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Abstract. Software product line engineering allows large software sys-
tems to be developed and adapted for varying customer needs. The prod-
ucts of a software product line can be described by means of a hierarchical
variability model specifying the commonalities and variabilities between
the artifacts of the individual products. The number of products gen-
erated by a hierarchical model is exponential in its size, which poses a
serious challenge to software product line analysis and verification. For
an analysis technique to scale, the effort has to be linear in the size of
the model rather than linear in the number of products it generates.
Hence, efficient product line verification is only possible if compositional
verification techniques are applied that allow the analysis of products to
be relativized on the properties of their variation points. In this paper,
we propose simple hierarchical variability models (SHVM) with explicit
variation points as a novel way to describe a set of products consisting
of sets of methods. SHVMs provide a trade–off between expressiveness
and a clean and simple model suitable for compositional verification. We
generalize a previously developed compositional technique and tool set
for the automatic verification of control–flow based temporal safety prop-
erties to product lines defined by SHVMs, and prove soundness of the
generalization. The desired property relativization is achieved by intro-
ducing variation point specifications. We evaluate the proposed technique
on a number of test cases.

1 Introduction

System diversity is prevalent in modern software systems. Systems simultane-
ously exist in many different variants in order to adapt to their application con-
text. Software product line engineering [23] aims at developing a set of systems
variants with well-defined commonalities and variabilities by managed reuse in
order to decrease time to market and to improve quality. During family engi-
neering reusable core artifacts are developed, that are used to realize the actual
products during application engineering.
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The variability of the artifacts used for building a software product line can
be described by a hierarchical variability model. In this model, on each level of
hierarchy the commonalities of the product artifacts are specified in a common
core, while the variabilities are represented by explicit variation points. Each
variation point is associated with a set of variants that represent choices for
realizing the variation points in different products. A variant can itself contain
commonalities defined in a common core and variabilities specified by variation
points introducing a new level of hierarchy.

Product line verification typically aims at establishing that all products of
a product line satisfy a desired set of properties. The number of products de-
fined by a hierarchical variability model is exponential in the size of the model.
This explosion poses serious problems to ensuring the critical product require-
ments by static analysis or other formal verification techniques, and can render
infeasible the verification of product lines by verifying all products individually.
Formal verification techniques will only scale if their complexity is linear in the
size of the hierarchical variability model rather than linear in the number of
products. In order to achieve this scalability, these techniques have to be com-
positional, allowing to relativize the product properties towards properties of
variation points.

In this paper, we generalize a previously developed compositional verifica-
tion technique (and the corresponding tool set) for the automatic verification of
control–flow based temporal safety properties [13,15] to the compositional ver-
ification of hierarchically defined product lines. We propose simple hierarchical
variability models (SHVM) as a novel way to specify the variability of product
artifacts. SHVMs provide a clean and simple model facilitating compositional
verification, while they are still sufficiently expressive for capturing variability.
In this work, product artifacts consist of sets of public and private methods. In an
SHVM, the artifact variability is defined by common core methods and explicit
variation points on different hierarchical levels. The properties that can be han-
dled fully automatically specify illegal sequences of method invocations, such as
improper usage of API methods, in terms of temporal logic formulas, abstracting
from the computed data. Compositionality, and the ability to relativize global
SHVM properties on local assumptions for the core methods and the variation
points, is achieved by means of maximal flow graphs that are derived algorith-
mically from the local assumptions. The flow graphs replace the assumptions
when verifying global properties. The local specifications of core methods are
verified by extracting flow graphs from the method implementations and model
checking the induced behaviors against their specification.

The presented approach is one of the first compositional verification tech-
niques for software product lines. It allows to guarantee efficiently that all prod-
ucts of a product line satisfy certain desired control–flow based safety properties.
With respect to model checking behavioral properties of product lines, only Blun-
dell et al. [4] and Liu et al. [20] propose compositional verification techniques
based on assume–guarantee style reasoning for product features. Other model
checking approaches for product lines [8,10,18,5] use a monolithic model of the
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complete product line such that they face severe state–space explosion problems
since all possible products are analyzed in the same analysis step.

The paper is organized as follows. In Section 2, we present SHVMs to hi-
erarchically represent product lines. In Section 3, we describe the foundations
of our compositional verification technique. In Section 4, we present the com-
positional verification procedure for product lines and prove its soundness. In
Section 5, we present tool support and an evaluation of the compositional veri-
fication technique. In Section 6, we review related work and conclude the paper
in Section 7.

2 Hierarchical Variability Modelling

A product in the context of this work is defined by a set of methods. Products
are not necessarily closed, i.e., they may still require additional methods such
as API methods. A method m from a set of methods Meth is understood as a
method definition, consisting of a method name, the types of the return value
and the parameters, and its implementation (method body). The methods of
a product are partitioned into public and private methods. Public methods are
visible to the outside of the product, while private methods are only visible within
products and can be viewed as a means of implementing the public methods.
For a product, the methods defined in the product are called provided, while the
called methods that are not provided themselves are referred to as required.

