
 Open access Book Chapter DOI:10.1007/978-3-642-15643-4_10

Compositional algorithms for LTL synthesis — Source link

Emmanuel Filiot, Naiyong Jin, Jean-François Raskin

Institutions: Université libre de Bruxelles

Published on: 21 Sep 2010 - Automated Technology for Verification and Analysis

Topics: Linear temporal logic

Related papers:

 On the synthesis of a reactive module

 Optimizations for LTL Synthesis

 Safraless decision procedures

 Synthesis of reactive(1) designs

 The temporal logic of programs

Share this paper:

View more about this paper here: https://typeset.io/papers/compositional-algorithms-for-ltl-synthesis-
m77i421yeh

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-15643-4_10
https://typeset.io/papers/compositional-algorithms-for-ltl-synthesis-m77i421yeh
https://typeset.io/authors/emmanuel-filiot-4idj8o7943
https://typeset.io/authors/naiyong-jin-135ppjrzd3
https://typeset.io/authors/jean-francois-raskin-3ifgd9j6h0
https://typeset.io/institutions/universite-libre-de-bruxelles-2us6zg8h
https://typeset.io/conferences/automated-technology-for-verification-and-analysis-3m3oammj
https://typeset.io/topics/linear-temporal-logic-365yry0p
https://typeset.io/papers/on-the-synthesis-of-a-reactive-module-fbvr6tgi1s
https://typeset.io/papers/optimizations-for-ltl-synthesis-3zj3lnbk1l
https://typeset.io/papers/safraless-decision-procedures-27j8h7wm7v
https://typeset.io/papers/synthesis-of-reactive-1-designs-1pypi3qzoh
https://typeset.io/papers/the-temporal-logic-of-programs-20ezla6zvo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/compositional-algorithms-for-ltl-synthesis-m77i421yeh
https://twitter.com/intent/tweet?text=Compositional%20algorithms%20for%20LTL%20synthesis&url=https://typeset.io/papers/compositional-algorithms-for-ltl-synthesis-m77i421yeh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/compositional-algorithms-for-ltl-synthesis-m77i421yeh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/compositional-algorithms-for-ltl-synthesis-m77i421yeh
https://typeset.io/papers/compositional-algorithms-for-ltl-synthesis-m77i421yeh

HAL Id: inria-00509966
https://hal.inria.fr/inria-00509966

Submitted on 17 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Algorithms for LTL Synthesis
Emmanuel Filiot, Naiyong Jin, Jean-François Raskin

To cite this version:
Emmanuel Filiot, Naiyong Jin, Jean-François Raskin. Compositional Algorithms for LTL Synthesis.
8th International Symposium on Automated Technology for Verification and Analysis (ATVA), Sep
2010, Singapore, Singapore. inria-00509966

https://hal.inria.fr/inria-00509966
https://hal.archives-ouvertes.fr

Compositional Algorithms for LTL Synthesis⋆

Emmanuel Filiot, Nayiong Jin, and Jean-François Raskin

CS, Université Libre de Bruxelles, Belgium

Abstract. In this paper, we provide two compositional algorithms to solve safety

games and apply them to provide compositional algorithms for the LTL synthe-

sis problem. We have implemented those new compositional algorithms, and we

demonstrate that they are able to handle full LTL specifications that are orders of

magnitude larger than the specifications that can be treated by the current state of

the art algorithms.

1 Introduction

Context and motivations The realizability problem is best seen as a game between
two players [14]. Given an LTL formula φ and a partition of its atomic propositions P
into I and O, Player 1 starts by giving a subset o0 ⊆ O of propositions 1, Player 2
responds by giving a subset of propositions i0 ⊆ I , then Player 1 gives o1 and Player 2
responds by i1, and so on. This game lasts forever and the outcome of the game is the
infinite word w = (i0∪o0)(i1∪o1)(i2∪o2) · · · ∈ (2P)ω. Player 1 wins if the resulting
infinite word w is a model of φ. The synthesis problem asks to produce a winning
strategy for Player 1 when the LTL formula is realizable. The LTL realizability problem
is central when reasoning about specifications for reactive systems and has been studied
starting from the end of the eighties with the seminal works by Pnueli and Rosner [14],
and Abadi, Lamport and Wolper [1]. It has been shown 2EXPTIME-C in [15].2 Despite
their high worst-case computation complexity, we believe that it is possible to solve LTL
realizability and synthesis problems in practice. We proceed here along recent research
efforts that have brought new algorithmic ideas to attack this important problem.

