COMPOSITION OPERATORS ON A SPACE OF LIPSCHITZ FUNCTIONS

RAYMOND C. ROAN

ABSTRACT. For $0 < \alpha \leq 1$, let $\operatorname{Lip}(\alpha)$ denote the space of functions f which are analytic on the open unit disk, continuous on the closed unit disk, and whose boundary values satisfy a Lipschitz condition of order $\alpha : |f(z) - f(w)| \leq K|z - w|^{\alpha}$, for |z| = |w| = 1. For $0 < \alpha < 1$, let $\operatorname{lip}(\alpha)$ denote the space of functions f in $\operatorname{Lip}(\alpha)$ such that $|f(z) - f(w)| = o(|z - w|^{\alpha})$, as $w \to z$, |z| = |w| = 1. We prove that a function φ in $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$), with $|\varphi(z)| \leq 1$ for $|z| \leq 1$, induces a composition operator on $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$) if and only if there exists a finite number M and a number r < 1 such that $|\varphi(z)| \geq r$ implies $|\varphi'(z)| \leq M$. We also prove that a composition operator C_{φ} on either $\operatorname{Lip}(\alpha)$ or $\operatorname{lip}(\alpha)$ is compact if and only if for each $\epsilon > 0$ there exists an r < 1 such that $|\varphi(z)| \geq r$ implies $|\varphi'(z)| \leq \epsilon$.

1. Introduction. We shall denote the unit disk $\{|z| < 1\}$ by U. For $0 < \alpha \leq 1$, we let $\text{Lip}(\alpha)$ denote the space of functions f which are analytic in U, continuous on U⁻ (the closure of U), and whose boundary values satisfy a Lipschitz condition of order α :

$$\frac{|f(z) - f(w)|}{|z - w|^{\alpha}} = o(1), \qquad |z| = |w| = 1.$$

For $0 < \alpha < 1$, we let $lip(\alpha)$ denote those functions f in $Lip(\alpha)$ for which

$$\frac{|f(z) - f(w)|}{|z - w|^{\alpha}} = o(1) \quad \text{as } w \to z, \ |z| = |w| = 1$$

Each of the spaces $Lip(\alpha)$ and $lip(\alpha)$ is a Banach algebra when the norm of an element is defined as

$$\||f\|_{lpha} = \||f||_{\infty} + \sup_{\substack{z+w \ |z|=|w|=1}} \frac{|f(z) - f(w)|}{|z - w|^{lpha}},$$

where $||f||_{\infty} = \sup |f(z)| \ (|z| < 1).$

Copyright

1980 Rocky Mountain Mathematical Consortium

Received by the editors on October 31, 1977, and in revised form on February 22, 1978.

AMS (MOS) Subject Classification (1970). Primary 46E15, 46J15; Secondary 30A98, 47B05.

We say that a function $\varphi: U \to U$ induces the composition operator C_{φ} on $\operatorname{Lip}(\alpha)$ (respectively, $\operatorname{lip}(\alpha)$) if

$$C_{\varphi}(f) = f \circ \varphi$$

is in $\operatorname{Lip}(\alpha)$ (resp. $\operatorname{lip}(\alpha)$) for every function f in $\operatorname{Lip}(\alpha)$ (resp. $\operatorname{lip}(\alpha)$). We shall characterize those functions which induce composition operators on both $\operatorname{Lip}(\alpha)$ and $\operatorname{lip}(\alpha)$. We shall also characterize those functions which induce compact composition operators on both $\operatorname{Lip}(\alpha)$ and $\operatorname{lip}(\alpha)$. Both characterizations will follow from the estimates proved in Theorems 1 and 2.

2. Main Theorems. THEOREM 1. Suppose $0 < \alpha \leq 1$, φ and $f_n(n = 1, 2, 3, \cdots)$ are functions in $\operatorname{Lip}(\alpha)$, $||\varphi||_{\infty} \leq 1$, and there exist finite positive numbers K_1 , K_2 , M, and r (with r < 1), such that the following conditions are satisfied:

(a) $|\varphi(z)| \ge r$ implies $|\varphi'(z)| \le M$

- (b) $||f_n||_{\alpha} \leq K_1 \text{ and } ||f_n||_{\infty} \leq K_2, \text{ for } n = 1, 2, 3, \cdots$
- (c) $|z| \leq r$ implies $|f_n'(z)| \leq M^{\alpha}$.