A product line PL is defined as a set of method sets PL ⊆ 2Meth and can
be represented by a hierarchical variability model, with the common methods of
all products captured by a core set of methods separated into public and pri-
vate methods. The differences between the products are represented by variation
points. To each variation point, a set of variants is attached. The variants rep-
resent different possibilities to realize the variability described by this variation
point. A variant can either comprise a set of core methods or be a hierarchical
variability model itself, i.e., consisting of core set of methods and a set of varia-
tion points. A product is derived by resolving the variabilities, i.e., by selecting
variants at the variation points on all levels of hierarchy. An example is given
later in this section in Figure 1.

Hierarchical variability modeling captures the variability of the artifacts that
are used to build the products, called solution space variability in [7]. In this
work, hierarchical variability modeling describes the variability of the methods
implementing single products. This is in contrast to problem space variablity [7]
which is mainly represented in terms of product features. Product features de-
note a user-visible product functionality and are merely labels without inherent
semantical meaning. The valid combinations of product features can be described
by feature models [16] and correspond to the valid member products. The tree-
hierarchy in feature models usually describes the sub/super-feature relationship
between product features, while the hierarchy in hiearchical variability models
refers to the commonality and variability of the solution space artifacts.
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In this paper, we introduce a variant of the hierarchical variability modelling
approach called simple hierarchical variability model (SHVM). An SHVM is a
hierarchical variability model that requires exactly one variant to be selected
at each variation point to obtain a product. In an SHVM, there is no means
for defining constraints between different variants and variation points to rep-
resent that the selection of a variant at one variation point requires a specific
variant at another variation point to be selected, thus restricting the number of
derivable products. These simplifications constitute a trade–off between provid-
ing an expressive representation of product variability and a clean model that
allows straight–forward application of the compositional verification procedure
described in Section 4. This trade–off is discussed at the end of this section.

Definition 1 (Simple Hierarchical Variability Model). A simple hierar-
chical variability model (SHVM) S is inductively defined as:

(i) a ground model consisting of a core set of methods MC = (Mpub ,Mpriv ),
partitioned into public and private methods Mpub ,Mpriv ⊆ Meth, or

(ii) a pair (MC , {VP1, . . . ,VPN}), where MC is defined as above and where
{VP1, . . . ,VPN} is a non-empty set of variation points. A variation
point VP i = {Si,j | 1 ≤ j ≤ ki} is a non–empty set of SHVMs. The mem-
bers of a variation point are called variants.

The variant interface of a pair (MC , {VP1, . . . ,VPN}) is defined as a pair of
public required and public provided methods. The set of public provided methods
is the union of all sets of public provided methods in the core methods and the
variation points. The set of public required methods is the union of all sets of
public methods required by the core methods and by the variation points without
the methods provided by the core methods or another variation point.

We assume the following two well–formedness constraints on SHVMs. First,
all variants attached to a variation point have to provide and require the same
sets of public methods. This pair of public required and provided methods is
called the variation point interface. The constraint guarantees that all variants
offer the same functionality in terms of the provided public methods while the
implementation of the public methods may differ in the variant’s private meth-
ods. Second, in order to enforce that a derivable product does not contain several
methods with the same name, it is required that the provided methods in each
variation point interface are disjoint from each other and the core method set.

Example 1. As a running example throughout this paper, we consider a product
line of cash desks that is a simplified version of the trading system product line
case study proposed in [24]. The cash desks process purchases by retrieving the
prices for all items to be purchased and calculating the total price. After the
customer has paid, a receipt is printed and the stock is updated accordingly.
The commonality of all cash desks is that every purchase is processed following
the same process. However, the cash desks differ in the way how the items are
entered. Some cash desks allow entering products using a keyboard, others only
provide a scanner, and a third group provides both options which can be chosen
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Fig. 1. The Cashdesk SHVM

by the cashier. Payment at some cash desks can only be made in cash. Other
cash desks only accept credit cards, while a third group allows the choice between
cash and credit card payment. This set of cash desks is defined by an SHVM as
follows:

CashDesk = (({sale} , {updateStock, writeReceipt}),
{@EnterProducts,@Payment})

where @EnterProducts= {Keyboard, Scanner, KeyboardOrScanner}
@Payment = {Cash, Card, CashOrCard}

and Keyboard = ({enterProd} , {useKeyboard})
Scanner = ({enterProd} , {useScanner})

KeyboardOrScanner= ({enterProd} , {useScanner, useKeyboard})
Cash = ({payment} , {cashPay})
Card = ({payment} , {enterCard, cardPay})

CashOrCard = ({payment} , {cashPay, enterCard, cardPay})
The common purchase process of all cash desks is modeled by the public core
method sale. The private methods updateStock and writeReceipt represent
internal details of the sale process. The two variation points @EnterProducts
and @Payment represent the variabilities of the cash desks. The variation point
@EnterProducts has the associated variants Keyboard, Scanner and Keyboard-
OrScanner for entering product by keyboard, by scanner or providing both op-
tions. Both provide the public method enterProd that is internally realized by
the different private methods useKeyboard, useScanner or their combination.
Similarly, the variation point @EnterProducts has the associated variants Cash,
Card and CashOrCard that provide the public method payment which is inter-
nally realized by different private methods in the respective variants.

