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Functional analysis began a little more than 100 years ago

Questions had to do with interpreting differential operators

as linear transformations on vector spaces of functions

Sets of functions needed structure connected to the convergence

implicit in the limit processes of the operators

Concrete functional analysis developed with results on spaces

of integrable functions, with special classes of differential operators,

and sometimes used better behaved inverses of differential operators



The abstraction of these ideas led to:

Banach and Hilbert spaces

Bounded operators, unbounded closed operators, compact operators

Spectral theory as a generalization of Jordan form and diagonalizability

Multiplication operators as an extension of diagonalization of matrices

Concrete examples and development of theory interact:

Shift operators as an examples of asymmetric behavior possible

in operators on infinite dimensional spaces

Studying composition operators can be seen as extension of this process



The classical Banach spaces are spaces of functions on a set X : if ϕ is map

of X onto itself, we can imagine a composition operator with symbol ϕ,

Cϕf = f ◦ ϕ

for f in the Banach space.

This operator is formally linear:

(af + bg) ◦ ϕ = af ◦ ϕ + bg ◦ ϕ

But other properties, like “Is f ◦ ϕ in the space?” clearly depend on the

map ϕ and the Banach space of functions.



Several classical operators are composition operators. For example, we may

regard `p(N) as the space of functions of N into C that are pth power

integrable with respect to counting measure by thinking x in `p as the

function x(k) = xk. If ϕ : N → N is given by ϕ(k) = k + 1, then

(Cϕx)(k) = x(ϕ(k)) = x(k + 1) = xk+1, that is,

Cϕ : (x1, x2, x3, x4, · · ·) 7→ (x2, x3, x4, x5, · · ·)

so Cϕ is the “backward shift”.

In fact, backward shifts of all multiplicities can be represented as

composition operators.



Moreover, composition operators often come up in studying other operators.

For example, if we think of the operator of multiplication by z2,

(Mz2f )(z) = z2f (z)

it is easy to see that Mz2 commutes with multiplication by any bounded

function. Also, C−z commutes with Mz2:

(Mz2C−zf )(z) = Mz2f (−z) = z2f (−z)

and

(C−zMz2f )(z) = C−z(z
2f (z)) = (−z)2f (−z) = z2f (−z)

In fact, in some contexts, the set of operators that commute with Mz2

is the algebra generated by the multiplication operators and the

composition operator C−z.



Also, Forelli showed that all isometries of Hp(D), 1 < p < ∞, p 6= 2, are

weighted composition operators.

In these lectures, we will not consider absolutely arbitrary composition

operators; a more interesting theory can be developed by restricting our

attention to more specific cases.



Definition

Banach space of functions on set X is called a functional Banach space if

1. vector operations are the pointwise operations

2. f (x) = g(x) for all x in X implies f = g in the space

3. f (x) = f (y) for all f in the space implies x = y in X

4. x 7→ f (x) is a bounded linear functional for each x in X

We denote the linear functional in 4. by Kx, that is, for all f and x,

Kx(f ) = f (x)

and if the space is a Hilbert space, Kx is the function in the space with

〈f, Kx〉 = f (x)



Examples

(1) `p(N) is a functional Banach space, as above

(2) C([0, 1]) is a functional Banach space

(3) Lp([0, 1]) is not a functional Banach space because

f 7→ f (1/2)

is not a bounded linear functional on Lp([0, 1])

We will consider functional Banach spaces whose functions are analytic on

the underlying set X ;

this what we mean by “Banach space of analytic functions”



Examples (cont’d) Some Hilbert spaces of analytic functions:

(4) Hardy Hilbert space: X = D = {z ∈ C : |z| < 1}

H2(D) = {f analytic in D : f (z) =

∞∑
n=0

anz
n with ‖f‖2

H2 =
∑

|an|2 < ∞}

where for f and g in H2(D), we have 〈f, g〉 =
∑

anbn

(5) Bergman Hilbert space: X = D

A2(D) = {f analytic in D : ‖f‖2
A2 =

∫
D
|f (ζ)|2 dA(ζ)

π
< ∞}

where for f and g in A2(D), we have 〈f, g〉 =
∫

f (ζ)g(ζ) dA(ζ)/π

(6) Dirichlet space: X = D

D = {f analytic in D : ‖f‖2
D = ‖f‖2

H2 +

∫
D
|f ′(ζ)|2 dA(ζ)

π
< ∞}

(7) generalizations where X = BN



If H is a Hilbert space of complex-valued analytic functions on the domain

Ω in C or CN and ϕ is an analytic map of Ω into itself,

the composition operator Cϕ on H is the operator given by

(Cϕf ) (z) = f (ϕ(z)) for f in H

At least formally, this defines Cϕ as a linear transformation.