Contributions In this paper, we propose two compositional algorithms to solve the LTL
realizability and synthesis problems. Those algorithms rely on previous works where
the LTL realizability problem for an LTL formula Φ is reduced to the resolution of a

⋆ Work supported by the projects: (i) QUASIMODO (FP7- ICT-STREP-214755),

Quasimodo: “Quantitative System Properties in Model-Driven-Design of Embedded”,

http://www.quasimodo.aau.dk/, (ii) GASICS (ESF-EUROCORES LogiCCC),

Gasics: “Games for Analysis and Synthesis of Interactive Computational Systems”,

http://www.ulb.ac.be/di/gasics/, (iii) Moves: “Fundamental Issues in Mod-

elling, Verification and Evolution of Software”, http://moves.ulb.ac.be, a PAI

program funded by the Federal Belgian Gouvernment, and (iv) ECSPER (ANR-JC09-

472677) and SFINCS (ANR-07-SESU-012), two projects supported by the French National

Research Agency.
1 Technically, we could have started with Player 2, for modelling reason it is conservative to

start with Player 1.
2 Older pioneering works consider the realizability problem but for more expressive and com-

putationally intractable formalisms like MSO, see [19] for pointers.

safety game G(Φ) [7] (a similar reduction was proposed independently in [17] and ap-
plied to synthesis of distributed controllers). We show here that if the LTL specification
has the form Φ = φ1 ∧ φ2 ∧ · · · ∧ φn i.e., a conjunction of LTL sub-specifications, then
G(Φ) can be constructed and solved compositionally. The compositional algorithms are
able to handle formulas that are several pages long while previous non-compositional
algorithms were limited to toy examples.

The new algorithms rely on the following nice property of safety games: for any
safety game G, there exists a function that maps each position of Player 1 to the set of
all actions that are safe to play. We call this function the master plan of Player 1 in G.
It encompasses all the winning strategies of Player 1. If Λ is the master plan of G then
we denote by G[Λ] the game G where the behavior of Player 1 is restricted by Λ.

To compute the winning positions of a safety game G12 = G1 ⊗G2 defined as the
composition of two sub-games, we compute the master plans for the local components
G1 and G2 before composition. Let Λ1 (resp. Λ2) be the master plan for G1 (resp. G2),
then the winning positions in G12 are the same as the winning positions in G1[Λ1] ⊗
G2[Λ2]. We develop a backward and a forward algorithms that exploit this property.

We have implemented the two compositional algorithms into our prototype Acacia
and we provide an empirical evaluation of their performances on classical benchmarks
and on a realistic case study taken from the IBM RuleBase tutorial[9]. This implemen-
tation is rather used to test the new concepts and to see how they behave for scalability
test cases than to provide an advanced and deeply optimized prototype. In particular,
our implementation is in Perl (as Lily [10]) and does not use BDDs.

Related works The first solution [14] to the LTL realizability and synthesis problem
was based on Safra’s procedure for the determinization of Büchi automata [16].

Following [12], the method proposed in our paper can be coined ”Safraless” ap-
proach to the realizability and synthesis of LTL as it avoids the determinization (based
on the Safra’s procedure) of the automaton obtained from the LTL formula. Our ap-
proach, as the one proposed in [7], relies on a reduction to safety games.

In [12], Kupferman and Vardi proposed the first Safraless approach that reduces the
LTL realizability problem to Büchi games, which has been implemented in the tool Lily
[10]. In [13], a compositional approach to LTL realizability and synthesis is proposed.
Their algorithm is based on a Safraless approach that transforms the synthesis problem
into a Büchi and not a safety game as in our case. There is no notion like the mas-
ter plan for Büchi games. To the best of our knowledge, their algorithm has not been
implemented.

In [3], an algorithm for the realizability problem for a fragment of LTL, known as
GR(1), is presented and evaluated on the case study of [9]. The specification into the
GR(1) fragment for this case study is not trivial to obtain and so the gain in term of
complexity3 comes with a cost in term of expressing the problem in the fragment. Our
approach is different as we want to consider the full LTL logic. In our opinion, it is
important to target full LTL as it often allows for writing more declarative and more
natural specifications.

In [18], the authors also consider LTL formulas of the form Φ = φ1 ∧ φ2 ∧ · · · ∧
φn. They propose an algorithm to construct compositionally a parity game from such
LTL specifications. Their algorithm uses a variant of Safra’s determinization procedure
and additionally tries to detect local parity games that are equivalent to safety games

3
GR(1) has a better worst-case complexity than full LTL.

(because the associated LTL subformula is a safety property). For efficiently solving the
entire game, they use BDDs.

In [11], a compositional algorithm is proposed for reasoning about network of com-
ponents to control under partial observability. The class of properties that they consider
is safety properties and not LTL properties. They propose a backward algorithm and no
forward algorithm.

The implementation supporting the approaches described in [18] and [3] uses BDDs
while our tool Acacia does not. While our algorithms could have been implemented
with BDDs, we deliberately decided not to use them for two reasons. First, to fairly
compare our Safraless approach with the one proposed in [12] and implemented in Lily,
we needed to exclude BDDs as Lily does not use them. Second, several recent works
on the efficient implementation of decision problems for automata shown that antichain
based algorithms may outperform by several order of magnitude BDD implementations,
see [5, 6] for more details.

2 Safety Games

In this section, we provide a definition of safety games that is well-suited to support our
compositional methods detailed in the following sections. Player 1 will play the role
of the system while Player 2 will play the role of the environment. This is why, as the
reader will see, our definition of games is asymmetric.