An SVHM can be seen as a tri–partite directed graph having an SHVM–node
as root, where SHVM–nodes have one core methods leaf child (split in public
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and private methods) and optional VP–node children that have two or more
SHVM–node children. For the cashdesk example, a graphical presentation is
shown in Figure 1. In the figure, SHVM-nodes are depicted by rounded boxes,
core methods nodes by ovals, and VP–nodes by diamonds. The dotted rounded
boxes depict what we call modules of the SHVM, defining the boundaries between
SHVMs at different levels of hierarchy. The size of an SHVM is defined as the
number of modules in its graph.

An SHVM induces a set of products P through all possible ways of resolving
the variabilities of the SHVM. Variability resolution means to recursively select
exactly one variant for each variation point. The set of products induced by a
ground model containing only core methods is the singleton set comprising the
set of core methods (and, thus, representing one product). The set of products
induced by a variation point is the union of the product sets induced by its
variants. Finally, the set of products induced by an SHVM with a non–empty
set of variation points is the set of all products consisting of the core methods
and of exactly one product from the set induced by each variation point.

Definition 2 (Variability Resolution). Let S be an SHVM as defined above.
The set products(S) ⊆ 2Meth induced by S is inductively defined as follows:

products(MC) = {MC}
products(VP) =

⋃
S∈VP products(S)

products(MC , {VP1, . . . ,VPN}) =
{
MC ∪ ⋃

1≤i≤N Mi |Mi ∈ products(VP i)
}

Example 2. The SHVM defined in Example 1 induces the products:

products(CashDesk) = {P1, P2, P3, P4, P5, P6, P7, P8, P9}

where:

P1 =
{
sale, updateStock, writeReceipt, enterProdKeyboard,
useKeyboard, paymentCash, cashPay

}

P2 =
{
sale, updateStock, writeReceipt, enterProdScanner,
useScanner, paymentCash, cashPay

}

P3 =
{
sale, updateStock, writeReceipt, enterProdKeyboardOrScanner,
useKeyboard, useScanner, paymentCash, cashPay

}

P4 =
{
sale, updateStock, writeReceipt, enterProdKeyboard,
useKeyboard, paymentCard, enterCard, cardPay

}

P5 =
{
sale, updateStock, writeReceipt, enterProdScanner,
useScanner, paymentCard, enterCard, cardPay

}

P6 =
{
sale, updateStock, writeReceipt, enterProdKeyboardOrScanner,
useKeyboard, useScanner, paymentCard, enterCard, cardPay

}

P7 =
{
sale, updateStock, writeReceipt, enterProdKeyboard,
useKeyboard, paymentCashOrCard, cashPay, enterCard, cardPay

}
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P8 =
{
sale, updateStock, writeReceipt, enterProdScanner,
useScanner, paymentCashOrCard, cashPay, enterCard, cardPay

}

P9 =

⎧⎨
⎩
sale, updateStock, writeReceipt, enterProdKeyboardOrScanner,
useKeyboard, useScanner, paymentCashOrCard,
cashPay, enterCard, cardPay

⎫⎬
⎭

To disambiguate methods with the same name, but coming from different vari-
ants, we add as subscript the name of the parent SHVM–node, for instance,
enterProdKeyboard refers to the method enterProd of the variant Keybord.

For a given SHVM, let AND and OR denote the maximal branching factors at
SHVM and variation point nodes, respectively, and let ND be its nesting depth.

The number of products induced by the SHVM is bound by OR
AND·(ANDND−1)

AND−1 and
is thus exponential in the size of the SHVM, which is bound by (OR·AND)(ND+1)−1

OR·AND−1 .
These bounds are obtained in a routine fashion by solving the corresponding
recurrence relations. Notice that in SHVMs with a small nesting depth as in
the example above, the exponential blow–up in the number of products is not
observed: With branching factors of 3 and a nesting depth of 1, we have at most
9 products, but 7 modules. However, adding just another level of hierarchy, e.g.,
variability in the accepted type of cards, immediately results in an explosion (see
Section 5).

SHVMs are a simplification of hierarchical variability modeling supporting a
straight-forward application of compositional reasoning with the following con-
sequences to the expressiveness for product variability. In SHVMs, exactly one
variant has to be selected at every variation point. If a combination of vari-
ants (including optional variants) should be selectable, the combination has to
be modeled as an additional variant associated to this variation point. In most
cases (and also in the example in this section), combinations of variants require
additional glue code for the cooperation of the different behaviors such that com-
binations have to be represented as separate variants anyway. SHVMs do not
allow requires/excludes constraints between variants. These constraints restrict
the set of possible products that can be derived from a hierarchical variability
model. The removal of these constraints results in an SHVM which defines prod-
ucts that would not exist otherwise. The requirement that all variants associated
to a variation point have the same interface restricts the method variability of
the variants. This can be alleviated to some extend by adding required methods
to the interface, although they are not called by the variant, and adding dummy
implementations for provided methods.