In this context, the study of composition operators was initiated about 40

years ago by Nordgren, Schwartz, Rosenthal, Caughran, Kamowitz, and

others.



If H is a Hilbert space of complex-valued analytic functions on the domain

Ω in C or CN and ϕ is an analytic map of Ω into itself,

the composition operator Cϕ on H is the operator given by

(Cϕf ) (z) = f (ϕ(z)) for f in H

At least formally, this defines Cϕ as a linear transformation.

Goal:

relate the properties of ϕ as a function with properties of Cϕ as an operator.



Today, we’ll mostly consider the Hardy Hilbert space, H2

H2 = {f =

∞∑
n=0

anz
n :

∞∑
n=0

|an|2 < ∞}

which is also described as

H2 = {f analytic in D : sup
0<r<1

∫
|f (reiθ)|2 dθ

2π
< ∞}

and for f in H2

‖f‖2 = sup
0<r<1

∫
|f (reiθ)|2 dθ

2π
=

∫
|f (eiθ)|2 dθ

2π
=

∑
|an|2



For H2, the Littlewood subordination theorem plus some easy calculations

for changes of variables induced by automorphisms of the disk imply that

Cϕ is bounded for all functions ϕ that are analytic and map D into itself

and the argument yields the following estimate of the norm for composition

operators on H2:

(
1

1− |ϕ(0)|2

)1
2

≤ ‖Cϕ‖ ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1
2

This is the sort of result we seek, connecting the properties of the operator

Cϕ with the analytic and geometric properties of ϕ.



When an operator theorist studies an operator for the first time, questions

are asked about the boundedness and compactness of the operator,

about norms,

spectra,

and adjoints.

While the whole story is not known, much progress has been made · · ·



When an operator theorist studies an operator for the first time, questions

are asked about the boundedness and compactness of the operator,

about norms,

spectra,

and adjoints.

While the whole story is not known, much progress has been made · · ·

and we expect the answers to be given in terms of analytic and geometric

properties of ϕ.



Very often, calculations with kernel functions give ways to connect the

analytic and geometric properties of ϕ with the operator properties of Cϕ.

For a point α in the disk D, the kernel function Kα is the function in

H2(D) such that for all f in H2(D), we have

〈f, Kα〉 = f (α)

f and Kα are in H2, so f (z) =
∑

anz
n and Kα(z) =

∑
bnz

n

for some coefficients. Thus, for each f in H2,∑
anα

n = f (α) = 〈f, Kα〉 =
∑

anbn

The only way this can be true is for bn = αn = αn and

Kα(z) =
∑

αnzn =
1

1− αz



For a point α in the disk D, because the kernel function Kα is a function in

H2(D), we have

‖Kα‖2 = 〈Kα, Kα〉 = Kα(α) =
1

1− αα
=

1

1− |α|2

These ideas show that H2(D) is functional Hilbert space and that

‖Kα‖ = (1− |α|2)−1/2

For each f in H2 and α in the disk,

〈f, C∗ϕ Kα〉 = 〈Cϕf, Kα〉 = 〈f ◦ ϕ, Kα〉 = f (ϕ(α)) = 〈f, Kϕ(α)〉

Since this is true for every f , we see C∗ϕ (Kα) = Kϕ(α)

Further exploitation of this line of thought shows that Cϕ is invertible if and

only if ϕ is an automorphism of the disk and in this case, C−1
ϕ = Cϕ−1



In addition to asking “When is Cϕ bounded?” operator theorists would

want to know “When is Cϕ compact?”

Because

• analytic functions take their maxima at the boundary

• compact operators should take most vectors to much smaller vectors

expect Cϕ compact implies ϕ(D) is far from the boundary in some sense.

If m({eiθ : |ϕ(eiθ)| = 1}) > 0, then Cϕ is not compact.

If ‖ϕ‖∞ < 1, then Cϕ is compact.



In H2 and similar spaces, as |α| → 1, then 1
‖Kα‖Kα → 0 weakly.

Cϕ is compact if and only if C∗ϕ is compact, and in this case, we must have∥∥∥∥C∗ϕ
(

1

‖Kα‖
Kα

)∥∥∥∥ =
‖Kϕ(α)‖
‖Kα‖

=

√
1− |α|2

1− |ϕ(α)|2

is going to zero.