Turn-based games A turn-based game on a finite set of moves Moves = Moves1 ⊎
Moves2 such that Moves2 6= ∅ is a tuple G = (S1, S2, Γ1, ∆1, ∆2) where: (i) S1

is the set of Player 1 positions, S2 is the set of Player 2 positions, S1 ∩ S2 = ∅, we
let S = S1 ⊎ S2. (ii) Γ1 : S1 → 2Moves1 is a function that assigns to each position
of Player 1 the subset of moves that are available in that position. For Player 2, we
assume that all the moves in Moves2 are available in all the positions s ∈ S2. (iii)∆1 :
S1×Moves1 → S2 is a partial function, defined on pairs (s,m) when Player 1 chooses
m ∈ Γ1(s), that maps (s,m) to the position reached from s. ∆2 : S2 × Moves2 → S1

is a function that maps (s,m) to the state reached from s when Player 2 chooses m.

We define the partial function ∆ as the union of the partial function ∆1 and the
function ∆2. Unless stated otherwise, we fix for the sequel of this section a turn-based
game G = (S1, S2, Γ1, ∆1, ∆2) on moves Moves = Moves1 ⊎ Moves2.

Given a function Λ : S1 → 2Moves1 , the restriction of G by Λ is the game G[Λ] =

(S1, S2, Γ̂1, ∆̂1, ∆2) where for all s ∈ S1, Γ̂1(s) = Γ1(s)∩Λ(s) and ∆̂1 equals ∆1 on

the domain restricted to the pairs {(s,m) | s ∈ S1 ∧m ∈ Γ̂1(s)} i.e., G[Λ] is as G but
with the moves of Player 1 restricted by Λ.

Rules of the game The game on G is played in rounds and generates a finite or an
infinite sequence of positions that we call a play. In the initial round, the game is in
some position, say s0, and we assume that Player 1 owns that position. Then if Γ1(s0)
is non-empty Player 1 chooses a move m0 ∈ Γ1(s0), and the game evolves to state
s1 = ∆1(s0,m0), otherwise the game stops. If the game does not stop then the next
round starts in s1. Player 2 chooses a move m1 ∈ Moves2 and the game proceeds to
position s2 = ∆2(s1,m1). The game proceeds accordingly either for an infinite number
of rounds or it stops when a position s ∈ S1 is reached such that Γ1(s) = ∅. Player 1
wins if the game does not stop otherwise Player 2 wins (safety winning condition). Our

variant of safety games are thus zero-sum games as usual. In particular, the positions
s ∈ S1 such that Γ1(s) 6= ∅ are the safe positions of Player 1.

Plays and strategies We now define formally the notions of play, strategy, outcome of
a strategy and winning strategies. Given a sequence ρ = s0s1 . . . sn . . . ∈ S∗ ∪ Sω, we
denote by |ρ| its length (which is equal to ω if ρ is infinite). We denote by first(ρ) the
first element of ρ, and if ρ is finite, we denote by last(ρ) its last element.

A play inG is a finite or infinite sequence of positions ρ = s0s1 . . . sn . . . ∈ S∗∪Sω

such that : (i) if ρ is finite then last(ρ) ∈ S1 and Γ1(last(ρ)) = ∅; (ii) ρ is consistent
with the moves and transitions of G i.e., for all i, 0 ≤ i ≤ |ρ|, we have that si+1 =
∆(si,m) for some m ∈ Γ1(si) if s ∈ S1, or m ∈ Moves2 if s ∈ S2.We denote by
Plays(G) the set of plays in G.

Given a set of finite or infinite sequences L ⊆ S∗ ∪ Sω, we write Prefj(L), j ∈
{1, 2}, for the set of prefixes of sequences in L that end up in a position of Player
j. Let ⊥ be such that ⊥ 6∈ Moves. A strategy for Player 1 in G is a function λ1 :
Pref1(Plays(G)) → Moves1∪{⊥} which is consistent with the set of available moves
i.e., for all ρ ∈ Prefi(Plays(G)), we have that: (i) λ1(ρ) ∈ Γ1(last(ρ)) ∪ {⊥}, and
(ii) λ1(ρ) = ⊥ only if Γ1(last(ρ)) = ∅. A strategy for Player 2 in G is a function
λ2 : Pref2(Plays(G)) → Moves2. Note that the codomain of a Player 2’s strategy
never contains ⊥ as all the moves of Player 2 are allowed at any position, whereas the
moves of Player 1 are restricted by Γ1.

A play ρ = s0s1 . . . sn . . . ∈ Plays(G) is compatible with a strategy λj of Player j
(j ∈ {1, 2}), if for all i, 0 ≤ i < |ρ|, if si ∈ Sj then si+1 = ∆j(si, λj(s0s1 . . . si)).We
denote by outcome(G, s, λj) the subset of plays in Plays(G) that are compatible with
the strategy λj of Player j, and that start in s. We denote by outcome(G, λj) the set⋃

s∈S outcome(G, s, λj), and by outcome(G, s, λ1, λ2) the unique play that is com-
patible with both λ1 and λ2, and starts in s.

The winning plays for Player 1 are those that are infinite i.e., Win1(G) = Plays(G)∩
Sω, or equivalently those that never reach an unsafe position s ∈ S1 of Player 1
where Γ1(s) = ∅. A strategy λ1 is winning in G from sini iff outcome(G, sini, λ1) ⊆
Win1(G). A game with such a winning condition in mind is called safety game. We
denote by WinPos1(G) the subset of positions s ∈ S in G for which there exists λ1

such that outcome(G, s, λ1) ⊆ Win1(G).

