sh], where he used Nϕ to give a formula for the essential norm of
the composition operator from H2 to H2 induced by ϕ. In that paper Shapiro also
introduced the generalized counting functions Nϕ,γ , defined for γ > 0 by

Nϕ,γ(w) = Nγ(w) =
∑

z∈ϕ−1{w}
[ log(1/|z|)]γ, w ∈ D \ {ϕ(0)},

and used them to study composition operators from a weighted Bergman space to
itself. Thus Nϕ,1 is the Nevanlinna counting function. As indicated above, Nγ
will also be used to denote Nϕ,γ when there is no possibility of confusion and no
reason to emphasize the dependence on ϕ. Here we use these generalized counting
functions to characterize those ϕ that induce bounded and compact composition
operators between Bergman and Hardy spaces. Before stating our results, we briefly
describe previous results of this type.

The problem of characterizing ϕ such that Cϕ : Hp → Hq has been considered
by several authors, beginning with H. Hunziker and H. Jarchow in [HJ] (see also
[H]). In this paper they observed that, for η ≥ 1, Cϕ : Hp → Hηp is bounded for
some p > 0 if and only if it is bounded for all p > 0. They then characterized
those ϕ that induce such composition operators as those for which mϕ satisfies an
η-Carleson measure condition, where mϕ is the image measure of Lebesgue measure
on ∂D under the Fatou extension of ϕ to ∂D (see Theorem 3.1 in [HJ]). That is, if
ϕ∗ : ∂D → D is defined by taking radial limits of ϕ, then mϕ(A) = m((ϕ∗)−1(A))

for all Borel sets A ⊂ D, where m is Lebesgue measure on ∂D. Then R. Riedl,
making use of this result, recently proved the following theorem in his dissertation.

Theorem A [R, Theorem IV.3 and Theorem IV.4]. Let 0 < p ≤ q and suppose ϕ
is an analytic self-map of D. Then Cϕ : Hp → Hq is bounded if and only if

Nϕ,1(w) = O
(

[ log(1/|w|)]q/p
)

(|w| → 1),
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and moreover Cϕ is compact if and only if

Nϕ,1(w) = o
(

[ log(1/|w|)]q/p
)

(|w| → 1).

Recall that an operator is said to be compact provided it takes bounded sets
to sets with compact closure. This theorem is an example of a recurring theme in
operator theory: If a “big-oh” condition determines when an operator is bounded,
then the corresponding “little-oh” condition determines when it is compact. We
will see several more examples of this. In the upper bounds for Nϕ,1 in Theorem A
and in the theorems below, log(1/|w|) can be freely replaced by 1− |w|, since these
are comparable as |w| → 1.

The approach used here does not depend on the results in [HJ] and [R], and
yields a different proof of Theorem A. We now state the main results of this paper.

1.1 Theorem. Let 0 < p ≤ q and suppose ϕ is an analytic self-map of D. Then
a) Cϕ : Ap → Aq is bounded if and only if

Nϕ,2(w) = O
(

[ log(1/|w|)]2q/p
)

(|w| → 1);

b) Cϕ : Ap → Hq is bounded if and only if

Nϕ,1(w) = O
(

[ log(1/|w|)]2q/p
)

(|w| → 1);

c) Cϕ : Hp → Aq is bounded if and only if

Nϕ,2(w) = O
(

[ log(1/|w|)]q/p
)

(|w| → 1).

Moreover, in each case Cϕ is compact if and only if the corresponding “little-oh”
condition is satisfied.

The correspondence between the bounds for Nϕ,1 in Theorem A and Theorem
1.1 b), and the bounds for Nϕ,2 in parts a) and c) of Theorem 1.1 immediately
yields the following corollaries.

1.2 Corollary. Let η ≥ 2 and suppose ϕ is an analytic self-map of D. Then the
following are equivalent.

a) There exists p > 0 such that Cϕ : Hp → Hηp is bounded;
b) Cϕ : Hp → Hηp is bounded for all p > 0;

c) There exists p > 0 such that Cϕ : Ap → Hηp/2 is bounded;

d) Cϕ : Ap → Hηp/2 is bounded for all p > 0.
Moreover, these four statements remain equivalent when “bounded” is replaced by
“compact”.

Remark. The equivalence of parts a) and b) of Corollary 1.2 just requires that
η ≥ 1, as is clear from Theorem A and, as noted before, was observed by Hunziker
and Jarchow [HJ]. We need η ≥ 2 to assure that the hypothesis q = ηp/2 ≥ p of
Theorem 1.1 is satisfied.
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1.3 Corollary. Let η ≥ 1 and suppose ϕ is an analytic self-map of D. Then the
following are equivalent.

a) There exists p > 0 such that Cϕ : Ap → Aηp is bounded;
b) Cϕ : Ap → Aηp is bounded for all p > 0;
c) There exists p > 0 such that Cϕ : Hp → A2ηp is bounded;
d) Cϕ : Hp → A2ηp is bounded for all p > 0.

Moreover, these four statements remain equivalent when “bounded” is replaced by
“compact”.

There also is an elementary relationship between Nϕ,1 and Nϕ,2: If w ∈
D \ {ϕ(0)}, then

(1.1) Nϕ,2(w) =
∑

z∈ϕ−1{w}
[ log(1/|z|)]2 ≤

 ∑
z∈ϕ−1{w}

log(1/|z|)

2

= (Nϕ,1(w))
2
.

