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HIGHLIGHTS

• This review introduces recent advances to optimize electromagnetic properties of metal-organic frameworks (MOFs)-derived magnetic 

carbon-based composites through rational microstructure design and composition optimization in detail.

• The challenges and outlooks in MOFs-derived magnetic carbon-based microwave absorbers are also proposed and analyzed, including 

low-frequency absorption, diversified MOFs precursors, structure-activity relationships, environmental tolerance.

ABSTRACT Magnetic carbon-based composites are the most attractive candidates 

for electromagnetic (EM) absorption because they can terminate the propagation of 

surplus EM waves in space by interacting with both electric and magnetic branches. 

Metal-organic frameworks (MOFs) have demonstrated their great potential as sac-

rificing precursors of magnetic metals/carbon composites, because they provide a 

good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix. 

Nevertheless, the chemical composition and microstructure of these composites are 

always highly dependent on their precursors and cannot promise an optimal EM 

state favorable for EM absorption, which more or less discount the superiority of 

MOFs-derived strategy. It is hence of great importance to develop some accompanied 

methods that can regulate EM properties of MOFs-derived magnetic carbon-based 

composites effectively. This review comprehensively introduces recent advancements 

on EM absorption enhancement in MOFs-derived magnetic carbon-based compos-

ites and some available strategies therein. In addition, some challenges and prospects 

are also proposed to indicate the pending issues on performance breakthrough and 

mechanism exploration in the related field.
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1 Introduction

The worsening electromagnetic (EM) environment caused 

by EM radiation from the massive usages of emerging 

electronic apparatuses ranging from household appliances 

to wireless base stations and military radars poses serious 

threats to human health and national defense security and has 

aroused worldwide attention [1–3]. EM shielding and EM 

absorption have long been recognized as two typical strate-

gies for mitigating or resisting adverse effects from those 

surplus EM waves, where the former realizes individual 

protection through strong reflection of incident EM waves 

and the latter is established on the conversion of EM energy 

[4, 5]. In view of their different mechanisms, EM absorp-

tion has gradually evolved into a dominant means for EM 

pollution precaution due to its desirable sustainability [6, 7]. 

The key point of EM absorption is to interrupt the transmis-

sion of EM waves by interacting with their magnetic field 

branch or electric field branch, and thus, some functional 

materials with good EM characteristics, i.e., magnetic and 

dielectric properties, are usually considered as promising 

microwave absorbers [8–10]. In an effort to achieve consid-

erable absorption performance, the integration of magnetic 

and dielectric media, especially for composites with mag-

netic metal/alloy particles and carbon materials, becomes 

an overwhelming mode in the development of microwave 

absorbers [6, 11, 12]. On the one hand, magnetic metals/

alloys have higher saturation magnetization than magnetic 

ferrites, and thus, they can produce distinguishable perme-

ability and strong magnetic response in the frequency range 

of gigahertz [11, 13]. On the other hand, carbon materials 

have tunable dielectric property, good chemical stability, 

low density, and diversified morphology and microstructure, 

which render them as one of the most attractive components 

in composites for EM absorption [14, 15]. Conventional 

magnetic carbon-based composites are generally fabricated 

by decorating carbon materials with magnetic metal/alloy 

particles or high-temperature pyrolysis of polymers con-

taining various magnetic precursors (e.g., metal salts and 

oxides) [16–18]. However, the products from these routes 

widely suffer from disordered microstructures, poor chemi-

cal homogeneity, random nanoparticle size, and dispersion, 

which may weaken the synergy between magnetic particles 

and carbon matrix to some extent [19]. Therefore, an effec-

tive strategy that can promise significant improvements on 

the shortcomings mentioned above is extremely desirable 

for high-performance magnetic carbon-based composites.

Metal–organic frameworks (MOFs) are a class of crys-

talline porous materials consisting of metal nodes joined 

together by organic ligands through strong coordination 

bonds [20]. Since the first discovery of MOF-5 with three-

dimensional open skeleton structure, MOFs have attracted 

wide attention from academia worldwide and are consid-

ered to have great potential in catalysis, adsorption and 

separation, hydrogen storage [21, 22]. With the continu-

ous development of MOFs-related fields, they are also 

proposed to be excellent precursors for various carbon-

based functional materials due to the pyrolysis of organic 

ligands under high-temperature inert atmosphere [23]. Up 

to now, some common MOFs families, such as zeolitic 

imidazolate frameworks (ZIFs), Prussian blue (PB) 

and Prussian blue analogues (PBAs), Material Institute 

Lavoisier (MIL), Universitetet i Oslo (UiO), and Ni-BTC 

(BTC = benzene-1,3,5-tricarboxylate), have been trans-

formed into various carbon-based materials successfully 

[24–28], and the crystalline structures of some specific 

MOFs are illustrated in Fig. 1a. Recent progress indicates 

that MOFs have many fascinating features that may render 

them as splendid sacrificing precursors for high-perfor-

mance microwave absorbers (Fig. 1b, c) [29–32]. First, 

the widespread utilization of magnetic nodes in various 

MOFs makes it very easy to generate magnetic carbon-

based composites, because magnetic ions will be reduced 

into magnetic metals through high-temperature carboth-

ermic reduction. Carbon frameworks and magnetic metal 

nanoparticles will produce synergetic dielectric and mag-

netic loss mechanisms. Second, the periodic arrangement 

of different atoms in crystalline MOFs provides a congeni-

tal advantage for uniform component dispersion, and the 

resultant magnetic metal nanoparticles can be homoge-

neously decorated on MOFs-derived carbon frameworks. 

This situation is very favorable for full exploitation of 

magnetic function. Third, MOFs usually have good struc-

ture stability, which promises desirable integrity of final 

carbon frameworks. It is well known that carbon materials 

are conductive to some extent, and an intact carbon frame-

work over several hundreds of nanometers can induce the 

formation of numerous microcurrent under an applied EM 

field, thus resulting in the enhancement of conductive loss, 

one main pathway of dielectric loss. Fourth, MOFs are a 

typical kind of porous materials, and very importantly, 
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their extremely high porosity can be excitingly preserved 

in final carbon-based composites, which brings additional 

microstructure effects for EM attenuation, including mul-

tiple reflections and scatterings. Our group ever pioneered 

the synthesis of uniform Fe/C composites through a direct 

pyrolysis of PB nanocubes, and the high dispersion of Fe 

nanoparticles was found to be favorable for multiple die-

lectric and magnetic resonances, resulting in an excellent 

EM absorption performance with broad response band-

width [31]. Lv et al. employed ZIF-67 as the precursor to 

produce porous Co/C nanocomposites with reflection loss 

(RL) intensity of − 35.3 dB and effective absorption band-

width (EAB) of 5.8 GHz with the absorber thickness of 4.0 

and 2.5 mm, respectively [29]. To date, there have been 

hundreds of papers concerned on EM absorption of MOFs-

derived magnetic carbon-based composites, and most 

microwave absorbers therein did make some significant 

achievements as compared with those counterparts from 

conventional routes [29, 31, 33–40]. Despite of that, these 

MOFs-derived magnetic carbon-based composites still 

suffer from some undesirable drawbacks. The first one is 

that the final chemical compositions of these composites 

are highly dependent on their precursors, because carbon 

frameworks and magnetic metal nanoparticles are derived 

from organic ligands and coordination sites, respectively. 

Although they can display dielectric and magnetic loss 

capabilities as we expected, the synergy between dielectric 

loss and magnetic loss may not reach the best level. The 

second one is that the pyrolysis of MOFs usually induces 

the formation of microporous structure, but fails to breed 

some more lucrative microstructures, such as hollow, yolk-

shell, multi-chamber configurations [37, 39]. These facts 

suggest that there is still room for the improvement on 

EM absorption of MOFs-derived magnetic carbon-based 
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Fig. 1  a Crystalline structures of some specific MOFs. Reproduced with permission from Refs. [24–27]. Copyright © 2017 WILEY–VCH; 

2014 The Royal Society of Chemistry; 2018 American Chemical Society; and 2017 Wiley–VCH Verlag GmbH. b Some advantages of MOFs 

applied in the field of EM absorption, and c Electromagnetic loss and energy conversion mechanism inside MOFs-derived magnetic carbon-

based composites
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composites. As a matter of fact, some researchers have 

been aware of this aspect and devoted their efforts to elab-

orate composition and microstructure design in MOFs-

derived magnetic carbon-based composites. In this con-

text, we highlight some very recent advances on how to 

make a solid contribution to EM absorption enhancement, 

and we also propose some disadvantages, challenges, and 

prospects in this field.