3 A Framework for Compositional Verification

This section outlines the theoretical framework for verification of temporal safety
properties upon which our compositional verification technique for product lines
(described in the next section) is based. It relies on our earlier work on compo-
sitional verification (see e.g. [13,12]).
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Program Model. In order to reason algorithmically about sequences of method
invocations, we abstract the set of methods defining our program by ignoring all
data. An initialized model serves as an abstract representation of a program’s
structure and behavior.

Definition 3 (Model). A model is a (Kripke) structure M = (S,L,→, A, λ)
where S is a set of states, L a set of labels, →⊆ S × L × S a labeled transition
relation, A a set of atomic propositions, and λ : S → P(A) a valuation, assigning
to each state s the set of atomic propositions that hold in s. An initialized model
is a pair (M, E) with M a model and E ⊆ S a set of initial states.

A method graph is an instance of an initialized model which is obtained by
ignoring all data from a method implementation. A flow graph is a collection of
method graphs, one for each method of the program. It is a standard model for
the analysis of control flow based properties, see e.g. [3].

Definition 4 (Method graph). Let Meth be a countably infinite set of meth-
ods names. A method graph for method m ∈ Meth over a set of method names
M ⊆ Meth is an initialized model (Mm, Em) where Mm = (Vm, Lm,→m

, Am, λm) is a finite model and Em ⊆ Vm is a non-empty set of entry points
of m. Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and
λm : Vm → P(Am) so that m ∈ λm(v) for all v ∈ Vm (i.e., each node is tagged
with its method name). The nodes v ∈ Vm with r ∈ λm(v) are return points.

Note that methods according to the above definition can have multiple entry
points. Flow graphs that are extracted from a program source have single entry
points, but the maximal models that we generate for compositional verification
can have multiple entry points.

Every flow graph G is equipped with an interface I = (I+, I−), denoted G : I,
where I+, I− ⊆ Meth are the provided and externally required methods, respec-
tively. Interfaces are needed when constructing maximal flow graphs. A flow
graph is closed if its interface does not require any methods, and it is open oth-
erwise. Flow graph composition is defined as the disjoint union � of their method
graphs.

Example 3. Figure 2 shows a simple Java class and the (simplified) flow graph
it induces. It consists of two method graphs, for method even and method odd,
respectively. Entry nodes are depicted as usual by incoming edges without source.
Its interface is ({even, odd}, ∅), thus the flow graph is closed.

Flow graph behavior is also defined as an instance of an initialized model, induced
through the flow graph structure. We use transition label τ for internal transfer
of control, m1 callm2 for the invocation of method m2 by method m1 when
method m2 is provided by the program and m1 call! m2 when method m2 is
external, and m2 retm1 respectively m2 ret? m1 for the corresponding return
from the call.

Definition 5 (Behavior). Let G = (M, E) : (I+, I−) be a flow graph such that
M = (V, L,→, A, λ). The behavior of G is defined as an initialized model b(G) =
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v5
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v7

v1

v3 v9

v0

v2

v4 v8
r rrr

Fig. 2. A simple Java class and its flow graph

(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = (V ∪ I−) × V ∗, i.e.,
states are pairs of control points v or required method names m, and stacks σ,
Lb = {m1 k m2 | k ∈ {call, ret},m1,m2 ∈ I+} ∪ {m1 call! m2 | m1 ∈ I+,m2 ∈
I−} ∪ {m2 ret? m1 | m1 ∈ I+,m2 ∈ I−} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v) and
λb((m,σ)) = m, and →b⊆ Sb × Lb × Sb is defined by the following rules:

[transfer] (v, σ) τ−→(v′, σ) if m ∈ I+, v
ε−→mv

′, v |= ¬r
[call] (v1, σ) m1 call m2−−−−−−−→(v2, v′1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1v
′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[ret] (v2, v1 · σ) m2 ret m1−−−−−−→(v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

[call!] (v1, σ) m1 call! m2−−−−−−−→(m2, v
′
1 · σ) if m1 ∈ I+,m2 ∈ I−, v1

m2−−→m1v
′
1, v1 |= ¬r

[ret?] (m2, v1 · σ) m2 ret? m1−−−−−−−→(v1, σ) if m1 ∈ I+,m2 ∈ I−, v1 |= m1

The set of initial states is defined by Eb = E×{ε}, where ε denotes the empty
sequence over V ∪ I−.

Notice that return transitions always hand back control to the caller of the
method. Calls to external methods are modeled with an intermediate state,
from which only an immediate return is possible. In this way possible callbacks
from external methods are not captured in the behavior. This simplification is
justified, since we abstract away from data in the model and the behavior is
thus context–free, but has to be kept in mind when writing specifications; in
particular one cannot specify that callbacks are not allowed.

