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Abstract

Photo aesthetics assessment is challenging. Deep con-

volutional neural network (ConvNet) methods have recently

shown promising results for aesthetics assessment. The per-

formance of these deep ConvNet methods, however, is often

compromised by the constraint that the neural network only

takes the fixed-size input. To accommodate this require-

ment, input images need to be transformed via cropping,

scaling, or padding, which often damages image composi-

tion, reduces image resolution, or causes image distortion,

thus compromising the aesthetics of the original images. In

this paper, we present a composition-preserving deep Con-

vNet method that directly learns aesthetics features from the

original input images without any image transformations.

Specifically, our method adds an adaptive spatial pooling

layer upon the regular convolution and pooling layers to

directly handle input images with original sizes and aspect

ratios. To allow for multi-scale feature extraction, we de-

velop the Multi-Net Adaptive Spatial Pooling ConvNet ar-

chitecture which consists of multiple sub-networks with dif-

ferent adaptive spatial pooling sizes and leverage a scene-

based aggregation layer to effectively combine the predic-

tions from multiple sub-networks. Our experiments on the

large-scale aesthetics assessment benchmark (AVA [29])

demonstrate that our method can significantly improve the

state-of-the-art results in photo aesthetics assessment.

1. Introduction

Subjective photo quality and aesthetics assessment is

challenging. Existing photo aesthetics assessment meth-

ods extract visual features and then employ various ma-

chine learning algorithms to predict photo aesthetic val-

ues [2, 5, 7, 12, 13, 17, 25, 27, 28, 31, 32, 42, 48, 51].

Feature extraction is a critical step for aesthetics assess-

ment. Early methods manually design aesthetics features

according to people’s aesthetics perception and photogra-

phy rules [2, 5, 7, 17]. Manually designing effective aes-

thetics features, however, is still a challenging task although

these features have shown encouraging results. Other ap-

proaches have been developed to leverage more generic im-

(a) Cropping

(b) Scaling

(c) Padding plus scaling

Figure 1: Effect on image transformation on photo aes-

thetics. (a): Cropping compromises the composition of

the originally well-composed image that follows rule of

thirds. (b): Scaling distorts the important object. (c): While

padding and scaling keeps the original aspect ratio, it some-

times leads to the loss of the image clarity. In this example,

the spots on the ladybug is difficult to see in the padding

result. The added boundaries between the image and the

padding area can also confuse a deep learning algorithm.

age features such as Fisher Vector [28, 35, 36] and bag of vi-

sual words [42] to predict photo aesthetics. While obtaining

promising performance, the image representation provided

by those generic features may not be optimal for photo aes-
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thetics as they are designed to represent natural images in

general, not specifically for aesthetics assessment.

Deep learning methods, which have shown great success

in various computer vision tasks, have recently been used to

extract effective aesthetics features [14, 25, 26, 47]. How-

ever, applying existing deep learning algorithms, such as

deep convolutional network and deep belief network, to aes-

thetics feature learning is non-trivial. One major challenge

is posed by the fixed input size restriction required by the

neural networks. This restriction poses a particular chal-

lenge for applying a deep neural network algorithm to aes-

thetics assessment. To meet this restriction, input images

need to be transformed via cropping, scaling, or padding

before feeding into the neural network. These transforma-

tions often compromise the aesthetics of the original im-

ages. As illustrated in Figure 1, cropping can sometimes

negatively change the image composition, such as turning

a well-composed photo in (a) that originally follows rule of

thirds into an ill-composed one. Scaling distorts the salient

object in (b) and padding plus uniformly scaling reduces the

original image resolution and compromises the detail clar-

ity of the important object as shown in (c). Padding also

introduces artificial boundaries between the original image

and the padding area, and moreover, the locations of these

boundaries vary over different images, which could possi-

bly confuse the neural network. Finally, for deep learning,

assigning the aesthetics label of an original image to its

transformed versions during training will likely make the

data more ambiguous and thus compromise the ability of

the network to learn good discriminative features.