2  EM Absorption Mechanism, Performance 

Evaluation, and Influence Factors

2.1  EM Absorption Mechanism

As we discussed above, the basic principle of EM absorp-

tion is to dissipate EM energy through the interruption of 

electric or magnetic field branch, and thus, dielectric loss 

and magnetic loss are widely considered to be two domi-

nant mechanisms for EM absorption [31]. Dielectric loss 

usually originates from conductivity loss and polarization 

loss, where conductivity loss realizes energy consumption 

through the directional movement of some residual carri-

ers in dielectric medium driven by an applied electric field 

[41]. Compared with conductive loss, polarization loss has 

more diversified modes, namely, electronic polarization, 

ionic polarization, dipole orientation polarization, and 

interfacial polarization [7]. However, ionic polarization 

and electronic polarization do not work the attenuation of 

EM waves in gigahertz range due to their extremely short 

relaxation time  (10–12–10–16 s) and elastic nature, that is, 

dipole orientation polarization and interfacial polarization 

are active to afford the consumption of EM energy in most 

cases. Dipole orientation polarization is induced by the 

hysteretic reorientation of dipoles along with an applied 

electric field, and interfacial polarization depends on the 

asymmetrical accumulation of space charges at heteroge-

neous interfaces, which can generate an electric dipole 

moment and bring energy consumption [41]. In view of 

above facts, high conductivity, abundant electric diploes, 

and sufficient heterogeneous interfaces are very conductive 

to strong dielectric loss. Dielectric loss ability is usually 

deduced by dielectric tangent, the ratio of imaginary part 

to real part of relative complex permittivity 
(

�r = �
�

r
− j���

r

)

,

Magnetic loss generally results from magnetic hysteresis, 

domain wall resonance, natural ferromagnetic resonance, 

and eddy current effect [6]. Among them, magnetic hys-

teresis and domain wall resonance can be easily excluded, 

because they are negligible in weak field and gigahertz range 

[9]. Natural ferromagnetic resonance directly describes 

energy absorption of ferromagnetic materials with large 

magnetization under an external anisotropy magnetic field. 

Once there is the formation of natural ferromagnetic reso-

nance, there will be some typical resonance peaks in the 

curves of real part (µr′) and imaginary part (µr″) curves of 

relative complex permeability (µr = µr′−jµr″), and the corre-

sponding natural resonance frequency is greatly dependent 

on the anisotropy energy of different magnetic particles [42]. 

For a given ferromagnetic material, if the natural resonance 

frequency shifts to a higher reign, its µr values will inevi-

tably decrease, resulting in the weakening of magnetic loss 

ability, and this phenomenon is known as the Snoek’s limit 

[43]. As for eddy current effect, it is mainly caused by the 

thermal effect of a current along a closed circuit in a mag-

netic conductor [9]. It is widely accepted that if magnetic 

loss only derives from eddy current effect, the values of C0 

(C0 = μr″(μr′)−2f−1, f refers to the frequency of EM waves) 

will keep constant and independent on the frequency [5]. 

Magnetic loss ability can also be deduced by magnetic 

tangent, the ratio of µr’’ to µr’, as shown in the following 

equation:

2.2  Performance Evaluation

Microwave absorbers are a kind of functional materials that 

can realize energy conversion of incident EM waves, whose 

performance is the premise and cornerstone for their practi-

cal application. With the EM parameters (εr and µr) men-

tioned above, RL characteristics of microwave absorbers, 

which directly reflect their EM absorption performance, can 

be easily calculated through the following equations [2]:

(1)tan�
e
= �

��
r
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r
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where Zin is the normalized input impedance of microwave 

absorbers with a full-reflection metal substrate, c is the 

velocity of EM waves in free space (3 ×  108 m  s−1), and d is 

the applied thickness of microwave absorbers. RL describes 

the absorption efficiency of incident EM waves under a 

given condition, and the smaller its value, the higher the 

absorption efficiency. When RL value reaches − 10.0 dB, it 

means 90% of incident EM waves can be effectively attenu-

ated. The corresponding frequency region (RL ≤ − 10 dB) is 

usually defined as EAB, which is another important evalu-

ation indicator associated with EM absorption performance 

[11]. Currently, the main studied frequency for microwave 

absorption is focused on the S-band (2.0–4.0 GHz), C-band 

(4.0–8.0  GHz), X-band (8.0–12.0  GHz) and Ku-band 

(12.0–18.0 GHz). To cater the demand for a specified micro-

wave band, selective-frequency absorption is another con-

cerned concept during the fabrication of high-performance 

microwave absorbers [44]. In addition to strong RL intensity 

and broad EAB, low density and thin thickness of advanced 

microwave absorbers are urgently pursued to determine the 

final practical application in modern civil and military fields.

2.3  Influence Factors

According to EM absorption theory, the performance of 

microwave absorbers mainly depends on their EM attenu-

ation capability and impedance matching condition [2]. 

Attenuation constant (a) is a parameter that can directly 

characterize the intrinsic loss ability of microwave absorbers 

in essence, and its value can be calculated by the following 

equation [7]:

Theoretically, a larger a value will promise a good EM 

absorption performance, including minimum RL intensity 

and broad EAB. However, many previous studies have 

demonstrated that EM absorption performance could not be 

directly speculated from attenuation capability of microwave 

absorbers, because impedance matching is another impor-

tant concept that must be taken into account seriously. A 

well-matched impedance can allow incident EM waves to be 

transmitted into the interior of microwave absorbers as much 

as possible, which establishes a good foundation for the 
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consumption of EM energy [2]. The ideal condition for per-

fect impedance matching requires that the wave impedance 

of microwave absorbers is close to that of free space, and in 

other words, εr and μr values of microwave absorbers need 

to be almost identical [7]. In fact, εr value is usually much 

larger than μr value in most microwave absorbers, especially 

for many magnetic carbon-based composites, which means 

that the gap between εr and μr should be tailored within a 

rational range by artificially manipulating dielectric and 

magnetic components in order to fulfill good impedance 

matching and attenuation capability simultaneously.

It is well known that EM absorption performance is not 

only determined by the intrinsic EM properties of microwave 

absorbers, but also associated with their size, morphology/

shape, and microstructure. For examples, some researchers 

found when the size of microwave absorbers was minimized 

into nanoscale, EM interaction tended to increase [45]. On 

the one hand, nanoscale materials usually have large specific 

surface area, and thus, there will be a large number of active 

sites on their surface, which can enhance polarization relaxa-

tion loss [46]. On the other hand, owing to high conductiv-

ity of some magnetic metals, the strong eddy current may 

induce undesirable skin effect, resulting in the partial invali-

dation of internal magnetic field and consequently decreased 

μr [29, 31]. If the particle size is smaller than the skin depth, 

the skin effect can be restrained and EM absorption perfor-

mance of microwave absorbers will be enhanced through 

improved magnetic loss ability. In addition to size effect, 

shape/morphology and microstructure of microwave absorb-

ers are also important factors for EM absorption, because 

they can affect the transmission path of incident EM waves 

through multiple scatterings and reflections [47]. Each scat-

tering or reflection can bring energy loss to a certain degree, 

and the change in transmission behavior is equivalent to 

extending the transmission distance of incident EM wave in 

microwave absorbers, thus making considerable contribu-

tion to the conversion of EM energy [48]. Meanwhile, the 

manipulation on shape/morphology and microstructure is 

also favorable to creating more heterogeneous interfaces, 

which is necessary to generate powerful interfacial polariza-

tion [49]. Although there is still no clear structure–activity 

relationship between EM absorption performance and shape/

morphology/microstructure, their positive effects have been 

witnessed in many published papers [47, 50], and thus, it is 

easy to conclude that a reasonable design on morphology/

shape and microstructure of nano-scale composites is an 
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effective strategy to develop high-performance microwave 

absorbers.

3  Composition Optimization 

in MOFs-derived Magnetic Carbon-based 

Microwave Absorbers

As we discussed above, MOFs transformation has become 

a simple and effective method to produce magnetic carbon-

based microwave absorbers directly, while the constant 

ratio of organic ligand to coordination site in each kind of 

MOFs sets up some obstacles to consolidate the perfor-

mance of final products through composition regulation. 

Recent progress suggests that some special strategies have 

been developed to optimize the chemical compositions of 

MOFs-derived carbon-based microwave absorbers, includ-

ing the pyrolysis of bi-metallic MOFs and the involvement 

of additional magnetic or carbonaceous components, as well 

as other dielectric components. We will introduce some 

typical design concepts, research findings, and performance 

breakthroughs carefully in the section.

3.1  Pyrolysis of Bi-metallic MOFs

Bi-metallic MOFs contain two different inorganic metal 

nodes that have similar coordination activities with the 

same organic ligands, which offer a possibility to tailor 

the chemical composition of final products if one of them 

can be removed through high-temperature pyrolysis. It is 

well known that metallic Zn nanoparticles have low boil-

ing point (600–900 °C) [51], and thus, Zn-containing bi-

metallic MOFs are popular precursors in this strategy [52]. 

