
Compositional Abstractions of Hybrid Control Systems1

Paulo Tabuada2 George J. Pappas3 Pedro Lima2

2Instituto de Sistemas e Rob�otica 3Department of EE

Instituto Superior T�ecnico University of Pennsylvania

1049-001 Lisboa - Portugal Philadelphia, PA 19104

ftabuada,palg@isr.ist.utl.pt pappasg@ee.upenn.edu

TuA12-3
Abstract

Abstraction is a natural way to hierarchically decom-
pose the analysis and design of hybrid systems. Given
a hybrid control system and some desired properties,
one extracts an abstracted system while preserving the
properties of interest. Abstractions of purely discrete
systems is a mature area, whereas abstractions of con-
tinuous systems is a recent activity. In this paper we
present a framework for abstraction that applies to ab-
stract control systems capturing discrete, continuous,
and hybrid systems. Parallel composition is presented
in a categorical framework and an algorithm is pro-
posed to construct abstractions of hybrid control sys-
tems. Finally, we show that our abstractions of hybrid
systems are compositional.

1 Introduction

Networked, embedded systems are compositions of
many complicated subsystems. The analysis and de-
sign of such systems is currently limited by their com-
plexity. In order to tackle complexity, these systems are
organized in a distributed or hierarchical manner. This
structure must be exploited in the analysis and design
of such systems in order to scale our models, methods,
and tools to real life examples. Hybrid systems have
been used to model these kinds of large scale complex
systems and they usually come equipped with compo-
sition operators which compose subsystems in order to
form larger systems [4]. This modeling formalism also
contains abstraction operators which hide irrelevant de-
tails resulting in simpler, higher level models.

The notions of composition and abstraction are mature
in theoretical computer science, and, in particular, in
the areas of concurrency theory [6] [11], and computer
aided veri�cation [5]. This has resulted in formal and
very meaningful notions of abstraction. Given a dis-

1This work was partially performed while the �rst author was
visiting the University of Pennsylvania. The authors would like
to thank Esfandiar Haghverdi for extremely stimulating discus-
sions on category theory, and its use for hybrid systems. This
research is partially supported by DARPA under grant F33615-
00-C-1707, the University of Pennsylvania Research Founda-
tion, and by Funda�c~ao para a Ciência e Tecnologia under grant
PRAXIS XXI/BD/18149/98.
135
crete system, an abstraction is simply a quotient sys-
tem that preserves some properties of interest while
ignoring detail. Language equivalence, simulation, and
bisimulation are established notions of abstraction for
discrete systems that preserve properties expressed in
various temporal logics. For purely continuous sys-
tems, the notions of simulation, and bisimulation had
no counterparts. Recently, similar notions were intro-
duced in [7] and this research resulted in automatic
constructions of abstractions for linear and nonlinear
analytic control systems [8], while characterizing ab-
stracting maps that preserve properties of interest such
as controllability. Based on these results, in [10], we
took the �rst steps towards automatically constructing
abstractions of hybrid systems while preserving timed
languages. Even though only the continuous part of the
system was abstracted, the important property that
needed to be preserved in this abstraction was the de-
tectability of the discrete switching conditions. Related
but orthogonal work considers purely discrete abstrac-
tions of hybrid systems [2, 9].

The similarities between notions of abstraction for
discrete, continuous, and hybrid systems immediately
raise the question of a more uni�ed theory of abstrac-
tion. In this paper, we begin addressing this issue. We
start by �rst considering a more uni�ed and abstract
model for control systems. Our abstract control system
is inspired by categorical de�nitions of systems that
are as old as [1] and as recent as [11]. We show that
purely discrete, continuous, and hybrid systems can be
easily captured by our abstract model. Furthermore,
at this level of abstraction, one can show many useful
properties regarding abstraction or composition that
are independent of the discrete, continuous, or hybrid
structure of the system. In particular, we use the ab-
stract composition operators de�ned in [11], and show
that system abstraction is compositional. As a result,
when abstracting a subsystem of a larger system, we
obtain an abstraction of the overall system. We also
present an algorithm for the automatic abstraction of
hybrid systems.
2

2 Abstract Control Systems

In order to capture continuous, discrete, and hybrid
systems under a uni�ed model, we need an abstract
de�nition of control systems. The essence of a control
system is reected into two di�erent aspects: a notion
of evolution, and the ability to control the evolution.
These two fundamental aspects are captured in the fol-
lowing de�nition.

