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Abstract. For α ∈ R, let Dα denote the scale of Hilbert spaces consisting of Dirichlet series

f(s) =
∑

∞

n=1
ann

−s that satisfy
∑

∞

n=1
|an|2/[d(n)]α < ∞. The Gordon–Hedenmalm Theorem on

composition operators for H 2 = D0 is extended to the Bergman case α > 0. These composition

operators are generated by functions of the form Φ(s) = c0s+ϕ(s), where c0 is a nonnegative integer

and ϕ(s) is a Dirichlet series with certain convergence and mapping properties. For the operators

with c0 = 0 a new phenomenon is discovered: If 0 < α < 1, the space Dα is mapped by the

composition operator into a smaller space in the same scale. When α > 1, the space Dα is mapped

into a larger space in the same scale. Moreover, a partial description of the composition operators

on the Dirichlet–Bergman spaces A p for 1 ≤ p < ∞ are obtained, in addition to new partial results

for composition operators on the Dirichlet–Hardy spaces H p when p is an odd integer.

1. Introduction

A theorem of Gordon and Hedenmalm [8] describes the composition operators on
the Hardy space H 2 of ordinary Dirichlet series with square summable coefficients.
In the present work, we consider a scale of weighted Hilbert spaces of Dirichlet series
that are analogues to the weighted Bergman spaces in the unit disc, and extend the
Gordon–Hedenmalm Theorem to these spaces. To obtain this result, we will rely in
part on the tools from [8], but also on new techniques where we use certain averages
of twisted Dirichlet series and twisted composition operators.

We let Cθ denote the half-plane of complex numbers s = σ+ it with σ > θ. The
Dirichlet series in H 2 represent analytic functions in C1/2. A slight strengthening
of the Gordon–Hedenmalm Theorem [20] states that Φ: C1/2 → C1/2 generates a
composition operator on H 2 if and only if Φ is a member of the following class:

Definition. The Gordon–Hedenmalm class, denoted G , is the set of functions
Φ: C1/2 → C1/2 of the form

(1) Φ(s) = c0s+
∞
∑

n=1

cnn
−s = c0s+ ϕ(s),

where c0 is a nonnegative integer called the characteristic of Φ. The Dirichlet series
ϕ converges uniformly in Cε (ε > 0) and has the following mapping properties:

(a) If c0 = 0, then ϕ(C0) ⊂ C1/2.
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(b) If c0 ≥ 1, then either ϕ ≡ 0 or ϕ(C0) ⊂ C0.

It is important to notice that even though Φ ∈ G is a mapping from C1/2 to
itself, Φ is always defined on all of C0. By the mapping properties of Φ ∈ G , we
mean both the fact that Φ(C1/2) ⊂ C1/2 and condition (a) or (b) above, depending
on the characteristic.

Now, let d(n) denote the number of divisors of the integer n. For real numbers
α, we consider the following scale of Hilbert spaces of Dirichlet series:

(2) Dα =







f(s) =

∞
∑

n=1

ann
−s : ‖f‖Dα =

(

∞
∑

n=1

|an|2
[d(n)]α

)
1

2

<∞







.

The Hardy space H 2 is the case α = 0. We will let A 2 denote the case α = 1,
which is a Dirichlet series analogue to the classical unweighted Bergman space of
the unit disc, A2(D). Since d(n) = O(nε) for every ε > 0, see [9, Thm. 315], the
Cauchy–Schwarz inequality implies that every f ∈ Dα is analytic in C1/2. Our main
result is:

Theorem 1. Let α > 0. A function Φ: C1/2 → C1/2 generates a composition

operator CΦ : Dα → Dβ, where

β =

{

2α − 1 if c0 = 0,

α if c0 ≥ 1,

if and only if Φ ∈ G . Moreover, if c0 ≥ 1 the operator is a contraction.

The fact that β = α is optimal when c0 ≥ 1 is obvious, by considering the
composition operator generated by Φ(s) = c0s, and the Dirichlet series

f(s) =

∞
∑

k=0

(k + 1)
α−1

2 2−ks.

Whether β = 2α − 1 is optimal when c0 = 0 is not clear. However, when 0 < α < 1
we note that Dα is mapped by CΦ into the smaller space Dβ. When α > 1, it is
mapped into the larger space Dβ. The only cases where 2α− 1 = α is when α = 0 or
α = 1, which corresponds to the spaces H 2 and A 2, respectively.