Existing methods address this fixed-size restriction by

designing dedicated convolutional neural network architec-

tures to simultaneously take multiple versions of the trans-

formed images as input [25, 26]. These dedicated networks

show promising results; however, they still learn from trans-

formed inputs and it is unclear whether the aesthetics labels

of the original images can be transferred to the collection of

their transformed versions.

In this paper, we present a deep Multi-Net Adaptive Spa-

tial Pooling Convolutional Neural Network (MNA-CNN)

method for photo aesthetics assessment that can directly

process the original images without any image transforma-

tion. Our method adds an adaptive spatial pooling layer

upon regular convolutional and pooling layers. This adap-

tive spatial pooling layer can handle input images with dif-

ferent sizes and aspect ratios. To allow for multi-scale

feature extraction, our deep network architecture consists

of multiple sub-networks, each having an adaptive spatial

pooling layer with a different pooling size. We further con-

struct a scene-aware aggregation layer to effectively com-

bine the predictions from these multiple sub-networks.

Our MNA-CNN method has a major advantage in that it

can directly handle images with their native sizes and aspect

ratios, which is critical for aesthetics assessment. Our study

shows that by learning from the original images without any

transformations, our MNA-CNN network can learn to cap-

ture some subtle compositions that are important for aes-

thetics. Our method is also capable of extracting features at

multiple scales and naturally incorporating scene categories

for aesthetics assessment. As shown in our experiments, our

method can significantly improve the state-of-the-art results

for photo aesthetics assessment.

2. Related Work

Early methods for image quality assessment measure im-

age quality by detecting and measuring various distortions,

including blocking, ringing, mosaic patterns, blur, noise,

ghosting, jerkiness, smearing, etc [3, 4, 22, 40, 49, 33, 39,

30, 50, 40]. While they are effective for measuring qual-

ity loss due to compression or data loss during transmis-

sion, these low-level distortion measurement-based metrics

sometimes do not well reflect people’s subjective perception

of image quality.

Subjective image quality assessment methods have also

been developed [2, 5, 7, 12, 13, 17, 25, 27, 28, 31, 42, 48,

51]. Many of these methods represent images using manu-

ally crafted features that are carefully designed to approxi-

mate a number of photographic and psychological aesthet-

ics rules, such as rule of thirds, visual balance, rule of sim-

plicity, etc [2, 5, 7, 17]. A classifier is then trained using

those features to label an input image as low or high quality.

Some other approaches directly use generic image features

such as Fisher Vector [28, 35, 36] and bag of visual words

[42] to predict photo aesthetics.

Recently, deep learning methods have shown great suc-

cess in various computer vision tasks, such as object recog-

nition, object detection, and image classification [10, 14,

15, 16, 19, 34, 37, 38, 41, 43, 44, 45, 46, 52, 53, 54]. Deep

learning methods, such as deep convolutional neural net-

work and deep belief network, have also been applied to

photo quality/aesthetics assessment and have shown good

results [25, 26, 47]. As most deep neural network archi-

tectures require fixed-size inputs, recent methods [25, 26]

transform input images via cropping, scaling, and padding,

and design dedicated deep network architectures, such as

double-column or multi-column networks, to simultane-

ously take multiple transformed versions as input. Since

transformation often affect the aesthetics quality of the orig-

inal images as discussed in Section 1, this paper designs a

dedicated deep Multi-Net Adaptive Spatial Pooling Convo-

lutional Neural Network (MNA-CNN) architecture that can

directly process the images with its native size and aspect

ratio, thus preserving the quality of the original images.