Example 4. Consider the flow graph of Example 3. One example run through its
(branching, infinite–state) behavior, from an initial to a final configuration, is:

(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even call odd−−−−−−−−→(v5, v3)

τ−→(v6, v3)
τ−→

(v8, v3)
odd ret even−−−−−−−→(v3, ε)

Now, consider just the method graph of method even as an open flow graph,
having interface ({even}, {odd}). The local contribution of method even to the
above global behavior is the following run:
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(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even call! odd−−−−−−−→(odd, v3)

odd ret? even−−−−−−−→(v3, ε)

An alternative way to express flow graph behavior is by means of pushdown
systems (PDS). We exploit this by using pushdown system model checking to
verify behavioral properties, see [25].

We refine this program model to allow an explicit partitioning of method
names into public and private ones, and introduce the notions of public interface
and public behavior in order to abstract away from private methods which are
used as a means of implementing the desired public behavior. On the flow graph
level, such an abstraction is accomplished through inlining of private methods.
For details the reader is referred to [13].

Specification. The specification language for behavioral properties we use here is
the safety–fragment of Linear Temporal Logic (LTL) that uses the weak version
of until1.

Definition 6 (Safety LTL). The formulae of sLTL are inductively defined by:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

where p ∈ Ab denotes the set of atomic propositions.

Satisfaction on states (Mb, s) |= φ is defined in the standard fashion (see
e.g. [28]) as validity of φ over all runs starting from state s ∈ Sb in model
Mb. For instance, formula X φ holds of state s in model Mb if φ holds in the
second state of every run starting from s, while φ W ψ holds in s if for every run
starting in s, either φ holds in all states of the run, or ψ holds in some state of
the run and φ holds in all previous states. Satisfaction of a formula φ in flow
graph G with behavior b(G) = (Mb, Eb) is defined as satisfaction of φ on all
initial states s ∈ Eb.

Satisfaction is generalized on product lines in the obvious way: A product line
described by a variability model S satisfies a formula φ if the behavior b(Gp) of
the flow graph Gp of every product p ∈ products(S) satisfies φ.

Compositional Verification. Our method for compositional verification is based
on the construction of maximal flow graphs for properties of sets of methods. For
a given property ψ and interface I consisting of provided and required methods,
consider the class of all flow graphs with interface I satisfying ψ. A maximal
flow graph for ψ and I is a flow graph Max(ψ, I) that satisfies exactly those
properties that hold for all members of the class. Thus, the maximal flow graph
can be used as a representative of the class for the purpose of checking properties.
Using maximal models for compositional verification was first proposed in [11]
for finite–state systems, and was generalized for flow graphs in [13,12].
1 The theoretical underpinings of our compositional verification framework are actu-

ally based on a slightly more expressive specification language, namely simulation
logic, the fragment of the modal µ–calculus [17] with boxes and greatest fixed–points
only (for details see again [13]).
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The main principle of compositional verification based on maximal flow graphs
can be presented, for a system that is partitioned into k sets of methods, as a
proof rule with k + 1 premises:

⊎
i=1,...,k

Gi |= φ

G1 |= ψ1 · · · Gk |= ψk

⊎
i=1,...,k

Max(ψi, Ii) |= φ

(1)

The principle states that the composition of the sets of methods with the respec-
tive interfaces G1 : I1, ...,Gk : Ik satisfies a global property φ if for some local
properties ψi satisfied by the corresponding sets of methods Gi, the composition
of the maximal flow graphs for ψi and Ii satisfies property φ.

As we prove in [13], the rule is sound and complete when interfaces describe
all provided and required methods, and is sound in the context of the private
method abstraction mentioned earlier.

4 Compositional Verification of SHVMs

In this section we propose a compositional reasoning approach that is linear in
the number of modules in the SHVM description of the product line, rather than
linear in the number of generated products (which is exponential in the number
of modules). This approach is an instantiation of the compositional verification
principle presented above to SHVMs.

For every module (MC , {VP1, . . . ,VPN}) in the SHVM, a specification has
to be provided in order to allow for compositional verification. This comprises
a specification for every public method m ∈ Mpub by a public behavioral prop-
erty ψm and a public interface Im = (I+

m, I
−
m) declaring the names of the publicly

provided and required methods, a specification for every variation point VP i by
a behavioral property ψVP i

and a public interface IVP i
, and a specification of

the SHVM node itself by a behavioral property φ and a public interface I. The
SHVM nodes of variants attached to a variation point inherit the correspond-
ing variation point specification. The lop–level SHVM is specified by the global
product property that is to be verified. Our verification procedure for SHVMs
is as follows.

Verification Procedure. For every module (MC , {VP1, . . . ,VPN}) of the
SHVM, perform the following two independent tasks:

(i) For every public method m ∈ Mpub , extract the method graph Gm from the
implementation of m, then inline the already extracted graphs of the private
methods, and finally model check the resulting method graph G′

m against
the specification ψm of m to establish G′

m |= ψm. For the latter, we apply
standard finite–state model checking.

