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COMPOSITION SERIES AND INTERTWINING OPERATORS
FOR THE SPHERICAL PRINCIPAL SERIES. I

BY
KENNETH D. JOHNSON AND NOLAN R. WALLACH

Abstract. Let G be a connected semisimple Lie group with finite center
and let A' be a maximal compact subgroup. Let ir be a not necessarily
unitary principal series representation of G on the Hubert space H*. If X'
denotes the space of AT-finite vectors of W, m induces a representation ir0 of
U(g), the enveloping algebra of the Lie algebra of G, on X'.
In this paper, we determine when ir0 is irreducible, and if ir0 is not

irreducible we determine the composition series of X" and the structure of
the induced representations on the subquotients. Explicit computation of the
intertwining operators for the different principal series representations are
obtained and their relationship to polynomials defined by B. Kostant are
obtained.

1. Introduction. Let G be a connected semisimple Lie group with finite
center. Let G = KAN be an Iwasawa decomposition of G. That is, A is a
maximal compact subgroup of G, AN is a solvable subgroup of G with A a
vector group normalizing N, a simply connected nilpotent subgroup of G.
Furthermore, the map of A X A X N to G given by (k, a, n) -» kan is an
analytic diffeomorphism. Let M be the centralizer of A in A. Let g, t, m, a,
and n denote the Lie algebras of G, K, M,A, and N respectively, exp is a Lie
isomorphism from a to A. We denote its inverse by log. Finally, if g E G,

g = k(g)txpH(g)n(g)
where k(g) E K, H(g) E a and n(g) E N and k(g), H(g) and «(g) are
unique. We will use this notation throughout this paper.

If £: M -» £(//, H) is an irreducible unitary representation of M and if
v E <!£ we define H(,r to be the space of all measurable functions /: G -> H
so that:

(1) fieman) = í(m)-'e-'(Xo*a)f(g)   for g in G, m in M,

ainA,n in A;
and
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138 K. D. JOHNSON AND N. R. WALLACH

(2) /j/(*)||2¿zc=||yi|2<oo.
Then Hí,v is a Hubert space relative to || || and left translation by elements

of G induces a continuous representation m(v of G on //i,F. That is, if
/ G H* and g EG, (m^(g)f)(x) =/(g-'x).'The elements (m(¡v, H*) are
called the principal series of G. If Xi,r denotes the /^-finite elements of H^v
then the elements of X^" are in fact analytic functions on G. miv thus induces
a representation of the universal enveloping algebra of g on Xi,v. If { « 1 is
the trivial representation of M (this gives the so-called spherical principal
series of G) we shall denote mx„, H1'" and A'1'" by mv, Hv and X" respectively.
Of special interest to us will be the function 1„ G X" which is 1 on K.

A natural question one may ask concerning these representations is what is
the Jordan-Holder series of Hi,p under the action of m(r. A partial answer to
this question was provided by Kostant [10] who determined which spherical
principal series representations are irreducible.

This paper is the first of two papers dealing with the study of the
composition series of the principal series of G. In this paper, we give complete
descriptions of the composition series in the case that G is a classical split
rank 1 group and £ is the trivial representation of M. In the second paper [7],
the problem is solved for the split rank 1 group of real type F4. The two cases
are separated since the classical groups may be dealt with in an almost
uniform manner, whereas the study of F4 involves an examination of the
exceptional simple Jordan algebra and thus merits its own exposition.

In the course of our analysis, we give explicit formulas for the intertwining
operators from X" to X"' which we show for a general G (not necessarily of
split rank 1) may be expressed in terms of quotients of the "P'''"-matrices
defined by Kostant [10]. We also compute the "partial intertwining opera-
tors" from X" to X"', and this enables us to determine which subquotients of
the composition series of A"' are unitarizable. In particular, we obtain
Kostant's results [10] on the existence of a complementary series.

We also show how to use our results to compute Kostant's P ''-matrices in
the case when G is of split rank 1.

In addition to the results on the complementary series our results overlap
with Kostant [10] on the irreducibility of the H" and with Knapp-Stein [9],
Schiff mann [15] and Helgason [6] on intertwining operators. Our results on
SO(n, 1) can be found in Takahashi [17] and Vilenkin [18]. The results in the
case G = SU(2, 1) have been announced by Stern [16]. In the case G =
SL(2,R)(SU(l, 1)) our results can be found in Gelfand, Graev, Vilenkin [1]
and Sally [14]. In the case G = SL(2, C) (SO (3, 1)) the results can be found
in Gelfand, et al. [1].

We now give a summary of the results in this paper. After a few brief
remarks on the classical rank 1 groups we explicitly compute the M fixed
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COMPOSITION SERIES AND INTERTWINING OPERATORS 139

vectors of A* which we shall describe both as polynomials and as hypergeo-
metric functions. We then explicitly compute the action of m„(H) (where
RH = a) on the Af-fixed vectors. This allows us to compute the composition
series and all the partial intertwining operators. We then show how to use our
results to compute Kostant's Py-matrices in the case when G is split rank 1.
Finally, we obtain some results on the non-square-integrability of most of the
representations but not all which occur as subquotients.

2. The classical rank one symmetric spaces. Let F be one of the classical
fields (that is F is either the reals, R, the complexes, C, or the quaternions, H).
Let x -> x be the standard involution on F, and for x in F set |x|2 = xx.

Consider F"+1 as a right vector space over F, and on Fn+I define the
quadratic form Q(xx,..., xn+1) = |x,|2 + • • • + |x„|2 - |xn+1|2. We define
G to be the group of all F-linear transformations of Frt+1 preserving Q with
the additional property that, if F = R or C and g E G, detg = 1. Then if
F = R, C or H respectively G = SO(n, 1), SU(n, 1) or Sp(n, 1) respectively
(these are the classical split rank 1 groups).

Let ex,..., en+x be the standard basis of Fn+1 and let A be the group of all
elements A: in G so that k(en+x) E e„+1F. Let D" be the unit ball in F", that is
Z)" = {(x„...,xn)||x1|2+--. +|xj2<l).

We now define an action of G on D" as follows: If z — zxex + • • • + znen
and g E G then g(z + en+x) = yxex + • ■ • + y„e„ + yn+xett+x. Set

g-2 =y\yñ+\e\ + • • • + yj£+Ae
Since

N2+ • • • +W2-|.vn+,|2<o)     |z,|2+ • • • +N2< i,

this implies that g • z is in D". Thus_gD'' c Ö" and in fact the action of g is
actually C00 in a neighborhood of D".

We now show that G acts transitively on D". If u E F" let u*(w) ■ <m, w>
- «,w, + • • • + u~nwn for w in F". If A is an F-linear transformation of F"
and u, v G F" and w E F define

L = M     «IV   z   UÍ  Az + uz»+i   \
Is       [V*       w\)\Zn + l)        \V*(Z) +  Wzn+X)

for z E F" and zn+x E F. Then g defines an F-linear transformation of F"+I.
H z ED" set ||z||2 = |z,|2 + • • • + |z„|2 and let A[z] be the positive

definite   square   root  of  / + (z ® z*)/(l - ||z||2)   where   (z ® z*)(w) =
z(z*(w)). A[z] is clearly well defined. Now set
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140 K. D. JOHNSON AND N. R. WALLACH

T[z] =

A[z]
(i-IHI2)

1

2x'/2

,,2\'/2(i-IHlT      0-IHI2)2\'/2

Here we use the natural identification that if « G F" so is m*.
A simple check shows that T[z] is in G and that T[z] • 0 = z. Thus we see

that G acts transitively on D".
A simple examination of G shows that if g G G, g is of the form g = (^. ¡J,)

where A is an n X n matrix, u, v G F" and w E F, and g~x = (!*„. ¿v) where
A* is the conjugate transpose of A. Thus, we see that g consists of all matrices
of the form

X = (i    »)   where   (\    U) + (A\    "_") = 0,

and if F = C we have the additional property that tr X = 0.
If we set H = e, ® e*+, + en+x ® e* we may then take a = RH. With a

and hence A determined, we now have that M is the group of all matrices in
G of the form

0
B
0

0
0
b\

where B is an (n - 1) X (n — 1) matrix and |A|2 = 1. For n we make the
choice that n is spanned by all matrices of the form

0
-z*

0

z 0
0 z*
z     0

with zGF"  ' and of the form

0    -w
0      0
0    -w

with w E F and w + w = 0. Now this choice of n thus determines N.
Under the identification of G/K with D" we see that G/MAN = K/M

may be identified with Sdn~x, the unit sphere in F" where d = dimn^Note
that MAN - {g E G\g • ex = ex where G is considered as acting on D").

As G acts on K/M via left translation, g G G induces a linear map on the
exterior forms of K/M and we denote this map by g*.

If w is a A"-invariant volume element on K/M, the Poisson kernel is the
function P: G/K X K/M-+R defined by
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COMPOSITION SERIES AND INTERTWINING OPERATORS 141

((g-')*ío)6= P(gA, b)ub   for g G G   and   b E K/M.

From Harish-Chandra [21] we have that

P(gA, kM) = exp(-2pH(g-xk))

where for H E a, 2p(H) = tr ad H\n.
On Fn+I X F"+I let B be the F-valued bilinear form such that B(x, y) =

x, v, + • • • + x>„ - x„+,y„+x. Suppose that g = ka,n where a, = exp tH
and H - ex <8> e*+, + <?n+1 ® ef. Then 2p(#) = d(n + 1) - 2 and
P(gA, IM) = e-(*(*+i)-»)*. a simple calculation shows that

\B(g~\en+x),ex + en+xtf=\B{ar\en+x),ex + efl+,)|2= e2'.