The design of our MNA-CNN network is inspired by the

success of the SPP-Net for visual recognition [11]. Like

SPP-Net, our method also constructs an adaptive spatial
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pooling layer to allow our network to accept as input images

at its original size and aspect ratio. Compared to SPP-Net,

our method has two main differences. First, unlike SPP-Net

that adopts the training strategy that use multiple fixed-size

inputs during training, our method allows arbitrary-size in-

put to be used both in training and testing. Second, instead

of using the spatial pyramid pooling layer which concate-

nates adaptive spatial pooling layers with different sizes to-

gether, our method contains multiple sub-networks for dif-

ferent pooling sizes. That allows these sub-networks to

learn effective feature detectors for images with different

resolutions and aspect ratios and at the same time simplify

the fully connected layer which makes the network effective

even with a limited amount of training data.

3. Composition-preserving Deep Network for

Photo Aesthetics Assessment

We first briefly review how the conventional deep con-

volutional neural network (ConvNet) can be applied to aes-

thetics assessment and then describe our dedicated deep

Multi-Net Adaptive Spatial Pooling ConvNet for photo aes-

thetics assessment.

Background. A deep ConvNet consists of a number of

convolutional and pooling layers, followed by some fully

connected layers. In this paper, we employ the supervised

feature transfer technique that has lead to many success-

ful computer vision applications. Instead of designing and

training a new ConvNet from scratch, we reuse a classifica-

tion ConvNet architecture pre-trained on a large collection

of images such as ImageNet [6]. We then modify the top

layer of the network to adapt to our aesthetics classification

task. In particular, we modify an ImageNet network by turn-

ing their 1000-way softmax prediction layer into a single

linear unit followed by a sigmoid activation (Figure 2(a)).

The resulted ConvNet represents the mapping function

fW : I → P (QI = high|I), where QI represents the aes-

thetics quality of the image I . Let fcl(I) be the output of

the last fully connected layer, the sigmoid activation unit

models the posterior probability of the input image having

a high aesthetics quality as

P (QI = high|I) =
1

1 + e−fcl(I)
(1)

The model is trained on a collection of training exam-
ples S = {In, yn}, where yn is the binary aesthetics label
(high or low) of the image In. Let W be the set of weights
from all the layers of the network. During training, the op-
timal value of W is determined by minimizing the follow-
ing binary cross-entropy objective function typically using
a stochastic gradient descend algorithm.

l(W ) =

N∑

n=1

yn log(fW (In)) + (1− yn) log(1− fW (In)) (2)

…

Convolutional and pooling layers Fully-connected layers

Input

top–level 

max-pooling

(a) Regular ConvNet architecture for aesthetics assessment

Input

Last 

convolutional 

feature maps

…

Adaptive spatial 

pooling (ASP)

Adjustable-sized 

receptive field

Fixed output dimension

(b) Adaptive spatial pooling layer

Figure 2: ConvNet architecture for aesthetics assessment

and adaptive spatial pooling layer. Similar to the con-

ventional pooling layer, the adaptive spatial pooling layer

(ASP) performs the pooling (e.g. max pooling) operator

over local image regions. However, instead of fixing the re-

ceptive field’s size, ASP fixes the output dimension while

adjusting the size of the receptive field to handle images

with different sizes and aspect ratios.

The major challenge in applying existing ConvNets to

photo aesthetics assessment is the fixed-size constraint. Due

to this restriction, input images need to be transformed to

the pre-defined size before given to the network. As dis-

cussed in Section 1, such transformation can sometimes

severely affect the ability of the network to learn useful

features for aesthetics analysis because transforming the

images would often compromise the important factors of

the image aesthetics perception such as composition, detail

clarity, and/or image content.

3.1. Composition­preserving Deep ConvNet

To remove the fixed-size constraint, we employ the adap-

tive spatial pooling strategy [11] to enable the ConvNet to

operate on an image in its original form during both training

and testing. Below, we first describe the concept of adap-

tive spatial pooling and then elaborate how our method in-

corporates adaptive spatial pooling and develop a Multi-Net

Adaptive-Pooling ConvNet that works with images with

their original sizes and aspect ratios.
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Adaptive Spatial Pooling. As discussed in previous

work [11, 23], the requirement of fixed-size input imposed

by existing ConvNets is due to the last pooling layer of the

convolutional structure. The last pooling layer produces the

inputs for the subsequent fully-connected layer which de-

mands fixed-size inputs. The main problem is that conven-

tional pooling layers pre-define the size of the local recep-

tive fields (i.e. the local regions on which to pool). The

fixed-size receptive field constraint makes the output dimen-

sion of a conventional pooling layer depend on its input di-

mension. As a result, the input image size needs to be fixed

in order for the network to generate the input of the dimen-

sion required by the fully-connected layers.