Games with initial position A safety game with initial position is a pair (G, sini) where
sini ∈ S1 ∪ S2 is a position of the game structure G called the initial position. The set
of plays in (G, sini) are the plays of G starting in sini, i.e. Plays(G, sini) = Plays(G) ∩
sini · (S

∗ ∪ Sω). All the previous notions carry over to games with initial positions.

Solving safety games The classical fixpoint algorithm to solve safety games relies on
iterating the following monotone operator over sets of game positions. LetX ⊆ S1⊎S2:

CPre1(X)={s∈S1 |∃m∈Γ1(s), ∆1(s,m)∈X}∪{s∈S2 |∀m∈Moves2, ∆2(s,m)∈X}

i.e., CPre1(X) contains all the positions s ∈ S1 from which Player 1 can force X in
one step, and all the positions s ∈ S2 where Player 2 cannot avoid X in one step. Now,
we define the following sequence of subsets of positions:

W0 = {s ∈ S1 | Γ1(s) 6= ∅} ∪ S2 Wi = Wi−1 ∩ CPre(Wi−1) for all i ≥ 1

Denote by W ♮ the fixpoint of this sequence. It is well known that W ♮ = WinPos1(G).

Master plan Let Λ1 : S1 → 2Moves1 be defined as follows: for all s ∈ S1, Λ1(s) =
{m ∈ Γ1(s) | ∆1(s,m) ∈ W ♮} i.e., Λ1(s) contains all the moves that Player 1 can
play in s in order to win the safety game. We call Λ1 the master plan of Player 1 and
we write it MP(G). The following lemma states that MP(G) can be interpreted as a
compact representation of all the winning strategies of Player 1 in the game G:

Lemma 1. For all strategies λ1 of Player 1 in G, for all s ∈ S, λ1 is winning in G
from s iff λ1 is a strategy in (G[MP(G)], s) and λ1(s) 6=⊥.

Now that we have defined and characterized the notion of master plan, we show
that we can compute directly the master plan associated with a game using a variant of
the CPre operator and sequence W . The variant of CPre considers the effect of some

Player 1’s move followed by some Player 2’s move. Let ĈPre : (S1 → 2Moves1) →
(S1 → 2Moves1) be defined as follows. For all s ∈ S1, let:

ĈPre(Λ)(s) = {m ∈ Λ(s) | ∀m′ ∈ Moves2 : Λ(∆2(∆1(s,m),m′)) 6= ∅}

Consider the following sequence of functions: Λ0 = Γ1, and Λi = ĈPre(Λi−1), i ≥
1. This sequence stabilizes after at most O(|S|) iterations and we denote by Λ♮ the
function on which the sequence stabilizes. Clearly, the value on which the sequence
stabilizes corresponds exactly to the master plan of G:

Theorem 1. Λ♮ = MP(G).

3 From LTL realizability to safety games

In this section, after recalling the formal definition of the LTL realizability problem, we
recall the essential results of [17, 7] where it is shown how to reduce the LTL realizabil-
ity problem to a safety game problem.

Linear Temporal Logic (LTL) The formulas of LTL are defined over a set of atomic
propositions P . The syntax is given by: φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ with p ∈ P .
The notations true, false, φ1∧φ2, ♦φ and �φ are defined as usual. LTL formulas φ are
interpreted on infinite wordsw = σ0σ1σ2 . . . ∈ (2P)ω via a satisfaction relationw |= φ
inductively defined as follows: (i) w |= p if p ∈ σ0, (ii) w |= φ1 ∨ φ2 if w |= φ1 or
w |= φ2, (iii) w |= ¬φ if w 6|= φ, (iv) w |= Xφ if σ1σ2 . . . |= φ, and (v) w |= φ1 Uφ2

if there is n ≥ 0 such that σnσn+1 . . . |= φ2 and for all 0 ≤ i < n, σiσi+1 . . . |= φ1.

LTL Realizability and Synthesis Let P be a finite set of propositions. Unless other-
wise stated, we partition P into I the set of input signals controlled by Player 2 (the
environment), and O the set of output signals controlled by Player 1 (the controller).
We let Σ = 2P , ΣI = 2I , and ΣO = 2O. The realizability problem is best seen
as a game. The players play according to strategies. A strategy for Player 1 is a (to-
tal) mapping λ1 : (ΣOΣI)

∗ → ΣO while a strategy for Player 2 is a (total) mapping
λ2 : ΣO(ΣIΣO)∗ → ΣI . The outcome of λ1 and λ2 is the word outcome(λ1, λ2) =
(o0 ∪ i0)(o1 ∪ i1) . . . such that for all j ≥ 0, oj = λ1(o0i0 . . . oj−1ij−1) and ij =
λ2(o0i0 . . . oj−1ij−1oj). In particular, o0 = λ1(ǫ) and i0 = λ2(o0). Given an LTL
formula φ, the realizability problem is to decide whether there exists a strategy λ1 of
Player 1 such that for all strategies λ2 of Player 2, outcome(λ1, λ2) |= φ. If such a
strategy exists, we say that the specification φ is realizable. If an LTL specification is
realizable, there exists a finite-state strategy that realizes it [14]. The synthesis problem
is to find a finite-state strategy that realizes the LTL specification.

q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)

(q1, 0), (q3, 0)

(q2, 0), (q4, 1)

(q1, 0), (q3, 1)