Thus we see that P(gA, kM) = |A(gen+„ k(ex + en+x))\2~d{n+X). Now using
the fact that g is of the form

g~(v*     "w)   with |W|2-||W|¡2= 1

and that g • 0 = uw~x we obtain by a simple calculation that

2     |l-<g-0,Z>>|2
l^(y(^,),*(e, + e.+l))|a-'   ^„g.o/

where A:M = ¿ (that is, k(ex + en+x) = 6' + aen+1 and 6 = 6'a-1). Thus we
obtain the following:

Lemma 2.1.
rf(«+0/2-1

P(z,b) 1 - Pf
|1-<¿,A>|2

3. Spherical harmonics. Since our work in this paper will be infinitesimal we
will actually be studying the representations (m,, X") of the enveloping
algebra of g. We will therefore want an explicit description of the elements of
X'.

Since, as a A-representation, X' may be identified with the A-finite
elements of L2(K/M) = L2(Sdn~x), we see that determining the members of
X' is the same as the determination of Peter-Weyl decomposition of
L2(Sdn-x).

Let A denote the set of equivalence classes of irreducible finite dimensional
representations of A, and if (my, Vy) E y E K set V" »{cG Vy\m(m)v - v
for all m in M). Frobenius reciprocity combined with the Peter-Weyl theo-
rem imply that the space of A-finite elements of L2(Sdn~x) decomposes into
2ye¿«?KY where ny - dim Vy. In the future we shall express this as
L2(S<"-i)~2y£ÂnyVy.
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142 K. D. JOHNSON AND N. R. WALLACH

Since K in its action on Sdn~x is contained in the orthogonal group 0(dn),
we have that %k, the spherical harmonics of degree k, is invariant under the
action of K. Since L2(Sdn~x)~'2f^n%k the problem of decomposing
L2(Sdn~x) according to the action of K reduces to the problem of decompos-
ing each %k according to the action of K.

In this section we will decompose %k under the action of K in two ways.
We shall express the members of %k as polynomials and as solutions to
certain "hypergeometric type" differential equations.

Observe that the action of K extends differentiably to all of P. Let DK(F")
denote the ring of differential operators on F" which commute with the left
action of K. Since our decomposition of L2(K/M) will depend on obtaining
"enough" differential operators which commute with the left action of K, an
explicit description of some of the members of DK(¥") is important.

If F = R let xx,..., x„ be the standard coordinates on R".
If F = C let zx,. .., zn be the standard coordinates on C.
If F — H let w,,..., wn be the standard coordinates on H" where wa = za

+ Jzn+a with za> zn+a G C (We will have occasion to use these coordinates in
§6.)

Now F" = Rd" as vector spaces over R and K is contained in SO (dn). We
thus have that E = 2dlxXjd/dxj and A = 2£.,32/9*/ are in Z>*(F") where
E is the Euler operator and A is the Laplace operator. We now have:

Lemma 3.1. (1) IfF = R,E and A are in DK(R").
(2)//F = C, E, A, ,2njmXzjd/dzjand2nj_xIjd/dzJ_are inDK(C).
(3) If F = H, E, A and T = (D - D)2 - 2DXDX - 2DXDX are in DK(Hn)

where
In In

¿>=2 32„ a=l       °za

and

¿>i=2
a=\ fc„ + i

— Z,

Dl   =    2    H«    n«-I I      ozn

n + a   r,-
0Z„

-z, "+a dl„

Proof. (1) and (2) are well known. To prove (3) we set

/ =
0 0 0

J =
0
IT ,   and K =

k_
0_
0 -AC.

If* SÏ and/:Ä-->Cset
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COMPOSITION SERIES AND INTERTWINING OPERATORS 143

(p(x)/)(y) = |/(yexpíx)|,_0.

Since î2 + j2 + K2 is ad M-invariant it is clear that p(/)2 + p(J)2 + p(K)2 is
in DK(H") and a simple calculation shows that

(- i)(p(7 )2 + p(jf + p(èf) = (D-D)2- 2DXDX - 2DXDX = I\
Thus the lemma is proved.

Remark. Observe that A A = £A + 2A. We thus have that, although E and
A do not commute, E: % -> % where % = 2^0%k.

The following lemma of Vilenkin [18, pp. 499-501], will be one of our most
important tools in determining the decomposition of %k under the action of
A.

Lemma 3.2 (Vilenkin). Consider the following differential equation on
[0, ir/2],

1 d       „    ■ g   ducosp(p smqmcos^œ sin?œ   dm dm
(1)

- r(r+p- 1)

cos2<p
-1(1 +P + q) H = 0.

(i) ISp = 0, q 7e 0 and u is a continuous solution to (I) then I is a nonnegative
integer and u is a scalar multiple oS

(cos m) AI - 2 , —y~ ! ~Y~ '' -tan fj-

(ii) ISp ¥= 0, q ¥= 0 and u is a continuous solution to (I) then I — v must be a
nonnegative even integer and u is a scalar multiple o¡

,   (r-l     l-p-l-r     q+l ,\(cos m)lF[ ^ , -^-; ^- ; -tan2<pj.

Here F(a, ß; y; z) denotes the standard hypergeometric function of type
(2,1) (see [19]).

We review some facts concerning spherical harmonics. Let x,,..., x„ be
the standard coordinates for R". Let r2 = 2?_ ,x2 and A„ be the standard
Laplacian. Let tyk be the space of all homogeneous polynomials of degree k
in the variables x,,..., x„ and set %k = Ker An|6,t. Clearly, %k is invariant
under the action of O («). Moreover, if <p G 9Í?,

A„(<pr2') - 2t(2k + m + 2t- 2)mr2'-2.
Thus we obtain easily that ^k~2r2 © %k = <$k.

Thus we obtain the result that L2(S"~X) ~ 2"_0^* where we are identify-
ing elements of %k and their restrictions to the unit sphere in R". Set
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144 K. D. JOHNSON AND N. R. WALLACH

% = 2?_03C* and 9 = 2f^k- Then <?? = X ® <3V2. Let P: <3> -► % be
a projection on % with kernel "3V2.

We can now state our main result of this section.

Theorem 3.1. (1) (Kostant [10]). As a representation of K,
L2(Sdn~x)=  2   V7

yeA-0
M

Ywhere K0 = {y G K\ VyM ¥= (0)}. That is if (my, Vy) G y G tf0, zzy - dim K,
= 1.

(2)IfF = R, %k is irreducible under the action of K for n > 3. Moreover,

(%k)M= CP(xk) = Crk cos*£F (- |, -^ ; ?-f± ; -tan2*)

where xx - r cos £, azz¿ x, = r sin |co,- (z > 2) wz'fA 2"_2<o2 = 1 azz¿ 0 < £ <

(3) // F - C let 9>« = {/ G <3»+«|/(az„ . . ., azn) = a"a"f(zx, . . ., z„)
for all a E C}. Let %"•" - 3Cp+? n 9*«. TTzezz L2(S2b-1)~2,>?>03Cm <zzz¿
eacA SC,? z'i irreducible under the action of K. Furthermore,

(30"*)"- CF(zf¿7) = CrpJ",ei(f-q)'fcosP+',iF{-p, -q; n - 1; -tan2£)

wAere z, * z* cos £ei,> azz¿ z,. - r sin &¡for i > 2 with 2"_2|<o,.|2 = 1, 0 < <p <
2tt azz¿ 0 < £ < vr/2.

(4) // F = H we use the coordinates for W which we have already considered.
Set rx * zx + z, azz¿ r\ = |z,|2 + |zn+I|2 azz¿ let

lk/2] iv      -\2 (-!)'(* 7,)^f-a^Yk,k-2j
i-J

(Note that A4fl(2^/2](- l)'(*f'Vf-2'/?) - °0 Let v",q be the ^-cyclic space
for ^p,qforp > q andp - q even. Then L2(S4a~x) ~ {2 V«\p > q andp - q
is even). Furthermore,

(V™)M - CL*>,?
sin(q + l)t

sin t cos^

-p- q     -r- q-2
;2(zz-l);-tan2¿)

V      2      ' 2
where r2 =■= 2"_,|w,.|2, |w,| = r cos £, azz¿ Re w, = z- cos £ cos t wzVA 0 < £ <
tt/2 and 0 < t < m.

Proof. Observe that (2), (3) and (4) combined imply (1). We will therefore
prove (2), (3) and (4).
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COMPOSITION SERIES AND INTERTWINING OPERATORS 145

Proof of (2). Let V2 - xf + • • • + x2. If / G %k and/ is invariant under
the action of M = SO(n - 1),/= 2,+2/_*«,i2/x{ V2'. Since A/= 0 we have
that

0 = A/ =    2    JU - 1H,2/*Í-2 V2' + 2/(2/ + « - 3)a„2/x{ V2'"2.
j+2l-k

Thus we have the recursion formula
(/ + 2)(j + l)a,+2j2/ + (21 + 2)(2l + n - l)a,2/+2 = 0

where/ + 2 + 2/ = k. Thus knowing ak0 we can determine all aJ2, uniquely.
Therefore, (%k)M = CP(x,*).

We now use the angular coordinates of (2) and suppose that / is M-'m-
variant. Then/is a function of only r and £.

Since dx\ + • • • + dx2 = dr2 + r2di2 + r2sin2i(du\ + • • • + du2), it
follows from Helgason [5, p. 387] that

» r 1 9      fi-1    9    T   ■      1 1 9      •   n-2f-    9     I-àf=7^Trr     ¥/+^¡in^¡9ÍSm    «aï*
Suppose/ G 9C*. Then/(r, Ç) = r*«(0. Since

1      9     -, 9   ,     kjk + n-2)
r«-i   9r 9r ^ r2

we have that

—l— 4- sin"-2¿ -^r rt + k(k + « - 2)h - 0.
sin"-2¿ ííí ¿É V ^

(2) now follows from Lemma 3.2(i).
Proof of (3). The fact that %p'q is invariant under the action of A is well

known.
If/is an A/-invariant polynomial, it is a polynomial in the variables zx,zx

and V2 - |z2|2 + • • • + |z„|2. So if/ G 30" / = 2aM,rff V2' where/ + k
+ 2/ - p + q and/ - k = p - q. Now

0-A/-24/*ay>w/z1-,2*-,V2'

+ 22/(2/ + 2«-4)a,jW/z{z-fV2'-2.