Inspired by the spatial pyramid pooling method [11], we

relax that problematic fixed-size constraint by employing

an alternative pooling strategy: adaptive spatial pooling.

As illustrated in Figure 2(b), the adaptive spatial pooling

layer performs the pooling operator (e.g. max pooling) over

local image regions similarly to the conventional pooling

layer. However, different from the conventional pooling

layers where the size of the receptive field is fixed, the adap-

tive spatial pooling layer instead fixes the output dimension,

and adjust the receptive field size accordingly. This allows

the adaptive spatial pooling layer to generate the fixed-size

output from input with various sizes. Any existing ConvNet

structure can then be modified to accept arbitrary-size input

images by replacing the last conventional pooling layer with

the adaptive spatial pooling layer.

3.1.1 Multi-Net Adaptive-Pooling ConvNet

The importance of multi-scale feature extraction has been

emphasized in various computer vision and deep learning

research [1, 9, 20, 21]. Using a single pre-defined size

for the top pooling layer often restricts the scale at which

the lower level features are extracted. The recent SPP-Net

method addresses this problem with a spatial pyramid strat-

egy that uses multiple adaptive pooling layers with different

sizes and concatenates their outputs [11]. While such a spa-

tial pyramid pooling method allows multi-scale pooling, it

restricts all pooling components to share the same lower-

level features, which makes it more difficult to learn dedi-

cated features specifically for different pooling layer sizes.

More importantly, as the upper fully connected layer is con-

nected to all the pooling layer, it often needs to learn the

interactions between them, which makes the learning task

more complex and thus requires a large amount of training

data. To address these problems, we develop a Multi-Net

Adaptive-Pooling method to combine adaptive pooling lay-

ers of different sizes.

Our Multi-Net Adaptive-Pooling ConvNet (MNA-CNN)

consists of multiple sub-networks, each of which is a copy

of the base network with the last pooling layer replaced by

an adaptive spatial pooling layer with a specific scale, as

Lower level 

convolu�on 

and pooling 

layers

Input image

…

Fully-connected layers

ASP : 

Lower level 

convolu�on 

and pooling 

layers

Fully-connected layers

Lower level 

convolu�on 

and pooling 

layers

Fully-connected layers

ASP sub-network

ASP : ASP : 

Figure 3: Multi-Net Adaptive-Pooling ConvNet (MNA-

CNN). Our MNA-CNN network contains multiple sub-

networks, each being a copy of the base network with the

last pooling layer replaced by an adaptive spatial pooling

layer (ASP) with a specific scale. All sub-networks share

the same input image and their outputs are combined with

the average operator to obtain the overall prediction.

illustrated in Figure 3. All sub-networks share the same

input image and their outputs are combined with the average

operator to obtain the overall prediction. During training,

we train each sub-network separately instead of training the

whole architecture at the same time so as to minimize the

correlation among those networks, which has been shown

to improve the ensemble performance [8, 55].

3.1.2 Scene-Aware Multi-Net Aggregation

Our MNA-CNN method averages the prediction results of

multiple sub-networks as the final output. While taking the

average can leverage the complementary among the sub-

networks to improve the overall prediction results as shown

in Section 4.2, it treats all sub-networks equally regardless

of the image content. Previous research has shown that

taking the scene category of the image into account can

improve the aesthetics prediction accuracy [48]. Accord-

ingly, we enhance our MNA-CNN method with a learning-

based aggregation component to combine the results of sub-

networks in a scene-aware manner.

Specifically, we augment our MNA-CNN network with

a state-of-the-art scene-categorization deep network [54].