Remark. The scale of spaces Dα is a Dirichlet series version of the classical
Dirichlet scale of Hilbert spaces in the unit disc, Dα(D), as defined in (8). Every
analytic function ψ : D → D generates a composition operator on Dα(D) when
α > 0, see [26, Ch. 11]. The functions Φ ∈ G with characteristic 0 do not fix +∞,
and are thus analogues to the functions ψ which do not fix the origin. Interestingly,
the phenomenon discovered above does not appear in the classical situation, where
such composition operators generally map Dα(D) to Dα(D).

The remainder of this paper is organized as follows:

• Section 2 includes some preliminary results pertaining to Dα and on the func-
tions in the class G .

• Section 3 is devoted to the proof of Theorem 1.
• Section 4 consists of a partial description of the composition operators on

A p, for 1 ≤ p <∞, in addition to new partial results regarding composition
operators on H p, when p is an odd integer.
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We will use the notation f(x) ≪ g(x) when there is some constant C > 0 such
that |f(x)| ≤ C|g(x)|. If both f(x) ≪ g(x) and g(x) ≪ f(x) hold, we will write
f(x) ≍ g(x).

2. Preliminaries

2.1. One of the most important tools in the study of function spaces of Dirichlet
series is the Bohr lift, which was introduced by Bohr [6]. We will lift the Dirichlet
series

(3) f(s) =

∞
∑

n=1

ann
−s,

to a function on the polydisc D
∞ = {z = (z1, z2, z3, . . .) : |zj | < 1}. Writing n as a

product of its prime factors,

(4) n =
∏

j

p
κj
j ,

we associate n to the finite multi-index κ(n) = (κ1, κ2, κ3, . . .). We will sometimes
write n = pκ with (4) in mind. The Bohr lift of f , denoted by Bf , is the power series

(Bf)(z) =
∞
∑

n=1

anz
κ(n),

in view of (3) and (4). The polytorus T
∞ is the distinguished boundary of D∞. As

shown in [10], the space H 2 is identified with the Hardy space H2(T∞) under the
Bohr lift. A similar identification is obtained for the spaces H p by Bayart [4].

In the introduction, we claimed that A 2 is a natural Dirichlet series analogue to
the classical Bergman space in the unit disc, A2(D). To explain this, we let F be an
analytic function in D with Taylor expansion

(5) F (z) =

∞
∑

k=0

bkz
k,

and let m denote the normalized Lebesgue measure on D. A standard computation
shows that

(6) ‖F‖A2(D) =

(
ˆ

D

|F (w)|2 dm(w)

)
1

2

=

(

∞
∑

k=0

|bk|2
k + 1

)
1

2

.

In view of the Bohr lift, we let dν(z) = dm(z1)×dm(z2)×dm(z3)×· · · . By applying
(6) in each variable, we compute

(7) ‖f‖A 2 =

(
ˆ

D∞

|(Bf)(z)|2 dν(z)
)

1

2

=

(

∞
∑

n=1

|an|2
d(n)

)
1

2

,

since d(n) = (κ1 + 1)(κ2 + 1)(κ3 + 1) · · · when n = pκ. Since its norm is defined
through the Bohr lift, we refer to A 2 as a Bohr–Bergman space.

We will consider the Kronecker flow of the point z = (z1, z2, z3, . . .) ∈ C
∞, which

is given by

Tt(z) =
(

2−itz1, 3
−itz2, 5

−itz3, . . .
)

, t ∈ R.

The Kronecker flow is simply a rotation in each variable, and defines an ergodic flow
on T

∞ by Kronecker’s Theorem [9, Ch. 13].
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2.2. Let us now turn to the spaces Dα (α > 0) as defined in (2). They are Dirich-
let series analogues to the spaces Dα(D). The latter space contains the functions F
that are analytic in D and satisfy ‖F‖Dα(D) <∞, where

(8) ‖F‖Dα(D) =

(
ˆ

D

|F (w)|2α
(

1− |w|2
)α−1

dm(w)

)
1

2

≍
(

∞
∑

k=1

|ak|2
(k + 1)α

)
1

2

.

In D, we can use equivalent norms and get the same set of functions. However, since
we will use an infinite number of variables, exact equality is needed. Thus, if we
were to define a space of Dirichlet series using the infinite product of the Möbius
invariant measure α (1− |w|2)α−1

dm(w) in a similar manner to the definition of (7),
this would not be the space Dα.

Lemma 2. Let α > 0. There exists a rotationally invariant probability measure

να on D
∞ such that for f of the form (3) we have

ˆ

D∞

|(Bf)(z)|2 dνα(z) =
∞
∑

n=1

|an|2
[d(n)]α

.

Moreover, for any probability measure λ on R we have

(9) ‖f‖2Dα
=

ˆ

D∞

ˆ

R

|(Bf)(Ttχ)|2 dλ(t)dνα(χ).