Thus we have the recursion formula

4(j + l)(k + l)a,+u+u/ + (21 + 2)(2l + 2n- 2)ay,w/+2 - 0.
Thus if we know apq0 we can determine all ajk2l uniquely. Thus we have
(00*)" - CPizfzf).

Using the angular coordinates of (3) we have that if /is M -invariant, / is a
function of only r, $ and <p. Again using Helgason [5, p. 387], we have
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146 K. D. JOHNSON AND N. R. WALLACH

A/-= —î— A/-2"-1 — f^      r2»"1   dr drJ

9    — >• -:_2n-3f   3YTCOs£sin2n_3£-^-/
r2cos£sin2"-3£   3£ 3£

+ -JL-Ji/.
r2cos2£   3<p2

If/ G %p'",f(r, £, (p) = rP+"eKp-"H(0 and thus (32//3?2) = -(p - qff
and

Since A/ = 0,

4 cos £ sin2fl-3£ ~ h
o£

+ {P + ?)(/> + ? + 2« - 2) A = 0.

i 3 /•   •   2«-3>   3-   , ^-cos £51^" 3£ —
cos£sin2n 3£   3£ 3£

. / "(P"?)2
\      cos £

(3) now follows from Lemma 3.2.
Proof of (4). Recall that ^ = % © r2<$ and note that (6*)" =

2,+2,+2,-*Crfr2V.
Since T is in the enveloping algebra of f, T and A commute. A simple

calculation shows that

IVfr2* = p(p + 2)rpxr\* - 4p(p - l)rp-2r\?+2.
Thus if 2ZakJrxk-2jrlJ = f, Tf = A/, ak¡ = 0 for i < s, and ak¡í ̂  0, A =
(zc-2í)(Ac-'2j + 2),

(y - s)(k - (s +j) + l)akJ = -(k - 2/ + 2)(A - 2j + l)akJ_x.

SoakJ+s = (-iy(^-^->)aktS.
We have thus shown that the only eigenvalues of T in ((iyk)M mod (<$k)M n

(r2<$)M are (k - 2s)(k - 2s + 2) and each appears with multiplicity one.
This clearly proves that (Vp-q)M = C4>pq. We now consider the coordinates
r2 = 2"_,K|2, |m>,| = r cos £ where 0 < £ < tt/2, w¡ = r sin £q, for / > 2
with 2"_2|9,|2 = 1 and

wx = r cos £(cos t + (sin t)y)

where 0 < / < m and y E F, Re y = 0 and \y\2 - 1.
If/is M-invariant/depends only on r, £ and t and
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COMPOSITION SERIES AND INTERTWINING OPERATORS 147

J     r**-*   or or

+ 1_!_±f
r2  (cos03(sin|)4""5   9¿

+  l
2    /•„- /-\2

1        9     •   2,  9
n2t    at at S

r¿  (cos ?)z L sinz/

Noting that -T/= (l/sin2f)(9 sin2i/9f)(9//90 we have that if / G V™,
-T/ = - q(q + 2)/. Thus we see that/(r, ?, t) = rp((sin(q + l)/)/sin t)h(Q
and «(£) satisfies the differential equation

(cos?) (sin ?)       — «
(cos?)3(sin?)4n_5  ¿É ¿í

-?(? + 2)+-^—- +p(p + 4« - 2)« = 0.
cos £

(4) now follows from Lemma 3.2.
This completes the proof of Theorem 3.1.
Remarks.  If F = R set em = cosm£F(-m/2, (1 - «i)/2;  (« - l)/2;

-tan2?).IfF = Cset

ep+q,P-q = e'b-tocosr+'tFi-p, - a; « - 1; - tan2?).

This of course provides another parametrization for the A-irreducible spaces
of harmonics when F = C. If F = H set

= sin(/+ l)* ___mf„l -m-l     -m-l-2
e,nJ     ~   sin t

In §8, we will compute characters and we will use the classification of the
spaces Vp,q given in Theorem 3.1(4) in terms of highest weights on 5p(«) X
Sp(l).

The Dynkin diagram for Sp(n) X Sp(l) is

,{F( ^T^ '  ~m~2l~2 ; 2(« - 1); -tan2?).

«1 «2 an-l      an an + l

where the a¡'s are the simple roots. Let X¿ be the basic weight such that
2<a,, aj)/(aj, Uj) = 8ir

Lemma 3.3. Suppose that relative to a choice oS Weyl chamber in Sp(n) X
Sp(\) %x has highest weight p and ÍK? = V2-2 © V2-0 with V2-2 having highest
weight 2n and V2'0 having highest weight v. Then p and v are independent over
R and %k has precisely the highest weights mxp + m2v with mx + 2m2 = k,
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m¡ > 0, m¡ an integer. Vp,q has highest weight q(Xx + Xn+X) + (p — q)/2 Xn.

Proof. Since every representation of Sp(n) X Sp(l) is self-dual, the repre-
sentation of Sp(n) X Sp(l) on H" is the same as the representation of
Sp(n) X Sp(l) on %x = Vx-\ Thus p = A, + An+1.

Now (V2-°)M, in fact, is fixed under the group K0 - Sp(l) X Sp(n - 1) X
Sp(l). Thus v ■ m\ for some positive integer m since Sp(n) X Sp(l)/K0 is a
symmetric space. By the Weyl dimension formula we have m = 1. Thus we
have that p and v are independent over R.

Suppose the highest weights on %' are precisely mxp + m2v with m, + 2m2
= / and the m, nonnegative integers for 1 < / < k. We now prove the result
for %k. As <3>* a %k © (¡yk-2r2 as a representation of Sp(n) X Sp(l) we have
that highest weights of the form mxp + m2v with mx + 2m2 = k cannot
occur in ^k~2. If mx + 2m2 = k we see that Sm'(Vx-x) ® Sm*(V2fi) is a
subrepresentation of Sp(n) X Sp(l) in $k and contains the highest weight
mxp + m2v. As %k contains [k/2] irreducible subrepresentations of Sp(n) X
Sp(l) and there are [k/2] weights of the form mxp + m2v with mx, m2
nonnegative integers such that mx + 2m2 = k we are done.

It is now a trivial matter by examining the formula for (Vp'q)M that the
highest weight on Vp,q is qp + (p - q)/2 v.

4. The action of a on X". Let H = ex ® <?*+, + en+x ® ef. Since dim a = 1
the map a*. -» C given by »» -* »»(/i) is an isomorphism and we shall abuse
notation by identifying v with v(H). Using this identification we have that

2     ^'/2
i -U- OfK(g)/)(A) =

(l-<g-0,A»2
/(*"'*)

where g E G, b G S*-1 and/ G H". Moreover if we define

h(g~lb) = {(I -\\g- 0f)/\l - <g-0,b)\2f2
we have that H" = 1, • H° where the product has the obvious meaning.

In §3 we found an explicit formula for the M-fixed vectors of X". Since
Ad M(H) = H it is clear that mv(H)(X")M c (A")". In this section we will
find explicit formulas for the restriction of mv(H) to (X")M.

Suppose / G H° and y = (yx,... ,yn) E Sdn~x. A simple calculation
yields
(*)       *,(H)lJ(y) = (v/2)(yx + yx)(lj)(y) + 1,( vK(//)/( y).

Since l„(b) = 1 for all b in sdn~l we will abuse notation and write/and
IJ. In order to compute explicitly mv(H) restricted to (X")M, we first state
some easily derived facts concerning the hypergeometric function
F(a, ß; y; z).
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Lemma 4.1.
(1)     (d/dz)F(a, ß; y; z) = (aß/y)F(a + l, ß + l;y + l;z).

(y - ß - <*)F(a, ß; y; z) = (y - ß)F(a, ß - 1; y; z)
-a(l-z)F(a+l,ß;y;z).

(y-ß- ot)F(a, ß; y; z) = (y - a)F(a - 1, ß; y; z)

-ß(l-z)F(a,ß+l;y;z).
F(a,ß+l;y;z)-F(a,ß;y;z)

= (az/y)F(a+l,ß+l;y + l;z).
F(a + 1, ß; y; z) - F(a, ß; y; z)

= ()8z/y)F(a+l,jS+l;y + l;z).
Theorem 4.1. (1)//F = R,

«¿H>» = n + 2m-l t(" + 2m~ 2)(" + m)em+l

+ m(v — m — n + 2)em_,].

(2)//F = CorF = H,

*>{H)e»J = 2(dn -2 + 2«!)

{(dn -2 + 1+ m)(v + l + m)em+XJ+x

+ (m- l)(v -m + l- dn + 2)em_1>/+,

+ (m- l + dn- d)(m - 1+ v - d + 2)em+XJ_x

+ (1 + m + d- 2)(v - m- l- dn- d + 4)em_XJ_x].

Proof. ProoS oS (1). From equation (*) we have

*AH)em(ï) = v cos ? em(Ç) + m0(H)em(Ç).

Differentiation by parts yields m0(H)em(£) = sin £(d/d£)em(%). Thus,

mr(H)em(i) = , cos""+'?a( =f-, -^ ; Of± . _tan2^

-mcos-x£sin2iF[^f,  X-=^-; ^A , _tan^

«j(1 - «i)
«- 1 cosm_1|tan2£

./ -«i  , ,    1 - m . ,. «-1   , .      .    2u\[~2~ + l> —2—       ' ~T~       ' ~tan*J-
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From Lemma 4.1(3')
m(l — m)

n- 1
m-lr *     2fr?{   ~m    ,    i      1 — m    l  1      «—1    .cosm  '£ tanz£Fl —r— + 1, —^— + 1; —=— + 1

= —m cos

+ m cos1

'£f(

2 '2
2 — zzz     1 — m     n — 1

2     '      2 '      2
— m     I — m _ n — 1

; -tan2£J

; -tan2£)

-tan2£)

= -meffl_,(£) + mcosm-,£F(

2    '      2     '      2     '
— zzz     I — m     zz — 1
2    '       2      '      2     ' tan *>

So

mp(H)em(Ç) -(*+ m)cos"'+1£

— m     I — m     n — 112    '      2 ; -tan2£j-zzzem_,(£).