De�nition 2.1 (Abstract Control System) Let S
be a set, M a monoid and A a �bering relation1 on
S � M with base space S such that As = ��1S (s) is
a pre�x closed subset of M containing the identity for
every s 2 S. An abstract control system over S is a
map � : A �! S respecting the monoid structure, that
is �s : As �! S veri�es:

� Identity: �s(") = s

� Semi-group: �s(asas0) = ��s(as)(as0)

Intuitively, we can think of the set S as the state space,
and the �ber bundle A, also called in this work a �ber-
ing monoid, as the set of possible actions, that depend
on the base point. The map � assigns to each point
s 2 S a function from As to S representing all the in-
put choices that can be made at the point s. To get
a better understanding of the above de�nition we will
see how it applies to three classes of systems.

2.1 Discrete Control Systems as Abstract Con-
trol Systems
The usual model for discrete control systems are au-
tomata however it will be enough to work with tran-
sition systems. Let (Q;�; Æ) be a transition system,
where Q is a �nite set of states, � is a �nite set of
input symbols, and Æ : Q � � �! Q is the transition
function. Let us denote by �� the set of all �nite strings
obtained by concatenating elements in �. In particular
the empty string " also belongs to ��. With concate-
nation as a monoid operation, �� can be taken as the
monoid M. The state space is naturally S = Q. The
transition function Æ de�nes a unique partial map from
Q � �� to Q which is just an abstract control system
� : (S�M)jR = A �! S, where R is the relation given
by R = f(s;m) 2 S �M : �(s;m) is de�nedg.

2.2 Continuous Control Systems as Abstract
Control Systems
For simplicity of presentation, we consider only time-
invariant control systems, although the construction to
be presented is generalizable to time varying systems.
Let U be the space of admissible inputs. De�ne the set
U t as:

U t = fu : [0; t[�! U j [0; t[� R+0 g (2.1)

1We say that R � A�B is a �bering relation with base space
A if �A(R) = A where �A is the natural projection on A.
2
353
An element of U t is denoted by ut, and represents a
map from [0; t[to U . Consider now the set U� which
is the disjoint union of all U t for 0 � t <1:

U� =
[

0�t<1

U t (2.2)

The set U� can be regarded as a monoid under the
operation of concatenation, that is if ut1 2 U t1 � U�

and ut2 2 U t2 � U� then ut1ut2 = ut1+t2 2 U t1+t2 �
U� with concatenation given by:

ut1ut2(t) =

�
ut1(t) if 0 � t < t1
ut2(t� t1) if t1 � t < t1 + t2

The identity element is given by the empty input, that
is " = u0. We now show how this monoid is used
to describe any smooth control system as an abstract
control system. Let _x = f(x; u) be a smooth control
system, where x 2 M , a smooth manifold and u 2 U ,
the set of admissible inputs. Choosing an admissible
input trajectory ut, f(x; ut) is a well de�ned vector
�eld and as such it induces a ow which we denote by
x : [0; t[�! M , such that x(0) = x. We can then
cast any smooth control system in out framework by
de�ning:

� :M � U� �! M

(x; ut) 7! x(t) (2.3)

It is not diÆcult to see that � is in fact a well de-
�ned abstract control systems since �(x; ") = x(0) =
x and �(x; ut1ut2) = x(t1 + t2) = x(t1)(t2) =
�(�(x; ut1); ut2). In general the set of admissible con-
trol inputs may change with the point x so that the
domain of � will be in fact a �ber bundle over M .

2.3 Hybrid Control Systems as Abstract Con-
trol Systems
Hybrid control systems also �t in the abstract control
system framework. The state space of an hybrid control
system is usually described as Q �M , where Q is a
�nite set of states and M a smooth manifold. However
it will be convenient to relax this concept and look at
the state space as a �ber bundle. Instead of considering
the same manifold M for every q 2 Q we consider a set
of smooth manifolds Xq parameterized by the discrete
states, denoted by X = fXqgq2Q. The discrete set Q
is thought as the base space, and for each base point
q 2 Q we attach a �berXq . A point in X is represented
by the pair (q; x). As action monoid we will use the set:

M =
[

t2f1;2;:::;ng

(U� [��)f1;2;:::;tg (2.4)

assuming that U� \ �� = f"g. Let us elaborate on the
product operation on M. This operation is de�ned as
the usual concatenation and therefore it requires �nite
length strings. To accommodate this requirement and

still be able to have an in�nite number of concatena-
tions of elements in U� we proceed as follows. Suppose
that we want to show that �1u

t1ut2 : : : utn : : : �2 be-
longs to M, where tn is a convergent series. Instead
of regarding each element in the string as an element
in M, which would not allow us to de�ne the last con-
catenation since it would happen after 1 we regard
�1; �2 as elements of M and ut1ut2 : : : utn : : : = ut

0

as
an element of U� and consequently as an element of
M, where t0 = lim

n�!1
tn. This string is then regarded

as the map u : f1; 2; 3g �! M de�ned by u(1) = �1,
u(2) = ut

0

and u(3) = �3. The product in M is then
the usual concatenation on reduced strings, that is,
strings where all consequent sequences of elements of
U� or �� have been replaced by their product in U� or
��, respectively. Hybrid control systems are now cast
into the abstract control systems framework as:

De�nition 2.2 (Hybrid Control System) An hy-
brid control system H = (X;AX ;�X) consists of:

� The state space X = fXqgq2Q.

� A subset AX of X � M de�ned by AX =
f((q; x);m) 2 X�M : �X((q; x);m) is de�nedg.

� A map �X : AX �! X respecting the monoid
structure such that for all q 2 Q, there is a set
Invq � Xq and for all x 2 Invq, A(q;x)\U

� 6= f"g
and �((q; x); ut) 2 Invq for all ut 2 A(q;x).

The semantics associated with the evolution from (q; x)
governed by � and controlled by a 2 A(q;x) is the stan-
dard transition semantics of hybrid automata. Suppose
that a = ut1�1�2u

t2 , then �((q; x); a) = (q0; x0) means
that the system starting at (q; x) evolves during t1 units
of time under continuous input ut1 , jumps under input
�1 and them jumps again under �2. After the two
consecutive jumps, the system evolves under the con-
tinuous control input ut2 reaching (q0; x0) t2 units of
time after the last jump. From the hybrid system con-
struction we can clearly extract the purely discrete case
(Xq is a singleton and Uq = ?) as well as the purely
continuous case (Q is a singleton and � = ?).

2.4 Control System Abstractions
We now consider simulation relations, and in particular
abstractions, between the general systems considered
in De�nition 2.1. Although for discrete and smooth
systems a notion of simulation based on a map be-
tween �bering monoids is able to model the relevant
concepts and constructions, that will not be the case
for hybrid control systems. A map between �bering
monoids turns out to be too restrictive and one is forced
to look into more general notions of simulation. The
link between the �bering monoids will be provided by
a relation2 which is general enough for our purposes.

2In fact it was by means of a relation that the notion of bisim-
ulation was introduced in [6]
3
354
A notion of simulation will involve a relation between
�bering monoids that respectes the control structure
given by the map �. This is formalized as follows:

De�nition 2.3 (Simulation) Let �X and �Y be two
abstract control systems over X and Y with �bering
monoids AX and AY , respectively. Let R � AX � AY

be a �bering monoid respecting relation3. Then �Y is
a simulation of �X with respect to R or a R-simulation
if and only if:

8x2X (x; y) 2 RB) 8(x;ax)2dom(R) 9(x;ax;y;ay)2R

(�X(x; ax);�Y (y; ay)) 2 RB (2.5)

This de�nition slightly generalizes the usual notions of
morphisms between transition systems as in [11], since
we allow the control inputs to depend on the state space
and since we use relations instead of functions. This no-
tion of simulation can be reformulated in terms of the
notion given in [6]. This is accomplished by embedding
the category of abstract control systems in the cate-
gory of transition systems. It is not diÆcult to see that
abstract control systems and relations satisfying con-
dition (2.5) form a category, that we call the abstract
control systems category. The notion of abstraction
naturally follows:

De�nition 2.4 Let �X and �Y be abstract control
systems over X and Y with �bering monoids AX and
AY , respectively. If R � AX �AY is a �bering monoid
respecting relation we say that �Y is a R-abstraction
of �X i� �Y is a R-simulation of �X and R is a sur-
jective relation.