The next corollary is an immediate consequence of this, Theorem A and Theorem
1.1 a).

1.4 Corollary. Let η ≥ 1 and suppose ϕ is an analytic self-map of D. If Cϕ :
Hp → Hηp is bounded for some (and hence all) p > 0, then Cϕ : Ap → Aηp is
bounded for all p > 0. Moreover, this remains true when “bounded” is replaced by
“compact”.

As was noted earlier, when η = 1 parts a) and b) of Corollary 1.3 hold for
every analytic self-map ϕ of D, as a consequence of Littlewood’s subordination
principle. Hence Cϕ : Hp → A2p is bounded for all p > 0 and for every ϕ as
well. This can also be seen directly. Indeed, using Hardy’s inequality [D, p. 48]
it is easy to show that H1 ⊂ A2, and then Hp ⊂ A2p for all p follows by using
the standard inner-outer factorization of a function in Hp. Thus Cϕ : Hp → A2p

is a consequence of Cϕ : A2p → A2p, which, as previously noted, follows from
Littlewood’s subordination principle.

From these observations, we see that Theorem 1.1 c) only says something of
interest when q > 2p; if q ≤ 2p, then Cϕ : Hp → A2p ⊂ Aq and the statements
in Theorem 1.1 c) are satisfied for every ϕ. Similarly, the statements in Theorem
1.1 a) are always valid when q ≤ p, since Ap ⊂ Aq in this case, and once again
Cϕ : Aq → Aq is bounded for every analytic self-map of D.

In Theorem 1.1 b), however, the requirement that q ≥ p can not be dropped. To
see this, set p = 2q and ϕ(z) ≡ z. Then Nϕ,1(w) = log(1/|w|), so that the upper
bound for Nϕ,1 in Theorem 1.1 b) holds. For this ϕ, Cϕ is the identity map. Since
all functions in Hq are of bounded characteristic while Ap contains functions which
are not, it follows that Cϕ does not map Ap into Hq. Thus the sufficient condition
in Theorem 1.1 b) for Cϕ to be bounded can not be valid for all p and q, although
it will be shown in a later section that the condition is always necessary. The next
theorem provides a sufficient condition for boundedness of Cϕ when q < p that
agrees with the condition in Theorem 1.1 b) in the limit as q increases to p.

1.5 Theorem. Let ϕ be an analytic self-map of D, let 0 < q < p, and suppose
there is a constant η > (p+ q)/p such that

Nϕ,1(w) = O ([ log(1/|w|)]η) (|w| → 1).
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Then Cϕ : Ap → Hq is bounded, and moreover is compact.

The similarity of the statements of Theorem A and the various parts of Theorem
1.1 suggests that they are special cases of a more general theorem. This is indeed
the case, and it is in this greater generality that they will be proved in the following
sections of the paper.

In the next section we introduce a family of weighted Bergman spaces and provide
some background material and properties of them. Then, in §3, we prove our main
results giving sufficient conditions for ϕ to induce a bounded composition operator
between these spaces. Section 4 is devoted to necessary conditions for Cϕ to be
bounded. Corollary 4.4 at the end of §4 combines the main results of that section
and §3, thereby characterizing those analytic self-maps of D that induce bounded
composition operators between certain weighted Bergman spaces. The question of
compactness of Cϕ is taken up in §5. Theorem 5.1, in particular, is the “little-
oh”/compactness version of Corollary 4.4. Theorem A and the various parts of
Theorem 1.1 are all special cases of the combination of Corollary 4.4 and Theorem
5.1. Similarly, Theorem 1.5 is a special case of Theorem 3.2 and Theorem 5.2. We
then end with some applications and examples in §6.

The approach to the problems considered in this paper comes from J. H. Shapiro’s
work on the compactness problem for Cϕ : H2 → H2 and his formula for the
essential norm of this operator in [Sh]. See also Chapter 10 of [Sh2] for an accessible
exposition of the ideas involved in that work.

2. Background Material

2.1 Weighted Bergman spaces. We introduce a family of weighted Bergman-
type spaces that allows us to handle the classical Bergman and Hardy spaces in a
unified manner. For γ > −1 define the measure dAγ on D by

dAγ(w) = [ log(1/|w|)]γdA(w).

For 0 < p < ∞ and γ > −1 we define the weighted Bergman space Apγ to be those
functions f analytic on D and satisfying

‖f‖p
Apγ

=

∫
D

|f(w)|pdAγ(w) <∞.

In this definition, the measure dAγ can be replaced by the measure (1−|w|)γdA(w),
as in [MS]. This results in the same space of functions and an equivalent norm, since
(1− |w|)γ and [ log(1/|w|)]γ are comparable for 1/2 ≤ |w| < 1, and the singularity
of dAγ at the origin is integrable.

The next results explain how the generalized counting functions Nϕ,γ arise nat-
urally in the study of composition operators on Bergman and Hardy spaces. Let ϕ
be an analytic self-map of D, and recall from §1 the definition

Nϕ,γ(w) = Nγ(w) =
∑

z∈ϕ−1{w}
[ log(1/|z|)]γ, w ∈ D \ {ϕ(0)}.