Proof. For F of the form (5) we want to find a radial probability measure mα

such that

(10)

ˆ

D

|F (w)|2 dmα(w) =

∞
∑

k=0

|bk|2
(k + 1)α

.

To this end, we introduce

dmα(w) =

(

log
1

|w|2
)α−1

dm(w)

Γ(α)
,

and define dνα(z) = dmα(z1)×dmα(z2)×dmα(z3)×· · · . We then use dνα(z) to define
Dα in a similar way to (7). The measure dνα(z) is clearly rotationally invariant. Hence
(9) follows by Fubini’s theorem and the fact that the Kronecker flow is a rotation in
each variable. �

2.3. Let us consider the following multiplier problem: Let M (Dα) denote the
collection of analytic functions m : C1/2 → C so that mf ∈ Dα for every f ∈ Dα. In
[10], the space H∞(D∞) is shown to be isometrically isomorphic to the space

H
∞ =

{

f(s) =

∞
∑

n=1

ann
−s : ‖f‖∞ = sup

σ>0
|f(s)| <∞

}

,

through the Bohr lift. In particular, this easily implies that H ∞ ⊆ M (Dα), and that
‖m‖ ≤ ‖m‖∞, where the former denotes the norm of m as a multiplier. The following
result has previously been observed by Olsen [18], but we include a short proof. A
similar result is also proved in [1, Thm. 11.21]. A general result on multipliers of
weighted Hilbert spaces of Dirichlet series with multiplicative weights was recently
obtained by Stetler [23].

Theorem 3. Let α > 0. The multiplier algebra M (Dα) is H ∞.
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Proof. We have already observed that H ∞ ⊆ M (Dα), and that ‖m‖ ≤ ‖m‖∞.
For the other inclusion, we observe that since 1 ∈ Dα we have m ∈ Dα, and hence m
is a Dirichlet series. In fact, mj is in Dα for every j ∈ N, and ‖mj‖Dα ≤ ‖m‖j . This
implies that

‖m‖∞ = sup
z∈D∞

|(Bm)(z)| = lim
j→∞

(
ˆ

D∞

|(Bm)(z)|2j dνα(z)
)

1

2j

≤ ‖m‖,

which concludes the proof. �

Curiously, even though we initially only require multipliers to be defined in C1/2,
they are automatically defined in the larger half-plane C0. This phenomenon is
typical for function spaces of Dirichlet series, and it also appears in the definition of
the Gordon–Hedenmalm class G . Furthermore, the phenomenon indicates that we
need to obtain properties of Dα in both half-planes C0 and C1/2.

2.4. First, for χ = (χ1, χ2, χ3, . . .) ∈ C
∞ we define a completely multiplicative

function by χ(n) = χκ, when n = pκ. For f of the form (3), we consider the twisted

Dirichlet series

(11) fχ(s) =

∞
∑

n=1

anχ(n)n
−s.

If χ ∈ T
∞, then fχ is just a vertical limit function of f , as considered in [8, 10]. We

will also consider the shifted Dirichlet series fδ(s) = f(s + δ). If a Dirichlet series
is both twisted and shifted, we will write fδ,χ. Observe that for those χ ∈ C

∞ and
s = σ + it where the series (11) converges we have

(12) fχ(s) = (Bfσ)(Ttχ).

In particular, (12) is true for s ∈ C1/2 and χ ∈ D∞. This follows by the Cauchy–

Schwarz inequality and the fact that |χ(n)| ≤ 1, since χ ∈ D∞. To further extend
the validity of (12), we will use the following result:

Lemma. (Rademacher–Menchov) Let (X, µ) be a probability space and suppose

that {en}∞n=1 is an orthonormal sequence in L2(X). If
∑∞

n=1 |cn|2(logn)2 < ∞, then

the series
∞
∑

n=1

cnen(x)

converges for µ-almost every x ∈ X.

Proof. A proof may be found in [17, p. 42] �

Lemma 4. Let f ∈ Dα. The Dirichlet series fχ as defined by (11) converges in

C0 for almost every χ ∈ D
∞, with respect to να.

Proof. We shall use the the Rademacher–Menchov Lemma on L2(D∞, να). Hence
we let

en(χ) = [d(n)]α/2χ(n) and cn = an[d(n)]
−α/2n−s,

for f of the form (3). When σ > 0, the Rademacher–Menchov Lemma implies that
fχ(s) converges for almost every χ ∈ D

∞. It is well known that if a Dirichlet series
converges in a point s0 = σ0 + it0, then it also converges for every s with σ > σ0.
In particular, we may take s = 1/j and conclude that for almost every χ ∈ D

∞, the
series fχ converges in C1/j . Clearly this implies that fχ converges in C0 for almost
every χ ∈ D

∞, since the union of sets of zero measure has zero measure. �
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Thus we conclude that (12) is true for almost every χ ∈ D
∞ and every s ∈ C0.