2.5 Compositional Abstractions
Following [11] the �rst step of composition combines
two abstract control systems into a single one by form-
ing their product. Given two abstract control sys-
tems �X : AX �! X and �Y : AY �! Y we de-
�ne their product to be the abstract control system
�X � �Y : (AX � AY) �! (X � Y), where the �bers
of (AX �AY) are subsets of the direct product monoid
MX
MY . The trajectories of the product control
system consist of all possible combinations of the tra-
jectories of the initial control systems. The product
can also be de�ned in a categorical manner.

De�nition 2.5 (Product of abstract systems)
Let �X : AX �! X and �Y : AY �! Y be two abstract
control systems. The product of these abstract control
systems is a triple (�X ��Y ; �X ; �Y) where �X ��Y
is an abstract control system and �X � (X � Y) � X

and �Y � (X � Y) � Y are projection relations

3We say that a relation R � F1 � F2 between �ber-
ing monoids is �bering monoid respecting i� satis�es: Iden-

tity: (x1; x2) 2 RB) ((x1; "); (x2; ")) 2 R; Semi-

group: (mx1 ;mx2); (m
0

x3
;m0

x4
) 2 R and mx1m

0

x3
2 F1 then

(mx1m
0

x3
;mx2m

0

x4
) 2 R, where RB is the relation on the base

spaces of F1 and F2 indced by R.

such that �X is a �X-simulation of �X � �Y , �Y
is a �Y -simulation of �X � �Y , and for any other
triple (�Z ; pX ; pY) of this type there is one and only
one relation � � Z � (X � Y) such that �X � �Y
is a �-simulation of �Z , and the following diagram
commutes:

�Z

pX

@
@
@
@I

�X �X ��Y��X �Y-�Y

6
� pY

�
�
�
��

(2.6)

The relations �X and �Y are in fact those induced by
the canonical projection maps �X : X � Y �! X ,
�Y : X � Y �! Y and the relation � is easily seen
to be given by � = (pX ; pY). In the product system we
capture all possible trajectories of both systems and
consequently several non physically meaningful trajec-
tories. One allows for example input trajectories of the
form ("; ut) where no time elapses in system �X and t

units of time elapse in system �Y . These trajectories
need to be removed from the product system in order
to faithfully model a physical system. Another reason
to remove transitions from the product system comes
from the fact that in the product system, the behavior
of one system does not inuence the behavior of the
other system. Since in general the behavior of a sys-
tem composed of several subsystems depends strongly
on the interaction between the subsystems one tries to
capture this interaction by removing undesired evolu-
tions from the product system �X � �Y , through the
operation of restriction.

Given a subbundle4 AL � AW we de�ne the restric-
tion of control system �W : AW �!W to AL as a new
control system �W jAL : AL �! L which is given by
�W jAL(x; a) = �W (x; a) i� (x; a) 2 AL and �W (x; a0)
belongs to L for any pre�x a0 of a. If the subbun-
dle AL has the same base space as AW but \smaller"
�bers, then restriction is modeling synchronization of
both systems on the control inputs. If on the other
hand the �bers are equal but the base space of AL is
\smaller" then the base space of AW then both systems
are being synchronized on the state space. Synchro-
nization on inputs and states is also captured by the
operation of restriction by choosing a subbundle with
\smaller" �bers and base space. This operation also
admits a categorical characterization.

De�nition 2.6 (Restriction of abstract systems)
Let �W : AW �! W be an abstract control system
and let AL be a subbundle of AW . The restriction
of �W to AL is a pair (�W jAL ; iL) where �W jAL is
an abstract control system and iL � L � W is an
inclusion relation such that �W is a iL-simulation
of �W jAL , and for any other pair (�Z ; iZ) of this

4A subbundle is understood as a �ber bundle such that the
inclusion morphism (in this case a relation) is �ber preserving.
4
355
type with iZ(AZ) = iL(AL) there is one and only one
relation � such that �W jL is a �-simulation of �Z ,
and the following diagram commutes:

�W jAL �W-iL

�Z

6
� iZ

�
�
�
��

(2.7)

The inclusion relation iL is in fact the map iL : AL ,!
AW sending l 2 AL to iL(l) = l 2 AW , and conse-
quently the relation � is trivially given by � = iZ . With
the notions of products and restriction at hand, we can
now de�ne a general operation of parallel composition
with synchronization.