This counting function provides the following non-univalent change of variable for-
mula, due to Shapiro.
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2.2 Change of Variable Formula [Sh, p. 398]. If g is a positive measurable
function on D and ϕ is an analytic self-map of D, then∫

D

(g ◦ ϕ)|ϕ′|2dAγ = c(γ)

∫
D

gNϕ,γdA,

where c(γ) = 2γ/Γ(γ + 1).

The utility of this formula in the study of composition operators on Bergman
and Hardy spaces comes from C. S. Stanton’s formula for integral means of analytic
functions [St]. We shall only require the following special case of this formula:

(2.1) ‖f ◦ ϕ‖pHp = |f(ϕ(0))|p +
p2

2

∫
D

|f(w)|p−2|f ′(w)|2Nϕ,1(w)dA(w);

see (2.9) of [ESS]. This leads to an equivalent norm for Apγ that will be very useful.

2.3 Lemma. If 0 < p <∞ , then

‖f‖p
Apγ
≈ |f(0)|p +

∫
D

|f(w)|p−2|f ′(w)|2dAγ+2(w).

Here the symbol “≈” means that the left hand side is bounded above and below
by constant multiples of the right hand side, where the constants are positive and
independent of f .

Proof. First observe that we may assume f(0) = 0, and then apply (2.1) with
ϕ(z) = rz to get

1

2π

∫ 2π

0

|f(reiθ)|pdθ =
p2

2

∫
rD

|f(w)|p−2|f ′(w)|2 log
r

|w|dA(w).

Next, multiply by 2r[ log(1/r)]γ , integrate with respect to r for 0 to 1, and then
apply Fubini’s theorem to get∫

D

|f(w)|pdAγ(w)

=
p2

2

∫ 1

0

∫
D

χrD(w)|f(w)|p−2|f ′(w)|2 log
r

|w|dA(w)2r(log(1/r))γ dr

=
p2

2

∫
D

|f(w)|p−2|f ′(w)|2
(∫ 1

|w|
2r[ log(1/r)]γ log

r

|w|dr
)
dA(w).

For 1/2 ≤ |w| < 1, the inner integral with respect to r is easily seen to be com-
parable to [ log(1/|w|)]γ+2. Since all singularities on the disk of radius 1/2 are
integrable, the inner integral can be replaced by [ log(1/|w|)]γ+2 without changing
the space of functions for which it is finite, and an equivalent norm results.

In view of Lemma 2.3 and (2.1) with ϕ(z) ≡ z, it is natural to define Ap−1 to be
the Hardy space Hp. Then

‖f‖p
Apγ
≈ |f(0)|p +

∫
D

|f(w)|p−2|f ′(w)|2dAγ+2(w), γ ≥ −1,

and we can give a unified treatment of the Hardy spaces and the weighted Bergman
spaces. The following proposition is an immediate consequence of this norm esti-
mate and the Change of Variable Formula 2.2.
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2.4 Proposition. Let ϕ be an analytic self-map of D and let f be analytic on D.
Then, for γ ≥ −1,

‖f ◦ ϕ‖p
Apγ
≈ |f(ϕ(0))|p +

∫
D

|f |p−2|f ′|2Nϕ,γ+2dA.

We will need the following simple growth estimate for a function in Apα. It
generalizes well known estimates for the functions in the classical Bergman and
Hardy spaces, which correspond to α = 0 and α = −1, respectively. In this lemma
and in what follows, C will denote a constant that can change from line to line, but
is independent of f .

2.5 Lemma. Let 0 < p <∞ and α ≥ −1. If f ∈ Apα and w ∈ D, then

|f(w)| ≤ C‖f‖Apα(1− |w|)−(α+2)/p.

Proof. First note that, for α = −1, Ap−1 = Hp and this inequality is just the well
known bound for the growth of a function in Hp; see Theorem 5.9, p. 84 of [D].

For α > −1, the estimate for |f | is a simple consequence of the subharmonicity
of |f |p:

|f(w)|p ≤ 1

A(D(w, (1 − |w|)/2))

∫
D(w,(1−|w|)/2)

|f |pdA

≤ C (1− |w|)−α
A(D(w, (1 − |w|)/2))

∫
D(w,(1−|w|)/2)

|f |pdAα

≤ C
‖f‖p

Apα

(1− |w|)α+2
.

3. Sufficient conditions for Cϕ to be bounded

In this section we prove our main theorems giving sufficient conditions for Cϕ
to be bounded. To simplify the notation, for the rest of the paper we will suppress
the dependence on ϕ of the generalized counting functions. Thus Nγ = Nϕ,γ.

3.1 Theorem. Let 0 < p ≤ q, and suppose ϕ is an analytic self-map of D satisfying

Nβ+2(w) = O
(

[ log(1/|w|)](α+2)q/p
)

(|w| → 1).

Then
Cϕ : Apα → Aqβ

is bounded.

Proof. By the Closed Graph Theorem, it suffices to show that Cϕ(f) ∈ Aqβ if
f ∈ Apα. Let f ∈ Apα. Then, by Proposition 2.4,

‖f ◦ ϕ‖q
Aqβ
≈ |f(ϕ(0))|q +

∫
D

|f |q−2|f ′|2Nβ+2dA,
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and it is clear that Cϕ(f) ∈ Aqβ if and only if there is r ∈ (0, 1) such that∫
D\rD

|f |q−2|f ′|2Nβ+2dA <∞.