Now, we would like a version of (9) for fχ(s), but in general we do not know anything
about the existence of fχ(it). However, in light of Lemma 4 we may combine (9) with
(12) and use Fubini’s theorem to obtain the formula

(13) ‖f‖Dα = lim
σ→0+

(
ˆ

D∞

ˆ

R

|fχ(σ + it)|2 dλ(t) dνα(χ)
)

1

2

,

which will be sufficient for our purposes.

2.5. Let us turn to the half-plane C1/2. Any function in Dα can be expressed
as a limit of Dirichlet polynomials, with convergence in the norm of Dα. Now, let
τ : C1/2 → D be the conformal mapping defined by

(14) τ(s) =
s− 3/2

s+ 1/2
.

For β > 0 we let Dβ,i(C1/2) denote the space defined by the pull-back of τ from
Dβ(D). This means that Dβ,i(C1/2) consists of functions f that are analytic in C1/2

and finite with respect to the norm

‖f‖Dβ,i(C1/2) = ‖f ◦ τ−1‖Dβ(D) = 4ββ

ˆ

C1/2

|f(s)|2
(

σ − 1

2

)β−1
dm(s)

|s+ 1/2|2β+2
.

We shall need the following embedding result:

Lemma 5. Dα is continuously embedded into Dβ,i(C1/2), where β = 2α − 1.

Proof. The embedding can be deduced from the corresponding local embedding
(see Theorem 1 and Example 4 in [18]) by straightforward estimates. �

Remark. The reason behind the relationship β = 2α− 1 is the classical asymp-
totic formula

∑

n≤x

[d(n)]α ≍ x(log x)β ,

which is due to Ramanujan [21] and Wilson [25]. The embedding is optimal, in the
sense that we cannot replace β = 2α − 1 with any smaller value [18].

2.6. We shall now consider twisted composition operators by extending (11) to
functions Φ ∈ G by defining

Φχ(s) = c0s+ ϕχ(s).

We will also write Φχ,δ(s) = Φχ(s + δ). We expect that the functions Φχ behave
similarly to Φ, and the following result shows that the mapping and convergence
properties of Φ are retained in Φχ. This is crucial, as we need to replace the “limit
measure” used in [8] with certain mean values of the composition operators generated
by Φχ.

Lemma 6. Suppose that Φ ∈ G . Then Φχ ∈ G for any χ ∈ D∞.

Proof. As explained in [8] (see Proposition 4.1), if χ ∈ T
∞ the function ϕχ is a

normal limit of vertical translates of ϕ. Since vertical translation does not change
the mapping properties of ϕ, neither does the application of χ ∈ T

∞ to Φ. To extend
this into D

∞, we let χ ∈ T
∞ and consider

χ(w) = (w, χ2, χ3, χ4, . . .).
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We fix s ∈ C0 and apply the maximum modulus principle on D to the one-variable
analytic function F (w) = exp

(

−ϕχ(w)(s)
)

. This implies that ϕχ(w) maps C0 to Cθ

for any w ∈ D. We employ the same procedure to every coordinate of χ.
By a theorem of Bohr [5], the Dirichlet series ϕ converges uniformly in any

closed half-plane where it can be represented as a bounded analytic function. Since
vertical translation of ϕ does not change boundedness or analyticity, it is clear that
ϕχ converges uniformly where ϕ converges uniformly, when χ ∈ T

∞. By a similar
maximum modulus argument as above with G(w) = ϕχ(w)(s), this can be extended
into D

∞. �

The following result is a version of [8, Prop. 4.3] for Dirichlet polynomials. Our
version plays a prominent role in the proof of the sufficiency part of Theorem 1,
whereas in [8] the corresponding result is only used in the proof of the necessity part.

Lemma 7. Suppose that Φ ∈ G . For every Dirichlet polynomial f , every χ ∈
D∞ and every s ∈ C0, we have

(15) (f ◦ Φ)χ (s) = (fχc0 ◦ Φχ) (s)
where χc0 = (χc01 , χ

c0
2 , χ

c0
3 , . . .).

Proof. A formal computation extracted from [8, Sec. 4] shows that both sides
of (15) are Dirichlet series, and that they are equal. By the assumptions on f and
Φ, it is evident that both sides converge absolutely in (at least) C1, so (15) is valid
there. The right hand side represents a bounded analytic function in C0, so by Bohr’s
theorem (see the proof of Lemma 6) and the identity principle this extends to C0. �

Remark. It is possible to extend Proposition 4.3 in [8] to Dα, either by a vari-
ation of the argument given above or by the argument used in [8]. In the latter
case, we appeal to the maximum modulus principle when passing from χ ∈ T

∞ to
χ ∈ D∞.

