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COMPOSITION OPERATORS INDUCED BY
RATIONAL FUNCTIONS

R. K. SINGH

Abstract. A necessary and sufficient condition for a rational function to

define a composition operator on Lp (/i) is given in this paper, where n is the

Lebesgue measure on the Borel subsets of the real line. In particular, all

polynomials inducing composition operators are completely determined.

1. Preliminaries. Let (X, §>, A) be a a-finite measure space and <b be a

measurable transformation on X into itself. Then we (roughly) define a linear

transformation C^ on the Banach space LP(X) (p > 1) into the space of all

complex valued functions on X by C^f = f ° <j>. If C^ is continuous with

range in Lp (A), then we call it a composition operator on Lp (A) induced by <b.

The following theorem will be needed.

Theorem 1. Let <b be a measurable transformation on X into itself. Then C^

is a composition operator on Lp (A) if and only if there exists an m > 0 such that

X<b~[(E) < mX(E) for every measurable set E.

Proof. Suppose C^ is a composition operator on LP(X) i.e. C^ is bounded.

Let E be any measurable set. If X(E) is not finite, then the inequality follows

trivially. If X(E) < co, XE (the characteristic function of E) is in LP(X) and

X^^E) =\\C,XE\\" <\\Cj\\XE\\p=\\CjX(E).

Letting m = \\C<j>\\p, we get X<p~l(E) < mX(E).
Conversely, suppose there is an m > 0 such that X<p~l(E) < mX(E) for

every measurable set E. Then the measure X<j> ~' is absolutely continuous with

respect to A. Let/0 denote the Radon-Nikodym derivative of A<j>-1. Then

f f0dX = X<p~\E) < mX(E) = f m dX.

Therefore/0 < m (a.e.). Let/ G LP(X). Then

f\f°<t>\pdX=f\f}pdX<p-i=f\f\pf0dX< m\\f\\p.

This shows that C^ is bounded. This completes the proof of the theorem.

In this paper we are interested in studying composition operators in a

special case. We take X to be equal to R, the set of real numbers and we take

/x to be the Lebesgue measure on the Borel subsets of R. Now <b is a

measurable (Borel) real valued function on R. The following theorem gives a
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necessary condition for a function <J> to induce a composition operator on

Lp(p).

Theorem 2. Let § be a real valued measurable function on R which is

continuous in a neighbourhood of every point where its derivative exists. Then

C^ is a composition operator on Lp(p) only if <j>' is nonzero wherever it exists.

(4>' denotes the derivative of <p.)

Proof. Suppose Q is bounded. Then by Theorem 1 there exists an m > 0

such that p(E)/p<$>~ (E) > l/m > 0 for every Borel set E. Let a0 be a point

of R where <b' exists and let A be a neighbourhood of a0 on which <b is

continuous. Then it is possible to choose a sequence {an} from N such that

an > a0 for every n, an tends to a0 and <b has a maximum (or minimum) at an

with respect to the interval [a0, an]. If we take En as the interval [</>(%> ~

|A<f>J, (b(a0) + |A<J>J], where (f>n = <t>(an) - <b(a0), then by the above inequality

we get p(En)/p<b~l(En) > l/m > 0 for every n. This implies that

2\A<bn\/Aan > l/m>0,

where Aa„ = an — a0. From this inequality it is clear that |<£'(ao)l > I/2m >

0. This finishes the proof of the theorem.

Note. The condition in the theorem is not sufficient because the derivative

of the function <b(x) = l/x2 is nonzero, but it does not define a composition

operator.

The above theorem provides us many examples of functions which do not

induce composition operators on Lp(p). In the following theorem we ex-

amine the suitability of monotone functions for inducing composition opera-

tors on Lp( p).

Theorem 3. Let <f> be a monotone real valued function on R. Then C^ is a

composition operator on Lp (p) if and only if 1 /<£' is essentially bounded. In case

l/<b' is essentially bounded, \\C^\\P = \\l/<f>'\\x.

Proof. Without loss of generality we can assume that <b is an increasing

function. Let C^ be a composition operator on Lp(p), and let x, y E R such

that x < y. Then since the inverse image of the interval [<b(x), <b(y)] under <f>

contains the interval [x, y], we can conclude by applying C^ to the character-

istic function of [<t>(x), <p(y)] and calculating the norms that

||c/(<K.y) - <H*)) >y-x
or equivalently

(<b(y) - 4>(x))/(y - x) > 1/||C/.

Since x, y are chosen arbitrarily, it follows that

iii/<#>'L<iic,ir<oo.

Conversely, suppose l/<$f is essentially bounded. Then there is an m > 0

such that 4>'(x) > l/m (a.e.). We can write (f>(x) = <$>a(x) + <bs(x), where §a is

absolutely continuous and <bs is the singular part of <b. Let x, y E R and let

x < y. Then

<t>(y) - <H*) > <Pa(y) - 4>a(x) = \\'a dv-> (y - x)/m
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and hence

(,*) y -x < m[<p(y) - <p(x)].

Let E = [c, d] be a half-open interval. Let

B = inf{x: 4>(x) > c)    and    y = sup{y: <p(y) < d).

Then it follows from (*) that B > - co and y < co. We claim that B < y and

<£~'(7i) c [B, y]. Suppose B > y. Then there exists an x such that B > x >

y. From this and the definitions of B and y it follows that d < <p(x) < c

which is a contradiction to the fact that c < d. Hence B < y. To prove that

4>-1(7i) C [/?, y], let x G <p-\E). Then <p(x) G E and hence c < <K*) < rf

Since <b(x) > c, we obtain that B < x and since <j>(x) < rf we get x < y. Thus

B < x < y. This proves our claim. In case B = y, the inequality /id>_1(£) <

mX(E) follows trivially. If B < y, then let x, y G R such that B < x < y <

y. The the interval [<j>(x), (p(y)] c E. From inequality (*) it follows that

y - x < rn[<p(y) - 4>(x)] < mfx(E);

since x, y are chosen arbitrarily, we can conclude that

HQ'^E) < mn(E).