We replace the average operator in the MNA-CNN net-

work with a new aggregation layer that takes the concate-

nation of the sub-network predictions and the image scene-

categorization posteriors as input and output the final aes-

thetics prediction. Figure 4 shows our scene-aware MNA-

CNN network that implements the scene-aware aggregation

component using a fully-connected layer with 50 neurons.
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Figure 4: Scene-Aware Multi-Net Aggregation. We aug-

ment our network with a scene-categorization deep net-

work. The top-level classifier takes the sub-network predic-

tions and the image scene-categorization posteriors as fea-

ture vectors and produce the final aesthetics classification.

Conceptually the scene-aware aggregation layer can be

trained end-to-end along with the sub-networks. In our im-

plementation, we simplify the computational complexity in

both training and testing by first training the MNA-CNN

sub-networks and then training the aggregation on the vali-

dation data with the sub-networks fixed.

3.2. Implementation Details

Our implementation of the MNA-CNN architecture uses

k = 5 adaptive pooling layer sizes. Specifically, we imple-

ment our sub-networks with the adaptive pooling layer sizes

of 12× 12, 9× 9, 6× 6, 4× 4, and 2× 2, respectively. All

the network training and testing are done using the Torch

deep learning package1. The networks are trained with the

standard back-propagation algorithm. During training, we

fix the learning rate at 0.05 without learning rate shrinkage.

We use the VGG network (VGG-Net) [41] pre-trained on

the ImageNet dataset as our base network architecture for

supervised feature transfer. VGG-Net is one of the state-of-

the-art object-recognition networks that has been adopted

with great success to many different computer vision prob-

lems. Our experiments show that combining VGG-Net ar-

chitecture with our MNA-CNN method can significantly

improve the aesthetics assessment accuracy compared to the

state-of-the-art photo aesthetics methods. The pre-trained

VGG network model used in our implementation is ob-

tained from the BVLC CAFFE model zoo2.

For the scene-categorization ConvNet component, we

1http://torch.ch/
2https://github.com/BVLC/caffe/wiki/Model-Zoo

Method δ = 1 δ = 0

Murray et al. [29] 67.0% 66.7%

Lu et al. [24] 74.2% 75.4%

Lu et al. [26] N/A∗ 75.4%

MNA-CNN 76.1% 77.1%

MNA-CNN-Scene 76.5% 77.4%

Table 1: Comparison with the state of the art methods.
∗This result is not reported in the original paper [26].

use the Places205-GoogLeNet3 ([54]) which was pre-

trained on 205 scene categories of Places Database with

2.5 million images. The original scene categorization net-

work Places205-GoogLeNet is trained to recognize 205

scene categories. That is larger than the number of sub-

networks in our MNA-CNN architecture. To avoid the fea-

ture vectors to the aggregation layer being dominated by the

scene categorization prediction, we fine-tune the Places205-

GoogLeNet to predict only seven scene categories: human,

plant, architecture, landscape, static, animal, and night.

This set of categories was suggested in [48] and [29] as

being very related to aesthetics perception. We obtain the

training data for fine-tuning by downloading the images

from the web with the keywords as the seven corresponding

category names. Specifically, we downloaded about 10,000

images for each category from Flickr4.

4. Experiments

We experimented with our method on the AVA bench-

mark [29], which, to our best knowledge, is the largest pub-

licly available aesthetics assessment benchmark. The AVA

benchmark provides about 250,000 images in total. The

aesthetics quality of each image in the dataset was rated

on average by roughly 200 people with the ratings rang-

ing from one to ten, with ten indicating the highest aes-

thetics quality. For a fair comparison, we use the same

partition of training data and testing data as the previous

work [24, 25, 26, 29]. That is, we allocate 235,599 images

for training and 19,930 images for testing.