Then, for $K = 2K_1 + ||\varphi||_{\alpha}$,

$$\left\| f_n \circ \varphi \right\|_{\alpha} < K_2 + KM^{\alpha}.$$

PROOF. Let α , φ , $\{f_n\}$, K_1 , K_2 , M, and r be as in the statement of the theorem.

Let |z| = |w| = 1, $z \neq w$; and let L be the line segment joining z and w. If $|\varphi(z)| \leq r$, let $z_1 = z$; similarly, if $|\varphi(w)| \leq r$, let $w_1 = w$. Otherwise, let z_1 (respectively, w_1) be the point of L closest to z (resp., w) such that $|\varphi(z_1)| \leq r$ (resp., $|\varphi(w_1)| \leq r$). Such values z_1 and w_1 can be uniquely determined by minimizing the continuous function $d_z(\zeta) = |z - \zeta|$ (resp., $d_w(\zeta) = |w - \zeta|$) on the compact set $L \cap \varphi^{-1}(\zeta) |\zeta| \leq r$ }. We can assume, with no loss of generality, that $z_1 \neq z$ and $w_1 \neq w$.

By our choice of z_1 and w_1 , we see that

$$|z - w|^{-\alpha} \le \min\{|z - z_1|^{-\alpha}, |z_1 - w_1|^{-\alpha}, |w_1 - w|^{-\alpha}\}.$$

Consequently,

$$\begin{array}{c|c} \frac{|f_n(\varphi(z)) - f_n(\varphi(w))|}{|z - w|^{\alpha}} & \leq \frac{|f_n(\varphi(z)) - f_n(\varphi(z_1))|}{|z - z_1|^{\alpha}} \\ + \frac{|f_n(\varphi(z_1)) - f_n(\varphi(w_1))|}{|z_1 - w_1|^{\alpha}} & + \frac{|f_n(\varphi(w_1)) - f_n(\varphi(w))|}{|w_1 - w|^{\alpha}} \end{array}$$

We shall estimate each term separately.

$$\begin{aligned} \frac{|f_n(\varphi(z)) - f_n(\varphi(z_1))|}{|z - z_1|^{\alpha}} \\ &= \frac{|f_n(\varphi(z)) - f_n(\varphi(z_1))|}{|\varphi(z) - \varphi(z_1)|^{\alpha}} \left| \frac{\varphi(z) - \varphi(z_1)}{z - z_1} \right|^{\alpha} \\ &\leq K_1 \left\{ \frac{1}{|z - z_1|} \int_{z_1}^z |\varphi'(\zeta)| \, d\zeta \right\}^{\alpha} \\ &\leq K_1 M^{\alpha}. \end{aligned}$$

We have used the fact that if $\zeta = \lambda z_1 + (1 - \lambda)z$, $0 \leq \lambda \leq 1$, then $|\varphi(\zeta)| \geq r$, so $|\varphi'(\zeta)| \leq M$ (by (a)).

Similarly,

$$\frac{|f_n(\varphi(w_1)) - f_n(\varphi(w))|}{|w_1 - w|^{\alpha}} \leq K_1 M^{\alpha}$$

Finally,

$$\begin{aligned} \frac{|f_n(\varphi(z_1)) - f_n(\varphi(w_1))|}{|z_1 - w_1|^{\alpha}} \\ &= \frac{|f_n(\varphi(z_1)) - f_n(\varphi(w_1))|}{|\varphi(z_1) - \varphi(w_1)|} \frac{|\varphi(z_1) - \varphi(w_1)|}{|z_1 - w_1|^{\alpha}} \\ &\leq ||\varphi||_{\alpha} |\varphi(z_1) - \varphi(w_1)|^{-1} \int_{\varphi(z_1)}^{\varphi(w_1)} |f_n'(\zeta)| \, d\zeta \\ &\leq ||\varphi||_{\alpha} M^{\alpha}. \end{aligned}$$

We have used the fact that $|\varphi(z_1)| \leq r$ and $|\varphi(w_1)| \leq r$ implies that for $\zeta = \lambda \varphi(z_1) + (1 - \lambda)\varphi(w_1)$, $0 \leq \lambda \leq 1$, we have $|\zeta| \leq r$; so that $|f_n'(\zeta)| \leq M^{\alpha}$ (by (c)).