By Lemma 4.1(1)

/      ,        \       m + \rir(   ~m       I — m       ZZ —  1 ._2A(z> + m)cosm + 1£Fl -j- , —-— ; —2— ; -tan^£l

(n + m - 2) (m)
= <' + ">(,, +2».-2)'" + '® + (" + m)(zz + 2m-2)C"-(^

This proves (1).
Proof of (2). (a) Suppose that F = C and let <?m/(£, ç>) = Am/(£)e'Y?. Then

differentiation by parts yields

•nAH^mj&v)** 2 cos ̂ m,z + 2 sm É ~¿¿~

+ j(cos£+(cos£)-1)Am,/ ,/(Z+l)î>

¿A,
2 C0S ̂ W +   2 Sm * "¿£~

-|(cos£ + (cos£)-1)Am>/ ,/(Z-l)<p

Set

and

V 1 ^m ill -1\¿i ( Vz) = 2 cos ^.z + 2 sin ^ "¿J~ + 2 (C0S * + (COS ®   ^m-'
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v 1 dhm ¡i, ..
L2(hm,i) = 2 cos ^.z + 2 sin * ~dt ~ 2 (C0S * + ^C0S ®   )*"■'■

Then

MM = ^ cos-'£f( i^S , -=^p ; zz - 1; -tan2£)

+ { cos-'£f( I^a , ^¿1Ä ; zz - 1; -tan2£)

- y cosm  '£ sin2£Fl —— . —2-; n ~ 1; ~tan2£)

T-l l — m   .  .    —I — m   .  . .    2A•Fl     2     + 1, -2-+ 1; zz; -tan2£l.

By Lemma 4.1(3')

•f(^+1. ^f^+l;n;-ta„'{)

Thus,

r   /;      \        l - m I. Z> + /+ m -n.m+l¿

F(^,^^;«-l;-tan^).

Applying (2) of Lemma 4.1 gives

l±l^jn cosm+.|F( L-ÜL , Zlzjfl, n _ 1; _ta„2|)

z> + / + m f/- 2zz - 2 + /+ m ^,. , /       zzz - /      \,
-2         [I    2n-2 + 2m    P-+M+1 + Uzz - 2 + 2m P»"»'

Therefore we obtain

z+i
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•[(2«-2 + /+m)(r + /+«j)em+u+,

+ («j - l)(p -m + l-2n + 2)em_u+x].

Now

L2(hm,,) = ¿f-* cos-'?a( ^ , ^p ; « - 1; -tan2?)

+ =1 cos'»-1?a( ^ , ^^ ; « - 1; -tan2?)

- f cos-'? sin2?A( l-^=f-, ^-^ ; « - 1; -tan2?)

+ (^)(^_)(_^_)(_tan2¿)cosm_I¿

•a(^ + 1, ^^ + l;«;-tan2?).

If we apply Lemma 4.1(3) to the fourth term on the right-hand side of our
equation we obtain

1(1,   \- -l - m h ,   v- 1+ m      m+X(
L2\nm,l)-£ "m-l,l-\+ 2 *

-[ I — m     —I — m .      .    2A•Fy —2"— . -j-; n - 1; -tan2?).

By Lemma 4.1(2'), cosm + 1?F((/ - «j)/2, (-/ - «i)/2; « - 1; - tan2?) gives
us

[¿2(Ä,,/)k'(/_1)*=2(2« - 2 + 2m)

\(2n - 2 + I + m)(m - I + v)em+u.x

+ (I + m)(p - m - I - 2n + 2)em_XJ_x].

(b) Suppose now that F = H and let em>/(?, t) = X/(0A«,/(0- Then

*,(H)emj(t> t) = v cos ? cos tXi(t)hmJ(i)

dhmJ(H)
+ sin?cos rxj(í) —-j¿-

dXt(t)
+   cos ? + (cos ?)-'sin t —¡—  «„,,(?)ir)h^(

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPOSITION SERIES AND INTERTWINING OPERATORS 153

As Xz(0 = (sin(/ + l)/)/sin t we have that

cos fxz(0 = I Xz+1 (0+5 Xz-i(0
and

sintftXl(t) = |x>+,(0 - ^Xz-.W-
Thus

»,(#)*,*/«.<)-
V 1 ^m Z
öCos£Am>/(£) + -sin£2      "  ¿£

+ |(cos£ + (cos£)-1)Am>, x#+i(0

¿A,
2-cos£Am>/(£)+2-sin£-^ m,Z

/ + 2
(cos£+(cos£)-,)Ami/ Xz-i(').

Our result now follows by using the argument of (a). This completes the
proof of the theorem.

5. The composition series for the principal series. In this section G will be a
classical split rank one group. Our main goal in this section will be a complete
description of the composition series which arises in (m„, X") when mr is
reducible. For this purpose we need the following proposition.

Proposition 5.1. (1) There is a G-invariant nondegenerate sesquilinear
pairing between (my, H") and (^(n+1)_2_r-, H"^-2''').

(2) Let f be an element of Vyfor some y E K0. Then, if IJis a cyclic vector
for (mt, H"), the cyclic space for ld,n+X)_2_if is infinitesimally irreducible.

See [22] for a proof of this result.
Recall the definition of the function e for g

«(À) = r(i(ima + 1 + <z'A, a0>))r(|(ima + m2a + <z'A, a0>)).

See [6] for an explanation of the terms.
Then e(i(p - z-a)) = T(\(v + 1 - m^T^v) where

m2a "

So

if F = R,
if F = C,
if F = H.

e(i(p - va))e(-i(p - va)) = T(íp)T(- Jr)P(|(» + 1 - m2a))

.r(I(-„-|-l-m2a)).
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Let Xq be the cyclic space for l„ in X".

Theorem 5.1. (1) (Kostant [10], Helgason [6]). A¿ = X" // and only if
e(i(p — va)) =t¿ 0. mv is irreducible iS and only // e(i(p — va))e(-i(p — va)) ^
0.

(2) (Takahashi [17]). Let F = R and v = — k where k is a nonnegative
integer. Then m_k leaves Vk = 2*_03{? invariant, and the induced representa-
tions on Vk and X~k/Vk are irreducible. By duality, mn_x+k leaves Wk =
2j°_k+x%J invariant, and Wk and X"-x+k/Wk are irreducible.

(3) Let F = C and v = —21 where I is a nonnegative integer. Then m_2l
leaves

L2! =  2 %™,     H+ = f  2 3C?-*,
p,q = 0 />=0ç = 0

H¿ = I   2 W«,       H¿ + Hü
ç = 0 p = 0

and X~21 invariant with L2¡, H2¡/L2¡, H2l/'L2l and X~2l/(H2, + H2l)
irreducible under the action induced by m^2l. m2n+2l leaves

u21=  2    2 W     f2+,=  2   îw«,
p = i+ï î=/+l p=l+\ q-0

A27 = 2     2   3C",       A2T + F27,
i> = 0 9=/+l

and X2n+21 invariant and the actions induced on U2l, F2l /' U2l, F2l / U2¡, and
X2n+2'/(F2, + F2|) are irreducible.

(4) (i) Let F = H and v = — 2/ where I is a nonnegative integer. Then m_2l
leaves W, = 2m+¿<2/Fm-*, M, = 2m_¿<2,+2Km-* andX'2' invariant, and W„
M¡/W¡ and X~2'/M¡ are irreducible. Dualizing we have that W, =
2,»+A>2/,/m,*> Mi = ^m-k>2i+2Vm'k and X4n+2+21 are invariant under
7r4n+2+2/ and the induced representations on M¡, W¡/M¡ and x4n+2+2'/ W¡ are
irreducible.

(ii) Again, let F = H. Then T = 2£„0Fm'm and X2 are invariant under m2
and T and X2/T are irreducible. f = 1m_k>0Vm'k and A4" are invariant
under m4n and f and XAn/f are irreducible.

Proof. We will prove (1) for each case separately.
ProoSoS(l) and (2) Sor F = R. From Theorem 4.1(1) we have that

mv(H)mlv =(v + m- l)(v + m - 2) • ■ • (v)em   mod [l„, *„..., em_x].

Thus 1„ is cyclic if and only if v =£ - k where k is some nonnegative integer.
Since ma - « - 1 and m2a = 0 this is equivalent to the condition that
e(i(p - va)) i= 0. By duality we have that mr is irreducible if and only if
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e(-i(p - va))e(i(p - va)) i= 0. But e(~ i(p - va))e(i(p - va)) ^ 0 if and
only if e(-i(p — va))e(i(p - va)) ¥= 0. This proves (1) if F = R.

We now consider m_k and its dual representation mn_x+k. From Theorem
4.1(1) we see that l„-i+k is a cyclic vector for mn_x+k and that the cyclic
space for l_k is Vk. So Vk is an irreducible subspace. From Theorem 4.1(1)
we see that ek+x is a cyclic vector for m_k and the irreducible cyclic space for
ek+x in xn~l+k is Wk. (2) now follows from Proposition 5.1(1).

Proof of (I) and (3) for F = C. Using Theorem 4.1(2) with d = 2 we can see
that 1, will be a cyclic vector for mv if and only if v =£ -2k where k is a
nonnegative integer. By duality we obtain (1) when F = C.