3. Proof of Theorem 1

The proof of Theorem 1 can essentially be split into three distinct parts. The first
two parts are easy to obtain from [8], while our new techniques will be needed in the
third. Note that these new techniques can also be applied to prove the corresponding
part of the Gordon–Hedenmalm Theorem for H 2.

3.1. The first part is the so-called “arithmetical condition”, which demands that
Φ is of the form (1) to ensure that f ◦ Φ is a somewhere convergent Dirichlet series.
The proof for Dα translates directly from the work of Gordon and Hedenmalm on
H 2, see [8, Thm. A].

3.2. The second part is the necessity of the mapping and convergence properties
of Φ. The argument given for H 2 in [8] is quite general, and applies almost directly
to Dα. We need only observe that Lemma 4 still holds with D

∞ replaced by T
∞ and

να replaced by the Haar measure µ of T∞. The argument given in [8] will then apply
line for line provided we can prove the following lemma:

Lemma 8. There is a function f ∈ Dα with the following properties:

(i) For almost every χ ∈ T
∞, fχ converges in C0 and cannot be analytically

continued to any larger domain.

(ii) For at least one χ ∈ T
∞, fχ converges in C1/2 and cannot be analytically

continued to any larger domain.
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Proof. The function in question is

f(s) =
∑

p

c(p)p−s, c(x) =
1√

x log x
,

where the sum is taken over the prime numbers. As verified in [4, Lem. 9], f satisfies
the required properties. It is also evident that f ∈ Dα, since d(p) = 2. �

Moreover, the strengthening of the necessity argument due to Queffélec and Seip
also applies to Dα, see Section 3 and in particular Theorem 3.1 in [20].

3.3. The third and final part of the proof is the sufficiency of the mapping
properties. This is where the “limit measure procedure” of [8] does not apply, and we
have to find new techniques. Curiously, the cases c0 = 0 and c0 ≥ 1 are handled quite
differently: The first case is done by integration over D and T

∞, and the second case
is done by integration over T and D

∞.
We will need several versions of Littlewood’s subordination principle, which in its

most basic form can be stated as follows: If ψ : D → D is analytic with ψ(0) = 0,
then

ˆ 2π

0

|F (ψ(reiθ))|p dθ ≤
ˆ 2π

0

|F (reiθ)|p dθ

for every F that is analytic in D, every 0 < p < ∞ and every 0 < r < 1. There are
various versions of this principle for the various function spaces in D, and we refer
generally to [26, Ch. 11].

Proof of sufficiency when c0 = 0. Let Φ ∈ G with c0 = 0, and consider the map
τ : C1/2 → D as defined in (14). We will use the following version of Littlewood’s
principle: Let ψ : D → C1/2 be analytic. For every β > 0, the function ψ generates
a composition operator Cψ from Dβ,i(C1/2) to Dβ(D), and

‖Cψ‖ ≤
(

1 + |τ(ψ(0))|
1− |τ(ψ(0))|

)(1+β)/2

.

Fix some s ∈ C0 and some χ ∈ T
∞, and define ψχ : D → C1/2 by

(16) ψχ(w) = Φwχ(s) =

∞
∑

n=1

cnw
Ω(n)χ(n)n−s,

in view of (1). Here Ω(n) denotes the number of prime factors of the integer n. In
(16), we have introduced the notation wχ = (wχ1, wχ2, wχ3, . . .). Now, let f be a
Dirichlet polynomial, and since f ◦Φ is a Dirichlet series by Lemma 7, we may write

f ◦ Φ(s) =
∞
∑

n=1

bnn
−s.

By appealing again to Lemma 7, we compute

(17) f ◦ ψχ(w) = f ◦ Φwχ(s) = (f ◦ Φ)wχ (s) =
∞
∑

n=1

bnw
Ω(n)χ(n)n−s.

Clearly ψχ(0) = c1 for every s ∈ C0 and every χ ∈ T
∞, and hence Littlewood’s

principle implies that

(18) ‖f ◦ ψ‖2Dβ(D) ≤
(

1 + |τ(c1)|
1− |τ(c1)|

)1+β

‖f‖2Dβ,i(C1/2)
.
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We observe that there is no χ on the right hand side of (18). We therefore integrate
over T

∞ with respect to the Haar measure dµ(χ) on both sides. Clearly, the right
hand side does not change. The left hand side of (18) may be computed using the
representation (17) with Fubini’s theorem and (8):

ˆ

T∞

ˆ

D

∣

∣

∣

∣

∣

∞
∑

n=1

bnw
Ω(n)χ(n)n−s

∣

∣

∣

∣

∣

2

β(1− |w|2)β−1dm(w)dµ(χ) ≍
∞
∑

n=1

|bn|2
[1 + Ω(n)]β

n−2σ.