By our hypothesis on the growth of Nβ+2, there is a constant K < ∞ and
r0 ∈ (0, 1) such that

Nβ+2(w) ≤ K (log(1/|w|))(α+2)q/p
, w ∈ D \ r0D.

Using this and the growth estimate for |f | from Lemma 2.5,∫
D\r0D

|f |q−2|f ′|2Nβ+2dA

≤ CK‖f‖q−p
Apα

∫
D\r0D

|f(w)|p−2|f ′(w)|2(1− |w|)(p−q)(α+2)/pdA(2+α)q/p(w).

We may assume r0 ≥ 1/2, so that log(1/|w|) ≤ 2(1− |w|). Using this estimate in
our upper bound above, we see that∫

D\r0D
|f |q−2|f ′|2Nβ+2dA ≤ C‖f‖q−pApα

∫
D\r0D

|f(w)|p−2|f ′(w)|2dA2+α(w)

≤ C‖f‖q
Apα
,

which completes the proof.

Recall from the remarks preceding Theorem 1.5 in the introduction that the
sufficient condition in Theorem 3.1 for Cϕ to be bounded can not hold for all p
and q, although in the next section it will be shown that the condition is always
necessary. The next theorem provides a sufficient condition for boundedness of Cϕ
when q < p that agrees with the condition in Theorem 3.1 in the limit as q increases
to p.

3.2 Theorem. Let 0 < q < p and suppose ϕ is an analytic self-map of D satisfying

Nβ+2(w) = O ([ log(1/|w|)]η) (|w| → 1),

for some

η >
(α+ 1)q + p

p
.

Then
Cϕ : Apα → Aqβ

is bounded.

Proof. Let f ∈ Apα. As in the proof of Theorem 3.1, it suffices to show that
Cϕ(f) ∈ Aqβ , and for this it suffices to show there is r ∈ (0, 1) such that∫

D\rD
|f |q−2|f ′|2Nβ+2dA <∞.
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By our hypothesis on the growth of Nβ+2, there is a constant K < ∞ and
r0 ∈ (0, 1) such that

Nβ+2(w) ≤ K(log(1/|w|))η, w ∈ D \ r0D,

where

η >
(α+ 1)q + p

p
.

Now, α ≥ −1, and so η > 1. Thus, by Lemma 2.3, it suffices to show that∫
D\r0D

|f(w)|q(1− |w|)η−2dA(w) <∞.

By Hölder’s inequality, this integral is bounded by

(∫
D

[|f(w)|q(1− |w|)αq/p]p/q
)q/p (∫

D

[(1− |w|)η−2−αq/p]p/(p−q)dA(w)

)(p−q)/p
.

The first factor is bounded by ‖f‖q
Apα

, and so is finite, while the second factor is
finite because the assumed lower bound for η is equivalent to the exponent in the
integral being strictly greater than −1. Thus the proof is complete.

4. Necessary conditions for Cϕ to be bounded

The goal of this section is to give a necessary condition for Cϕ : Apα → Aqβ to be
bounded. This condition matches the sufficient condition from Theorem 3.1 for Cϕ
to be bounded when q ≥ p, and so in this case there results a characterization of
those ϕ that induce bounded composition operators.

The proofs in this section are based on Shapiro’s approach to finding a lower
bound for the essential norm of a composition operator from H2 to H2, and from
the weighted Bergman space A2

γ to itself. See sections 5 and 6 of [Sh], and Chapter
10 of [Sh2].

We begin with the statements of two lemmas concerning the generalized counting
functions Nγ . The first lemma shows that these counting functions, while not
subharmonic themselves, satisfy a subharmonic mean value property. It was first
proved for the Nevanlinna counting function, N1, in [ESS], section 6. The version
below, for the generalized counting functions, is from [Sh].

4.1 Lemma [Sh, Corollary 6.7]. Let ψ be an analytic self-map of D and let γ > 0.
If ψ(0) 6= 0 and 0 < r < |ψ(0)|, then

Nψ,γ(0) ≤ 1

r2

∫
rD

Nψ,γdA.

The next lemma shows how the counting functions transform under composition.
The case γ = 1 of this lemma can be found in [Sh], Chapter 10.
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4.2 Lemma. Let ψ be an analytic self-map of D, let a ∈ D and let

σa(w) =
a− w
1− aw

be the Möbius self-map of D that interchanges 0 and a. Then

(Nψ,γ) ◦ σa = Nσa◦ψ,γ .

Proof. For each fixed w ∈ C, ψ − σa(w) and σa ◦ ψ − w have the same zero se-
quence, since σa is its own compositional inverse. The result thus is an immediate
consequence of the definition of the generalized counting function.

Next, we need to introduce a suitable class of test functions in Apα to establish
the necessity of our conditions for the boundedness of the composition operators.
To simplify the notation, the dependence of these functions on α and p will be
suppressed. For a ∈ D, define

ka(w) =
(1− |a|2)(2+α)/p

(1− aw)2(2+α)/p
.

In the case that α = −1, an easy computation involving power series shows that

‖ka‖pAp−1
= (1− |a|2)‖(1− aw)−1‖2H2 = 1.