We now consider 7r_2/ and its dual representation 7r2n+2/ where A is a
nonnegative integer. Since l2„+2/ is cyclic for m2n+2l the cyclic space for 1_2/
in X ~21 is irreducible. By Theorem 4.1(2) and the remark in §3 for F = C, we
see that the cyclic space for 1_2/ is L2l. By further application of 4.1(2) and
the remark in §3 for F = C we see that H¿, H2l, H2+, + H2, and X~2' are
invariant under the action of m_2!. In the same manner we see that m2n+2l
leaves U2l, F£, F2l, F2) + F2y, and X2n+21 invariant.

Observe by Theorem 4.1(2) that e2t+20 is cyclic for 7r_2/ and that the cyclic
space for e2l+20 in m2n+2¡ is U2l.

By observing that the actions of 7r_2/ on H2¡ + H2, and m_2l on H2¡ +
H2l and m2n+2l on X2n+2'/U2¡ are dual (3) follows by a modification of
Proposition 5.1(2).

Proof of (I) and (4) for F = H. By using Thoerem 4.1(2) (d = 4) we see that
1„ is cyclic if and only if v i= —21 where / is a nonnegative integer and v ¥= 2.
By duality (1) now follows immediately for F = H.

(i) We consider m_2, and its dual representation 7r4„+2+2/ for / a nonnega-
tive integer. By Theorem 4.1(2) we see that W¡, M, and X~2' are invariant
under the action of m_2l. Similarly we see that W¡, M, and x4n+2+21 are
invariant under the action of m4n+2+2l. Also Theorem 4.1(2) tells us that
l4n+2+2/ is cyclic for m4n+2+2, and e2¡+40 is cyclic for m_2l. The cyclic space
for 1_2/ is W¡ and the cyclic space for e2/+40 in x*n+2+21 is M,. Now the
induced action of m4n+2+2l on X4n+2+2'/M¡ is dual to the action of m_2l on
M¡. By modifying Proposition 5.1(2) we obtain 4(i).

(ii) By Theorem 4.1(2) we have that l4n is a cyclic vector for m4n. Also, we
see that the cyclic space for 12 in A'2 is T. Again by Theorem 4.1(2) we see
that e2n is a cyclic vector for m2 and the cyclic space for e20 in X4n is f. 4(ii)
now follows from Proposition 5.1.

6. The intertwining operators and the complementary series for the classical
split rank one groups. In this section we compute the intertwining operators
and the "partial" intertwining operators between X" and Xx for A, v E C
when G is one of our classical split rank one groups. We actually determine
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the linear maps A0 from X' to Xx such that A0my(k) = mx(k)A0 for all k E K
and AQm,(H) = mx(H)A0.

Theorem 6.1. Suppose that A0 intertwines X" and Xx where X = d(n + 1) —
2 — v with A0ly = lx:

(i)'/F = R,
£(n-2-v+j\

(ii)//F = C,

<U") = Ao\^= Ü [     2J-2 + V     j^(     2l-2 + v     J7;
or,

(iii)i/F = H,

,,      di iP~Tr)/2(^-2 + 2J-v\^/2(4n + 2l-y\I^w-^.i^- yn (  2y_4+y  ) n (2,_2+„ )/■
Proof, (i) Now mr(H)ak(v)ek = A0(mx(H)ek). Thus by Theorem 5.1(1) we

have that

n + 2\-2 t(" + 2* " 2)(" + ^W***» + *(' - * " " + 2)fl*(")e*-i]

= n + 2k-2 t(" + 2k ~ 2)(X + *>«*+> W^-H

+ k(X-k-n + 2)ak_x(v)ek_x}.

This gives us a recursion relation for ak+x(v) and (i) follows, (ii) and (iii)
follow in the same way.

We consider the intertwining operator B0(v): X" -> xdi"+l)~2~' defined by
W*) - «0'0> - wOMoOO-

Remarks. If F = R,
i 21-V/2

*oWI*" Tav)T(i(v+i))ak{p)=-wrûkiv)=h{v)-
If F = C,

If F - H,

*o(»0|»*-        ) tfap«(p) " bpÁv)-

5o(p)l-= r(,/2)T(t> - 2)/2) a""{v) = b>«{v)-
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We wish to determine which of the representations (mf, X") and which of
the representations defined in Theorem 5.1 have invariant pre-Hilbert space
structures. In other words suppose (mx, Vx) is one of these representations and
(m2, V2) is the dual representation. We wish to determine whether or nor there
is an intertwining operator B: Vx -» V2 such that, for all v in Vx, <2to, t>> > 0.
Observe, for example, that if v = (d(n + l)/2) - 1 + z'A where A is real, mr is
self-dual and the identity defines the appropriate intertwining operator.

From Proposition 5.1(1) it is clear that we can only find an invariant
pre-Hilbert space structure if v = v or if v — d(n + 1) — 2 — v. Since the
second case has just been dealt with, we consider the case where v is real.

Let B0(v) be as above and let <, > denote the sesquilinear pairing on
H' X HdC+X)-2-i_m_ Proposition 5.1(1). (If f E H', gE jf^+D-*-*
</, g> = ¡K/MÎ(b)g(b) db.) If v is real let (, )„ be the bilinear form on H'
defined as follows: For/, g in H" set (/, g)„ = </, B0(v)g}.

Theorem 6.2 (Kostant [10]). Suppose v is real. Then the following state-
ments are true.

(l)IfF = R,(,)r induces a positive definite Hermitian form on X" if and
only z/0 < v < n - 1.

(2) If F = C, (, ), induces a positive definite Hermitian form on X" if and
only z/0 < v < 2zi.

(3) If F = H, (, )„ induces a positive definite Hermitian form on X" if and
only if2<v< 4«.

Proof. This follows from Theorem 6.1 if one observes that all the by(v)'s
are nonzero and have the same sign for each y G K0. (Here we are identifying
the elements of K0 with their indexing sets.)

We use the notation of Theorem 5.1. By reasoning similar to the above we
easily obtain:

Theorem 6.3.(1) (Takahoshi [11]). If F = R the kernel of B0(-k) is Vk and
( , )-k induces a positive definite bilinear form on X~k/ Vk at Wk.

(2) If F » C the kernel of BQ(-2l) is H¿ + H2I and (, )_2/ induces a
positive definite bilinear form on X~2'/(H2I + H2l) as U2l.

(3) (i) // F = H the kernel of B0(-2l) is M, and (, )_¡ induces a positive
definite bilinear form on X~2'/M, — M,.

(ii) // F = H the kernel of B0(2) is T and (, )2 induces a positive definite
bilinear form on X2/Tst f. The kernel of B0(4n) is f and (, )4n induces a
positive definite bilinear form on X4"/ T at T.

Observe that if F = R we have exhausted our considerations. However, if
F = C or H there are some subquotient representations for which we have
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not determined whether or not there is a positive definite Hermitian bilinear
form.

If F = C set
C0(v) = T(v/2)B0(v)

and if F = H set
C0Í» - T((v - 2)/2)50(P).

If p - -2/let {/,g}_2/ = </, C0(-2/)g>.

Theorem 6.4. (1) If F - C, C0(-2l) is defined on H2+¡ + H2l and has
kernel L2I. C0(-2l) is an isomorphism from (H2I + H2l)/L2l to
(F2l + F2¡)/U2¡. Moreover, { , }_2/ induces a positive deSinite Hermitian Sorm
on (H¿ + H2,)/L2l ff and only if I - 0. Thus H¿/L2l s F2+,/U2, and
H2Î/L2, « F2¡/U2I, and only H0+/L0 = F0+/ UQ and H¿~/LQ s F0_/í/0
«aue invariant pre-Hilbert space structures.

(2) If F = H, C0(-2/) & ae/mea" o« A/, a«i/ «ai kernel W,. C0(-2l) induces
an isomorphism of Ml/Wl with WJ M¡ and { , }_2/ never induces a positive
definite Hermitian Sorm.

Proof. The proof of this theorem is the same as the proof of Theorem 6.2.
By Nelson's theorem [13], we obtain:

Theorem 6.5. Consider the representations oS Theorems 6.2, 6.3 and 6.4 which
have positive deSinite invariant Hermitian Sorms on them. We obtain unitary
representations oS G on their respective completions with respect to the induced
norm.

1. Kostant's A-matrices. In this section we give the relationship between
Kostant's P-matrices and the intertwining operators for general semisimple
groups. We show how to compute the P-matrix in the case of split rank 1
using the results of §6 and [7].

The Poincaré-Birkhoff-Witt theorem implies that since g = Ï © a © n,
U(q) (the universal enveloping algebra of g) splits into a direct sum U(q) =
(t/(g)f + ni/(g)) © U(a) (U(a) is the universal enveloping algebra of a).
Thus if w G U(q) there is a unique element Pu E U(a) so that u- PUE
í/(g)f + ní/(g).

If m G {/(g) and v E a* then (trv(u)lv)(é) = v(Pu) (here v is extended as the
unique homomorphism of U(a) to C which is v on a). This is easily checked
since if X G n and/ G X" then (my(X)f)(e) - 0 and 77,(1)1, - 0.

Set Pu(v) = v(Pu).
Kostant and Rallis [11] showed that there exist A-invariant (under ad)

subspaces H* and J* (see [11] for definitions) of t/(g) so that
(1) U(Q) = t/(g)f © H*J\
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(2) J* is contained in the centralizer of f in [/(g).
(3) H* as a ^-representation is equivalent with X". (As a ^-representation,

(mp\K, X") = Ojjf, Ar") for all v, p E qJ. Let us denote (m„\K, X") as (m, X).)
For y G A5, let Ey = Hom^K,, //*) and Êy = Hom^K,, A^).

Lemma 7.1. There is a basis ax,..., a,M of Ey (l(y) = dim Vy (the
M-invariants in Vy)) and a basis vx,..., v,,y) of V" so that F0/((,y(2p) = o^-.

Proof. If we observe that l2p(g~'A) = P(gK, kM) is the Poisson kernel of
G/X it is easy to see that m2p(U(Q))l2p = X2". Now m2p(J*)l2p C Cl2p and
I • l2p = 0. Hence X2p = m2p(H*)l2p. But then the space of A/-invariants of
A"2p is 2Ye¿7r2p(Fy(K)f/))l2p. Frobenius reciprocity implies that X =
2ySJf*(ÍY ® Vy) where

4,(A®v)(k) = A(ry(k)-xv)       (Py,Vy)Ey.