(ii) For all public methods m ∈ Mpub with specification (Im, ψm), construct the
maximal method graphs Max(ψm, Im), and for all variation points VP i with
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specification (IVP i
, ψVPi

), construct the maximal flow
graphs Max(ψV Pi , IV Pi). Then, compose the constructed graphs, resulting
in flow graph GMax, and model check the latter against the SHVM prop-
erty φ, i.e.,

⎛
⎝ ⊎

m∈Mpub

Max(ψm, Im) �
⊎

1≤i≤N

Max(ψVPi
, IVPi

)

⎞
⎠ |= φ (2)

For properties given in sLTL, we represent the behavior of GMax as a PDS
and use standard PDS model checking.

The presented verification procedure is sound, as established by the following
theorem.

Theorem 1. Let S be an SHVM with global property φ. If the verification pro-
cedure succeeds for S, then p |= φ for all its products p ∈ products(S).

Proof. The proof is by induction on the structure of S. For the base case, let S
be a ground model, i.e., a core set of methods MC = (Mpub,Mpriv) with no
variation points. Assume the verification procedure succeeds for S. It has then
established:

(i) G′
m |= ψm for all public methods m ∈Mpub, and

(ii)
⊎

m∈Mpub
Max(ψm, Im) |= φ

From these, and by soundness of rule (1) refined for private method abstraction,
it follows MC |= φ. Since products(S) = {MC} in this case, we have p |= φ for
all p ∈ products(S).

For the induction step, let S be a non-ground model (MC , {VP1, . . . ,VPN})
with variation points VP i = {Si,j | 1 ≤ j ≤ ki}, where ki is the number of
variants of VP i. Further, let (ψVPi

, IVPi
) be the specification of VP i. Assume

the result for all Si,j (induction hypothesis). Next, assume that the verification
procedure succeeds for S. The following has then been established for the top–
level module:

(i) G′
m |= ψm for all public methods m ∈Mpub, and

(ii)
(⊎

m∈Mpub
Max(ψm, Im) � ⊎

1≤i≤N Max(ψVP i , IVP i)
)
|= φ

By the assumption, the verification procedure has also succeeded for all Si,j .
Thus, by the induction hypothesis, and since the SHVM nodes of variants at-
tached to a variation point inherit the corresponding variation point specifica-
tion, we have:

∀i : 1 ≤ i ≤ N. ∀j : 1 ≤ j ≤ ki. ∀p ∈ products(Si,j). p |= ψVP i

By Definition 2 we have products(VP i) =
⋃

1≤j≤ki
products(Si,j), and hence:

(iii) ∀i : 1 ≤ i ≤ N. ∀p ∈ products(VP i). p |= ψVPi
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Also by Definition 2, we know that every product p of S is the union of a
core MC and exactly one subproduct from every variation point. Due to (i),
the public methods of MC , after inlining the private ones, meet their respective
specifications. Similarly, by (iii), all subproducts meet their respective specifica-
tions. Finally, by (ii) and from soundness of rule (1) refined for private method
abstraction follows that p |= φ. This concludes the proof. �

The total number of verification tasks needed to establish the global product line
property is, thus, equal to the number of modules, since we have to complete one
verification task per module. In contrast, the number of products is exponential
in the number of modules.

Example 5. To illustrate our compositional verification approach, we use the
cashdesk product line described in Example 1. The global behavioral property
we want to verify is informally stated as follows:

The entering of products has to be finished before the payment process
has started.

Taking into account the distribution of functionality to methods intended by the
variability model from the example, the specification can be approximated as:

If control starts in method sale, it cannot reach method payment before
it has already been in method enterProd and then back in sale.

In terms of the (global) behavior of the flow graphs of the products induced by
the product line, this property can be formalized in sLTL as follows:

ϕCD = sale → (¬payment W (enterProd ∧ r ∧ X sale))

where the subformula enterProd ∧ r ∧ X sale captures a return from enterProd
to sale.

First, we have to specify all public core methods and variation points of the
cashdesk SHVM. The specification of the sale method and the @EnterProd and
@Payment variation points are as follows:

– The interface of method sale is Isale = ({sale} , {enterProd, payment}).
In order to entail the global property, the local behavioral property that
method sale (or, more precisely, its method graph as an open flow graph)
has to satisfy is that it has to have invoked method enterProd and returned
from the call before it can invoke method payment, after the return from
which no more methods are invoked. Formally, this can be expressed by the
sLTL formula:

ϕsale = sale W′ enterProd W′ sale W′ payment W′ (G sale)

where the derived temporal operator φ W′ ψ abbreviates φ ∧ (φ W ψ) and is
by convention right–associative.
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– The interface of variation point @EnterProducts is IEP = ({enterProd} ,
{payment}). The property required for the variation point is that the
enterProd method never calls the payment method, neither directly nor
via a call to one of its non-public methods. Formally, this property can be
expressed by the formula2:

ϕEP = G ¬payment

– The interface of variation point @Payment is IP = ({payment} , {enterProd}).
Similarly to the variation point above, the property required for this variation
point is that the payment method never calls the enterProd method:

ϕP = G ¬enterProd

The variants Keyboard, Scanner, KeyboardOrScanner, Cash, Card and
CashOrCard inherit the specification of their SHVM node from the respective
variation point specification. The specification of the public methods enterProd
and payment is similar to the specification of the @EnterProd and @Payment
variation points.