When α = 0, so Ap0 is the unweighted Bergman space Ap, a similar computation
again gives ‖ka‖pAp = 1. For other α > −1, the computation is not so straightfor-
ward. Then

‖ka‖pApα = (1−|a|2)2+α

∫
D

1

|1− aw|2(2+α)
dAα(w) = (1−|a|2)2+α‖(1−aw)−2−α‖2A2

α
.

As noted on page 400 of [Sh], a power series computation, using that A2
α is a Hilbert

space, now shows that

(4.1) ‖ka‖pApα ≈ 1,

with constants depending only on α and p. This can also be seen by a straightfor-
ward estimate of the integral above over D. Thus approximation (4.1) holds for all
α ≥ −1 and all p > 0, since we previously saw that it holds for α = −1.

4.3 Theorem. Suppose that ϕ is an analytic self-map of D that induces a bounded
composition operator Cϕ : Apα → Aqβ. Then

Nβ+2(w) = O
(

(log(1/|w|))(2+α)q/p
)

(|w| → 1).

Proof. By Proposition 2.4, there is a constant C1 such that

C1‖Cϕ(ka)‖q
Aqβ
≥
∫
D

|ka(w)|q−2|ka′(w)|2Nβ+2(w)dA(w)

=
4(2 + α)2

p2
|a|2(1− |a|2)(2+α)q/p

∫
D

Nβ+2(w)

|1− aw|2+2(2+α)q/p
dA(w)

=
4(2 + α)2

p2
|a|2(1− |a|2)(2+α)q/p−2

∫
D

Nβ+2(w)

|1− aw|2(2+α)q/p−2
|σ′a(w)|2dA(w)

=
4(2 + α)2

p2
|a|2(1− |a|2)(2+α)q/p−2

∫
D

Nβ+2(σa(z))

|1− aσa(z)|2(2+α)q/p−2
dA(z).
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Here σa = σ−1
a is the Möbius self-map of D that interchanges 0 and a, as in Lemma

4.2, and the change of variable z = σa(w) was made in the last line. Now,

1

|1− aσa(z)| =
|1− az|
1− |a|2 ≥

1

2

1

1− |a|2 , |z| ≤ 1

2
,

and so

C1‖Cϕ(ka)‖q
Aqβ
≥ 42−(2+α)q/p(2 + α)2|a|2

p2(1− |a|2)(2+α)q/p

∫
1
2D

Nβ+2(σa(z))dA(z).

We now apply first Lemma 4.2, then Lemma 4.1 and then Lemma 4.2 again to see
that, provided σa ◦ ϕ(0) > 1/2, the integral in the line above is at least

1

4
Nβ+2,σa◦ϕ(0) =

1

4
Nβ+2(a).

Since σa ◦ ϕ(0) > 1/2 if |a| is sufficiently close to 1, this provides the estimate

(4.2) Nβ+2(a) ≤ C1‖Cϕ(ka)‖q
Aqβ

4(2+α)q/p−1p2

(2 + α)2|a|2 (1− |a|2)(2+α)q/p

for all such a. Since ‖ka‖Apα ≈ 1 and log(1/|a|) is comparable to (1 − |a|2) for
1/2 < |a| < 1, the assumption that Cϕ is bounded provides the asserted bound for
Nβ+2, and the proof is complete.

As noted at the beginning of this section, the necessary condition in Theorem
4.3 for Cϕ to be bounded agrees with the sufficient condition from Theorem 3.1
that holds for q ≥ p, and so the following corollary results.

4.4 Corollary. Let 0 < p ≤ q and let ϕ be an analytic self-map of D. Then

Cϕ : Apα → Aqβ

is bounded if and only if

Nβ+2(w) = O
(

(log(1/|w|))(2+α)q/p
)

(|w| → 1).

Finally, we note that the parts of Theorem A and Theorem 1.1 of the introduc-
tion characterizing those ϕ that induce bounded composition operators between
Bergman and Hardy spaces are all special cases of Corollary 4.4. All that is re-
quired is to set α and β equal to −1 or 0, since Ap−1 is the Hardy space Hp and Ap0
is the (unweighted) Bergman space Ap.

5. Compactness of Cϕ

A bounded linear operator T from a Banach space X to a Banach space Y is
said to be compact provided the closure of T (B) is a compact subset of Y , where
B is the unit ball of X . Equivalently, T is compact if and only if some subsequence
of {T (xn)} converges in Y , whenever {xn} is a bounded sequence in X .

In Corollary 4.4 of the last section, we saw that certain “big-oh” conditions were
equivalent to some composition operators being bounded. The next theorem shows,
as expected, that the corresponding “little-oh” conditions characterize compactness.
Once again, the approach to the proof comes from [Sh]. See also Chapter 10 of [Sh2].
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5.1 Theorem. Let 0 < p ≤ q and let ϕ be an analytic self-map of D. Then

Cϕ : Apα → Aqβ

is compact if and only if

Nβ+2(w) = o
(

(log(1/|w|))(α+2)q/p
)

(|w| → 1).