Thus the M-invariants of X are just "2ye¿\(/(Ey ® V") • l2p. Now it is clear
that ^(^(K^ljp = \¡/(Ey ® Vy). Thus by counting dimensions we see that
there is a bijective mapping 8y: Ey -» Êy so that

»*(«(©))i*-*(«,(«)««>)•

The standard proof of Frobenius reciprocity implies that there is a basis
vx,..., vKy) of V™ and a basis Ax,..., Al{y) of Êy so that \¡/(A¡ ® vj)(e) =
5r Takea,. = r3Y-1(^1).   Q.E.D.

Definition 7.2. PJ(v) = P^p) for ax,..., a,M, vx,..., vl(y) as in
Lemma 7.1.

Set Py(v) = (PJ(v)). We look at Py(v) as a map of Vf -» Ky" by setting
P»ü,. = 2P/(V)i}.

If A G (V*)M, v E Vy, define (A ® u)(z<) = A(pv(A)-'u). Then Ary = (F*)w
® Vy (the only action of K is on Fy) as a AT-module. Define for a G £y,
o G VyM, B?(a)(v) = (mp(a(v)) ■ l)(e). Then Bj: Ey ->(V*)M. Clearly
B>(a)(v) = Ffl(c)(,).

Now let r„: #* -» A" be defined by T„(u) = ttv(m)1v. Then F2p is bijective
by Lemma 7.1.

Lemma 7.3. T„ ° F¿'A ® v = X » />?(*.) ® ü./oz- A G (V*)M, v G Kyw.

Proof. Let 8y:Ey^>(V*)M be defined so that T2p(a(v)) = 8y(a) ® v,
aEEy,vE Vy. By the above BJp(a) = 8y(a). Now T„ ° T2-\BJp(a) ® u) =
5;(a) ® ü. But BJiafaj) = /»¿(y). Thus 5;(a) = B]p(a) » P^(v). Hence if
B2\(a) = A, then 7; » F2;'A ® t) = A ° F» ® o.

We note that the definition of the Py(v) implies

Lemma 7.4. mv(U((¿))lv = X" if and only if del pt(v) t¡= 0/oz- all y E K0.
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Noting that Py(2p) = / for all y G Â0 we see that det Py(v) 2é 0 for any
y G Â0. Thus det Py(v) ^ 0 for almost all v.

Lemma 7.5. Let s E W(A) the Weyl group of a. Suppose that As(v): A -» A,
As(v) o mr(u) = ttj(,_p)+p(m) » As(v), u E U(q) and As(v) • 1, = li((,-p)+p.
Then if y EK0andXE( V*)M, v E Vy,

As(v)(X ® v) = X o py (v)~xPy (s(v - p) + p)®v

if det Py(v) * 0 and det Py(s(v - p) + o) ¥= Ofor all y E K0.

Proof. If u E H* then As(v)T„(u) = As(v)mf(u)lr = ms(y_p)+l)(u)As(v)lr
- ^-p)+p(«)li(,-P)+p = ri(,_p)+p(w). Hence As(v)Tr ° T2~X(X ® v) =
Ts^p)+poT2-x(X®v).Thus

as(v)(X®v) = (rj(,_p)+p o r2;') - (r,. T2-px)~\x® „)

= A»Pr (f)~XPy (s(v - p) + p) ® o

by Lemma 7.3.
If dim a = 1 we identify p G a¿ with v(H0) E C where 1 is the smallest

eigenvalue of ad H0\n.

Theorem 7.6 (compare Kostant [10]). // G is split rank 1 then dim VyM =
lifyE A0. Hence Py(v) is a scalar.

(1) If G is locally isomorphic with SO(n, 1) we parametrize A0 as in Theorem
3.2 and set Py(v) = Pj(v) if y is the class of %J. Then Pj(v) = cß/rx0(v +/),
Cj ¥> 0.

(2) If Gis locally isomorphic with SU(n, 1) r«e« let Py(v) = PtJ(v) if y is the
class of %'J. Then

i-\ J-\
PiJ(v) = cij]l(2k+v)J{(2k + v).

k-0 k-0

(3) If G is locally isomorphic with Sp(n, 1) then let Py(v) = P¡j(v) if y is the
class of V'J (see Theorem 3.2). Then

(<-y)/2-i U+j)/2-\
PiJ(») = Cy     u      (F + 2/-2)      u      (v + 21).

/-o /-o

(4) // G is locally isomorphic with F4 with A = Spin(9) then if y is the class of
ViJ,

(i-j)/2-i (<+y)/2-i
m»)-* n (2/-6 + ,) n (2/+»-).

/-o /-o
(See [7, Theorem 3.1] for notation)
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Proof. Suppose dim a = 1. If S(p¿) is the symmetric algebra of pc, then
we look at S(pc) as the polynomials on 9*. Using B, the killing form of g,
^ * is equivalent to ÍP as a representation of K under Ad. Also, if H0 is as
above, then Ad(A") • H0 - K/M. Thus S(p¿f[K/M = X as a representation
of K. Let % be the harmonic polynomials in S(pc). Then if A: 5(g) -» (7(g)
is the symmetrization mapping X(%) = H*. Let %y be an irreducible compo-
nent of % labeled by its equivalence class. If / G %y1 then mr(\(f))lr =
Py(v)fas a function on K/M. We therefore see

(1) If/ G 3Cf,/ ̂  0, then deg Py = deg/.
The result now follows from Lemma 7.5, Theorem 6.1 and [7, Theorem 5.2]

by observing that the ay(v) are of the form ny(v)/dy(v) with zzy(z>) and dy(v)
relatively prime and deg dy(v) = deg/for/ =£ 0,/ G %yí.   Q.E.D.

8. Remarks on square-integrability. In this section we will examine the
representations of §7 to determine which of these representations are square-
integrable. We first however will make some general statements concerning
the square-integrability of representations.

Let G, K, A and o be as in §2. Let a+ = {H E a: a(H) > 0 for all
a e A+}. Suppose m: G-* ñ(%, %) is an irreducible representation of G.
Let v be an irreducible representation of K which occurs in m and let
vx,... ,vm be orthonormal vectors which span a vector space which is
irreducible under the restriction of m to K and transforms according to v.

•n is said to be square-integrable if, for all <p and \p in 3C» /gK,7'(s)C>» ,/')|2 dg
< oo. From Harish-Chandra [3], we know that m is square-integrable if and
only if there exist <p and \p nonzero in % such that

f\<v(g)<P>t>\2dg< co.
Thus m is square-integrable if and only if

f\(*(g)vv»i>\2dg< oo.
Now

f <w( g)vx, vx)dg= f f    f \{tt(kx)m(d)m(k2)vx, t>,>|2ô (a) dkx da dk2
JC JKJA*JK

where 8(a) = ITaeA+(ea(Iogfl) - e-tt^°ia))m" (see Helgason [5, p. 382]).
From Schur's lemma, we have

//   [S(a)\(m(kx)m(a)m(k2)vx,vx)\2dk2dadk2JKJA + JK ' '

= //+/«(«)  S   \vjX(kx)\2\vlx(k2)\\m{a)vj,vt)dkxdadk2
JKJA*JK j,k~\

= —2{8{a) 2  «"(a)«,, 0/>|2¿a.
m1 Ja*       y,/_i'
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Thus m is square-integrable if and only if for all 1 < /, / < m

j J(a)\(m(a)vj, v¡)\2 da < oo.

Hence, from the formula for 8 (a), m is square-integrable if and only if for
all I < j,l < m

J yp(loga)|<7r(a)t^ ^|2 da < ^

From Harish-Chandra [4], we know that if % contains a A-fixed vector, m
is not square-integrable.

We now suppose that G is a classical split rank one group. That is, G/K is
the open unit ball in F". Our main results of this section can now be stated.

Theorem 8.1. (1) (Takahashi [17]). // F - R and « > 3 the unitary repre-
sentation m_k induces on the completion of X~k/Vk is not square-integrable.

(2a) If F = C and « > 2 the unitary representations m0 induces on the
completion of H¿ /L0 and H$ /L0 are not square-integrable.

(2b) If F = C and n > 3 the unitary representation m_2l induces on the
completion of X~2l/(H2¡ + H2l) is not square-integrable.

(3) If F = H and « > 3 the unitary representation m_2l induces on the
completion of X~21/M, is not square-integrable, and the unitary representation
m2 induces on the completion of X2/T is not square-integrable.

Proof. Since G in each of these cases has split rank 1, dim û = 1. So if we
let

we have that

cosh t
0

sinhr

sinh t
0

cosh t
EA

f  S(a)f(a)da = c0[a>8(at)f(al)dt
JA* J0

where c0 > 0 and/ G CC(A +).
Proof of (I). Observe that the A-irreducible subspace 3Ct+1 occurs in

X~k/Vk. Since « > 3 there is a harmonic polynomial of degree k + 1 which
is independent of the first variable x,. (Recall the coordinates of F\)

Now
m_k(at)G(x2,...,x„)

= (cosh, - sinh rx,)*^^^ sinh txx cosh t — sinh txx)

1
cosh t - sinh tx G(x2,...,xn).
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If the representation m_k induces on the completion of X~k/Vk were
square-integrable we would have

r8(ai)\(m_k(at)G,G)\2dt<^

where

<v_k(a,)G, G> = f    m_k(at)G(xx,..., xn)G(xx,.. . ,xn) dp(S"~x )
JSn-l

and dp(S"~x) is the standard measure on S"~x. However,

f    w.k(a,)G(xx,..., xn)G(xx,...,xn) dp(S"~x )

-L «à.-U», |c('!.x-)f *(S""' '

°dh7¿-,i-(¿h,)„'gfe.*#«*-')

Since   2p(log a,) = (zz - l)t  and  e^-^^^A/l cosh /) ~ ,4e(("-3)/2)',  for
large t we see that our representation is not square-integrable if zz > 3.