(q2, 0), (q4, 2)

g,¬g

¬r
r

g

¬gr,¬r

¬g

g

(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ �(r → X♦g)

Universal CoBüchi automata LTL formulas are associated with turn-based automaton
A over ΣI and ΣO. A turn-based automaton is a tuple A = (ΣI , ΣO, QI , QO, Qini, α,
δI , δO) where QI , QO are finite sets of input and output states respectively, Qini ⊆ QO

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,
δO ⊆ QO×ΣO×QI are the input and output transition relations respectively. Wlog we
assume that the automata are complete, i.e. for all t ∈ {I,O}, all q ∈ Qt and all σ ∈ Σt,
δt(q, σ) 6= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)
ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is
accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A,K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-
Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UK CW. As
they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalent UCWAφ (pos-
sibly exponentially larger) [20]. Fig. 1(a) represents a UCW equivalent to the formula
�(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are
denoted by circles while states ofQI are denoted by squares. The transitions on missing
letters are going to an additional sink non-accepting state that we do not represent for
the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UK CW specification:

Theorem 2 ([17, 7]). LetA be a UCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A,K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification
(A,K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆

Luc(A). Second, if the specification A is realizable then we know that there exists a
finite memory strategy λ1 that realizes it [14]. Any run on any outcome of λ1 visits
accepting states only a number of time equal to K , which is bounded by the size of the
strategy. So λ1 not only realizes the specificationA but a stronger specification (A,K).

Reduction to safety game Clearly UK CW specifications are safety properties. The re-
duction to a safety game relies on the fact that UK CW can easily be made deterministic.
Given a UK CWA, the gameG(A,K) is constructed via a subset construction extended
with counters for each state q, that count (up to K + 1) the maximal number of accept-
ing states which have been visited by runs ending up in q. We set the counter of a state
q to −1 when no run on the prefix read so far ends up in q. The set of game positions
S1 for Player 1 is therefore the set of functions F : QO to {−1, . . . ,K + 1}. The set
S2 is similarly defined as the functions F : QI to {−1, . . . ,K + 1}. The set of moves
of both players are the letters they can choose, i.e. Moves1 = ΣO and Moves2 = ΣI .
The set of available moves in a position are defined via a successor function succ such
that for all F ∈ Si and σ ∈ Movesi,

succ(F, σ) = q 7→ max{min(K + 1, F (p) + (q ∈ α)) | q ∈ δ(p, σ), F (p) 6= −1}

where max ∅ = −1, and (q ∈ α) = 1 if q is in α, and 0 otherwise. An action
σ1 ∈ Moves1 is available for Player 1 in a position F ∈ S1 if the counters of F and
succ(F, σ) do not exceed K . More formally, σ ∈ Γ1(F) iff for all p ∈ Q0 and all
q ∈ QI , F (p) ≤ K and succ(F, σ)(q) ≤ K . The transition function ∆1 is defined by
∆1(F, σ) = succ(F, σ) for all F ∈ S1 and all σ ∈ Γ1(s). The function ∆2 is defined
by ∆2(F, σ) = succ(F, σ) for all F ∈ S2 and all σ ∈ Moves2. Finally, we start the
game in the initial position F0 ∈ S1 such that for all q ∈ QO, F (q) = −1 if q is not
initial, and 0 if q is initial but not final, and 1 if q is initial and final.

Associating a safety game with an LTL formula φ is done as follows: (1) construct a
UCW Aφ equivalent to φ, (2) construct G(Aφ,K), denoted as G(ψ,K) in the sequel,
where K = 2n(n2n+2 + 1) and n is the number of states of Aφ.

Incremental algorithm In practice, for checking the existence of a winning strategy for
Player 1 in the safety game, we rely on an incremental approach. For all K1,K2 · 0 ≤
K1 ≤ K2, if Player 1 can win G(A,K1), then she can win G(A,K2). This is because
Luc,K1

(A) ⊆ Luc,K2
(A) ⊆ Luc(A). Therefore we can test the existence of strategies

for increasing values ofK . In all our examples (see Section 6), the smallestK for which
Player 1 can win is very small (less than 5).

Example Fig. 1(b) represents the safety game (forK = 1) associated with the formula
�(r → X♦g). Positions are pairs of states of the UCW with their counter values.
Player 1’s positions are denoted by circles while Player 2’s positions are denoted by
squares. The unavailable move of Player 1 from position (q2, 0) is denoted by a dashed
arrow. It goes to a position where a counter exceeds the value K . The master plan of
the game corresponds in this case to all the moves attached to plain arrows for Player
1’s positions. Indeed Player 1 wins the game iff she never follows the dashed arrow.

Antichain-based symbolic algorithm In practice, we do not construct the gameG(A,K)
explicitly, as it may be too large. However it has a nice structure that can be exploited
for defining an efficient symbolic implementation for the computation of the sequence
of Wi’s defined in Section 2. The main idea is to consider an ordering on the posi-
tions in G(A,K). Define the relation �⊆ FI × FI ∪ FO × FO by F � F ′ iff ∀q,
F (q) ≤ F ′(q). It is clear that � is a partial order. Intuitively, if Player 1 can win from

F ′ then she can also win from all F � F ′, since she has seen less accepting states in
F than in F ′. The consequence of this observation is that all the sets Wi are downward
closed for the relation �. It is shown in [7] that consequently all the computations can
be done efficiently by manipulating only �-maximal elements.