We follow the same procedure as the previous work [24,

25, 26, 29] to assign a binary aesthetics label to each image

in the benchmark. Specifically, images with mean ratings

smaller than 5− δ are labeled as low quality and those with

mean ratings larger than or equal to 5 + δ are labeled as

high quality. Images in the middle range [5 − δ, 5 + δ] are

considered ambiguous and discarded. Two different values

of δ: δ = 0 and δ = 1 are used to generate the ground

truth labels for the training images and δ = 0 is used for all

testing images, as suggested in [29].

3http://places.csail.mit.edu/downloadCNN.html
4https://www.flickr.com/
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(a) Photos of highest predicted aesthetics values

(b) Photos of lowest predicted aesthetics values

Figure 5: Aesthetics quality prediction. The top and the bottom show the images with the highest predicted aesthetics values

and those with the lowest predicted aesthetics values in the testing dataset, respectively.

4.1. Comparison with the State of the Art

We compare our methods MNA-CNN and scene-aware

MNA-CNN to the state-of-the-art methods [24, 26, 29].

Here [29] provides the state-of-the-art result for methods

that use manually designed features and/or generic image

features for aesthetics assessment. [24, 26] are the very re-

cent methods that also design a dedicated deep ConvNet for

aesthetics assessment. The results of these methods are ob-

tained from their papers. As shown in Table 1, both our

methods outperform the state-of-the-art methods for aes-

thetics assessment. The comparisons, especially those be-

tween our methods and the existing deep ConvNet meth-

ods [24, 26], show that preserving the original image size

and aspect ratio can most likely lead to improved aesthetics

assessment performance. Figure 5 shows some examples of

the test images that are considered of the highest and lowest

aesthetics values by our scene-aware MNA-CNN method.

4.2. Effectiveness of Adaptive Spatial Pooling

To examine the effectiveness of the adaptive spatial pool-

ing layers in our composition-preserving deep aesthetics

methods, we compare our methods to the baseline methods

with fixed-size inputs. In particular, we experiment with

three VGG-Net based aesthetics assessment methods, each

operating on a different type of transformed input.

VGG-Crop: The input of the network is obtained by ran-

domly cropping the original input image with a 224 × 224
cropping window. This cropping window size is the fixed

size required by the VGG-Net architecture. During training,

we extract five random crops for each image in the training

set and train the network on all the crops with their corre-

sponding aesthetics labels. For each testing image, we fol-

low the previous work [25] to predict the aesthetics quality

for 50 random crops obtained from the image and take their

average as the final prediction result.

VGG-Scale: The input of the network is obtained by scal-

ing the original input image to the fixed size of 224 × 224.

Both training and testing are conducted on the scaled ver-

sion of the input images.

VGG-Pad: The original image is uniformly resized such

that the larger dimension becomes 224 and the aspect ra-

tio is preserved. The 224 × 224 input is then formed by

padding the remaining dimension of the transformed image

with zero pixels.

We also experiment with an alternative composition-

aware method that makes use of the spatial pyramid pooling

layer (SPP-CNN) [11] to handle images with different sizes

and aspect ratios. We note that different from the method

presented in [11] that only allows an arbitrary-size input

during testing, we implement an SPP-CNN network to al-

low arbitrary-size inputs to be used both during training and

testing, which is critical for aesthetics assessment, as dis-

cussed in Section 1.

Table 2 compares the performance of the above deep net-

work aesthetics assessment methods in terms of three met-

rics: classification accuracy, F-measure, and area under the

ROC curve (AUC score). The accuracy and F-measure of

a network are obtained by binarizing the network’s outputs

with the threshold value of 0.5 and comparing the results to
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Method Accuracy F-measure AUC score

VGG-Crop 71.2% 0.83 0.66

VGG-Scale 73.8% 0.83 0.74

VGG-Pad 72.9% 0.83 0.73

SPP-CNN 76.0% 0.84 0.77

MNA-CNN 77.1% 0.85 0.79

Table 2: Comparison between deep ConvNets with and

without spatial pooling layers.