Proof of (2). (a) Observe that %xfi occurs in H0+/L0 and Oí?-1 occurs in
H0~ /Ln.

Let G(zx.zn) = z2 and let a, be as above. Then

7r0(a,)G(*i. •••.*,■) =
cosh t - (sinh /)z,

Then

<m0(a,)G, G} = ( ^. ¿M(52"-' )
/s^-i cosh / - (smh t)zx     v '

i    r W2--T7Í      , , ,   ¿MS2"-')
cosh t JS2n~, 1 - (tanh t)zx   rv '

-T7 Í      k2|2 ̂(52"-l )-4^ -
cosh/ J<¡2n-i> 2>    rv y     cosh/

As 2p(log a,) - 2zz/ and ent(A/cosh /) ~ 2Ae(n~X)l for large /, we see that the
unitary representation m0 induces on the completion of H0+/L0 is not
square-integrable. The case of H0~ / Ln is now obvious. Thus we have proved
(2a).

(2b) Observe that 3C/+U+I occurs in X~2'/(H¿ + H2l). Recall that if G is
in %l+1-'+\
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G(azx, ...,azn)= |a|2/+2G(z„ ..., z„)   for a G C.

Let G G %'+XJ+x which is independent of z, and z,. This can clearly be done
since « > 3. Then an easy calculation gives

»-2/(a«)G(*i» • • • > zn) =-2 G(z2,..., z„).
|cosh t - (sinh/)z,|

Moreover,

<7r_2/(a,)G, G>

•'s2"- |coshf-(sinhf)z,|2

-^- f-T \G(z» • • • ̂ „)\2 dp(S2n-x )
cosh2/V-'|i-(tanhiK|2

-Tri      -J    ,    ,|G(z2,...,zn)|2a>(52''-1)
cosh2r V-> 1 - (tanhtf|*i|   ' '

>-^Tt/. t\G(z2,...,zn)\2dp(S2»-1)coslr r -'s2"-1
A

with A > 0.
cosh2 r

As e"'(A/cosh2 t) ~4yie(n-2)' for large r and « > 3 the representation w_v
induces on the completion of X~2'/(H2l + H2l) is not square-integrable.

Proof of (3). Observe that the A-irreducible space K2/+4,0 occurs in
X~2'/M, and the A-irreducible space V2-0 occurs in X2/T. We first need a
characterization of the elements of V2m,° and this is provided easily as
follows:

(i) Let 9>2m = {/ G <$2m:f(wxw,..., w„w) = \w\2mf(wx, ...,wn) for all
w E F « H}. An easy calculation shows that 92"1 is A = (Spin) X Sp(l))-
invariant.

(ii) Observe from Theorem 4.1 that (V2mJ)M n <3,2m * (0) if and only if
/ - 0. Thus F2™-0 c ^P2"1.

Now let G G K2/+4,° which is independent of the real coordinates of wx.
This can be done since « > 3. Then

»-aWCK • • • > w„) - "-;-7 G(w2,..., w„).
|cosh t — (sinh í)h>,|

Similarly, if G G V2,0 which is independent of the real coordinates of w,

m2(a,)G(wx,..., w„) -- G(w2,..., w„).
|coshr - (sinh r)w,|

Now
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/-!--\G(w2,...,w„)\2dp(S4'-x)
JsA-1 ¡cosh t - (sinh t)wx\*

cosh'

Now

h~tL r,-!—-4\G(w2,...,wn)\2dp(s4"-x).
¡h4f-V-' |i -(tanh/)w,|4

1 1
|1 - (tanh t)wx\       (l - (tanh t)(wx + wx) + \wx\2 tanh2/)2

using the coordinates \wx\2 = cos2£ and wx + wx = 2 cos £ cos / (0 < £ <
w/2, 0 < / < m) we have

i » (2 tanh /)*cos*£ cos*/= 2 (* + i)-
|1 - (tanh z>,|4     *-o (l + cos2£ tanh2/)*+2

Using the fact that /Jcos*/ sin2/ ¿/ — 0 for odd A, we obtain from Theorem
4.1(4) that

\zL   ,1-!-t|G(w2,...,w„)|2¿M(S4''-1)
>sh4/-V-' H -(tanh/W.fcosh4/-V-' |i -(tanh/)

- 2  I      (2A + 1)-
COSh4/ kToV-^ '   (1+|U,,2

j       » (tanh t)2k(wx + wx)2k

(1 +|w,|2tanh2/)

•\G(^2,...,wn)fdp(S4"-')

>—TâL   .:-1-^|G(w2,...,wn)|2¿KS4"-')
COSh4/^-'(1+|Wi|2tanh2^21

>4^47tJG(W2'---'^2í/ít(s4rt",)

= (t)ä with^>a

As 2p(log a,) = (4zz + 2)/ and e(2B+1)'(^/4)(l/cosh4/) ~ 4Ae^"-3)' for large /
and zz > 3, (3) now follows. This completes the proof of the theorem.

Using the fact that no unitary representation that contains a tf-fixed vector
is square-integrable, we have:

Corollary 1. No unitary representation which arises from the spherical
principal series (irreducible or reducible) of SO(n, 1), SU(n, 1) or Sp(n, I) for
n > 3 is square-integrable.
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We now consider the groups SO(n, 1), SU(n, 1) and Sp(n, 1) for n < 2. In
the case of SU (I, 1) or SO (2, 1) the discrete series does arise when the
principal series is reducible; see [1] or [14]. Now Sp(l, 1) is a covering of
SO°(4, 1) and is thus dealt with above. SO°(l, 1) = R and no more need be
said about it.

It remains only to consider the groups SUÇL, 1) and Sp(2, 1). The following
proposition shows that the breakdown in the proof of Theorem 8.1 for these
groups is more than mere technical inconvenience.

Theorem 8.2. Let G — Sí/(2, 1); then the unitary representation that m_2k
induces on the completion of X  2k/(Ht2k
ble.

+ H-2k)> H-2k> 's square-integra-

The proof of this theorem requires a little preparation. We will actually get
more precise estimates than will be necessary to prove Theorem 8.2. Let Tx be
the subgroup of A consisting of matrices in A of the form

,i» 0e-    u 0
0      e'19    0
0      0 1.

Then Tx is a maximal torus of the subgroup A, consisting of all matrices in A
of the form

S 0

with g, 2 X 2. Noting that A is a central extension of A, we see that the
representation of A, on %k,k is already irreducible. Furthermore standard
theory says that %k-k = 2)=_^/ with

(a)dim3<!/ = 1, -k </< k.
(b) If / G 3(*/ and if

kx(6) = e
0

then m0(kx(9))f ~ e'^f.
Let P: 1? -» % be the harmonic projection (see the discussion preceding

Theorem 4.1).
Set <bkJ(zx, z2) = Pi\z2fk-2h{z{) for 0 < / < k. Set <bk,_j = ̂ ~.

Lemma 8.1. 3$** = C<bkJ.

Proof. Clearly <bkJ E %k'k. It is thus only necessary to show that <bkJ ̂= 0.
We leave this as a (simple) exercise to the reader.
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Lemma 8.2. A(\z2\2k-2JzJxzJ2) = 4k(k - j)\z2fk-2i'2z{z{.

The proof is again a straightforward computation. Using Lemma 8.2 one
concludes directly.

Lemma 8.3. ̂  = zfâStfadMf*-*-*/» Jbr 0 < j < k; here ckJ>k E R,
ckj,0 - i-

Lemma 8.4. (1) {m_2k(a^k+XJ, <pk+XJ} = 0 ifj ¥= I.
(2) <^-2*(ß/)<i>fc+i^ <l>k+ij> = conj«7z_2t(aí)<í)A+lj_>, $k+u_¿>) for -k < j

< k (here conj(z) = z).
(3) // 0 < / < k + 1 then

<l"-2k(a,)<>k+ij>'t>k+ij>=(cosht)  '   'TV
jZh,  ,2k-2j + 2

ZJ,ZJ->\Z,z2 z2 <t>k+\j(Z) dp.
Js3       1-(tanh/)2|z,|2

Proof. To prove (1) we note that the centralizer in G of the set of all at,
t E R is M, the group of all matrices of the form

0
-2*    0

e'

ei9    0
m(9)=   o      e

0      0
Now m0(m(9))<l>kj = e~ije$kJ. Thus (1) follows from Schur orthogonality.

(2) follows from the fact that m_2k(a¡) is a real operator conj((7r_2fc(a,)/)(z))
- (w-ttWX*) for z G S\

(3) Let 0 < / < k + 1.
(*-tt(4)fe+u)(*)

(2A/2)
1 - (tanh /)2

**+i,/((cosh ' ~ (sinh/)z,)
[|l-(tanh/)z,f
• ((cosh /)z, - sinh /, z2)J

|1 - (tanh /)z,|2*(cosh /)2*(cosh t)~v\l - (tanh t)zx\~2J

■ ((cosh /)z, - sinh t)z{

*S+,%,(cosh/)-2Ä-2+2^2i
i-O

•|1 - (tanht)zx\-2k-2+2J+2i\z2\2k+2-2J-2ir2i

= \l- (tanh /)z,| 2(cosh /)~2((cosh /)z, - sinh t)Jz{\z2fk+2-2j

+ r\(zx,z2)   mth^(zx,z2)E<^2k.
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Hence

(V-2k(at)<t>k+\j> Qk+lj)

((cosh t)zx - sinh t)JH\z2\2k+2-2J -
= (cosh i)     I   -■- <f>k+XJ(z) dp

Js> |1 - (tanhr)rif

= (cosh ty2 2   (tanh t)p+q 2 (■')(- l)'(cosh t)J~'(sinh /)'

. jr3*r7-s?%2i*+2~v<w*) ¿m*)-
Now /sJzf+^-/z7^|z2|2*+2-2%+,i/.(z) a>(z) - 0 if p + / - / ¥= a + / since

**+.,/ e &*1**1- Thus notinê (cosh ^'"'(sinh /)' = (cosh ry'(tanh r)',

(^-2k{a¡)^k + \j^k + lJ>

= (cosh f)_2(cosh ty1 2 ( J)(-1)' 2 (tanh /)2?+2/
l-0\l' q-0

-jjzx\2^I2\z2^2-2J'^xJz) dp(z) = (cosh /)-2(cosh t)J

llj\,     ,xf/      ,,   ,2/ f    W%2|2*+2~2y'^Tl7ÏÏ   ,• 2    ,  (-1) (tanh /)   I   -LJ-;—;-¿u.
iT0\ll Js»       1 - (tanh/)2|z,|2

The lemma now follows from the formula 1 - (tanh t)2 = (cosh f)~2.