Wang et al. employed Zn–Co ZIFs as the precursor of Co/C 

composites, and they raised carbon content from 47.4 to 

56.7 wt% by intensifying the removal of Zn-related species 

at high temperature [53]. When the pyrolysis temperature 

was 600 °C, RL intensity and EAB of the corresponding 

Co/C composite were − 50.7 dB and 4.2 GHz, respec-

tively, with the absorber thickness of 2.5 mm. Similarly, Ji’s 

group introduced  Zn2+ into Fe-MOF-5, while they found 

that the weight ratio of Fe nanoparticles to carbon frame-

works was not changed obviously in the temperature range 

of 600–700 °C [54]. Although higher pyrolysis tempera-

ture resulted in a great impact on the chemical composi-

tion of final Fe/C composite, this variation weakened its 

EM absorption performance to a large extent because the 

impedance matching was much deteriorated. Subsequently, 

they manipulated  Zn2+/Co2+ atomic ratio in bi-metallic ZIFs 

from 0 to 3.0 and realized the adjustment of carbon con-

tent from 38.3 to 48.7 wt%, and then harvest the strong RL 

intensity of -32.4 dB and the broadest EAB of 5.27 GHz 

with an absorber thickness of 1.9 mm [55]. From the current 

results, one can conclude that the relative content of MOFs-

derived magnetic carbon-based microwave absorbers may 

be indeed controlled by the introduction of  Zn2+, while the 

regulated range is not as obvious as expected. What’s worse, 

the formation of intermediate phase (i.e.,  Co3ZnC) cannot 

be avoided and the removal of Zn-related species is always 

incomplete, and thus, this method decreases the content of 

magnetic nanoparticles monotonously, as well as their con-

tribution to magnetic loss.

In order to make full use of inorganic metal sites, MOFs 

with dual magnetic nodes appear as more promising pre-

cursors for magnetic carbon-based composites [56–61], 

because the formation of alloy particles will bring addi-

tional electron transfer and spin polarizability that are also 

favorable for EM absorption [62]. Our group obtained 

a series of PB and PB analogues (PBAs) with different 

Co/Fe atomic ratios using a co-precipitation method and 

further converted them into FeCo alloy/carbon compos-

ites through high-temperature pyrolysis [63]. The char-

acterization results revealed several advantages of dual 

magnetic nodes clearly. First, the existence of Co atoms, 

if the amount was small (Co/Fe = 0.1), could suppress 

the formation of  Fe3C particles (Fig. 2a), a typical com-

mensal of Fe particles under carbon-rich conditions, that 

usually put down magnetic response and magnetic loss 

of Fe particles (Fig. 2b) [64, 65]. Second, Co atoms had 

better catalytic graphitization effect than Fe atoms, and 

thus, more Co atoms could increase the relative graphiti-

zation degree of carbon frameworks (Fig. 2c), which was 

equivalent to the manipulation of carbon content [66]. 

Third, the involvement of Co atoms decreased the aver-

age size of magnetic particles significantly, creating more 

heterogeneous interfaces and more powerful interfacial 

polarization. These visible impacts on physicochemical 

properties demonstrated that EM absorption performance 

of FeCo alloy/carbon composites could be easily regulated 

by Co/Fe ratio (Fig. 2d–k). Liang et al. prepared stacked 

 CoxNiy@C nanosheets with Co–Ni bi-metallic MOFs as 

the precursor, and they also confirmed that the atomic ratio 
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was very important for dielectric and magnetic properties 

of magnetic carbon-based composites [67]. When Co/Ni 

ratio was close to 1.0, the resultant composite could pos-

sess the best EM absorption performance, including strong 

RL intensity (− 43.7 dB) and broad EAB (5.70 GHz) with 

the absorber thickness less than 2.0 mm. More recently, 

Ouyang et al. further addressed the transformation of tri-

metallic MOFs (FeCoNi-MOF-74) [68]. After pyrolysis 

at proper temperature, FeCoNi@C nanocomposite could 

reinforce RL intensity and EAB to − 59.0 dB and 6.4 GHz, 

respectively, with absorber thickness of 2.1 mm.

3.2  Introduction of Additional Magnetic Components

Although the direct pyrolysis of bi-metallic MOFs has dem-

onstrated its potential in the composition manipulation, it 

only works in a very small range that cannot meet the design 

requirements to improve EM properties significantly. There-

fore, some groups attempted to fabricate MOFs-based com-

posites by introducing some additional EM components and 

then converted these composites into magnetic carbon-based 

microwave absorbers with desirable chemical composition 

[69, 70]. By considering that magnetic loss capability in 

some MOFs-derived carbon-based composites is usually 

insufficient, the involvement of additional magnetic com-

ponents becomes one effective pathway to further reinforce 

the overall EM properties of these composites [71]. Wang 

et al. introduced Co nanoparticles during the growth of 

ZIF-67 crystals, and they did raise the saturation magneti-

zation and magnetic loss capability as compared with Co/C 

composite from pristine ZIF-67 [29, 72]. It was unfortunate 

that the strong interaction among Co nanoparticles caused 

their serious aggregation and lost the advantages of MOFs 

transformation [72]. Similarly, some ferrite nanoparticles, 
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i.e.,  Fe3O4 and  Ba0.85Sm0.15Co2Fe16O27, were also utilized 

to combine with ZIF-67 [60, 73]. The formation of FeCo 

alloy nanoparticles during high-temperature pyrolysis was 

confirmed to be greatly helpful to consolidate magnetic loss 

of the final composites, especially in the middle- and high-

frequency range. As a result, the final FeCo/C composites 

could perform comparable or superior RL characteristics to 

ZIF-67-derived Co/C composites with a smaller absorber 

thickness. Besides, Wang et al. employed Co(OH)2 as the 

additional magnetic precursor to support ZIF-67 crystals, 

while they found Co(OH)2 could not be converted into Co 

nanoparticles completely even if the temperature reached 

650 °C [74]. This drawback discounted the contribution 

of magnetic loss, and thus, Co/C composite from this way 

failed to produce better EM absorption performance.

Beyond the direct introduction of magnetic metal and 

ferrite nanoparticles, some elaborate strategies were further 

developed in recent years. For example, Yan et al. and Wang 

et al. soaked Zn-Co bi-metallic MOFs in  Fe3+ solution, and 

both of these two groups found that the impregnation of 

 Fe3+ could be favorable for the generation of FeCo alloy 

nanoparticles and the removal of Zn species under high 

temperature could create desirable porosity [75, 76]. When 

the atomic ratio of Fe to Co was 0.26, the resultant FeCo/

Co/C composite displayed the strongest RL intensity over 

− 60.0 dB and the corresponding EAB as broad as 5.1 GHz 

with the absorber thickness of 1.5 mm [76]. Quan et al. con-

ducted the decomposition of Fe(CO)5 on the surface of ZIF-

67 and then harvested nanoporous carbon-wrapped Co@

carbonyl iron with yolk-shell structure (Co/NPC@Void@

CI) through high-temperature pyrolysis (Fig. 3a) [77]. TEM 

images recorded the microstructure evolution from ZIF-67 

to Co/NPC@Void@CI (Fig. 3b, c). XRD patterns and EDS 

line scans confirmed the formation of carbonyl iron on the 

external surface of Co/NPC (Fig. 3d, e). More importantly, 

the EM absorption performance of Co/NPC@Void@CI was 

greatly superior to that of Co/NPC (Fig. 3f, g), whose strong-

est RL intensity and EAB were − 49.2 dB and 6.72 GHz, 

respectively, with the absorber thickness of 2.2 mm.
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3.3  Introduction of Additional Carbon Components

Compared with various magnetic components, the introduc-

tion of additional carbon components into MOFs-derived 

composites receives much more attention, because carbon 

materials have morphological diversity as well as better 

MOFs compatibility than magnetic metals or ferrites. Yang 

et al. deposited NiFe PBAs nanocubes on graphene oxide 

uniformly to be the precursor of NiFe@C/reduced GO (rGO) 

composite [78]. With the adjustment of pyrolysis tempera-

ture, the optimal NiFe@C/rGO composite displayed strong 

RL intensity close to − 40.0 dB and high absorption effi-

ciency (over 90%) in X band. Inspired by this work, rGO 

becomes a popular candidate to regulate EM properties of 

MOFs-derived magnetic carbon-based composites [79–82]. 

The introduction of rGO not only reinforces the overall die-

lectric loss of carbon-based composites, but also provides 

powerful polarization relaxation through more heteroge-

neous interfaces. It is worth noting that the advantages of 

bi-metallic MOFs are highly considered when MOFs/GO 

precursors are fabricated. For example, Xu et al. assembled 

CoNi-1,3,5-trimesic acid microspheres and GO nanosheets 

to produce CoNi@NC/rGO comprising pomegranate-like 

CoNi@NC nanoclusters and ultrasmall CoNi-decorated 

graphene [83]. EM measurements manifested that CoNi@

NC/rGO could be a promising microwave absorber with 

strong RL intensity (− 68.0 dB) and broad EAB (6.72 GHz) 

with the absorber thickness of 3.0 and 2.5 mm, respectively, 

and its performance was greatly superior to those of indi-

vidual CoNi@NC or CoNi/rGO. Zhao et al. also demon-

strated the positive contribution of alloy nanoparticles and 

rGO nanosheets clearly, where CoNi@NCPs-rGO could 

lower minimum RL intensity of Co@NCPs from − 49.8 

to − 58.2 dB [84]. Very interestingly, Wang et al. deco-

rated bi-metallic FeCo-ZIFs on the surface of freeze-drying 

rGO aerogel and then converted the precursor into porous 

cocoon-like FeCo/NC/rGO composite [85]. They found 

that this composite possessed many desirable characteris-

tics favorable for EM absorption, such as magnetic loss, 

dielectric loss, resistance loss, interfacial polarization, and 

good impedance matching, which were responsible for its 

very broad EAB of 9.29 GHz with the absorber thickness 

of 2.63 mm. In some cases, metal sites in MOFs were trans-

formed into magnetic ferrites at relatively low temperature, 

while the presence of rGO nanosheets could also optimize 

their EM properties and bring considerable EM absorption 

performance [86].