4 Compositional safety games

In this section, we define compositional safety games and develop two abstract compo-
sitional algorithms to solve such games.

Composition of safety games We now consider products of safety games. Let Gi,
i ∈ {1, . . . , n}, be n safety games Gi = (Si

1, S
i
2, Γ

i
1, ∆

i
1, ∆

i
2) defined on the same

sets of moves Moves = Moves1 ⊎ Moves2. Their product, denoted by ⊗i=n
i=1G

i, is the
safety game G⊗ = (S⊗

1 , S
⊗

2 , Γ
⊗

1 , ∆
⊗

1 , ∆
⊗

2)4 defined as follows:

– S⊗

j = S1
j × S2

j × · · · × Sn
j , j = 1, 2;

– for s = (s1, s2, . . . , sn) ∈ S⊗

1 , Γ⊗

1 (s) = Γ 1
1 (s1) ∩ Γ 2

1 (s2) ∩ · · · ∩ Γn
1 (sn);

– for j ∈ {1, 2} and s = (s1, s2, . . . , sn) ∈ S⊗

j , let m ∈ Γ⊗

1 (s) if j = 1 or

m ∈ Moves2 if j = 2. Then ∆⊗

j (s) = (t1, t2, . . . , tn), where ti = ∆i
j(s

i,m) for

all i ∈ {1, 2, . . . , n};

Backward compositional reasoning We now define a backward compositional algo-
rithm to solve the safety game G⊗. The correctness of this algorithm is justified by the
following lemmas. For readability, we express the properties for composed games de-
fined from two components. All the properties generalize to any number of components.
The first part of the lemma states that to compute the master plan of a composition, we
can first reduce each component to its local master plan. The second part of the lemma
states that the master plan of a component is the master plan of the component where

the choices of Player 1 has been restricted by one application of the ĈPre operator.

Lemma 2. (a) Let G12 = G1 ⊗G2, let Λ1 = MP(G1) and Λ2 = MP(G2) then

MP(G12) = MP(G1[Λ1] ⊗G2[Λ2])

(b) For any game G, MP(G)=MP(G[ĈPre(Γ1)]).

Let Λ : S1
1 × S2

1 × · · · × Sn
1 → 2Moves, we let πi(Λ) the function with domain

Si
1 and codomain 2Moves1 such that for all s ∈ Si

1, πi(Λ)(s) is the set of moves al-
lowed by Λ in one tuple (s1, s2, . . . , sn) such that si = s. Formally, πi(Λ)(s) =⋃
{Λ(s1, s2, . . . , sn) | (s1, s2, . . . , sn) ∈ S⊗

1 , s
i = s}. Given two functions Λ1 :

S1 → 2Moves1 and Λ2 : S1 → 2Moves1 , we define Λ1 ∩ Λ2 as the function on do-
main S1 such that for all s ∈ S1: Λ1 ∩ Λ2(s) = Λ1(s) ∩ Λ2(s). Given two functions
Λ1 : S1 → 2Moves1 and Λ2 : S2 → 2Moves1 , we define (Λ1 × Λ2) : S1 × S2 → 2Moves1

as (Λ1 × Λ2)(s1, s2) = Λ1(s1) ∩ Λ2(s2).
Based on Lemma 2, we propose the following compositional algorithm to compute

the master plan of a safety game defined as the composition of local safety games.
First, compute locally the master plans of the components. Then compose the local

master plans and apply one time the ĈPre operator to this composition. This applica-

tion of ĈPre compute a new function Λ that contains information about the one-step

4 Clearly, the product operation is associative up to isomorphism.

inconsistencies between local master plans. Project back on the local components the
information gained by the function Λ, and iterate. This is formalized in Algorithm 1
whose correctness is asserted by Theorem 3.

Algorithm 1: Backward composition

Data: G⊗ = G1 ⊗G2 ⊗ · · · ⊗Gn

Λ← Γ⊗

1
;

repeat

Λi := MP(Gi[πi(Λ)]), 1 ≤ i ≤ n;

Λ := ĈPre(Λ ∩ (Λ1 × · · · × Λn))
until Λ does not change;

return Λ

Algorithm 2: Forward composition

Data: G⊗ = G1 ⊗G2 ⊗ · · · ⊗Gn

Λi := MPReach(G
i, si

ini), 1 ≤ i ≤ n;

Λ := MPReach(G
1[Λ1]⊗· · ·⊗Gn[Λn],

. (s1

ini, s
2

ini, . . . , s
n

ini))
return Λ

Theorem 3. The value Λ returned by Algorithm 1 is equal to MP(G⊗).

Forward compositional reasoning When solving safety games, we may be interested
only in computing winning strategies for a fixed starting position, say sini. In this case,
the value of the master plan is not useful for positions that are not reachable when
playing winning strategies from sini. So, we are interested in computing a master plan
only for the winning and reachable positions. Given a gameG and a state sini, we denote
by Reach(G, sini) the subset of positions that are reachable from sini inG i.e., the states
s′ such that there exists a finite sequence s0s1 . . . sn with s0 = sini, sn = s′ and for
all i, 0 ≤ i < n, there exists m ∈ Γ1(si) ∪ Moves2 such that si+1 = ∆(si,m). The
master plan of reachable positions for (G, sini), denoted by MPReach(G, sini) is defined
for all s ∈ S as follows:

MPReach(G, sini)(s) =

{
MP(G)(s) if s ∈ Reach(G[Λ], sini)
∅ otherwise.