the gound-truth binary aesthetics labels. The ROC curve is

obtained by varying the binarization threshold value from 0

to 1 and computing the true positive rate and false positive

rate at each threshold. The area under the ROC curve (AUC)

is computed to assess the performance of the network over

a wide range of binarization threshold values. All the net-

works are trained using the training dataset obtained with

δ = 0. The results show that both SPP-CNN and MNA-

CNN can significantly improve the aesthetics assessment

performance over the three fixed-size networks. In addition,

our multi-net based architecture MNA-CNN performs bet-

ter than the spatial pyramid pooling based architecture SPP-

CNN. As discussed earlier in Section 3.1, while the SPP-

CNN architecture allows multi-scale processing to be per-

formed by the upper fully connected layer of the network, it

requires the learning process to capture the complex interac-

tion among different lower pooling layers, which demands a

larger amount of data and longer training time to learn suc-

cessfully. Our MNA-CNN architecture, on the other hand,

trains a sub-network for each scale and then aggregate them

together, enabling easy training.

4.3. Composition­preserving Analysis

It is interesting to examine if our MNA-CNN network

has learned to respond to the change in image composi-

tion, especially those caused by cropping and scaling. To

test this, we collect 20 high-quality images from the AVA

benchmark. For each original image, we generate a cropped

version where the original image is cropped to its center us-

ing a square cropping windows whose side equals to the

smaller dimension of the image, and a scaled version where

the image is scaled along the longer side to make it square,

as illustrated in Figure 6. In this way, we have 60 images in

total. We then ask five users to rate each of these 60 images

with an aesthetics score ranging from 1 to 5, with 5 indicat-

ing the highest aesthetics value. We randomize the order of

these 60 images and show one image to each user at each

time. We average the scores from the five users as the final

score for each image. Finally, for each of the 20 original

images, we pair it with one of the transformed images and

obtain 40 pairs in total. We label a pair of images as desc if

the transformed image is rated with a higher score than the

original one and asc otherwise.

We then use our MNA-CNN method to rate each im-

age I with the output probability P (I = high) and ob-

     (P(high) = 0.71, user score: 4.2/5) (0.43, 1.8/5) (0.52, 2.6/5)

     (P(high) = 0.85, user score: 4.4/5) (0.45, 2.2/5) (0.41, 1.8/5)

(a) Input image (b) Cropped version (c) Scaled version

Figure 6: Test on composition changes. Each input image

is cropped and scaled to change the photo composition. The

posterior predicted by our MNA-CNN method and the user

score for each image is shown below each image. This test

shows that our MNA-CNN method can reliably rate images

with different compositions.

tain the desc or asc label for the above 40 pairs accord-

ing to the predicted scores. We found that for all these 40

pairs of original/transformed images, the labels from our

method agree with the ground-truth labels computed from

the user scores. This shows that our MNA-CNN is able to

reliably respond to the change of image composition caused

by cropping or scaling. On the other hand, the baseline deep

networks VGG-crop, VGG-pad, and VGG-scale only agree

with the user ratings for 59.5%, 61.5%, and 63.1%, respec-

tively. Figure 6 shows two example images used in the study

and their transformed versions, along with the average user

given scores and our MNA-CNN predicted posteriors.

Automatic cropping. We conduct another study to visu-

ally evaluate how our method can be used to guide image

cropping. Specifically, given an image, we slide a cropping

window through the whole image with the step size of 20

pixels. We then employ our MNA-CNN method to predict

the score for each cropping result. Figure 7 shows some ex-

ample images and their highest- and lowest-scored cropping

results in (c) and (d), respectively. We also create a quality

map (b) by assigning the score of each cropping window

to the image pixel corresponding to its center. The map is

then smoothed for better visualization. The high values in

the map indicate the locations on the image that our method

suggests a cropping window should be centered at to create

a high-quality cropping result.