Now if α → ζ non-tangentially with |ζ| = 1 and the angular derivative ϕ′(ζ)

exists, then the Julia-Caratheodory Theorem shows that 1−|α|2
1−|ϕ(α)|2 →

1
ϕ′(ζ)

In particular, Cϕ compact implies no angular derivative of ϕ is finite.



Theorem (1987, J.H. Shapiro)

Suppose ϕ is an analytic map of D into itself. For Cϕ acting on H2(D),

‖Cϕ‖2
e = lim sup

|w|→1−

Nϕ(w)

− log |w|

where Nϕ is the Nevanlinna counting function.

Corollary

Cϕ is compact on H2(D) if and only if lim sup
|w|→1−

Nϕ(w)

− log |w|
= 0

In some spaces larger than the Hardy Hilbert space, like the Bergman space,

Cϕ is compact if and only if ϕ has no finite angular derivatives



Caughran and Schwartz (1975) showed that if Cϕ is compact,

then ϕ has a fixed point in D

and found spectrum of Cϕ in terms of data at the fixed point.

This was the first of many results that show how the behavior of Cϕ

depends on the fixed points of ϕ. Digress to talk about fixed points.

If ϕ is a continuous map of D into D, then ϕ must have a fixed point in D.

Only assume ϕ is analytic on D, open disk!

Definition

Suppose ϕ is an analytic map of D into itself.

If |b| < 1, we say b is a fixed point of ϕ if ϕ(b) = b.

If |b| = 1, we say b is a fixed point of ϕ if limr→1− ϕ(rb) = b.



Julia-Caratheordory Theorem implies

If b is a fixed point of ϕ with |b| = 1, then limr→1− ϕ′(rb) exists

(call it ϕ′(b)) and 0 < ϕ′(b) ≤ ∞.

Denjoy-Wolff Theorem (1926)

If ϕ is an analytic map of D into itself, not the identity map,

there is a unique fixed point, a, of ϕ in D such that |ϕ′(a)| ≤ 1.

For ϕ not an elliptic automorphism of D, for each z in D, the sequence

ϕ(z), ϕ2(z) = ϕ(ϕ(z)), ϕ3(z) = ϕ(ϕ2(z)), ϕ4(z) = ϕ(ϕ3(z)), · · ·

converges to a and the convergence is uniform on compact subsets of D.

This distinguished fixed point will be called the Denjoy-Wolff point of ϕ.



The Schwarz-Pick Lemma implies ϕ has at most one fixed point in D

and if ϕ has a fixed point in D, it must be the Denjoy-Wolff point.

Examples

(1) ϕ(z) = (z + 1/2)/(1 + z/2) is an automorphism of D fixing 1 and −1.

The Denjoy-Wolff point is a = 1 because ϕ′(1) = 1/3 (and ϕ′(−1) = 3)

(2) ϕ(z) = z/(2− z2) maps D into itself and fixes 0, 1, and −1.

The Denjoy-Wolff point is a = 0 because ϕ′(0) = 1/2 (and ϕ′(±1) = 3)

(3) ϕ(z) = (2z3 + 1)/(2 + z3) is an inner function fixing fixing 1 and −1

with Denjoy-Wolff point a = 1 because ϕ′(1) = 1 (and ϕ′(−1) = 9)

(4) Inner function ϕ(z) = exp(z + 1)/(z − 1) has a fixed point in D,

Denjoy-Wolff point a ≈ .21365, and infinitely many fixed points on ∂D



Denjoy-Wolff Thm suggests looking for a model for iteration of maps of D

Five different types of maps of D into itself from the perspective of iteration,

classified by the behavior of the map near the Denjoy-Wolff point, a

In one of these types, ϕ′(a) = 0, (e.g., ϕ(z) = (z2 + z3)/2 with a = 0),

the model for iteration not yet useful for studying composition operators

In the other four types, when ϕ′(a) 6= 0, the map ϕ can be intertwined with

a linear fractional map and classified by the possible type of intertwining:

σ intertwines Φ and ϕ in the equality Φ ◦ σ = σ ◦ ϕ

We want to do this with Φ linear fractional and σ univalent near a, so that

σ is, locally, a change of variables. Using the notion of fundamental set, this

linear fractional model becomes essentially unique [Cowen, 1981]



σ σ

ϕ

Φ

σ σ

ϕ

Φ

σ σ

ϕ

Φ

σ σ

ϕ

Φ

A linear fractional model in which ϕ maps D into itself with a = 1 and

ϕ′(1) =
1

2
, σ maps D into the right half plane, and Φ(w) =

1

2
w



Linear Fractional Models:

• ϕ maps D into itself with ϕ′(a) 6= 0 (ϕ not an elliptic automorphism)

• Φ is a linear fractional automorphism of Ω onto itself

• σ is a map of D into Ω with Φ ◦ σ = σ ◦ ϕ

I. (plane dilation) |a| < 1, Ω = C, σ(a) = 0, Φ(w) = ϕ′(a)w

II. (half-plane dilation) |a| = 1 with ϕ′(a) < 1, Ω = {w : Rew > 0},

σ(a) = 0, Φ(w) = ϕ′(a)w

III. (plane translation) |a| = 1 with ϕ′(a) = 1, Ω = C, Φ(w) = w + 1

IV. (half-plane translation) |a| = 1 with ϕ′(a) = 1, Ω = {w : Imw > 0},

(or Ω = {w : Imw < 0}), Φ(w) = w + 1



Linear Fractional Models:

• ϕ maps D into itself with ϕ′(a) 6= 0 (ϕ not an elliptic automorphism)

• Φ is a linear fractional automorphism of Ω onto itself

• σ is a map of D into Ω with Φ ◦ σ = σ ◦ ϕ

I. (plane dilation) |a| < 1, Ω = C, σ(a) = 0, Φ(w) = ϕ′(a)w

II. (half-plane dilation) |a| = 1 with ϕ′(a) < 1, Ω = {w : Rew > 0},

σ(a) = 0, Φ(w) = ϕ′(a)w

III. (plane translation) |a| = 1 with ϕ′(a) = 1, Ω = C, Φ(w) = w + 1

{ϕn(0)} NOT an interpolating sequence

IV. (half-plane translation) |a| = 1 with ϕ′(a) = 1, Ω = {w : Imw > 0},

(or Ω = {w : Imw < 0}), Φ(w) = w + 1

{ϕn(0)} IS an interpolating sequence



Theorem (Koenigs, 1884)

If ϕ is analytic map of D into itself, ϕ(0) = 0, and 0 < |ϕ′(0)| < 1, then

there is a unique map σ with σ(0) = 0, σ′(0) = 1, and σ ◦ ϕ = ϕ′(0)σ

Moreover, if f is analytic (not the zero map) and λ is a number so that

f ◦ ϕ = λf , then λ = ϕ′(0)n for some n = 0, 1, 2, 3, · · · and f = c σn

for some c

This is the plane dilation case (I.) with a = 0 and Φ(w) = ϕ′(0)w



Theorem (Koenigs, 1884)

If ϕ is analytic map of D into itself, ϕ(0) = 0, and 0 < |ϕ′(0)| < 1, then

there is a unique map σ with σ(0) = 0, σ′(0) = 1, and σ ◦ ϕ = ϕ′(0)σ

Moreover, if f is analytic (not the zero map) and λ is a number so that

f ◦ ϕ = λf , then λ = ϕ′(0)n for some n = 0, 1, 2, 3, · · · and f = c σn

for some c

Proof:

Starting with the second part, suppose f satisfies f (ϕ(z)) = λf (z) for some

λ and all z in D. Consider the Taylor series for f , f (z) =
∑

akz
k with first

non-zero coefficient an, that is, an 6= 0 and ak = 0 for k an integer, k < n.

Since any non-zero multiple of f will work just as well, we suppose an = 1.

Compare the Taylor series for f ◦ ϕ and λf · · ·

get f unique and λ = ϕ′(0)n



Theorem (Koenigs, 1884)

If ϕ is analytic map of D into itself, ϕ(0) = 0, and 0 < |ϕ′(0)| < 1, then

there is a unique map σ with σ(0) = 0, σ′(0) = 1, and σ ◦ ϕ = ϕ′(0)σ

Moreover, if f is analytic (not the zero map) and λ is a number so that

f ◦ ϕ = λf , then λ = ϕ′(0)n for some n = 0, 1, 2, 3, · · · and f = c σn

for some c

Proof:

For the first part, define σ by σ(z) = lim
k→∞

ϕk(z)

ϕ′(0)k
where ϕ2(z) = ϕ(ϕ(z)),

ϕ3(z) = ϕ(ϕ2(z)), etc. Establish convergence; observe σ satisfies functional

equation, σ(0) = 0, and σ′(0) = 1.

To finish, since the solution f from the earlier part was unique and σn

also satisfies the conditions, f = σn.