Proof. We first show that Cϕ is compact, assuming that Nβ+2 satisfies the given
growth condition. Let ‖fn‖Apα ≤ 1 for n ≥ 1. We must show that {fn ◦ ϕ}
has a subsequence that converges in Aqβ . By Lemma 2.5, the fn are uniformly

bounded on compact subsets of D, and hence {fn} is a normal family there. Thus
there is a subsequence, which for simplicity we continue to denote by {fn}, that
converges uniformly on compact subsets of D to an analytic function f . Now, for
each r ∈ (0, 1),∫

rD

|f |p−2|f ′|2dAα+2 = lim
n→∞

∫
rD

|fn|p−2|fn′|2dAα+2 ≤ lim sup
n→∞

C‖fn‖Apα ≤ C,

by Lemma 2.3. It follows that f ∈ Apα, and so f ◦ ϕ ∈ Aqβ by Theorem 3.1. To

complete the proof, it suffices to show that ‖fn ◦ ϕ− f ◦ ϕ‖Aqβ → 0 as n→∞.

To establish this, note that from Proposition 2.4 it suffices to show that

(5.1)

|fn(ϕ(0)) − f(ϕ(0))|p +

∫
rD

|fn − f |q−2|fn′ − f ′|2Nβ+2dA

+

∫
D\rD

|fn − f |q−2|fn′ − f ′|2Nβ+2dA.

can be made arbitrarily small by choosing n large. For any fixed r ∈ (0, 1), the
uniform convergence of fn to f on compact subsets of D shows that the first two
terms in the display above converge to 0 as n →∞. Thus it suffices to show that
the third term in (5.1) tends to zero, uniformly in n, as r → 0. To this end, let
ε > 0, and note that by hypothesis we can choose r ∈ (0, 1) so that∫

D\rD
|fn − f |q−2|fn′ − f ′|2Nβ+2dA ≤ ε

∫
D\rD

|fn − f |q−2|fn′ − f ′|2dA(α+2)q/p.

We are now in exactly the same situation that occurred at the end of the proof
of Theorem 3.1. Without providing all the details from that proof, the bound for
|fn − f | from Lemma 2.5 leads to the estimate∫

D\rD
|fn − f |q−2|fn′ − f ′|2Nβ+2dA ≤ εC‖fn − f‖qApα ≤ εC(‖f‖Apα + 1)q.

Since ε > 0 was arbitrary, Cϕ is compact and the first part of the proof is complete.
We now finish the proof by assuming that Cϕ is compact and proving that Nβ+2

satisfies the stated growth condition. For a ∈ D, let ka be as defined in §4,

ka(w) =
(1− |a|2)(2+α)/p

(1− aw)2(2+α)/p
,
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and recall that ‖ka‖Apα ≈ 1. Let {an} ⊂ D satisfy |an| → 1 as n → ∞. From
the definition of ka, it is clear that this implies kan(z) converges uniformly to 0 on
compact subsets of D as n→∞. Hence the zero element of Aqβ is the only possible

limit point of {kan ◦ ϕ}. The compactness of Cϕ therefore yields that

lim
|a|→1

‖Cϕ(ka)‖Aqβ = 0.

The required growth condition for Nβ+2 is an immediate consequence of this and
(4.2), the bound for Nβ+2 that was derived in the proof of Theorem 4.3, and the
proof is complete.

The nature of the “big-oh” sufficient condition in Theorem 3.2 for Cϕ to be
bounded when q < p is such that it is equivalent to the corresponding “little-oh”
condition, and the same method used in the proof of Theorem 5.1 can be used to
prove the next theorem. We omit the details.

5.2. Theorem. Let 0 < q < p and suppose ϕ is an analytic self-map of D
satisfying the conditions of Theorem 3.2. Then

Cϕ : Apα → Aqβ

is compact.

We note that Theorem 1.5 of the introduction results from Theorems 3.2 and
5.2 by setting α = 0 and β = −1.

6. Applications and Examples

In this final section we present several examples and applications of our main
results.

6.1 Finite valence maps. Let ϕ be an analytic self-map of D. If 0 < σ < γ and
w ∈ D \ {ϕ(0)}, then

(6.1) Nγ(w) ≤ (Nσ(w))
γ/σ

.

This was proved in the introduction for σ = 1 and γ = 2, and the same proof works
for any σ < γ. On the other hand, Nσ can not in general be bounded by a multiple
of a power of Nγ when σ < γ. However, this is possible when ϕ belongs to a large
class of functions that includes the univalent functions.

Let ϕ be an analytic self-map of D. We say ϕ is of finite valence if there is an
M < ∞ such that for all w ∈ D the set ϕ−1{w} consists of at most M points,
counting multiplicity. Then, for σ < γ,

Nσ(w) =
∑

z∈ϕ−1{w}
[ log(1/|z|)]σ

≤M max
z∈ϕ−1{w}

[ log(1/|z|)]σ

≤M

 ∑
z∈ϕ−1{w}

[ log(1/|z|)]γ
σ/γ

= M (Nγ(w))σ/γ .
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Combining this with (6.1), we see that if ϕ has finite valence, then

(6.2) (Nσ(w))γ ≈ (Nγ(w))σ .

By setting σ = 1 and γ = 2 we therefore get the following corollary to Theorem A
and Theorem 1.1 to add to those in the introduction.

6.2 Corollary. Let η ≥ 1 and suppose ϕ is an analytic self-map of D having finite
valence. Then the following are equivalent.

a) Cϕ : Hp → Hηp is bounded for some (and hence all) p > 0;
b) Cϕ : Hp → A2ηp is bounded for some (and hence all) p > 0;
c) Cϕ : Ap → Aηp is bounded for some (and hence all) p > 0.