It is interesting to note that our method not only tends

to capture important content in the photo (e.g. the human

face, the bird’s head, and the bridge) but also learns where

to position the main subject to create a well-composed crop-

ping result. For example, even with a small cropping win-

dow, our method tends to select the cropping window such

that the main subject is positioned a little off-center in the

resulted image, which agrees with common photography

techniques such as rule of thirds [18].
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(a) Input Image (b) Quality Map (c) Highest quality (d) Lowest quality

Figure 7: Automatic cropping. We slide a cropping window

through the whole image with the step size of 20 pixels.

Each cropping result is scored by our MNA-CNN method.

We show the highest rated cropping results in (c) and the

lowest-rated cropping results in (d). (b) is a cropping qual-

ity map with high values indicating the locations on the im-

age that our method suggests a cropping window should be

centered at to create a good cropping result.

4.4. Scene­Aware MNA­CNN Performance

To examine the effectiveness of the scene-aware aggre-

gation component, we train the MNA-CNN network on half

of the available training data, and use the other half to train

the scene-based aggregation model as described in Section

3.1.2. Table 1 shows that incorporating the scene cate-

gory prediction information (MNA-CNN-Scene) improves

the aggregation performance of our MNA-CNN network.

Figure 8 further explains the improvement of scene-

based aggregation upon our MNA-CNN method. For each

of the predicted seven scene categories, this figure shows

the performance of each individual sub-network of the

MNA-CNN architecture taken independently as well as the

performance after aggregation. We can see that the relative

performance among the sub-networks vary across different

scene categories. Taking the scene prediction as augmented

information can therefore help the aggregation model effec-

tively combine the prediction from individual sub-networks

to produce the better overall prediction.

Night Architecture Animal Human Plant Landscape Static
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Predicted Scene Categories

A
e

st
h

e
ti

c
s 

C
la

ss
ifi

c
a

ti
o

n
 A

c
c

u
ra

c
y

 (
%

)

 

 

ASP 2x2 ASP 4x4 ASP 6x6 ASP 9x9 ASP 12x12 MNA−CNN MNA−CNN−Scene

Figure 8: Scene-based aggregation effect. This figure shows

the performance of each sub-network, the average aggrega-

tion result (MNA-CNN) and the scene-aware aggregation

result (MNA-CNN-Scene).

Discussion. As expected, padding an image performs bet-

ter than cropping, as reported in Table 2. However, it is in-

teresting why padding performs slightly worse than scaling

given that it does not crop off or distort image content. We

suspect that there are two reasons. First, padding adds ar-

tificial boundaries between the real image and the padding

areas and the boundaries vary over different images. This

could confuse a deep learning algorithm. Second, padding

is typically coupled with uniform scaling, which can make

the small yet interesting content difficult to appreciate as

shown in Figure 1 (c). While this is not directly related to

our method, it will be interesting to study in the future.

Our MNA-CNN-Scene model is trained on all the train-

ing data and uses the scene information only at the top ag-

gregation layer. Previous studies [24, 48] have found it

beneficial to learn different aesthetics models specifically

for each scene category. Training scene-specific deep neu-

ral networks is challenging as it requires a large amount of

training data and very accurate scene categorization results.

We plan to study this problem in our future work.

5. Conclusion

This paper presents a scene-aware Multi-Net Adaptive

Spatial Pooling ConvNet (MNA-CNN) for photo aesthetics

assessment. This MNA-CNN deep ConvNet is trained and

tested with images at their original sizes and aspect ratios

without first transforming them into a fixed size and thus

preserves the aesthetics of the original images. This scene-

aware MNA-CNN has three enabling features. First, it uses

an adaptive spatial pooling layer upon regular convolutional

and pooling layers. This adaptive spatial pooling layer has a

fixed-size output while having a variable receptive field size

to handle images with different sizes and aspect ratios. Sec-

ond, it uses multiple sub-networks to capture aesthetics fea-

tures at multiple scales. Finally, it uses a scene-aware aggre-

gation layer to combine these sub-networks into a powerful

one. Our experiments on the large-scale AVA benchmark

show that our scene-aware MNA-CNN can significantly im-

prove the state of the art in photo aesthetics assessment.
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