Next, we have to verify that all public methods satisfy their behavioral prop-
erty. For the sale method, we have to inline the private methods writeReceipt
and updateStock to obtain the method graph of the sale method, Then we check
that the method graph satisfies the property ϕsale by finite-state model checking.
Similarly, we verify the enterProd and payment methods defined in the variants
Keyboard, Scanner, KeybordOrScanner, Cash, Card and CashOrCard.

Finally, we have to establish that all SHVMs satisfy their SHVM specification.
For the top–level SHVM, we construct the maximal models for the specifications
of the variation points @EnterProducts and @Payment and for the public method
ϕsale , and model check ϕCD against the composition of these maximal models.
The properties of the variants Keyboard, Scanner, KeyboardOrScanner, Cash,
Card and CashOrCard are easy to verify because each of them contains only one
public method. A maximal model for the specification of this public method is
constructed and checked against the inherited variation point property.

5 Tool Support and Evaluation

ProMoVer [26] is a fully automated tool for the procedure–modular verifica-
tion of control flow temporal safety properties of Java programs3. It supports
compositional verification by relativizing the correctness of a global program
property on properties of individual methods and their public interfaces. All
interfaces, local and global properties are provided to the tool as assertions in
the form of program annotations. ProMoVer accepts a JML–like syntax for

2 This and the following property would trivialise if we specified the set of required
methods to be empty. For now, however, our tool does not check interfaces.

3 ProMoVer is available via the web interface www.csc.kth.se/~siavashs/ProMoVer

www.csc.kth.se/~siavashs/ProMoVer
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/**

* @variation_point :

* EnterProd

* @variation_point_interface:

* provided enterProd

* @variation_point_ltl_prop:

* G ! payment

* @variants :

* Keyboard ,Scanner ,

* KeyboardOrScanner

*/

/** @variant: Keyboard

* @variant_interface :

* provided enterProd ()

* @variation_points :

*/

/** @core: Keyboard

* @local_interface :

* required

* @local_ltl_prop : G ! payment

*/

public int enterProd (){

...

Fig. 3. Annotations for variation point @EnterProd and its variant Keyboard

annotations (cf. [19]) as special comments called pragmas. To simplify the spec-
ification of local properties, ProMoVer provides a facility for extracting local
properties from source code. Further, it provides a proof storage and reuse mech-
anism which stores flow graphs, maximal models and model checking results and
reuses these the next time the same program is verified. To reuse the stored in-
formation, ProMoVer checks for each method of the program: if the source
code of the method has not changed, the stored flow graph of the method is
used, if a local specification has not changed the stored maximal model for the
specification is used. Further, it provides users with a library of global proper-
ties which contains platform as well as application specific properties. For details
about ProMoVer, the reader is refered to [27].

We have adapted ProMoVer for verifying properties of SHVMs according to
the compositionality principle described in Section 4. For this adaptation, we have
extended the annotation language to support the definition of core methods, vari-
ants and variation points and the associated specifications by designated pragmas.
The tool takes as input a source code file in which the SHVM to be analysed is rep-
resented by annotations. The product property, the variation point properties and
the specifications of the public core methods are also provided by annotations. Fig-
ure 3 shows in the left column the annotation for the @EnterProd variation point,
while the annotations for its Keyboard variant with core method enterProd are
shown in the right column. ProMoVer fully automatically extracts the SHVM
modules and the corresponding flow graphs from the annotated source code and
performs the associated model checking tasks.

For evaluating our compositional verification approach, we considered the ver-
ification of the safety property explained in Example 5 for different versions of the
trading system product line [24]. The product lines of cash desks were described
as SHVMs with different hierarchical depths and different total numbers of mod-
ules. As a basis, we used the product line described in Example 1 and extended
it by an optional coupon handling functionality within the sale method, and a
variation point for accepting different card types as a hierarchical refinement of
variant Card. For each product line, we compared the time required to verify all
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Table 1. Evaluation Results

Product Line Depth # Modules # Products tind[s] tcomp[s]

CD 1 7 9 79 9
CD/CH 1 9 18 177 10
CD/CT 2 15 27 278 11
CD/CH/CT 2 17 54 652 12

induced products individually with the time for compositional verification. The
experiments were performed on a SUN SPARC machine4.