Lemma 8.5. fs>\zx\2p\z2\2* dp(z) = p\q\/(p + q + 1)!.

Proof. This result is standard (cf. Vilenkin [18]). One can give a very
elementary proof of the lemma by noting

Lp\zxfp= 4p(p\ )2,      Ai'r2" - 4p(p + l)!p!.

Hence }s>\zx\2p dn(z) = l/(p + 1). The result can then be proven by induc-
tion using

|^|2"^2|2? + 2=|^|2/,K2|V-|Z,|2'' + 2|Z2|2'.

Lemma 8.6. (1) {- < ¡s>(\z2\2/(l - (tanh /)2|z,|2)) dp(z) < 1 Sor all t and
there is a positive constant c2 such that

(2) 1 < /S<1/(1 - (tanh r)2kil2)) dn(z) < c2|r|/or |r| suSficiently large.

Proof. The lower estimates are trivial and (1) follows from the inequality
1 - (tanh i)2|z,|2 > |z2|2.

We now prove (2). As
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i',-r-H^W^= 2 (tanh/)2'/ |z,|2'¿M(z)
■'s» 1 - (tanh /)2|z,|z P-o Js*'

°°                    p!                »   (tanh/)2'
- S (tanh/f'-^-r < 1 + S-—

= 1 - (tanh /)~2log(l - (tanh /)2) < c2|/|

for |/| sufficiently large.

Lemma 8.7. Let c2 be as in Lemma 8.6. FAe«

(cosh t)~0+k\(k + l)\ )2
(1) (2k+~3~y.

< <^-2*(az)^+l,±(*+l). ^+1,±(*+1)> < (COsh 0"

(2)//0< l/l < kthen
|<>-2*(«,)**+y, <WI < c2|/|(cosh /)-("+4_U|)|<i.*+I,t

for \t\ sufficiently large. Here

ll**+JL" sup |**+i/z)|-
res1

Proof. (1)

(v-2k(a,)<>k + !,*+!' <*>*+!,*+!>

-0+*) r z\   z2    9k+\j\z)
= (cosh /) /-—- dp(z)

Jss   1 - (tanh /)2|z,|2

.     ,2*+2.     ,2*+2

"(C0Sh° ¿M-(toh,,V,|!*W

>(cosh«)-otB/u,r2Ní'"*w
•'s3

/       ,.-(3^)((^+1)!)2= (coshr)       l2T+l)T-
On the other hand,

,     i2*+2,     ,2*+2 .     .2J    M     N r -N_^
■W 1 - (tanh/)2|z,|2   ^       ^sM - (tanh /)2|z,|2   ^ '      2

This proves (1).
To prove (2) we first observe that if s > 1, then
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,2s,     ,21

I   -;—;— dp(z)
Js>       l-(tanh/)2|z,|2

(a)
,2i-2,     ,2/ + 2'

= - (cosh t)    |   --—- dp(z).
Js> l-(tanhi)h|

Indeed,
|2i|.   ,21-

¿-ÎTT^ji-*W
= /3^K2|2i_2K.|2/W^(ÏÏ *(*) » 0.

'S3

Since deg(z^|z2|2í_2|z,|2/) = 2j + 2/ + 2/ - 2, deg(<bs+¡+JJ) = 2s + 2/ + 2/
and <i>s+i+jj is harmonie. This implies that

,2s,     .21-
f    Z{z{\z2\    h      <t>s + l+Jj(z)       .   .   ,
I  -i—i— 4KZ)•'s3       1-(tanh i) hl

"t^N" w«{,_(J,,)W-7^}*»
This yields (a) after the appropriate algebraic manipulation.

Now suppose that 0 < / < k.

(V-2k(at)<>k+\j''l>k+\j>

-a+ñ  r  zÍH\z2\2k~2J+2<l>k+ij(z)= (cosh i)  (2+j)- f  -iü-2-7+1V '   d)*(2)
1        ' -V      l-(tanh02h|2

= (cosh í)-°+J>(coáh í)"°*"*+1>(- l)*-y+I

.   z\z{\zlfk-v*2^k~lJz)
• I   -;—;- dix(z)
Js>      1 - (tanh 0 |zi|

by repeated application of (a). Thus

_(4+2*-,, r  *,%2|2*~2y+2WÏÏ   . , ,
= (C0Sh° ¿      l-(tanhOV,l2      mt)

< (cn*h t\-(4+2k-J)\U II     f    \Z^\Z2Ï\Zi\2k~2j+2    ,  ,  .«cosh,) ^+JwJi3___^

<(cosh/)"(4+2A~7)||^+./ll    f  -!-*(*)"     Mloo^l-(tanhOV,|2
<c2|í|(coshO~(4+""y)«<í>A+1,L.
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The result for — k + 1 < / < 0 follows from the observation

\<v-2k(at)<t>k+i,-j> <t>k+i,-j}\ = \<v-2k(a,)<t>k+ij> <t>k+ij>\-   QED-

Proof of Theorem 8.2. If G = SU(2, 1) then e2"^^ = e4'. On the other
hand, Lemma 8.7 implies

\<v-2k(a,)<t>k+ij><l>k+ij>\< e~V

for / sufficiently large, k > 0, and 0 < |j| < k + 1. Thus

/   e*,\<ST-2k{a¡)$k+\j>$k+\S>f dt < °°

for all k > 0 and 0 < |/| < k + 1. The result now follows from the observa-
tion preceding Theorem 8.1.

In order to handle Sp(2, 1) we will need the weight space characterization
of spherical harmonics given in §2. We consider the representation m_2l
induces on X~2I/M¡ and the representation 7r2 induces on X2/T. Let T0 be a
compact Cartan subgroup of Sp(2, 1) in Sp(2) x Sp(l). Let @_2/ and 62
denote the restrictions of the respective characters of these representations to
To-

If F0 denotes the set of positive compact roots and

DQ =   II (ea/2 - e-"'2)
a<=PQ

we have that formally

0-2z=7T    2     2    2 (dets)expJ[(/>+l)A, + (9 + 1)(A2 + A3)]
u0  p>l+2  q>0 s&W

where W is the Weyl group of Sp(2) X Sp(l). Thus, if we let Pn be the
positive noncompact roots and set D+ = HafEP (ea/2 - e~a/2) we have that

0-2' - inr  2 (det s)exp s[(l + 2)A, + A2 + A3]

and also

©2 - JTFT  2 (det s)exp s[Xx + X2 + X3].
"o"+ sew

Again from Harish-Chandra [4] and Schmid [20] we have that 0_2/ and 02
agree on T0 with discrete series representations. We must add that since we
have not verified that the characters of our unitary representations for
Sp(2, 1) are tempered we cannot conclude that our representations are
discrete series representations.

We close with a brief remark on integrable representations which we
believe is well known but we give a proof for completeness sake.
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Proposition 8.2. Let G be a semisimple Lie group with finite center and let
G = KA+K as above. Let m: G-> £(%, %) be an irreducible unitary repre-
sentation of G. Then, if V is an irreducible representation of K which occurs in
%, we have that m is integrable if and only if for all <p and $ in V

f  8(a)\(m(a)<p,^>\da<a>.
JA*

Proof. Clearly, if fA+8(a)\(m(a)<p, ̂>| da < oo for all <p and ^ in V, m is
integrable by Harish-Chandra [3].

Suppose that m is integrable. Then

f \<jt(x)tf, Mdx-fff  8 (a)\(m(a)m(kx)<p, v(k2)M da ¿A, ¿A2 < oo.
JG JKJKJA*

Let F(A,, k2)(a) = (m(a)m(kx)<p, 7r(A2)^>. Then

(*) f  8(a)\F(kx,k2)(a)\da< oo
JA +

for almost all (A,, A2) in K X K. Then, if S is the subset of K X K for which
(*) holds, the linear span of {F(A,, A2)|(A,, A2) G S) is the same as the linear
span of {F(A,, A2)|(A,, k^ E K X K). Thus our result holds.

Corollary 1. The representations (m0, H0), (mx, Hx) are not integrable. The
representations (m_2k, H_2k) for A > 1 are integrable.

Proof. Lemma 8.7(1) implies that if A = 0 or 1,

J     e4'\<^-2k{a,)<Î>k+l,k+V<Pk+l,k+l>\ dt = 00.

If A > 2 then Lemma 8.7 implies that

|<»-2*(a,)**+w. **+i./>|< Ce~5'
for / large and 0 < |/| < A + 1. We are left to analyze A = 2. If A = 2 then
\<^-Áai)H±3' ^3,±3>l < Ce~5' and

|<'-4(ö/)^.*3l/>|<C2|/|e-«-^|^JB0   for |/| large.   Q.E.D.

Note. If G = SU(2, 1) and F is a maximal torus of K, then it is easily seen
that the representations of (m_2k, H_2k) for A > 0 are not F-finite. Hence
they do not belong to the holomorphic discrete series. (See Enright, Thesis,
University of Washington at Seattle.)
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