Moreover, there is also growing interest in the compo-

sition regulation of MOFs-derived magnetic carbon-based 

composites with carbon nanotubes (CNTs) and carbon 

nanofibers (CNFs) instead of rGO nanosheets, because 

their one-dimensional configuration will be beneficial to 

the formation of conductive networks in resin matrix and 

consequently intensify the dielectric loss of carbon-based 

composites [87–93]. However, the mismatch between the 

diameter of 1D carbon materials and the particle size of 

MOFs microspheres/polyhedrons makes it very difficult to 

realize their homogeneous combination. This situation off-

sets the advantages of MOFs-derived magnetic carbon-based 

microwave absorbers to a certain extent. In situ growth of 

CNTs on the surface of MOFs-derived magnetic carbon-

based composites appears as an effective way to remedi-

ate their poor chemical homogeneity [94, 95]. Our group 

employed waxberry-like Ni@C microspheres (NC) derived 

from Ni-MOFs as the substrate and induced the growth 

of CNTs by feeding melamine vapor (Fig. 4a) [96]. The 

amount of CNTs was verified to be highly dependent on the 

mass ratio of melamine to Ni@C microspheres (Fig. 4b–e). 

Ni nanoparticles on the surface of Ni@C microspheres 

played an important role to conduct CNTs growth through 

a “vapor–liquid–solid” mechanism, and thus, there were 

many Ni nanoparticles encapsulated in the tips of CNTs 

(Fig. 4f–i). The relative carbon content of final composites 

(NC@NCNTs) could be easily tailored from 23.0 to 60.3 

wt% just by manipulating the mass ratio of melamine to 

Ni@C microspheres from 0 to 10. When the relative carbon 

content was 51.1 wt%, NC@NCNTs proclaimed its bet-

ter impedance matching and EM absorption than pristine 

NC even in the lower filler loading (Fig. 4j–k) [40, 86]. Liu 

et al. recently found that glucose could also be utilized addi-

tional carbon source [97]. They soaked  Co3[HCOO]6·DMF 

in ethanol solution with glucose, while the content of final 

Co/C composites would be less changed until the mass ratio 

of glucose to  Co3[HCOO]6·DMF reached 5.0. In our latest 

research, we innovatively revealed dual functions of glucose 

in isopropyl alcohol [9]. On the one hand, it would be the 

source of gluconate as the organic ligand to complex with 

Co ions and produce uniform Co-MOFs microspheres, and 

on the other hand, it could be converted into carbon nanopar-

ticles and accommodated in Co-MOFs microspheres. With 

these functions of glucose, we improved the morphology of 
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Co/C composites and optimized their EM properties. The 

best candidate among this series of composite displayed very 

strong RL intensity of − 71.3 dB and its EAB could cover 

the frequency range of 3.5–18.0 GHz by manipulating the 

absorber thickness of 1.0–5.0 mm. This study provided a 

new idea to regulate the chemical composition of MOFs-

derived magnetic carbon-based microwave absorbers.

3.4  Introduction of Other Dielectric Components

Apart from additional magnetic and carbon components, 

some other dielectric components, such as metal oxides, 

carbides, and conductive polymers, can also be involved 

into MOFs-derived composites to consolidate their intrin-

sic EM loss capabilities. Metal oxides are one of the most 

popular additional components to couple with magnetic 

carbon-based composites due to their easy preparation and 

chemical stability, as well as their effective improvement 

on impedance matching. In general, metal oxides, e.g., 

 TiO2 and  MnO2, are preferentially deposited on the exter-

nal of MOFs [98, 99]. After high-temperature pyrolysis, 

some ternary composites with typical core–shell configu-

ration can be obtained. Such a delicate design not only 

enables the synergistic effects between magnetic loss from 

metal nanoparticles and intrinsic dielectric losses from 

carbon frameworks and  MnO2 shells, but also facilitates 

multiple interface polarization and appropriate imped-

ance matching. Wang et al. further mediated the growth 

of  MnO2 nanosheets on the surface of ZIF-67 nanocubes 

with a polydopamine (PDA) layer, which could also be 

transformed into carbon layer after high-temperature 

pyrolysis [100]. This work demonstrated how to manip-

ulate dielectric loss of MOF-derived magnetic carbon-

based composites from two aspects. The final Co/C@

MnO2 composite could exhibit good EM absorption per-

formance with the minimum RL intensity of − 58.9 dB 

and decent EAB of 5.5 GHz, with the absorber thickness 

of 3.7 and 1.9 mm, respectively. In contrast, some groups 

conducted the growth of MOFs on metal oxides in order 

to consolidate EM properties of carbon-based composites 

with their profitable morphological features [101–104]. 

Of note is that Xu et al. deposited ZIF-67 nanocrystals 

on  MoO3 nanorods and then converted the mixture into 

 MoO3@Co-Fe PBAs through fast ligand exchange, and 

finally, a quadruple composite of  Mo2N@CoFe@C/CNT 

could be generated by pyrolyzing  MoO3@Co-Fe PBAs in 

(d)

(a)

(b) (c)

(f)

(e)

(h)(g)

(j)

(k)

(i)

1 μm

0.2 μm 0.2 μm 50 nm 5 nm

~0.20 nm

~0.34 nm

~0.34 nm

1 μm 1 μm 1 μm

Frequency (GHz)
2        6        10      14       18

5

4

3

2

1

0

−10

−20

−30

T
h

ic
k
n

e
s
s
 (

m
m

)

Frequency (GHz)
2        6        10      14       18

5

4

3

2

1

0

−10

−20

−30

T
h

ic
k
n

e
s
s
 (

m
m

)

Ni@C-500Ni-MOFH3btc+Ni2+ NC@NCNTs

Solvothermal Pyrolysis Pyrolysis

Melamine

Fig. 4  a Schematic of the preparation of the NC@NCNTs. SEM images of b NC, c NC@NCNTs-1, d NC@NCNTs-2, and e NC@NCNTs-3. 

TEM images of f NC and g-i NC@NCNTs-2. RL maps of j NC, k NC@NCNTs-2. Reproduced with permission from Ref. [96]. Copyright © 

2021 The Royal Society of Chemistry



Nano-Micro Lett. (2021) 13:208 Page 11 of 33 208

1 3

the presence of melamine (Fig. 5a) [105]. In this compos-

ite, abundant magnetic CoFe nanoparticles were encapsu-

lated within one-dimensional graphitized carbon/carbon 

nanotubes supported on  Mo2N nanorods (Fig. 5b–d). The 

synergic magnetic–dielectric effects and multi-dimension 

hierarchical configuration rendered this composite as a 

promising microwave absorber with strong RL intensity 

(− 53.5 dB) and broad EAB (5.0 GHz, Fig. 5e, f), with the 

absorber thickness of 2.0 mm.
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As typical dielectric ceramics, carbides are also usually 

involved in carbon-based composites due to their natural 

characteristics of polarization relaxation [106–109], where 

silicon carbide (SiC) is one of the most popular carbides 

in EM absorption [110–113]. Yang et al. ever attempted to 

integrate SiC with MOF-derived magnetic carbon-based 

composites, while the final SiC/Ni/NiO/C composite from 

the mixture of SiC nanoparticles and Ni-MOFs failed to pro-

duce acceptable EM absorption [111]. This situation may be 

significantly improved if SiC nanowires are applied [110]. 

When Co/Co3O4/C polyhedrons derived from ZIF-67 are 

penetrated by SiC nanowires, the minimum RL intensity 

will be pulled down beyond − 30.0 dB and EAB will be 

extended to 5.92 GHz with the absorber thickness of 3.0 

and 2.0 mm, respectively [110]. The interconnection of SiC 

nanowires was considered to be important for the enhanced 

EM absorption performance. Two-dimensional metal car-

bides, MXenes, were also employed to support Fe-MOF-

derived  Fe3O4@C nanoparticles [114]. Although the final 

 Fe3O4@C/Ti3C2Tx gave better performance than individual 

 Fe3O4@C and  Ti3C2Tx, its EAB was only 3.5 GHz, which 

meant that the overall enhancement effect was not as good 

as that of one-dimensional SiC nanowires [110]. It is very 

interesting that MXenes can further exert their contribu-

tion as the only source for both carbon nanosheets and 

 TiO2 nanoparticles [115]. For instance, Deng et al. filled 

the interspaces of MXenes nanosheets with Fe-MOFs and 

harvested Fe&TiO2@C composites by heat treatment under 

 H2/Ar atmosphere [116] (Fig. 6a). Most Fe@C nanoparti-

cles derived from Fe-MOFs and those generated in situ  TiO2 

nanoparticles were uniformly dispersed into the interspaces 

of carbon nanosheets from MXenes (Fig. 6b). The strongest 

RL intensity of this sandwich-like composite was − 51.8 dB, 

and the corresponding EAB reached 6.5 GHz (Fig. 6c). In 

addition to intrinsic loss capacities of Fe,  TiO2, and C, they 

also attributed the good performance of Fe&TiO2@C com-

posite to the capacitor-like structure constructed by multi-

ple components, as well as considerable polarization effect 

of their abundant heterogeneous interfaces. The particle 

sizes of conventional SiC and MXenes are usually large and 

randomly distributed, and thus, it is difficult to make some 

rational design on their related composites. In this context, 

 Mo2C has been taken as a promising candidate for SiC and 

MXenes due to its very small particles size [106, 107]. 