Combining these estimates, we see that

$$\frac{|f_n(\varphi(z)) - f_n(\varphi(w))|}{|z - w|^{\alpha}} \leq (2K_1 + ||\varphi||_{\alpha})M^{\alpha}$$

Consequently, if $K = 2K_1 + ||\varphi||_{\alpha}$, then

$$\|f_n \circ \varphi\|_{\alpha} \leq K_2 + KM^{\alpha}.$$

THEOREM 2. Suppose $0 < \alpha \leq 1$ and φ is in $\operatorname{Lip}(\alpha)$, $||\varphi||_{\infty} \leq 1$. Suppose $\{k_n\}$ is a sequence of positive numbers and there exists a sequence $\{z_n\}$ of points in U such that $|\varphi(z_n) - \zeta| < 1/n$ for some ζ with $|\zeta| = 1$ and $|\varphi'(z_n)| > k_n$ for $n = 1, 2, 3, \cdots$. Then, there exists a sequence of

R. C. ROAN

functions $\{f_n\}$ in Lip (α) and a constant $K < \infty$ such that

(a) $\{||f_n||_{\alpha}\}$ is bounded in n

(b) $f_n(z) \rightarrow 0$ uniformly on U⁻

(c) $||f_n \circ \varphi||_{\alpha} > K(k_n)^{\alpha}$ for $n = 1, 2, 3, \cdots$.

In addition, for $0 < \alpha < 1$, we can choose the functions f_n , $n = 1, 2, 3, \dots$, to be in $lip(\alpha)$.

PROOF. Without loss of generality, we may assume that $\zeta = 1$. For $n = 1, 2, 3, \dots$, let

$$f_n(z) = n^{-\alpha}(z + 1 - \varphi(z_n))^n$$

(a) Fix n and let $a = 1 - \varphi(z_n)$. If |z| = |w| = 1, $z \neq w$, then

(1)
$$\frac{|f_n(z) - f_n(w)|}{|z - w|^{\alpha}} = \frac{|(z + a)^n - (w + a)^n|}{n^{\alpha}|z - w|^{\alpha}}$$
$$= \left\{ \frac{|(z + a)^n - (w + a)^n}{n|z - w|} \right\}_{|(z + a)^n} - (w + a)^n$$

We will estimate each factor separately. First,

$$\frac{-|(z+a)^n - (w+a)^n|}{n|z-w|} \leq \frac{1}{n} \sum_{k=0}^{n-1} \left| \frac{z+a}{w+a} \right|^k$$

$$\leq \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{n+1}{n-1} \right)^k$$

$$\leq \left(\frac{n+1}{n-1} \right)^{n-1}$$

$$\leq e^2.$$

We will make two estimates on the second factor, both of which will make use of the fact that $|z + a| \leq 1 + (1/n)$ and $|w + a| \leq 1 + (1/n)$.

(3)
$$|(z+a)^n - (w+a)^n| \leq |z+a|^n + |w+a|^n \leq 2\left(1+\frac{1}{n}\right)^n \leq 2e$$

 $|(z+a)^n - (w+a)^n| \leq |z-w| \sum_{k=0}^{n-1} |z+a|^k |w+a|^{n-k}$
(4)

$$\leq ne|z-w|.$$

Also, for $|z| \leq 1$,

(5) $|f_n(z)| \leq en^{-\alpha} \leq e.$

374

If we combine estimates (2) and (3) with (1) and (5), we see that

$$||f_n||_{\alpha} \leq e + 2^{1-\alpha}e^{\alpha+1}, \text{ for } n = 1, 2, 3, \cdots,$$

so $\{||f_n||_{\alpha}\}\$ is bounded. Furthermore, if we combine estimates (2) and (4) with (1), we see that if $0 < \alpha < 1$, then each f_n is in $lip(\alpha)$.

(b) The inequality (5) shows that $f_n(z) \to 0$ uniformly on U⁻.

(c) We know that both φ and φ' are continuous on U. Therefore, for each $n = 1, 2, 3, \cdots$, there exists a $\delta_n > 0$ such that $|z_n| + \delta_n < 1$ and $|z - z_n| < \delta_n$ implies that

 $\begin{array}{ll} ({\rm i}) \ |\varphi'(z)| > k_n \\ ({\rm i}{\rm i}) \ |\varphi(z) - \varphi(z_n)| < \frac{1}{n}. \end{array}$