The results are summarized in Table 1 where CD denotes the product line of Ex-
ample 1, CD/CH the version with coupon handling, CD/CT the version with differ-
ent card types and CD/CH/CT the version with coupon handling and different card
types. As can be observed from the table, the processing time tind for verifying
every product individually grows dramatically when new modules and levels of hi-
erarchy are added to the SHVM. This is easily explained by the analytical bounds
presented in Section 2. In contrast, the growth of the processing time tcomp for
compositional SHVM verification is insignificant, since the preprocessing and flow
graph extraction is only performed once by ProMoVer for the complete SHVM.
The experiment suggests that for large software products comprising many prod-
ucts, the compositional verification technique based on the SHVM representation
of the product line increases efficiency of verification dramatically.

Scalability of our method comes at the price of having to provide specifications
for variation points. This additional effort is justified for large systems that
render infeasible the verification of the product line by verifying all its products
individually. Also, the specifications only need to be written once and are later
reused when the code has been changed, or for proving other global properties.

SHVMs do not allow to express that a variant requires or excludes another
variant. Without these constraints, the set of products that can be derived from
an SHVM is larger than with requires/excludes constraints. If a desired property
can be shown for the larger set of products defined by an SHVM, the property
immediately holds for the original product set defined by the hierarchical vari-
ability model. However, this leaves the possibility that not all products defined
by an SHVM satisfy a property such that verification procedure fails, while the
property is satisfied by the products defined by an hierarchical variablity model
containing variant constraints. In this case, an additional check of the excluded
products would be required.

6 Related Work

The existing approaches to represent product line variability on the artifact level
can be classified into three main directions [30]. First, annotative approaches
4 The focus of the evaluation is on comparing the times required for verification, and

not on the total times themselves.
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consider one model representing all products of a product line. Variant annota-
tions, e.g., using UML stereotypes [31,9], presence conditions [6], or separate vari-
ability representations, such as orthogonal variability models [23], define which
parts of the model have to be removed to derive the model of a concrete prod-
uct. Second, compositional approaches [2,30,21,1] associate product fragments
with product features which are composed for particular feature configurations.
Third, transformational approaches, such as [14], represent variability by rules
determining how modelling elements of a base model have to be replaced for a
particular product model.

In this paper, we pursue an alternative approach to model the variability of a
software product line by hierarchical variability modelling in SHVMs. Similar ap-
proaches are only pursued for modeling the variability of components contained
in a software architecture. Plastic partial components [22] capture component
variability by extending partially defined components with variation points and
associated variants. However, variants cannot contain variable components, and
thus the model is not fully hierarchical. In the Koala component model [29], com-
ponent variability is defined by designated linguistic concepts, called diversity
interfaces and switches, but these are fixed in a given component architecture.

Most approaches for algorithmic verification of behavioral properties of soft-
ware product lines rely on an annotative model of the product line comprising all
possible product variants in the same model. Existing model checking techniques
are adapted to deal with optional behavior defined by variant annotations. For
instance, in [8], modal transition systems are extended by variability operators
from deontic logic. In [10], the process calculus CCS is extended with a variant
operator to represent a family of processes. In [18], transitions of I/O-automata
are related to variants. In [5], product families are modeled by transition systems
where transitions are labelled with features, so that state reachability modulo a
set of features can be computed.

These approaches do not scale for large product lines since the used annota-
tive product line models easily get very large. To counter this, Blundell et al. [4]
and Liu et al. [20] propose techniques for compositional verification of prod-
uct features and are the only existing compositional verification techniques for
product families in the literature so far. In these approaches, the behavior of a
feature is represented by a state machine to which other features may attach in
designated states (interface states or variation points). For a temporal property
of a feature, constraints for these states are generated which have to be satisfied
by composed features. However, the compositionality results are based on the
applied notion of features and feature composition, while SHVMs provide a more
flexible means to define product variability.

7 Conclusion

We present a novel hierarchical variablility model for software product lines, in
which the variability of products in terms of sets of public and private methods
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is specified by defining common core methods and variation points at different
hierarchical levels. The model allows to adapt a previously developed method
and tool set for compositional verification of procedural programs such that the
exponential blow–up required for verifying all products individually is avoided:
The number of verification tasks resulting from our method is linear in the size
of the variablity model rather than in the number of products. This is achieved
by the introduction of variation point specifications on which product properties
are relativized, and the construction of maximal flow graphs that replace the
specifications when model checking specifications on the next higher level of
hierarchy. The class of properties that can be handled fully automatically is the
class of control flow-based temporal safety properties, specifying illegal sequences
of method calls. The input to our verification tool is the description of a product
line in form of an annotated Java program defining the variablity model and
providing the necessary specifications.

Our first experiments with the tool show a dramatic gain in performance
even for models with a low hierarchical depth. In future work, we plan to ex-
tend our hierarchical variability model with optional variants and constraints
between variants in order to facilitate the direct verification of more expressive
hierarchical variability models.

Acknowledgement. We thank Afshin Amighi for his help with flow graph
extraction, and Björn Terelius for his help with obtaining the analytical bounds.
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