Our group prepared ternary  Mo2C/Co/C composites with 

 MoO3 nanorods attached ZIF-67 crystals as the precursor 

[117]. It was revealed that dipole orientation polarization 

and interfacial polarization provided by small  Mo2C nano-

particles made solid contribution to dielectric loss, and the 

optimized composite with 30.9% of carbon, 53.6% of  Mo2C, 

and 15.5% of Co exhibited RL intensity over − 48.0 dB and 

a broad integrated EAB of 3.0–18.0 GHz by accumulating 

the absorber thickness. With respect to conductive polymers, 

they can only be involved into final magnetic carbon-based 

composites after MOFs transformation, and otherwise, they 

will be also converted into carbon components during heat 

treatment process [118, 119]. Sun et al. coated Co/C polyhe-

drons from ZIF-67 by polypyrole nanoparticles and achieved 

broad EAB of 6.6 GHz by manipulating the composite load-

ing in resin matrix [120].

4  Microstructure Design in MOFs-derived 

Magnetic Carbon-based Microwave 

Absorbers

It is well known that the attenuation of EM waves is not 

only determined by the intrinsic EM properties of micro-

wave absorbers, but also highly associated with their inte-

rior microstructure that may promote energy consump-

tion through multiple reflection or scattering behaviors of 

incident EM waves [121, 122]. As a result, there is still 

great interest in developing various profitable microstruc-

tures in MOFs-derived magnetic carbon-based microwave 

absorbers except from those naturally derived micropores 

and mesopores, in despite of the fact that some significant 

breakthroughs from composition optimization have been 

witnessed. In this section, we focus on several effective strat-

egies for the construction of some unique microstructures in 

MOFs-derived magnetic carbon-based microwave absorbers 

that can promote their EM absorption performance greatly.

4.1  Chemical Etching

Chemical etching is one of the most direct methods to create 

hollow cavity in many functional materials [123–126]. By 

considering good chemical stability of carbon frameworks, 

it is impossible to carry out microstructure construction in 

final MOFs-derived carbon-based composites, and thus, 

chemical etching must be rationally applied to MOFs crys-

tals before their pyrolysis. However, in most cases, MOFs 
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etching starts from their external surface and results in mor-

phology evolution to some extent [123, 127, 128]. At pre-

sent, there are two possibilities to cause the internal etching 

of MOFs crystals as we expected, which is a prerequisite 

to introduce hollow microstructure in final carbon-based 

composites. One is to break the coordination bonds between 

metal nodes and organic ligands through protons released 

from organic acids (e.g., tannic acid (TA) and gallic acid) 

tightly attached on the surface of MOFs crystals [129, 130]. 

Thanks to the strong coordination effect of organic acids 

with metal sites on the surface, MOFs crystals will main-

tain their original morphologies during the etching process 

[131]. In this way, Liu et al. reported the formation of hollow 

ZIF-67 rhombic dodecahedral cages with inner hollow cav-

ity, where TA displayed dual functions as both protecting 

and etching agents (Fig. 7a) [129]. After high-temperature 

pyrolysis and sulfuric acid treatment, hollow Co/C cages 

with uniform heterojunctions were obtained, and their EM 

properties could be optimized when the pyrolysis tempera-

ture was 800 °C, whose minimum RL intensity and EAB 

were − 60.6 dB and 5.1 GHz with the absorber thickness of 

2.4 and 1.9 mm, respectively (Fig. 7b). More importantly, 

the authors recorded different density states of charge dis-

tribution at the interfacial regions of carbon shell and inner 

cavity and identified that the unbalanced charge distribution 

would accumulate around the interface under the external 
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EM field (Fig. 7c). These results witnessed that the construc-

tion of hollow microstructure was indeed helpful to induce 

the interfacial polarization favorable for EM absorption.

The other mode for the internal etching of MOFs crys-

tals is established on the inhomogeneity of their crystal-

line structure, where the crystallographic surface with a 

high concentration of coordination bonds will be preferen-

tially decomposed in the presence of etching agents [123, 

132]. Han et al. [133] further proposed that the corners and 

edges of MOFs crystals were highly active sites to react 

with etching agents due to their large curvatures and high 

surface energies, and the etching rate along the diagonals 

of MOFs crystals was faster than that in other directions. 

We ever obtained hollow NiCo PBAs microboxes with trun-

cated eight vertexes through ammonia etching [134]. It was 

unfortunate that these hollow PBAs microboxes lost their 

microstructure after high-temperature pyrolysis, and final 

NiCo@C composite only consisted of numerous agglomer-

ated nanoparticles (Fig. 7d). By coating phenolic resin (PR) 

on the surface of hollow NiCo PBA microboxes before high-

temperature pyrolysis, the desirable microstructure could 

be well retained, which demonstrated that PR layer could 
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efficiently reinforce the thermal stability of hollow PBAs 

microboxes (Fig. 7e). In fact, PR layer was not only helpful 

for the reservation of hollow microstructure in final compos-

ites, but also optimized their chemical composition simulta-

neously. EM measurements revealed that optimized hollow 

NiCo@C microboxes produced much better EM absorption 

performance than NiCo@C nanoparticles, whose minimum 

RL intensity was as high as − 68.4 dB and the integrated 

EABs were 14.1 GHz by integrating the absorber thickness 

from 1.0 to 5.0 mm (Fig. 7f).

4.2  Template-Mediated Assembly

The template-mediated strategy, including both soft template 

and hard template, has demonstrated its effectiveness to cre-

ate some additional microstructures in some MOFs-derived 

carbon-based composites [135–139]. There are two critical 

factors for the formation of those desirable microstructures: 

one is the interaction between metal ions/organic ligands 

and templates that may direct the assemble procedure of 

MOFs nanocrystals, and the other is the thermal stabil-

ity of intermediate MOFs that determines microstructure 

preservation in final carbon-based composites [60, 135, 

140–142]. Our group led the way in applying this strategy 

for the preparation of MOFs-derived magnetic carbon-

based microwave absorbers [143]. With the introduction of 

cetyltrimethylammonium bromide (CTAB), hollow ZIF-67 

microspheres could be generated by utilizing CTAB vesicles 

as the nucleation sites for heterogeneous outward-growth of 

ZIF-67 nanocrystals (Fig. 8a). It was very exciting that final 

Co/C microspheres could inherit this hollow microstructure 

very well, and exhibit much better RL characteristic than 

Co/C composites derived from conventional ZIF-67 poly-

hedrons (Fig. 8b, c). However, CTAB is not a universal soft 

template for hollow MOFs and their derivatives, because 

the assembly of CTAB vesicles and ZIF-67 nanocrystals is 

strongly dependent on the contribution of counter ions and 

electrostatic interaction [144]. By comparison, polyvinyl 

pyrrolidone (PVP) seems to be a microstructure directing 

agent with good universality for different hollow MOFs 

and, to date, hollow Ni-1,3,5-trimesic acid microspheres 

(Fig. 8d, e), FeMn PBAs nanoboxes, and FeCo PBAs nano-

boxes have been successfully fabricated with the assistance 

of PVP [32, 145, 146]. The resultant Ni/C, FeMn/C, and 

FeCo/C composites with typical hollow microstructure all 

produce better EM absorption performance than their solid 

counterparts.

In addition, there are also some examples on microstruc-

ture design for EM absorption enhancement via a hard-

template pathway. For instance, Zhou et  al. introduced 

hollow microstructure with hollow  VO2 microspheres as 

hard template and coated them with a uniform ZIF-67 layer 

[104, 142]. Instead of the template removal in conventional 

hard-template route, hollow  VO2 microspheres were con-

verted into hollow  V2O3 microspheres in final composite 

and played as auxiliary dielectric components for EM atten-

uation (Fig. 9a). It was found that hollow microstructure 

not only improved impedance matching, but also intensi-

fied interfacial polarization, and as a result, the strongest 

RL intensity and EAB value of composite were − 40.1 dB 

and 4.6 GHz, respectively, when the absorber thickness was 

1.5 mm. Miao et al. found that MOF-5 could be firstly gener-

ated in a mixed solution with zinc acetate dehydrate, nickel 

(II) acetylacetonate, and terephthalic acid and play as a hard 

template for growth of metastable bimetallic Ni–Zn MOFs 

(Fig. 9b) [142]. After the dissolution of internal MOF-5, 

hollow Ni-Zn MOFs could be obtained and transformed into 

hollow NiZnC nanoboxes subsequently through high-tem-

perature pyrolysis. Similarly, the positive contribution from 

hollow microstructure to multiple reflection and polariza-

tion relaxation was also highlighted, which endowed hol-

low NiZnC nanoboxes with very strong specific RL intensity 

(41.3 dB  mm−1, Fig. 9c).