Fix n, and suppose $|z - z_n| < \delta_n$. Then

$$\begin{array}{c} \frac{|f_n(\varphi(z)) - f_n(\varphi(z_n))|}{|z - z_n|^{\alpha}} \\ = \left\{ \begin{array}{c} \frac{|f_n(\varphi(z)) - f_n(\varphi(z_n))|}{|z - z_n|} \end{array} \right\}^{\alpha} |f_n(\varphi(z)) - f_n(\varphi(z_n))|^{1 - \alpha}. \end{array}$$

From [4], there exists a ζ , $|\zeta - z_n| \leq |z - z_n| < \delta_n$, such that

$$f_n(\varphi(z)) - f_n(\varphi(z_n)) = (z - z_n)f_n'(\varphi(\zeta))\varphi'(\zeta).$$

Consequently,

$$\begin{cases} \frac{|f_n(\varphi(z)) - f_n(\varphi(z_n))|}{|z - z_n|} \end{cases} \overset{\alpha}{=} \{ |f_n'(\varphi(\zeta))| |\varphi'(\zeta)| \}^{\alpha} \\ = \{ n^{1-\alpha} |1 - (\varphi(z_n) - \varphi(\zeta))|^{n-1} |\varphi'(\zeta)| \}^{\alpha} \\ > n^{\alpha(1-\alpha)} (k_n)^{\alpha} \mid 1 - \frac{1}{n} \mid^{(n-1)\alpha} \\ > n^{\alpha(1-\alpha)} (k_n)^{\alpha} e^{-\alpha}. \end{cases}$$

Similarly,

$$(8) \qquad |f_n(\varphi(z)) - f_n(\varphi(z_n))|^{1-\alpha} \\ = n^{\alpha(\alpha-1)} |(1 - \varphi(z_n) + \varphi(z))^n - 1|^{1-\alpha} \\ \geqq n^{\alpha(\alpha-1)} |(1 - |1 - |\varphi(z_n) - \varphi(z)||^n|^{1-\alpha} \\ \geqq n^{\alpha(\alpha-1)} \left| 1 - \left(1 - \frac{1}{n}\right)^n \right|^{1-\alpha} \\ \geqq n^{\alpha(\alpha-1)} \left(1 - \frac{1}{e} \right)^{1-\alpha}.$$

Let $K = e^{-\alpha}(1 - 1/e)^{1-\alpha}$ and use the estimates from (7) and (8) in (6) to get

$$\frac{|f_n(\varphi(z)) - f_n(\varphi(z_n))|}{|z - z_n|^{\alpha}} > K(k_n)^{\alpha} \text{ for } n = 1, 2, 3, \cdots$$

Hence, by Theorem 2.2 of [5],

$$||f_n \circ \varphi||_{\alpha} > K(k_n)^{\alpha}$$
, for $n = 1, 2, 3, \cdots$.

3. Applications. Observe that since the identity function is in $\text{Lip}(\alpha)$, if $\varphi: U \rightarrow U$ is to induce a composition operator on $\text{Lip}(\alpha)$, then φ must be in $\text{Lip}(\alpha)$. For $\alpha = 1$, this necessary condition is sufficient, as we shall see; but, for $0 < \alpha < 1$, it is not sufficient. For example, consider $\alpha = 1/2$. Define functions φ and f by

$$\varphi(z) = [(1 - z)/2]^{1/2} - 1$$
$$f(z) = (1 + z)^{1/2}.$$

A simple calculation shows that φ and f are in Lip(1/2) and that $||\varphi||_{\infty} = 1$. However, $(f \circ \varphi)'(z) = c(1-z)^{-3/4}$, for some constant c. Consequently, $(f \circ \varphi)'(z) \neq O((1-|z|)^{-1/2})$, so $f \circ \varphi$ is not in Lip(1/2) (see [1], Theorem 5.1).

DEFINITION. A function $\varphi: U \to U$ is called a U-primary function if there exist numbers $M < \infty$ and r < 1 such that $|\varphi'(z)| \leq M$ whenever $|\varphi(z)| \geq r$.

REMARK. Without loss of generality, we could require r = 1 - 1/M.

COROLLARY 1. Let $0 < \alpha \leq 1$. A function φ in Lip (α) (resp., lip (α)) induces a composition operator on Lip (α) (resp., lip (α)) if and only if φ is a U-primary function.

PROOF. Let φ be in Lip (α) (resp., lip (α)), $0 < \alpha \leq 1$, and suppose φ induces a composition operator on Lip (α) (resp., lip (α)). If φ is not a U-primary function, then for every $M = 1, 2, 3, \cdots$ there exists a point z_M in U such that $|\varphi(z_M)| \geq 1 - 1/M$ and $|\varphi'(z_M)| > M$.