De�nition 2.7 (Parallel Composition) Let �X :
AX �! X and �Y : AY �! Y be two abstract con-
trol systems and consider a subbundle AL � AX �AY .
The parallel composition of �X and �Y with synchro-
nization over AL is the abstract control system denoted
by �X kAL �Y and de�ned as:

�X kAL �Y = (�X ��Y)jAL (2.8)

Any theory of abstraction only makes sense if it is com-
positional. Since the system being analyzed is given by
the parallel composition of several smaller subsystems,
one can perform abstraction of individual subsystems,
resulting in abstractions of the overall system. This will
be asserted in the next theorem, but �rst we need to in-
troduce some notation. Given relations R1 � A1�B1,
R2 � A2�B2 and a subset L � A1 �A2 we de�ne the
new relations R1�2 = R1 � R2 = f((a1; a2); (b1; b2)) 2
(A1�A2)�(B1�B2) : (a1; b1) 2 R1^(a2; b2) 2 R2g and
R1�2jL = f((a1; a2); (b1; b2)) 2 R1�2 : (a1; a2) 2 Lg.

Theorem 2.8 (Compositionality of Simulations)
Given abstract control systems �X , �Z (which is a
RX-simulation of �X), �Y , �W (which is a RY -
simulation of �Y) and the subbundle AL � AX � AY ,
the parallel composition of the simulations �Z and �W
with synchronization over RX�Y (AL) is a RX�Y jAL-
simulation of the parallel composition of �X with �Y
with synchronization over AL.

Proof: Consider the product system (�Z �
�W ; �Z ; �W) and the triple (�X � �Y ; RX Æ �X ; RY Æ
�Y). By de�nition of product we know that there is
one and only one relation � such that:

�X ��Y

RX Æ �X

@
@

@
@I

�Z �Z ��W��Z �W-�W

6
� RY Æ �Y

�
�
�
��

commutes and this relation is given by � = (RX ; RY) =
RX�Y , meaning that �Z � �W is a RX�Y -simulation

of �X ��Y . Consider now the following diagram:

(�Z ��W)j�(AL) �Z ��W-i�(AL)

(�X ��Y)jAL

6

� � Æ iAL

�
�
�
�
�
�
�
��

(2.9)

One sees that the unique relation � is given by � =
� Æ iAL = RX�Y Æ iAL , that is, � is the relation RX�Y

restricted to the subbundle AL. From this we conclude
that �Z kRX�Y (AL) �W is a RX�Y jAL-simulation of
�X kAL �Y as desired.

The above result was stated for parallel composition
of two abstract control systems but it can be easily
extended to any �nite number of abstract control sys-
tems. The relevance of the result lies in the fact that,
in general, it is much easier to abstract each individ-
ual subsystem and by parallel composition obtain an
abstraction of the overall system.

3 Compositional Abstractions of Hybrid
Control Systems

Simulations of hybrid control systems are a simple in-
stantiation of the previously introduced notion of sim-
ulation for abstract control systems. However, hybrid
control systems usually come equipped with a set of
initial conditions which must also be related with the
set of initial conditions of its simulation. The proper
relation is expressed as follows:

De�nition 3.1 (Simulations of Hybrid Systems)
Let HX = (X0; X;AX ;�X) and HY = (Y0; Y; AY ;�Y)
be two hybrid control systems over X and Y respec-
tively and let R � AX � AY be a �ber respecting
relation. HY is a R-simulation of HX i�:

1. RB(X0) � Y0.

2. 8x2X (x; y) 2 RB) 8(x;ax)2dom(R) 9(x;ax;y;ay)2R
(�X(x; ax);�Y (y; ay)) 2 RB.

The goal of obtaining algorithmic procedures for com-
puting abstractions guide us to more amenable char-
acterizations of hybrid control systems. A �rst step in
this direction is given by the next proposition (whose
proof we omit for space reasons) characterizing hybrid
control systems in terms of its generators.

Proposition 3.2 (Hybrid Generators) A set of
initial conditions X0 � X, a �nite set of symbols �X ,
a family of smooth �ber bundles �

q
X : Uq

X �! Xq, a
partially de�ned map ÆX : X ��X �! X and a family
of smooth control systems FX = fF q

Xgq2Q, F
q
X : U q

X

�! TXq de�ned on a open subset of Xq for each q 2 Q
5
356
uniquely de�ne a hybrid control system HX . The maps
ÆX and FX are called the discrete and continuous gen-
erators of HX , respectively.