Apart from hollow microstructure in microwave absorb-

ers, three-dimensional macroporous microstructure has also 

been recognized to be greatly helpful for the consumption of 

EM energy [11, 41, 147, 148]. However, it is very difficult to 

create such a profitable microstructure just by a direct pyrol-

ysis of MOFs. Therefore, some groups attempted to support 

MOFs crystals on hard templates with unique three-dimen-

sional macroporous microstructure and integrate them into 

magnetic carbon-based composites during high-temperature 

pyrolysis. Melamine-based foams are emerging as a kind 

of popular MOFs scaffolds to produce three-dimensional 

macroporous magnetic carbon-based composites [11, 147, 

149]. For example, Gu et al. manipulated the deposition of 

ZIF-67 on the surface of melamine foam in an ice bath and 

obtained three-dimensional macroporous Co/C composites 

(MZT) under high-temperature inert atmosphere [147]. The 

microstructure of melamine foam was perfectly preserved 
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in final composites, where ZIF-67-derived Co/C polyhe-

drons were homogeneously distributed on carbon skeletons 

originated from melamine foam (Fig. 10a, b). Actually, 

the involvement of melamine foam also regulated carbon 

content of Co/C composites to some extent. These positive 
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changes not only made a solid contribution to EM absorp-

tion in both RL intensity (− 59.8 dB) and EAB (5.64 GHz), 

as well as ultrabroad EM response in the frequency range 

of 2.0–18.0 GHz (Fig. 10c), but also brought some addi-

tional merits in lightweight and heat insulation (Fig. 10d, f), 

which rendered these Co/C composites as multi-functional 

materials with great potential in plenty of practical applica-

tions. Biomass materials are also common three-dimensional 

scaffolds in virtue of their biological structure [150, 151]. 

Wheat flour and cotton fiber were utilized as biomass hard 

templates to combine with Co/C polyhedrons derived from 

ZIF-67 crystals [152, 153], and both of them could promise 

effective improvements in EM absorption, and especially for 

cotton fiber, the corresponding Co/C composite strength-

ened RL intensity down to − 50.0 dB and extended EAB 

even to 8.0 GHz. Xiong et al. impregnated delignified wood 

aerogel (WA) into a stock solution of  Co2+, PVP, and  Fe3O4 

nanoparticles and then incubated  Fe3O4/ZIF-67@WA 

with the help of 2-methylimidazole and finally converted 

 Fe3O4/ZIF-67@WA into hierarchical composite (FeCo/C@

WC) with tomato-like polystage micro-nanoarchitecture 

(Fig. 10g) [154]. FeCo alloy nanoparticles could be uni-

formly dispersed on the surface of carbon skeletons from 

WA. The presence of the microstructure is quite beneficial 

to the construction of conductive network, thus facilitating 

electron transfer and upgrading conductivity of composites. 
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By optimizing the loading of  Fe3O4 nanoparticles, this hier-

archical composite could exhibit superior EM absorption 

with strong RL intensity less than − 40.0 dB and desirable 

EAB as broad as 8.9 GHz with the absorber thickness of 1.5 

and 1.9 mm, respectively.

4.3  Interfacial Ion Exchange

Interfacial ion exchange is an alternative strategy to cre-

ate hollow microstructure in the absence of any soft/hard 

templates, where a stable heterogeneous shell will be firstly 

generated through the exchange of organic ligands on MOFs 

surface with some anionic ions in solution, and then, a hol-

low cavity can be shaped with the constant consumption of 

interior MOFs core and reserved in final carbon-based com-

posites after high-temperature pyrolysis [155, 156]. Wang 

and co-workers found that nickel nitrate could be used to 

react with ZIF-67 to form uniform NiCo-LDH coating on 

the surface through a hydrolysis-controlled ion-exchange 

process [157]. During the reaction, the hydrolysis of  Ni2+ 

produced numerous protons, which broke the chemical bond 

between metal center and ligand group, and the outward dif-

fusion of cobalt ions induced the formation of a big void 

inside NiCo-LDH shell. Hollow carbon polyhedrons with 

uniform dispersion of CoNi alloy were finally obtained. 

EM measurements confirmed that minimum RL intensity 

and EAB with the absorber thickness of 2.0 mm of such a 

hollow CoNi/C composite were − 61.0 dB and 5.2 GHz, 
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respectively. Zhang et al. further revealed that the void space 

between ZIF-67 core and NiCo-LDH shell could be ration-

ally regulated by reaction time, and however, no matter when 

the reaction was terminated, all intermediate ZIF-67@NiCo-

LDH precursors would be converted into hollow carbon 

polyhedrons decorated by NiCo nanoparticles (Fig. 11a–d) 

[158]. The only thing that changed with reaction time was 

Ni/Co atomic ratio. The composite with a relatively high Ni/

Co ratio (0.95) also displayed broad EAB close to 5.0 GHz 

with the absorber thickness of 2.0 mm, and meanwhile, the 

introduction of Ni atoms could more or less raise oxida-

tion resistance of magnetic metal nanoparticles therein. It 

was very interesting that Zhao et al. applied this strategy on 

the surface of short CNFs [159]. As the support of hollow 

magnetic carbon polyhedrons, short CNFs optimized car-

bon content in final composites and realized desirable EM 

enhancement, further broadening EAB more than 6.0 GHz. 

In addition to routine  OH−,  S2− is also considered to be a 

kind of effective anions that may work for interfacial ion 

exchange of MOFs [160–162]. For example, when ZIF-67 

was impregnated into thioacetamide solution, there would 

be a thin layer of cobalt sulfide due to the combination of 

 Co2+ and  S2−, and a gap between ZIF-67 core and sulfide 

shell could be observed because the dissolution of ZIF-67 

was faster than the deposition of cobalt sulfide (Fig. 11e, f) 

[163]. Of note was that the final composites presented typi-

cal yolk-shell microstructure (Fig. 11g), a more favorable 

configuration for EM consumption [121], with Co–C as the 

core and  Co9S8 as the shell. Multiple interfacial polariza-

tions and multiple reflections of EM waves induced by the 

distinct core@void@shell architecture endowed this Co/C/

Co9S8 composite with excellent EAB as broad as 8.2 GHz 

(Fig. 11h).

Along with the flourish of mussel-inspired surface engi-

neering [164], PDA is evolving as a structure-directing agent 

to induce interfacial ion exchange, because it can provide 

stronger chemical complexation to metal ions than those 

conventional organic ligands [165]. Moreover, PDA can be 

also taken as a supplementary carbon source to amend EM 

properties of magnetic carbon-based composites [166, 167]. 

Wang et al. [100] demonstrated the conversion of ZIF-67 

polyhedrons into hollow Co/C nanoboxes with the assis-

tance of PDA layer.  Co2+ released from the precipitation-

dissolution equilibrium of ZIF-67 crystals would be quickly 

captured by PDA layer attached on ZIF-67 polyhedrons, 

resulting in the formation Co-PDA shells. In this case, the 

equilibrium was destroyed, and thus,  Co2+ would constantly 

release from interior ZIF-67 cores, which caused the inward 

shrinkage of ZIF-67 cores and their separation with external 

Co-PDA shells. Finally, hollow Co-PDA nanoboxes were 

yielded and further transformed into hollow Co/C nanoboxes 

with good dispersion of Co nanoparticles. Hollow Co/C nan-

oboxes could promise good EM absorption performance, 

including minimum RL intensity of − 41.5 dB and broad 

EAB of 5.4 GHz even if its loading in paraffin matrix was 

very low (only 5 wt%). Such a performance was benefited 

from the synergy between Co nanoparticles and carbon com-

ponent, as well as multiple reflections and scatters induced 

by hollow microstructure. In a similar study, Qiu et  al. 

accomplished the encapsulation of Ni(OH)2/ZIF-67 with 

PDA layer and harvested hollow dodecahedral carbon cap-

sules decorated with high-density CoNi alloy nanoparticles 

[168]. By adjusting the amount of Ni(OH)2, the chemical 

composition of CoNi/C composite could be easily tailored, 

and the optimized composite could consume EM waves in 

Ku band completely with the absorber thickness of 2.3 mm.