The following lemma shows that for a game defined compositionally, its master plan
can also be defined compositionally. For readability we express the lemma only for two
components but, as for the previous lemmas, it extends to any number of components:

Lemma 3. Let Λ1 = MPReach(G
1, s1ini) and Λ2 = MPReach(G

2, s2ini).

MPReach(G
1 ⊗G2, (s1ini, s

2
ini)) = MPReach(G

1[Λ1] ⊗G2[Λ2], (s
1
ini, s

2
ini))

As composition of safety games is an associative operator, we can use variants of
the algorithm above where we first compose some of the components and compute their
master plan of reachable positions before doing the global composition.

To efficiently compute the master plan of reachable positions of a game G, we use
the OTFUR algorithm of [4]. We say that a position s ∈ S1 is unsafe if Γ1(s) = ∅,
or all its successors are unsafe. A position s ∈ S2 is unsafe if one of its successors is
unsafe. The algorithm explores the state space by starting from the initial state in a for-
ward fashion. When sufficient information is known about the successors of a position
s, it back-propagates the unsafe information to s. At the end of the algorithm, the master
plan which allows all moves that lead to a safe position is exactly MPReach(G, sini). Fig.
2 illustrates the result of the OTFUR algorithms applied on the product of two safety
games G1, G2 over the possible moves o1, o2, o3 for Player 1 and i1, i2 for Player 2.
We assume that G1, G2 contains only winning actions, i.e. Gi = Gi[MP(Gi)] for all
i = 1, 2. The master plan of reachable states for G1 ⊗G2 corresponds to plain arrows.

A, A′

B, B′

C, C′

D, D′ E, E′

o1

i1

o2

i1, i2

i2o2

(G1 ⊗G2)[MPReach(G1 ⊗G2)]

A

B

C

D E

o1

i1

o1 i2

o2

o2, o3

i1, i2

Game G1

A′

B′

C′

D′ E′

o1
o2

i1, i2

i1

o2 i2

o2

Game G2

Fig. 2. Two games and their common master plan of reachable states

Dashed arrows are those which have been traversed during the OTFUR algorithm but
have been removed due to backpropagation of unsafe information. From node 〈A,A′〉
the move o3 is not a common move, therefore o3 is not available in the product as well.
However o2 is available in both games and leads to C and C′ respectively. Similarly,
o1 is available in both games and goes to 〈B,B′〉. From 〈B,B′〉 one can reach 〈D,D′〉
by i1 but from 〈D,D′〉 there is no common action. Therefore 〈D,D′〉 is unsafe. Since
one of the successor of 〈B,B′〉 is unsafe and 〈B,B′〉 is owned by Player 2, 〈B,B′〉 is
declared to be unsafe as well. All the remaining moves are winning in the G1 ⊗G2, as
they are winning both in G1 and G2.

Remark 1. It should be noted that each Λi in Alg. 2 can be replaced by the full master
plan without changing the output of the forward algorithm. Indeed, it is easy to see
that Reach(G[MPReach(G, sini)], sini) = Reach(G[MP(G)], sini). So, we can mix the
backward and forward algorithms. For instance, we can compute locally the master plan
of each Gi using the backward algorithm of [7], and then check global realizability
using the OTFUR algorithm.

5 Compositional LTL Synthesis and Dropping Assumptions

In this section, we show how to define compositionally the safety game associated with
an LTL formula when this formula is given as a conjunction of subformulas i.e., ψ =
φ1 ∧ φ2 ∧ · · · ∧ φn. Assume from now on that we have fixed some K ∈ N. We first
construct for each subformula φi the corresponding UK CW Aφi

on the alphabet of ψ5,
and their associated safety games G(φi,K). The game G(ψ,K) for the conjunction ψ
is isomorphic to the game ⊗i=n

i=1G(φi,K).
To establish this result, we rely on a notion of product at the level of turn-based

automata. Let Ai = (ΣI , ΣO, Q
i
I , Q

i
O, q

i
0, α

i, δi
I , δ

i
O) for i ∈ {1, 2} be two turn-

based automata, then their product A1 ⊗ A2 is the turn-based automaton defined as
(ΣI , ΣO, Q

1
I ⊎Q

2
I , Q

1
O ⊎Q2

O, Q
1
ini ⊎Q

2
ini, α1⊎α2, δ

1
I ⊎ δ

2
I , δ

1
O ⊎ δ2O). As we use univer-

sal interpretation i.e., we require all runs to respect the accepting condition, it is clear

5 It is necessary to keep the entire alphabet when considering the subformulas to ensure proper

definition of the product of games that asks for components defined on the same set of moves.

that executing theA1⊗A2 on a wordw is equivalent to execute bothA1 andA2 on this
word. So w is accepted by the product iff it is accepted by each of the automata.