There is no σ on the right hand side of (18), and hence we may let σ → 0+ on the
left hand side to obtain

(19)
∞
∑

n=1

|bn|2
[1 + Ω(n)]β

≤
(

1 + |τ(c1)|
1− |τ(c1)|

)1+β

‖f‖2Dβ,i(C1/2)
.

The proof is completed by using the fact that 1 + Ω(n) ≤ d(n) on the left hand side
of (19) and Lemma 5 on the right hand side of (19). �

Remark. By being more precise, it is possible to obtain τ(c1) = 0 in (19).
However, this would not imply that CΦ maps Dα contractively to Dβ, since a constant
appears when using Lemma 5. This is as expected, since the point at infinity is not
fixed by Φ. Curiously, since 1+Ω(n) = d(n) only when n = pk for a prime p, we still
have a certain contractivity. In fact, what we have proved is that CΦ maps Dα into
Hβ, the Hilbert space of Dirichlet series of the form (3) that satisfy

∞
∑

n=1

|an|2
[1 + Ω(n)]β

<∞.

Proof of sufficiency and contractivity when c0 ≥ 1. Let Φ ∈ G with c0 ≥ 1 and
let ξ > 0 be large, but arbitrary. We will use the following maps from C0 to D:

τ1(s) =
s− c0ξ

s+ c0ξ
and τ2(s) =

s− ξ

s+ ξ
.

Let χ ∈ D
∞ and 0 < σ ≤ 1 be fixed, and consider ψ : D → D defined by

ψ(w) =
(

τ1 ◦ Φχ,σ ◦ τ−1
2

)

(w).

For every χ ∈ D
∞ and every 0 < σ ≤ 1, the function ψ is an analytic self-map of D,

by Lemma 6. Littlewood’s subordination principle implies that for every F ∈ H2(D)
we have

(20) ‖F ◦ ψ‖2H2(D) ≤
1 + |

(

τ1 ◦ Φχ,σ ◦ τ−1
2

)

(0)|
1− |

(

τ1 ◦ Φχ,σ ◦ τ−1
2

)

(0)|‖F‖
2
H2(D).

A direct computation verifies that if Φχ,σ(s) = c0(s+ σ) + ϕχ(s+ σ), we have

(

τ1 ◦ Φχ,σ ◦ τ−1
2

)

(0) =
c0σ + ϕχ(ξ + σ)

c0(2ξ + σ) + ϕχ(ξ + σ)
.

Clearly ϕχ(ξ + σ) → c1 as ξ → ∞, and this is uniform in χ and σ. Thus, for every
ε > 0 we may find ξ large, but independent of χ and σ, so that

1 + |
(

τ1 ◦ Φχ,σ ◦ τ−1
2

)

(0)|
1− |

(

τ1 ◦ Φχ,σ ◦ τ−1
2

)

(0)| ≤ 1 + ε.

Now, let f be a Dirichlet polynomial, and define

F (w) =
(

fχc0 ◦ τ−1
1

)

(w).
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Since f is entire and uniformly bounded in C0, it is clear that F ∈ H∞(D), and
hence in H2(D). Using Lemma 7 we obtain

(F ◦ ψ) (w) =
(

fχc0 ◦ Φχ,σ ◦ τ−1
2

)

(w) =
(

(f ◦ Φ)χ,σ ◦ τ−1
2

)

(w).

The pull-back of the normalized Lebesgue measure on T with respect to τ1 and τ2
produces the following probability measures on R:

dλ1(t) =
c0ξ

π

1

t2 + (c0ξ)2
and dλ2(t) =

ξ

π

1

t2 + ξ2
.

Inserting everything into (20) we obtain
ˆ

R

∣

∣

∣
(f ◦ Φ)χ (σ + it)

∣

∣

∣

2

dλ1(t) ≤ (1 + ε)

ˆ

R

|fχc0 (it)|2 dλ2(t).

By (13), and by keeping in mind that f is entire and uniformly bounded on iR, we
may integrate over D

∞ with respect to dνα(χ) and let σ → 0, to obtain

(21) ‖f ◦ Φ‖2Dα
≤ (1 + ε) ‖fχc0‖2Dα

≤ (1 + ε) ‖f‖2
Dα
.