4.4  Heterogeneous Contraction

In general, high-temperature pyrolysis may result in a con-

traction of organic frameworks and produce carbon-based 

counterparts with smaller particle size [169, 170]. However, 

if a heterogeneous coating is deposited on the surface of 

MOFs before high-temperature pyrolysis, the carbonization 

of organic frameworks will be different. For an inorganic 

coating, the carbonization of organic frameworks can be 

initiated at relatively low temperature and preferentially 

occur at those interfaces; for an organic polymer coating, 

its self-carbonization will be dominant in the initial stage 

[171, 172]. That is to say, no matter what kind of coating is 

applied, a new carbon layer will be in situ generated around 

MOFs crystals. This carbon layer not only plays an impor-

tant role in stabilizing organic frameworks and resisting their 

contraction, but also provides nucleation sites for gaseous 

carbonaceous fragments released from interior MOFs cores. 

With the increase in pyrolysis degree, MOFs cores will be 

continuously damaged and finally disappear due to the accu-

mulated stresses in their central parts [173], leading to the 

formation of hollow microstructure. Although both interfa-

cial ion exchange and heterogeneous contraction can account 

for the cavitation in final carbon-based composites, their 
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effect mechanisms are quite different, where interfacial ion 

exchange is more dependent on the chemical environment of 

MOFs crystals and heterogeneous contraction creates hollow 

microstructure during high-temperature pyrolysis. Silica and 

PDA are typical coatings that can work for heterogeneous 

contraction [173–176]. For example, our group previously 

conducted the polymerization of dopamine on the surface 

of FeCo PBAs [166], while interfacial ion exchange men-

tioned above was not observed because PBAs were more 

stable than ZIFs [166, 177]. The PDA coating was finally 

converted into hollow carbon nanocages that encapsulated 

core–shell FeCo@C nanoparticles derived from FeCo PBAs. 

EM measurements revealed that the optimal weight ratio of 

dopamine to FeCo PBAs was 0.75, and the minimum RL 

and the broadest EAB of the corresponding composite were 

− 67.8 dB and 5.3 GHz with the absorber thicknesses of 1.7 

and 2.0 mm, respectively.

Of note is that, in some cases, a heterogeneous MOFs 

layer can also display similar effect to silica or PDA [178]. 

For example, Liu’s group demonstrated the synthesis of hol-

low Co/N-doped carbon nanocages through thermal trans-

formation of ZIF-8@ZIF-67 composites and investigated 

their EM properties (Fig. 12a) [179]. They found that ZIF-

67 shell indeed counteracted the inward shrinkage of ZIF-8 

polyhedrons during high-temperature pyrolysis and induced 

the formation of a hollow cavity in final composite. Hollow 

microstructure not only optimized impedance matching, but 

also enhanced conductive loss, intensified dipolar/interfacial 

polarization, and induced multi-scattering, resulting in the 

significant improvement in EM absorption performance as 

compared with solid N-doped carbon nanoparticles from 

direct pyrolysis of ZIF-8 polyhedrons. In particular, when 

the absorber thickness was 2.2 mm, the minimum RL inten-

sity of hollow Co/N-doped carbon composite reached up 

to − 52.5 dB, and the corresponding EAB could cover the 

frequency range of 11.9–15.4 GHz (Fig. 12b, c). After the 

introduction of Mo species in outer ZIF-67 coating, they 

could further obtain hollow CoMo@N-doped carbon com-

posite and broaden EAB in the whole Ku band with the 

absorber thickness of 2.0 mm (Fig. 12d, e) [178]. However, 

if ZIF-67 is chosen as the interior core instead, no hollow 

cavities can be observed in the pyrolysis products of ZIF-

67@ZIF-8 polyhedrons [179, 180]. It is a consensus that 

ZIF-67 with relatively poor thermal stability may produce an 

inward adhesive force that impels the inward contraction of 

ZIF-8 shell with the increase in pyrolysis temperature [180]. 

Interestingly, Li et al. found a PDA layer on the surface of 

ZIF-67@ZIF-8 polyhedrons could reverse the situation 

and induce the formation of hollow microstructure in the 

resultant Co/C composites [181]. In addition, a few studies 

indicated that several specific MOFs could spontaneously 

change into magnetic carbon-based composites with hol-

low or yolk-shell microstructure during high-temperature 

pyrolysis, because the temperature gradient might cause the 

early carbonization of external surface and produce a carbon 

layer that could survive from the strain generated by inward 

contraction of organic frameworks [182]. For example, 

Xiong et al. directly fabricated yolk-shell Ni/C composites 

using low-crystalline and solid Ni-BTC microspheres as 

the precursor, and they even developed a double yolk-shell 

microstructure by the introduction of Co atoms in Ni-BTC 

(Fig. 12f) [182]. Double yolk-shell NiCo/C microspheres 

showed better EM absorption performance in both mini-

mum RL intensity (− 52.2 dB vs. − 40.2 dB) and optimal 

EAB (7.2 GHz vs. 3.4 GHz) with the absorber thickness of 

2.1 mm, demonstrating the positive effects on composition 

optimization and microstructure design. It is unfortunate that 

this simple strategy only works in some random reports, and 

the corresponding universality still needs to be explored.

5  Overview about EM Absorption 

Performance of MOFs-derived Magnetic 

Carbon-Based Composites

Most of the above examples demonstrate that rational 

manipulation on the composition and microstructure of 

MOFs-derived magnetic carbon-based composites can make 

a solid contribution to their EM absorption enhancement. As 

we all know, an excellent microwave absorber should have 

four key features, namely strong absorption, wide frequency 

response, thin applied thickness, and lightweight (low filler 

loading). In Table 1, we list these parameters of some rep-

resentative candidates from the categories mentioned above 

to intuitively predict their prospects as high-performance 

microwave absorbers. One can easily find that almost all 

microwave absorbers in this table can produce very strong 

RL intensity less than − 60.0 dB, suggesting either compo-

sition optimization or microstructure design will be highly 

effective for deep conversion of EM energy. Meanwhile, 

some of them, e.g., FeCoNi@C microsphere [68], FeCo/

NC/rGO composite [85], FeCo/C@WC aerogel [154], 
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yolk-shell Co–C/Void/Co9S8 [163], and yolk-shell NiCo/GC/

NPC [182], even promise considerable EAB over 7.0 GHz, 

which further highlights the universality of these two kinds 

of modification strategies in widening absorption frequency. 

However, such excellent EM absorption performance of 

FeCoNi@C microsphere and FeCo/NC/rGO composite is 

achieved with a relatively high filler loading or a relatively 

large applied thickness [68, 85], and in contrast, FeCo/C@

WC aerogel shows fantastic RL intensity and EAB with the 

filler loading and applied thickness of 15 wt% and 1.9 mm, 

respectively. Based on four features mentioned above, 

FeCo/C@WC aerogel is one of MOFs-derived candidates 

with the best practical application prospects. The significant 

reinforcement in EM absorption can be explained from the 

following aspects: (1) the proper weight ratio of magnetic 

nanoparticles to carbon components can efficiently regulate 

the gap between relative complex permittivity and complex 

permeability, which improves the impedance matching 

effectively; (2) the involvement of aerogel microstructure 

is not only conducive to the formation of conductive net-

work, promoting the migration and hopping of electrons 

and consolidating conductivity loss, and meanwhile, it also 

brings high dispersion of magnetic nanoparticles, reducing 

the possibility of skin effect and developing full capability 

of magnetic components; (3) the extremely high porosity 

in aerogel increases the propagation distance of incident 

EM waves and induces multiple reflections of incident EM 

waves, so that the final composite can realize good perfor-

mance with both low filler loading and small applied thick-

ness; (4) the abundant heterogeneous interfaces and various 

defects in carbon frameworks are greatly favorable for the 

accumulation of various polarization, especially for interfa-

cial polarization and dipole orientation polarization, supply-

ing more consumption paths for incident EM waves.

In order to further address the advantage of MOFs-

derived strategy, EM absorption performance of some typi-

cal microwave absorbers prepared from different methods 

is also listed in Table 2, where rGO- and MXene-based 

composites, two kinds of the most attractive candidates, 

are taken as the primary references. Benefiting from unique 

two-dimensional structure, individual rGO or MXene can 

produce EM absorption ability to some extent, and espe-

cially for  Ti3C2Tx, its minimum RL intensity and EAB are 

− 40.0 dB and 6.8 GHz, respectively, with the absorber 

thickness of 2.0 mm and the filler loading of 50 wt% [183, 

184]. However, high-temperature treatment usually causes 

Table 1  EM absorption performance of some representative MOFs-derived magnetic carbon-based composites

MOF precursors Modificated strategies Samples RL values (dB) [fre-

quency (GHz), thickness 

(mm)]

EAB (GHz) [range 

(GHz), thickness 

(mm)]

Filler 

loading 

(wt%)

Refs.