This result tells us that it is enough to work with vector
�elds and single event jumps, which is how hybrid au-
tomata are usualy de�ned. In the light of this result we
will also denote an hybrid control system by the tuple
HX = (X;X0;�X ; UX ; ÆX ; FX). This representation
of hybrid control systems will allow constructive meth-
ods to generate abstractions by combining discrete and
continuous abstraction methodologies.

We have already introduce all the required tools to ex-
tract an abstraction of any given hybrid control system
HX with respect to some classes of relations. These re-
lations will aggregate several states from HX to its ab-
stractions, in particular we abstract continuous states
to discrete ones. This feature will be fundamental to re-
duce the complexity of hybrid control systems since by
aggregating continuous states into discrete ones we are
also trading continuous dynamics by discrete dynamics
thereby considerably simplifying the analysis and syn-
thesis processes. In this paper we will only consider
admissible relations de�ned as:

De�nition 3.3 (Admissible Relation) Given a hy-
brid control system HX and:

� A �nite covering �q = f�iqgi2I by pairwise dis-
joint sets of dom(F q

X) for every q 2 Q inducing
a well de�ned transition system across adjacent
covering sets5.

� A family of smooth surjective �ber preserving sub-
mersions 'qp : U

q
X �! U

p
Y .

� A trivial bundle surjective map 'D = (�Q; ��),
�Q : X �! P and �� : �X �! �Y .

the induced admissible relation R � AX�AY is de�ned
for:

� Continuous ows remaining inside a single cov-
ering set and starting on a interior point:�

(q; x; utx); (�Q(q; x); 'q�Q(q;x)(x; u
t
x)
�
2 R

i� 80�t0<t �X(q; x; u
t0

x) 2 �q(x)

^ (q; x) 2 int(�q(x))

� Continuous ows remaining inside a single cov-
ering set and starting on a boundary point:�

(q; x; utx); (pi; 'qpi(x; u
t
x))
�
2 R�

(q; x; "); (pj ; yj ; ")
�
2 R 8j2K�

(q; x; "); (pj ; yj ; �pjpi)
�
2 R 8j2K;j 6=i

for �pjpi 2 �Y such that �Y (pj ; yj ; �pjpi) =
(pi; yi) i� the following holds:

(q; x) 2 \k2Kcl(�
k
q) ^ 80<t0<t �X(q; x; u

t0

x) 2 �iq

^ �Qj�kq = pk ^ �qpk (x) = yk 8k2K
5We do not provide more speci�c conditions since this is still

an open problem. SuÆcient conditions involving subanalytic
strati�cations can be found, for example, in [3].

6

� Discrete jumps:

�
(q; x; �); (�Q(q; x); �q�Q(q;x)(x); ��(�))

�
2 R

Admissible relations allow us to e�ectively compute ab-
stractions of hybrid control systems. A conceptual al-
gorithm may be formulated as follows:

Algorithm 3.4 (Abstracting Algorithm)
Input data: HX = (X0; X;�X ; UX ; ÆX ; FX)

R � AX �AY

1. Y := RB(X)

2. Y0 := RB(X0)

3. �Y := ��(�X)[f� : 9 ((q; x; "); (p; y; �)) 2 Rg

4. UY = fUp
Y gp2P U

p
Y = 'pq(U

q
X)

5. J = f(p; y; �pp0 ; p
0; y0) : 9(q; x) 2

\k2Kcl(�
k
q) 9u 2 U

q
X(x) such that F

q
X(u)

is transversal to the boundary of �iq, points

to �iq,
�
(q; x); (p; y)

�
2 RB, p 6= �Qj�iq and�

(q; x); (p0; y0)
�
2 RB , p

0 = �Qj�iqg

6. ÆY := (�Q; �q�Q ; ��; �Q; �q�Q)(ÆX)[J where ÆX
is regarded as the set ÆX � X ��X �X.

7. F p
Y := is the 'qp-abstraction of F q

X with domain
'qp(dom(F q

X \ �q(x))).