By choosing a subsequence, if necessary, we may assume that $|\varphi(z_M) - \zeta| < 1/M$ for some ζ with $|\zeta| = 1$. Let $k_M = M$, $M = 1, 2, 3, \cdots$. By Theorem 2, there exists a uniformly bounded sequence $\{f_M\}$ in $lip(\alpha) \subseteq Lip(\alpha)$ and a constant K such that

$$||C_{\varphi}(f_{\mathcal{M}})||_{\alpha} > KM^{\alpha},$$

contradicting the continuity of C_{∞} (see Proposition 3 of [3]).

Conversely, suppose φ is a U-primary function in $\text{Lip}(\alpha)$ and f is in $\text{Lip}(\alpha)$. For $n = 1, 2, 3, \cdots$, let $f_n = f$. By Theorem 1.

$$\|\|f\circ\varphi\|\|_{\alpha}<\infty,$$

so $f \circ \varphi$ is in Lip(α). A simple continuity argument shows that if φ and f are in lip(α), $0 < \alpha < 1$, then $f \circ \varphi$ is actually in lip(α).

Notice that if φ' is in H^{∞} , the set of bounded analytic functions on U, and if $||\varphi||_{\infty} \leq 1$, then φ is a U-primary function. But

$$Lip(1) = \{h \mid h' \text{ is in } H^{\infty}\}$$

(see Theorem 5.1 of [1]). Consequently, every Lip(1) function which maps U into itself induces a composition operator on Lip(1).

An operator L on a Banach space \mathscr{B} is said to be *compact* if every bounded sequence $\{x_n\}$ in \mathscr{B} contains a subsequence $\{x_{n_k}\}$ such that $\{Lx_{n_k}\}$ converges to a point of \mathscr{B} .

LEMMA. Let $0 < \alpha \leq 1$. The operator C_{φ} : Lip $(\alpha) \rightarrow$ Lip (α) is compact if and only if for each bounded sequence $\{f_n\}$ in Lip (α) which converges to zero uniformly on U⁻, we have $||C_{\varphi}f_n||_{\alpha} \rightarrow 0$ as $n \rightarrow \infty$.

PROOF. Suppose that for each bounded sequence $\{f_n\}$ in $\operatorname{Lip}(\alpha)$ which converges to zero uniformly U^- we have $||C_{\alpha}f_n||_{\alpha} \to 0$ as $n \to \infty$; and suppose $\{f_n\}$ is a bounded sequence in $\operatorname{Lip}(\alpha)$. From the work of P. Duren, B. Romberg, and A. Shields ([2], Theorem 2), we know that $\operatorname{Lip}(\alpha)$ is equivalent to the dual of an H^p -space with $1/2 \leq p < 1$ $(p = (1 + \alpha)^{-1})$. By the Banach-Alaoglu Theorem ([6], Theorem 3.15), there exists a function f in $\operatorname{Lip}(\alpha)$ and a subsequence $\{f_n\}$ of $\{f_n\}$ such that $f_{n_k} \to f$ in the weak * topology on $\operatorname{Lip}(\alpha)$. With no loss of generality, we may assume that f = 0 and $f_n \to 0$ (weak *). Using Theorem 1 of [2] and the fact that $h_{\zeta}(z) = (1 - \zeta z)^{-1}$ is in H^p for $0 and <math>|\zeta| \leq 1$, one can show that evaluation at a point of U^- is a weak * continuous linear functional on $\operatorname{Lip}(\alpha)$. Therefore, $f_n(z) \to 0$ for each z in U^- . But the sequence $\{f_n\}$ is a normal family; hence, equicontinuous. By Ascoli's theorem, $f_n \to 0$ uniformly on U^- . Our hypothesis then shows that $||C_{\alpha}f_n||_{\alpha} \to 0$; hence, C_{α} is compact.

The proof of the converse is easy and we omit it.

COROLLARY 2. Let $0 < \alpha \leq 1$. The composition operator C_{φ} is compact on $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$) if and only if for each $\epsilon > 0$ there exists an r < 1 such that $|\varphi'(z)| \leq \epsilon$ whenever $|\varphi(z)| \geq r$.