Co-MOFs Glucose additive Co/C micropheres − 71.3 (6.2, 3.8) 6.6 (11.3–17.9, 2.0) 60 [9]

CoNi-BTC rGO additive CoNi@NC/rGO com-

posite

− 68.0 (10.9, 3.0) 6.7 (11.3–18.0, 2.5) 25 [83]

MOF-74 Magnetic additive FeCoNi@C microsphere − 64.8 (15.4, 2.1) 8.1 (9.9–18.0, 2.5) 38 [68]

Fe-doped Co-MOFs rGO additive FeCo/NC/rGO composite − 43.3 (11.3, 2.5) 9.3 (8.7–18.0, 2.6) 25 [85]

ZIF-67 MF sponge template Co/CNTs/CS sponge − 51.2 (12.0, 2.2) 4.1 (10.3–14.4, 2.2) 5 [149]

ZIF-67 Melamine foam template MZ800 foam − 59.8 (12.9, 2.3) 5.6 (12.4–18.0, 2.1) 20 [147]

ZIF-67 Wood aerogel template FeCo/C@WC aerogel − 47.6 (15.7, 1.5) 8.9 (9.1–18.0, 1.9) 15 [154]

FeCo PBAs PDA coating Hollow FeCo@C cage − 67.8 (5.3, 1.7) 5.3 (11.0–16.3, 2.0) 50 [166]

NiCo PBAs Chemical etching Hollow NiCo@C micro-

box

− 68.4 (13.4, 2.1) 5.8 (12.2–18.0, 2.0) 40 [134]

ZIF-67 CoNi-LDH coating Hollow CoNi/C com-

posite

− 61.0 (13.7, 2.0) 5.2 (12.8–18.0, 2.0) 10 [157]

ZIF-67 Chemical etching Hollow Co/C cage − 60.6 (9.8, 2.4) 5.1 (10.8–15.9, 1.9) 10 [129]

ZIF-67 PDA coating Hollow Co/N/C@MnO2 − 58.9 (12.0, 3.7) 5.5 (9.5–15.0, 1.9) 15 [100]

ZIF-67 Cobalt sulfide coating Yolk-shell Co–C/Void/

Co9S8

− 54.0 (3.0, 4.9) 8.2 (9.8–18.0, 2.2) 25 [163]

NiCo-MOFs Gradient carbonization Yolk-shell NiCo/GC/

NPC

− 52.2 (7.2, 2.1) 7.2 (10.8–18.0, 2.1) 30 [182]
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remarkable degradation in EM absorption performance of 

 Ti3C2Tx, which may be attributed to the stacking of two-

dimensional nanosheets [185]. The introduction of mag-

netic nanoparticles cannot only suppress the stacking of 

rGO or MXene nanosheets, but also supplement salutary 

magnetic loss mechanism in final composites. As a result, 

both magnetic rGO-based composites and magnetic MXene-

based composites displayed more or less EM enhancement 

[186–189]. It is worth noting that CoNi/rGO and FeCo/

Ti3C2Tx even generate very broad EABs of 7.3 and 8.8 GHz 

with the absorber thickness of 2.0 and 1.6 mm, respectively, 

while these achievements require high filler loading over 

60 wt% [190, 191]. In contrast, some microwave absorbers 

from MOFs-derived strategy, such as FeCo/C@WC aero-

gel, CoNi@NC/rGO, and FeCo/NC/rGO, exhibit equal or 

even broader EABs, and meanwhile, their RL intensities are 

also smaller than those of conventional composites [83, 85, 

154]. More importantly, their filler loadings are obviously 

decreased to no more than 30 wt%, demonstrating the supe-

riority of MOFs-derived strategy intuitively. The significant 

EM reinforcement can be attributed to MOFs characteris-

tics as we mentioned above: on the one hand, their periodic 

atom arrangements promote uniform dispersion of magnetic 

nanoparticles, which fully develops their intrinsic magnetic 

loss, and on the other hand, the good chemical homogeneity 

of MOFs-derived carbon composites always induces vari-

ous polarization relaxations favorable for EM attenuation. 

In addition, the introduction of various additives, such as 

rGO and wood aerogel, also establishes some microstructure 

advantage to intensify energy conversion of incident EM 

waves.

6  Conclusion and Outlooks

Herein, the recent developments of various strategies on 

elaborate composition and microstructure design in MOFs-

derived magnetic carbon-based composites, together with 

their promising applications in EM absorption, are summa-

rized in detail. It is undoubted that composition optimiza-

tion is indeed favorable for the reinforcement of microwave 

absorption performance by improving impedance matching 

and EM characteristics of final composites, and microstruc-

ture upgradation brings many additional effects, including 

the formation of conductive networks and the substantial 

extension in propagation distance of incident EM waves, as 

well as more powerful dipole orientation polarization and 

interfacial polarization.

Although some breakthroughs have been witnessed in 

the synthesis and application for EM absorption of MOFs-

derived magnetic carbon-based composites with tunable 

chemical compositions and various microstructures, this 

research field still remains many challenges. First, the com-

bination of carbon components and magnetic nanoparticles 

can overcome the shortcomings of individual counterparts 

and produce a synergistic effect to upgrade EM absorption 

performance, while most composites with optimized ratio 

of magnetic and carbon components are only active in the 

Table 2  Comparison of EM absorption performance for some representative microwave absorbers from various preparation methods

Samples Preparation RL values (dB) [fre-

quency (GHz), thickness 

(mm)]

EAB (GHz) [range 

(GHz), thickness 

(mm)]

Filler loading (wt%) Refs.

rGO sheet Chemical reduction method − 37.2 ( 5.9, 3.5) 2.5 (8.0–10.5, 3.5) 30 [183]

Ti3C2Tx Mixture pyrolysis − 40.0 (7.8, 2.0) 6.8 (11.2–18.0, 2.0) 50 [184]

Annealed-Ti3C2Tx Calcination − 48.4 (11.6, 1.7) 2.8 (9.5–12.3, 1.9) 50 [185]

Ni/graphene composite Atomic layer deposition method − 22.1 (15.0, 2.0) 4.0 (12.1–16.1, 2.0) 10 [186]

Fe/graphene composite Hydrothermal method − 45.0 (7.1, 3.0) 4.4 (9.9–14.3, 2.0) 40 [187]

Ni-modified  Ti3C2Tx Decoration − 24.9 (11.2, 2.0) 6.3 (11.7–18.0, 1.5) Unknown [188]

Ti3C2Tx/Ni chain Decoration − 49.9 (11.9, 1.8) 2.1 (10.9–13.0, 1.8) 50 [189]

CoNi/rGO composite Decoration − 31.0 (4.9, 4.0) 7.3 (9.5–16.8, 2.0) 60 [190]

Ti3C2Tx/FeCo composite Decoration − 17.9 (9.3, 1.6) 8.8 (9.2–18.0, 1.6) 70 [191]

CoNi@NC/rGO composite MOFs-derived method − 68.0 (10.9, 3.0) 6.7 (11.3–18.0, 2.5) 25 [83]

FeCo/NC/rGO composite MOFs-derived method − 43.3 (11.3, 2.5) 9.3 (8.7–18.0, 2.6) 25 [85]

FeCo/C@WC aerogel MOFs-derived method − 47.6 (15.7, 1.5) 8.9 (9.1–18.0, 1.9) 15 [154]
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frequency range of 8.0–18.0 GHz. This situation seriously 

hinders their practical application in the field of electron-

ics industry since the effective working frequency of many 

electronic devices is usually lower than 8.0 GHz, and thus, 

the composition optimization for low-frequency absorp-

tion is urgently developed. Second, the state of the art in 

microstructure design is usually dependent on some assisted 

strategies (e.g., etching, templates, and  SiO2/polymer coat-

ing) and involves complex multi-step processes, which set 

an obstacle for their practical application. A simple strategy 

is still desirable for microstructure upgradation in MOFs-

derived magnetic carbon-based composites. For example, 

sonochemistry has displayed its advantages in the creation 

of various unique microstructures in MOFs derivatives by 

breaking the dimensional limitation and controlling the 

thickness of shell, while it is still inaccessible in the field of 

EM absorption. Third, it is well known that the frameworks 

of MOFs crystals are designable and can be incorporated 

with different metal ions/clusters and organic linkers during 

the self-assembly process, and thus, it will be expected to 

obtain high-performance microwave absorbers from various 

MOFs. However, the current works mainly concentrate on 

ZIFs, PB or MIL series derivatives, which means other novel 

MOFs may reveal new outcomes to enrich the diversity of 

microwave absorbers. Fourth, there are hundreds of papers 

on EM absorption of magnetic carbon-based composites 

with different microstructures published in recent years, 

and most of them lack the in-depth understanding about 

the microstructure-property relationship. A comprehensive 

investigation on attenuation mechanism of different micro-

structure to EM waves will be greatly helpful for readers to 

understand how to design the microstructure of their sam-

ples. Fifth, performance is just one of the requirements in 

practical application, and besides, environmental tolerance 

is another important character for microwave absorbers to 

keep their durability. The encapsulation of magnetic nano-

particles on carbon matrix may be efficient to improve the 

environmental tolerance of magnetic carbon-based compos-

ites. What’s more, in terms of current market prospect, high 

cost of MOFs is an inevitable barrier for the commercializa-

tion of their derivatives, and thus, the search of an effective 

strategy for low-cost mass production is also a challenging 

and in high demand task. When these problems are solved 

one by one with the tireless efforts of global researchers, 

novel magnetic carbon-based composites with reasonable 

compositions and elaborate microstructures from MOFs will 

exhibit a bright prospect as high-performance microwave 

absorbers for EM pollution precaution.
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