The final inequality in (21) follows from the fact that d(nc0) ≥ d(n). Since ε > 0
is arbitrary and independent of f , the composition operator CΦ is a contraction on
Dα. �

4. Composition operators on A p, H p and Aα

4.1. Following the description of the composition operators on H 2 [8], Bayart
[4] extended the Gordon–Hedenmalm Theorem to H p, with one exception: The
sufficiency of the case (a) is proved only when p is an even integer. Hence the
complete description of composition operators on H p remains unsolved.

In view of this, and our results for Dα, it is natural to investigate the composition
operators on the Bohr–Bergman spaces A p, which we for 1 ≤ p <∞ define as

A
p =

{

f(s) =
∞
∑

n=1

ann
−s : ‖f‖A p =

(
ˆ

D∞

|(Bf)(z)|p dν(z)
)

1

p

<∞
}

.

It is convenient to let A ∞ = H ∞. Basic properties of the spaces A p have been
studied in the first named author’s thesis [1, Ch. 11] and in the work of the first
named author and Lefèvre [3, Sec. 3].

In particular, we mention that Lemma 4 and hence (13) extend to these spaces,
mutatis mutandis. Moreover, Lemma 8 also holds for A p by a similar application
of Khintchin’s inequality for Steinhaus variables as used for H p in [4]. However,
Lemma 5 relies heavily on Hilbert space techniques [18], and the situation for A p

(and for H p) is not clear.
With the exception Lemma 5, our arguments apply almost line for line, and we

are able to extend Théorème 13.6 from [1] and obtain the following result:

Theorem 9. Let 1 ≤ p < ∞. Suppose that the function Φ: C1/2 → C1/2

defines a composition operator CΦ : A p → A p. Then Φ ∈ G . Moreover, if c0 ≥ 1
this condition is sufficient and the composition operator is a contraction. If c0 = 0
and p = 2k the condition is sufficient.

Proof. The proof of the “arithmetical condition” and the proof of the necessity
again follows by the argument in [8]. Our proof of the sufficiency when c0 ≥ 1 for
Dα applies line for line, provided we are able to prove the inequality
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ˆ

D∞

|(Bf)(χc0)|p dν(χ) ≤
ˆ

D∞

|(Bf)(χ)|p dν(χ).

This inequality follows immediately from the fact that the composition operator
F (z) 7→ F (zc0) is contractive on Ap(D) when c0 ≥ 1. We apply this in each variable
with the integral version of Minkowski’s inequality.

To prove the sufficiency c0 = 0 and p = 2k, we first observe that for p = 2, this
is just Theorem 1 with α = 1, since D1 = A 2. This extends immediately to p = 2k,
by the simple fact that for Dirichlet polynomials f we have

‖f‖p
A p = ‖f p‖2

A 2 ,

and since clearly (f ◦ Φ)p(s) = (f p ◦ Φ)(s) for every s ∈ C0 and Φ ∈ G . �

The result of Theorem 9 mirrors that of Bayart for H p, since we are not able to
prove sufficiency when c0 = 0 and p 6= 2k. This is not at all surprising, and seems
to be due to the fact that we lack local embeddings of A p into Bergman spaces in
C1/2 when p 6= 2k, a similar situation to that for H p. For more on the embedding
problem, we refer to [22].

4.2. Let us now turn to the spaces H p, as introduced in [4]. We may compute
the H p norm of a Dirichlet polynomial f in two different ways:

(22) ‖f‖H p = lim
T→∞

1

T

(
ˆ T

0

|f(it)|p dt
)

1

p

=

(
ˆ

T∞

|Bf(z)|p dµ(z)
)

1

p

.

Here, dµ again denotes the normalized Haar measure of T∞. The validity of formula
(22) follows from the ergodicity of the Kronecker flow on T

∞. The Kronecker flow
is clearly not ergodic on D

∞ with respect to dν(z), so we cannot expect to have a
formula of the type (22) for A p.

Since the situation for composition operators with characteristic c0 = 0 of H p is
not clear, we seek a partial result. We want to find a space that is mapped into H p

by CΦ and a space that H p is mapped into by CΦ, when Φ ∈ G with c0 = 0.
We let K = H 2 ⊙ H 2 denote Helson’s space. We refer to [11] and [13] for the

precise definition of this weak product space, but recall that

‖f‖K = inf
J<∞

{

J
∑

j=1

‖gj‖H 2‖hj‖H 2 : f(s) =
J
∑

j=1

gj(s)hj(s)

}

.