Thus the above inequality holds for every half-open interval. The class of sets

for which the above inequality holds is a monotone class containing the ring

of finite unions of half-open intervals. By Theorem A of [1, p. 27] the above

inequality holds for all Borel sets. Hence, by Theorem 1, C. is a composition

operator. This proves the theorem.

2. Polynomials and composition operators. In ths section we assume that <b is

a real polynomial. Nonvanishing of the derivative of the function is a

necessary condition for the inducibility of the composition operator as we

have seen in Theorem 2. It turns out that this condition is also sufficient in
the case of polynomials. This we shall show in the following theorem.

Theorem 4. Let <p be a polynomial with the real coefficients. Then C^ is a

composition operator on Lp(fi) iff «p' ̂  0. Furthermore, if <p' ¥= 0, then \\C<t,\\p

= SUp|l/<Ji'|.

Proof. The proof of the 'only if' part is evident from Theorem 2. To prove

the 'if part suppose <j>' ¥= 0. Then since <j> is a polynomial 1 /<j>' is bounded

and also <^ is a monotone function. Hence, by Theorem 3, C+ is a composition

operator and \\C,t>\\p = ||l/<>'lloo ~ SUP IV^'I- This proves the theorem.

Corollary 1. A necessary condition that C^ be a composition operator on

Lp(fi) is that the degree of Ap be not even.

Proof. If degree of <j> is even, then <p is zero at some point. Hence, by

Theorem 4, C^ is not bounded composition operator.

Corollary 2. Let <p(x) = ax3 + bx2 + cx + d, where a, b, c, d G R. Then

Cq is composition operator on Lp(ii) iff b2 < 3ac.

3. Rational functions and composition operators. Let w = <p/xp be a rational

function, where <p and xp are polynomials with real coefficients. We assume
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that <£ and xp have no common real zeros, and the coefficients of the leading

terms of <j> and \f/ are equal to 1. We also assume that deg \f/ > 1, where by

deg xp we mean the degree of xp. In §2 we have proved that nonvanishing of

the derivative of a polynomial is a necessary and sufficient condition for the

inducibility of the corresponding composition operator on Lp(p). But in case

of rational functions a little more is needed which will be investigated in this

section.

Theorem 5. Let co = <b/xp be a rational function. Then Ca is a composition

operator on Lp (p) implies that deg (b > deg xp.

Proof. If deg <b < deg xp, then co is bounded on a set of infinite measure

and hence, by Theorem 1, Cu is not a composition operator.

Theorem 6. Let co be a rational function. Then Cu is a composition operator

on Lp(p) implies that co has at least one real zero.

Proof. Suppose co does not have any real zeros. Then in case co is

continuous there will be at least two points xx and x2 such that co(cc,) = co(x2).

Applying the mean value theorem we can conclude that co'(*0) = 0 for some

xQ such that xx < x0 < x2. Hence, by Theorem 2, Cw is not a composition

operator. In the case co is discontinuous, it must have at least two poles.

Taking any two consecutive poles and applying the mean value theorem, we

can again conclude that co' is zero at some point. Hence Cu is not a

composition operator. This proves the theorem.

Corollary 3. Let co = <p/xp be a rational function. Then Cu is a composition

operator implies that m — n is not an even integer, where m = deg <j> and

n = deg <#>.

Corollary 4. Let co be a continuous rational function. Then Ca is a

composition operator only if co has one and only one real zero.

Now we shall need the following lemma.

Lemma 1. Let co = <b/xp be a discontinuous rational function and let m and n

be degrees of <b and xp respectively. Then m > n and co' ̂  0 implies that

C(T) = C(Z) and poles and zeros of co occur alternately on R, where C(Z)

and C(T) denote the number of distinct real zeros and number of distinct real

poles of co respectively.

Proof. If C(Z)> C(T) or C(Z) < C(T), then an application of Rolle's

theorem in the first case and of the mean value theorem in the second case

gives one point where co' is zero, which is a contradiction to hypothesis. If

poles and zeros do not occur alternately, then we can conclude that co' is zero

at some point and this is again a contradiction. Thus the proof of the lemma

is complete.

Now we shall prove the main theorem of this section.

Theorem 7. Let co = <b/xp be a rational function. Then C^ is a composition

operator on Lp (p) iff deg <b > deg xp and co' ¥= 0 at every point of R where it

exists.
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Proof. The 'only if part is clear from Theorems 2 and 3. To prove the 'if

part suppose deg <p > deg xp and w' is not zero. Then in the case co is

continuous to' is also continuous and 1/to' is a bounded function. Hence, by

Theorem 3, Cu is a composition operator. If w is discontinuous, then from

Lemma 1, C(Z) = C(T) and zeros and poles occur alternately. This implies

that w is monotone on the interval starting and ending at the consecutive

poles. Thus it can be shown [1, p. 136] that

(dlico~i/dii)(x)=        2        l/co'O').
yeW-'({*})

Since w' =£ 0, the Radon-Nikodym derivative rfuto_1/rfju of the measure /xto-1

is essentially bounded. Hence, by Theorem 1, Cu is a composition operator

on Lp (jtt). This completes the proof of the theorem.
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