PROOF. Suppose $0 < \alpha \leq 1$ and C_{φ} is compact on $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$). Suppose there is an $\epsilon > 0$ such that for each $n = 1, 2, 3, \cdots$

R. C. ROAN

there exists a point z_n in U with $|\varphi(z_n)| > 1 - 1/n$ and $|\varphi'(z_n)| > \epsilon$. With no loss of generality, we can assume that $|\varphi(z_n) - \zeta| < 1/n$ for some ζ with $|\zeta| = 1$. By Theorem 2 (with $k_n = \epsilon$), there exists a uniformly bounded sequence $\{f_n\}$ in $lip(\alpha) \subseteq Lip(\alpha)$ which converges to zero uniformly on U⁻ such that

$$||f_n \circ \varphi||_{\alpha} > K\epsilon^{\alpha} > 0$$
 for $n = 1, 2, 2, \cdots$.

Thus $\{||f_n \circ \varphi||_{\alpha}\}$ is bounded away from zero, contrary to the compactness of C_{ω} .

Conversely, suppose $\epsilon > 0$ and r < 1 is such that $|\varphi'(z)| \leq \epsilon$ whenever $|\varphi(z)| \geq r$. Suppose the sequence $\{f_n\}$ is bounded in $\operatorname{Lip}(\alpha)$ and converges to zero uniformly on U⁻. Then $f_n' \to 0$ uniformly on compact subsets of U. In particular, there exists a number N so that $n \geq N$ implies

$$||f_n||_{\infty} \leq \epsilon^{\alpha}$$
 and $\sup |f_n'(z)| < \epsilon^{\alpha}$ $(|z| \leq r)$.

By Theorem 1, there exists a constant K (which is independent of n) such that

$$||C_{\varphi}(f_n)||_{\alpha} \leq K\epsilon^{\alpha}.$$

Therefore, $||C_{\varphi}(f_n)||_{\alpha} \to 0$ and C_{φ} is compact on $\text{Lip}(\alpha)$. Finally, $\text{lip}(\alpha)$ is a closed subspace of $\text{Lip}(\alpha)$, so C_{φ} is also compact on $\text{lip}(\alpha)$, provided φ is in $\text{lip}(\alpha)$.

REMARK 1. Although we did not use the full strength of either of Theorems 1 or 2 to prove Corollary 1, we did use the full strength of both to prove Corollary 2.

REMARK 2. One can easily verify the following lemma.

LEMMA. The composition operator C_{φ} is compact on Lip(1) if and only if for each sequence $\{f_n\}$ in H^{∞} which is bounded and converges to zero uniformly on compact subsets of U we have $\lim_{n\to\infty} ||f_n(\varphi)\varphi'||_{\infty} = 0.$

Using this lemma, we obtain the following alternate proof of Corollary 2 for the special case $\alpha = 1$.

A simple estimate proves that if φ is in Lip(1), $||\varphi||_{\infty} \leq 1$, and for each $\epsilon > 0$ there exists an r < 1 such that $|\varphi'(z)| < \epsilon$ whenever $|\varphi(z)| > r$, then C_{φ} is compact on Lip(1). To prove the converse, suppose for $n = 1, 2, 3, \cdots$, there exists a point z_n in U such that $|\varphi'(z_n)| \geq \epsilon$ and $|1 - \varphi(z_n)| < 1/n$. Let $f_n(z) = [z + 1 - \varphi(z_n)]^n$; then the sequence $\{f_n\}$ is bounded in H^{∞} and converges to zero uniformly on compact subsets of U. However,

$$||f_n(\varphi)\varphi'||_{\infty} \geq |f_n(\varphi(z_n)\varphi'(z_n)| \geq \epsilon, n = 1, 2, 3, \cdots$$

so C_{∞} is not compact on Lip(1).

REFERENCES

1. P. Duren, The Theory of H^p Spaces, Academic Press, New York, 1970.

2. P. Duren, B. Romberg, and A. Shields, *Linear Functionals on H^p spaces with* 0 , J. Reine Angew. Math.**238**(1969) 32-60.

3. R. Roan, Composition Operators on the Space of Functions with H^p Derivative, Houston J. Math. 4 (1978) 423-438.

4. J. Robertson, A Local Mean Value Theorem for C, Edinburgh Math. Soc. Proc. 16 (1968–1969) 329–331.

5. L. A Rubel, A. L. Shields, B. A. Taylor, Mergelyan Sets and the Modulus of Conttinuity of Analytic Functions, J. of Approx. Theory 15 (1975), 23-40.

6. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506