By the Cauchy–Schwarz inequality, we have ‖f‖H 1 ≤ ‖f‖K , and hence K ⊆ H 1.
Nehari’s Theorem [16] states that we have H1(D) = H2(D)⊙H2(D). It was shown
by Ortega-Cerdà and Seip in [19] that the corresponding result is false for K and
H 1. Hence the following result does not imply that CΦ maps H 1 to H 1.

Theorem 10. Let Φ ∈ G with c0 = 0. Then CΦ : K → H 1 and CΦ : H 1 → A 2.

Proof. For the first statement, the argument of [8] applies line for line, provided
we can show that K is locally embedded in H1(C1/2): For τ ∈ R and a Dirichlet
polynomial f , we have

(23)

ˆ τ+1

τ

∣

∣

∣

∣

f

(

1

2
+ it

)
∣

∣

∣

∣

dt ≤ C‖f‖K .

The embedding (23) follows immediately from the local embedding of H 2 into
H2(C1/2) [10] and the Cauchy–Schwarz inequality. For the second statement we
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shall use Helson’s inequality [12]: For f of the form (3), we have

(24)

(

∞
∑

n=1

|an|2
d(n)

)
1

2

≤ ‖f‖H 1 .

Clearly, since A 2 = D1, this means that ‖f‖A 2 ≤ ‖f‖H 1, and hence the second
statement follows from Theorem 1. �

Remark. The space K is interesting in its own right: Its dual is isometrically
isomorphic to the space of all bounded multiplicative Hankel forms on H 2. We refer
to [11].

Helson’s inequality (24) is the p = 1 case from the family of inequalities

‖f‖A 2p ≤ ‖f‖H p.

These inequalities are obtained in [3] by an iterative process similar to the one used
in [12] from the following result: For 1 ≤ p <∞ and F ∈ H(D),

(25) ‖F‖A2p =

(
ˆ

D

|F (w)|2p dm(w)

)
1

2p

≤
(
ˆ 2π

0

∣

∣F
(

eiθ
)
∣

∣

p dθ

2π

)

1

p

= ‖f‖Hp(D).

The inequality (25) has been rediscovered several times, see [24] and [14], and
dates at least back to Carleman [7]. It is essential that the measures are normalized
and the constant is 1 for the iterative procedure to work.

Now, we define H 2p ⊙ H 2p for p = 1, 3, 5, 7, . . . in a similar manner as above.
Clearly, the space H 2p⊙H 2p is contained in H p and H 2p⊙H 2p is moreover locally
embedded in Hp(C1/2). Arguing as above, but replacing Theorem 1 with Theorem 9
for p = 2k in the second statement, we obtain the following result:

Corollary 11. Let Φ ∈ G with c0 = 0 and suppose that p is an odd integer.

Then CΦ : H 2p ⊙ H 2p → H p and CΦ : H p → A 2p.

4.3. This paper has been devoted to the study of Bohr–Bergman spaces of
Dirichlet series, that is spaces defined by a Bergman-type norm through the Bohr lift
to the polydisc D

∞.
As indicated by the fact that a formula similar to (22) is not possible for D∞, the

Bohr–Bergman spaces are not the only Bergman spaces of Dirichlet series. One could
also define limit Bergman-type norms in the half-plane C0, and take the closure of
Dirichlet polynomials with respect to such a norm.

The main example of such spaces are the Hilbert spaces introduced by McCarthy
[15], which we for α > 0 define as

Aα =







f(s) =
∞
∑

n=1

ann
−s : ‖f‖Aα =

(

∞
∑

n=1

|an|2
(1 + logn)α

)
1

2

<∞







.

By Theorem 1 and Example 1 of [18], we may prove a version of Lemma 5 for Aα,
but in this case β = α. It is clear that the integer n has at most logn/ log 2 prime
factors, and hence

Ω(n) + 1 ≤ log n

log 2
+ 1 ≤ 2(logn + 1).

Combining these observations with (19) we obtain the following result: If Φ ∈ G with
characteristic c0 = 0, then CΦ maps Aα to Aα, for every α > 0. Composition opera-
tors on Aα have already been studied in [1]. Combining this result with Théorème 9.1



Composition operators on Bohr–Bergman spaces of Dirichlet series 141

of [1] (or Theorem 1 in [2]) yields a complete description of composition operators
on Aα:

Theorem 12. Let α > 0. A function Φ: C1/2 → C1/2 defines a composition

operator CΦ : Aα → Aα if and only if Φ ∈ G .

The fact that our “polydisc point of view” argument applies to the “half-plane
point of view” should be viewed as a coincidence. In fact, by the irregularity of d(n)
it is clear that Aα 6⊆ Dβ and Dβ 6⊆ Aα for every α, β > 0.
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