If η ≥ 2, then the three statements above are in addition equivalent to
d) Cϕ : Ap → Hηp/2 is bounded for some (and hence all) p > 0.

Moreover, these remain equivalent when “bounded” is replaced by “compact”.

Of course, statements b) and c) were previously shown to be equivalent even if
ϕ is not of finite valence (Corollary 1.3), as were a) and d) (Corollary 1.2). We also
note that Corollary 4.4 can be combined with (6.2) for other choices of σ and γ to
get similar results for other weighted Bergman spaces. We omit the details.

6.3 Cϕ : Ap → Hq bounded for all p and all q. We now turn to the construction
of ϕ that induce composition operators that are bounded from all the Bergman
spaces to all the Hardy spaces. We saw a simple version of this in the introduction;
Cϕ : Ap → H∞ is bounded if and only if ϕ(D) is a relatively compact subset of D.
We now want to construct more interesting examples for which Cϕ : Ap → Hq is
bounded for all 0 < p ≤ q <∞. In particular, in the introduction we promised an
example of a univalent ϕ satisfying this and in addition ϕ(D) = D.

The construction of this example requires some background on the hyperbolic
metric. Let ρD denote the hyperbolic metric on D, defined by (see [A, p. 2])

ρD(z1, z2) = inf

{∫
γ

2|dz|
1− |z|2 : γ is an arc in D from z1 to z2

}
.

We note for later use that a simple calculation shows

(6.3) ρD(0, z) = log
1 + |z|
1− |z| .

This distance is invariant under conformal self-maps of D, and therefore transfers
to a natural conformally invariant metric on any simply connected proper subset
G ⊂ C. If ϕ : D → G is any conformal map, the hyperbolic distance on G is given by
ρG(w1, w2) = ρD(z1, z2), where wi = ϕ(zi) for i = 1, 2. However, ρG(w1, w2) is not
explicitly computable in terms ofG alone. A useful substitute is the quasi-hyperbolic
metric on G, introduced by Gehring and Palka [GP]. For a domain G $ Rn and
x ∈ G, let δG(x) denote the Euclidean distance from x to the complement of G.
The quasi-hyperbolic distance from x1 to x2 in G is defined to be

kG(x1, x2) = inf

{∫
γ

ds

δG(x)
: γ is an arc in G from x1 to x2

}
.
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Here ds denotes integration with respect to arclength.
The quasi-hyperbolic metric is closely related to the hyperbolic metric. Indeed,

if G $ C is a simply connected domain, then

(6.4)
1

2
ρG ≤ kG ≤ 2ρG .

See, for example, [Sh2, Chapter 9] for these inequalities and further background
on the hyperbolic metric. Due to the geometric nature of its definition, kG is very
useful in obtaining estimates for the hyperbolic metric.

We now return to the promised example, beginning with the proof of a theorem
that gives a simple geometric condition that is sufficient for Cϕ to have the required
properties. Recall that δG(w) is the Euclidean distance from w to C \G for w ∈ G,
and define δG(w) = 0 if w ∈ C \G.

6.4 Theorem. Let G ⊂ D be a simply connected domain such that

(6.5) lim
|w|→1

δG(w)

1− |w| = 0.

If ϕ : D → G is a Riemann map, then Cϕ : Ap → Hq is bounded for all 0 < p ≤
q <∞.

Proof. Suppose G ⊂ D satisfies the given hypotheses and ϕ : D → G is a Riemann
map. We may assume that 0 ∈ G and ϕ(0) = 0. Since ϕ is univalent, it follows
immediately from the definition of Nϕ,1 that

Nϕ,1(w) = O ([ log(1/|w|)]η) (|w| → 1)

if and only if

(6.6) 1− |z| = O ((1− |ϕ(z)|)η) (|z| → 1).

Therefore, by Theorem 1.1 b), Cϕ : Ap → Hq will be bounded for all 0 < p ≤ q <∞
if and only if (6.6) is satisfied for all η > 0.

By conformal invariance of the hyperbolic metric and (6.3), we see that (6.6) is
equivalent to

exp(−ρG(0, ϕ(z))) = exp(−ρD(0, z)) = O (exp(−ηρD(0, ϕ(z)))) (|z| → 1).

Thus, taking logarithms and setting ϕ(z) = w, we must show that for a given η > 0
there exists a constant C such that

(6.7) ηρD(0, w) ≤ C + ρG(0, w), w ∈ G.

Let η > 0 be given and, by (6.5), choose r ∈ (0, 1) such that 4ηδG(z) ≤ 1 − |z| if
|z| > r and z ∈ G. Now set C = ηρD(0, r). Then (6.7) is clearly satisfied if |w| ≤ r,
so assume |w| > r. Then, using (6.4),

ηρD(0, w) = C + ηρD(r, |w|) ≤ C + 2ηkD(r, |w|) = C + 2η

∫ |w|
r

dt

1− t .
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Now, for γ any arc in G from 0 to w,∫ |w|
r

dt

1− t ≤
∫

γ∩(D\rD)

ds

4ηδG(z)
≤
∫
γ

ds

4ηδG(z)
,

by the choice of r. Taking the infimum over all such arcs γ, appending the resulting
estimate to the preceding inequality, and then using (6.4) again, we get

ηρD(0, w) ≤ C + 2η

∫ |w|
r

dt

1− t ≤ C +
1

2
kG(0, w) ≤ C + ρG(0, w).