Output data: HY = (Y0; Y;�Y ; UY ; ÆY ; FY)

Intuitively the above algorithm can be described as
follows. Steps 1 and 2 simply de�ne Y and Y0 as
the image under RB of X and X0, respectively. In
step 3 the set of labels �Y is computed as the image
under �� of �X and all the symbols �pp0 created when
the continuous ows crosses the boundary between
adjacent covering sets. In step 4 the continuous
control bundle is computed as the image of Uq

X under
each map 'qp. In step 5 the set J is computed to
be used on the next step. Step 6 determines ÆY in
a way that can be described as follows: for every
transition (q; x)

�
�! (q0; x0) de�ned by ÆX there

will be a transition (�Q(q; x); �q�Q(q;x)(x))
��(�)
�!

(�Q(q
0; x0); �q0�Q(q0;x0)(x

0)) expressed by the set
(�Q; �q�Q ; ��; �Q; �q�Q)(ÆX), where ÆX is regarded
as a subset of X � �X � X . Furthermore every
time a continuous ow crosses the boundary between
adjacent covering sets, the required discrete transitions
are captured by the set J . Finally in the last step
the continuous generator of HY is obtained from the
continuous generator of HX by the methods described
in [7, 8].

The above algorithm does compute a simulation of HX

as asserted in the next theorem whose proof we were
forced to omit due to lack of space:

Theorem 3.5 Let HX be an hybrid control system
over X and R � AX � AY an admissible relation.
Then hybrid control system HY obtained through Al-
gorithm 3.4 is a R-abstraction of HX .
35
4 Conclusions and Future Work

We have considered an uni�ed framework for a general
class of control systems that captures discrete, contin-
uous and hybrid control systems. In this framework
we presented notions of abstraction and parallel com-
position with synchronization. It was shown that these
notions are compatible, that is, the composition of ab-
stractions is an abstraction of the composition. These
notions were then instantiated for hybrid control sys-
tems where a concrete algorithm was presented to au-
tomatically extract abstractions.

Future research will consider several other important
properties of hybrid systems. For example, it is cru-
cial to determine when abstractions of non-zeno hybrid
control systems are non-zeno. These issues are cur-
rently under investigation as well as design methodolo-
gies that take advantage of the hierarchical and com-
positional structure of hybrid control systems.

References

[1] M.A. Arbib and E. Manes. Machines in a category :
An expository introduction. SIAM Review, 16(2):163{192,
April 1974.

[2] P.E. Caines and Y.J. Wei. Hierarchical hybrid con-
trol systems: A lattice theoretic formulation. IEEE Trans-

actions on Automatic Control : Special Issue on Hybrid

Systems, 43(4):501{508, April 1998.

[3] Gerardo La�erriere, George J. Pappas, and Shankar
Sastry. Subanalytic strati�cations and bisimulations. In
T. Henzinger and S. Sastry, editors, Hybrid Systems : Com-

putation and Control, volume 1386 of Lecture Notes in Com-
puter Science, pages 205{220. Springer Verlag, Berlin, 1998.

[4] N. Lynch, R. Segala, F. Vaandrager, and H.B. Wein-
berg. Hybrid I/O automata. In Hybrid Systems III, volume
1066 of Lecture Notes in Computer Science, pages 496{510.
Springer-Verlag, 1996.

[5] Z. Manna and A. Pnueli. Temporal Veri�cation of

Reactive Systems: Safety. Springer Verlag, New York, 1995.

[6] R. Milner. Communication and Concurrency. Pren-
tice Hall, 1989.

[7] George J. Pappas, Gerardo La�erriere, and Shankar
Sastry. Hierarchically consistent control systems. IEEE

Transactions on Automatic Control, 45(6):1144{1160, June
2000.

[8] George J. Pappas and Slobodan Simic. Consistent
hierarchies of nonlinear abstractions. In Proceedings of the

39th IEEE Conference in Decision and Control. Sydney,
Australia, December 2000.

[9] J. Raisch and S.D. O'Young. Discrete approxima-
tions and supervisory control of continuous systems. IEEE
Transactions on Automatic Control : Special Issue on Hy-

brid Systems, 43(4):569{573, April 1998.

[10] Paulo Tabuada and George J. Pappas. Hybrid ab-
stractions that preserve timed languages. In Hybrid Sys-

tems : Computation and Control, volume 2034 of Lecture
Notes in Computer Science. Springer Verlag, 2001.

[11] Glynn Winskel and Mogens Nielsen. Handbook of

Logic and Foundations of Theoretical Computer Science,
chapter Models for Concurrency. Oxford University Press,
1994.
7