Thus (6.7) is satisfied and the proof is complete.

With this theorem in hand, it is easy to produce the promised example.

6.5 Example. There exists a univalent ϕ : D → D such that
a) Cϕ : Ap → Hq is bounded for all 0 < p ≤ q <∞

and
b) ϕ(D) = D.
To see this, let G0 = D and, proceeding by induction, assume that n ≥ 0 and

Gn has been constructed by deleting finitely many radial slits from D so that

(6.8) δGn(w) ≤ 3−n, if w ∈ Gn and 1− |w| ≤ 2−n.

We then construct Gn+1 by deleting from Gn finitely many radial slits (with one
endpoint on ∂D) of length 2−n−1 so that (6.8) is satisfied with n replaced by
n + 1. With Gn now defined for all n ≥ 0, set G =

⋂
n≥0Gn. From (6.8) and the

construction it is clear that δG(w) ≤ 3−n if 2−n−1 < 1 − |w| ≤ 2−n, so that (6.5)
is satisfied. Hence if ϕ : D → G is a Riemann map, then Theorem 6.4 applies and
Cϕ : Ap → Hq is bounded for all 0 < p ≤ q <∞. Since in addition ϕ(D) = G = D,
ϕ has all the required properties and the example is complete.

6.6 Polygonal maps. We now present a class of self-maps of D for which the
hypotheses of the main theorems of this paper are easily verified. Let P ⊂ D be a
polygon, and let ψ be a Riemann map from D onto the interior of P . We then call
ψ a polygonal self-map of D. The composition operators induced by such functions
have been studied by several authors, including Shapiro and Taylor in [ST] and
Riedl in [R]. In particular, the first conclusion in the theorem below can be derived
from Theorem V.1 in [R], which was proved using different methods.

The case that P is a compact subset of D is not interesting, since then Cψ : Ap →
H∞ is bounded for all p > 0, as was observed in the introduction. So suppose P
has a vertex at w = 1 with an associated angle of π/η, and α is the minimal angle
the two adjacent sides of P make with the tangent line to ∂D at w = 1. Thus η > 1
and α > 0. As is well known, ψ extends to be a homeomorphism of D onto P , and
we assume ψ(1) = 1. By the Schwarz reflection principle,

(ψ(z)− 1)η

z − 1

extends to be analytic and non-zero in a neighborhood of z = 1. Thus

(6.9) 1− |z| ≤ |1− z| ≤ C|1− ψ(z)|η ≤ C(csc(α))η(1− |ψ(z)|)η

in a neighborhood of z = 1. These observations make it easy to prove the next
theorem.
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6.7 Theorem. Let P ⊂ D be a polygon and let π/η be the largest angle at a vertex
of P that lies on ∂D. If ϕ is an analytic self-map of D with ϕ(D) ⊂ P , then

Cϕ : Hp → Hηp and Cϕ : Ap → Aηp

are bounded for all p > 0. If in addition η ≥ 2, then

Cϕ : Ap → Hηp/2

is bounded for all p > 0. In each case above, the conclusion is sharp in the sense
that Cϕ need not be compact and moreover the exponent in the target space can not
be increased. Finally, if 2 > η > (p+ q)/p (or equivalently q < (η − 1)p < p), then

Cϕ : Ap → Hq

is bounded, and moreover is compact.

Proof. Let ψ be the polygonal self-map of D with ψ(D) = P . Since π/η is the
largest angle at the finitely many vertices of P on ∂D, we have by (6.9) that

1− |z| = O((1 − |ψ(z)|)η) (|z| → 1),

and so (see (6.6))

(6.10) Nψ,1(w) = O ([ log(1/|w|)]η) (|w| → 1),

since ψ is univalent. Also, by (6.1),

(6.11) Nψ,2(w) = O
(
[ log(1/|w|)]2η

)
(|w| → 1).

Thus, from Theorem A, Theorem 1.1 and Theorem 1.5, the conclusions of the
theorem are satisfied when Cϕ is replaced by Cψ.

Now, since ψ is univalent and ϕ(D) ⊂ ψ(D), ϕ is subordinate to ψ. That is,
there is a self-map σ of D such that ϕ = ψ ◦ σ, or Cϕ = Cσ ◦ Cψ. Recall that
Cσ : Hq → Hq and Cσ : Aq → Aq are bounded for all q > 0 by Littlewood’s
subordination principle, and so the result follows.

To see that the results are sharp, note that when z = r is real the quantities
in (6.9) are all comparable. Thus the exponent η in (6.10) can not be increased,
and moreover the corresponding “little-oh” condition fails. Since ψ is univalent,
we have by (6.2) that the same applies to (6.11). Theorem A and Theorem 1.1
therefore show that the conclusions of the theorem are sharp for Cψ.

Remark. Under the hypotheses of Theorem 6.7 we also have that Cϕ : Hp → A2ηp

is bounded. This can be derived from Theorem 1.1 and (6.11) as above. However, it
is also a direct consequence of the first conclusion of Theorem 6.7, since Hηp ⊂ A2ηp

(see the remarks following Corollary 1.4), and so it was left out of the statement.
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