Proposition 1. Let A1 and A2 be two UCW on the alphabetΣ1 ⊎Σ2, and K ∈ N: (i)
Luc(A1⊗A2) = Luc(A1)∩Luc(A2), (ii)Luc,K(A1⊗A2) = Luc,K(A1)∩Luc,K(A2)

As the state space and transition relation of A1 ⊗ A2 is the disjunct union of the
space spaces and transition relations of A1 and A2, the determinization of A1 ⊗A2 for
a fixed K ∈ N is equivalent to the synchronized product of the determinizations of A1

and A2 for that K , and so we get the following theorem.

Theorem 4. Letψ = φ1∧φ2∧· · ·∧φn,K ∈ N,G(ψ,K) is isomorphic to⊗i=n
i=1G(φi,K).

Even if it is natural to write large LTL specifications as conjunctions of subfor-
mulas, it is also sometimes convenient to write specifications that are of the form

(
∧i=n

i=1
ψi) → (

∧j=m
j=1

φj) where ψi’s formalize a set of assumptions made on the en-

vironment (Player 2) and φj’s formalize a set of guarantees that the system (Player
1) must enforce. In this case, we rewrite the formula into the logical equivalent for-

mula
∧j=m

j=1
((

∧i=n
i=1

ψi) → φj) which is a conjunction of LTL formulas as needed for
the compositional construction described above. As logical equivalence is maintained,
realizability is maintained as well.

Unfortunately, this formula is larger than the original formula as all the n assump-

tions are duplicated for all them guarantees. But, the subformulas (
∧i=n

i=1
ψi) → φj , j ∈

{1, . . . ,m} are usually such that to guarantee φj , Player 1 does not need all the assump-
tions on the left of the implication. It is thus tempting to remove those assumptions that
are locally unnecessary in order to get smaller local formulas. In practice, we apply
the following rule. Let ψ1 ∧ ψ2 → φ be a local formula such that ψ2 and φ do not
share common propositions then we replace ψ1 ∧ ψ2 → φ by ψ1 → φ. This simpli-
fication is correct in the following sense: if the formula obtained after dropping some
assumptions in local formulas is realizable then the original formula is also realizable.
Further, a Player 1’s strategy to win the game defined by the simplified formula is also
a Player 1’s strategy to win the game defined by the original formula. This is justified
by the fact that the new formula logically implies the original formula i.e. ψ1 → φ log-
ically implies ψ1 ∧ ψ2 → φ. However, this heuristic is not complete because the local
master plans may be more restrictive than necessary as we locally forget about global
assumptions that exist in the original formula. We illustrate this on two examples.

Let I = {req}, O = {grant} and φ = (�♦req) → �♦grant. In this formula, the
assumption �♦req is not relevant to the guarantee �♦grant. Realizing φ is thus equiv-
alent to realizing �♦grant. However, the set of strategies realizing φ is not preserved
when dropping the assumption. Indeed, the strategy that outputs a grant after each req
realizes φ but it does not realize �♦grant, as this strategy relies on the behavior of the
environment. Thus dropping assumption is weaker than the notion of open implication
of [8], which requires that the strategies realizing φ have to realize �♦grant.

As illustrated by the previous example, dropping assumption does not preserve the
set of strategies that realize the formula. Therefore, it can be the case that a realiz-
able formula cannot be shown realizable with our compositional algorithm after lo-
cally dropping assumptions. In addition, it can be the case that a formula becomes
unrealizable after dropping local assumptions. Consider for instance the formula φ =

�♦req → (�♦grant ∧ �(X (¬grant) U req)). This formula is realizable, for in-
stance by the strategy which outputs a grant iff the environment signal at the previ-
ous tick was a req. Other strategies realize this formula, like those which grant a re-
quest every n req signal (n is fixed), but all the strategies that realize φ have to exploit
the behavior of the environment. Thus there is no strategy realizing the conjunction of
�♦grant and φ. Consequently, when we decompose φ into �♦req → �♦grant and
�♦req → �(X (¬grant) U req), we must keep �♦req in the two formulas.

Nevertheless, in our experiments, the dropping assumption heuristic is very effective
and except for one example, it always maintains compositional realizability.

Symbolic compositional synthesis with antichains As mentioned in Sec. 3, we do not
construct the games explicitely, but solve them on-the-fly by compactly representing by
antichains the set of positions manipulated during the fixpoint computation. In partic-
ular, suppose that we are given a conjunction of formulas φ1 ∧ φ2, and some K ∈ N.
For all i ∈ {1, 2}, we first solve the subgameG(φi,K) by using the backward fixpoint
computation of [7] and get the downward closed set of winning positions (for Player
1), represented by antichains. Some winning positions are owned by Player 1 (resp.
Player 2), let this set be ↓W1 (resp. ↓W2), the downward closure of an antichain W1

(resp.W2). ThenW1 andW2 also provide a compact representation of MP(G(φi,K)).
Indeed, let F be a Player 1’s position in G(φi,K), then MP(G(φi,K))(F) is empty if
F 6∈↓W1 (the downward closure of W1), otherwise is the set of moves σ ∈ ΣO such
that succ(F, σ) ∈↓W2. This symbolic representation is used in practice for the forward
and backward compositional algorithms (Algorithms 1 and 2 of Sec. 4).

Moreover, the partial order on game positions can also be exploited by the OTFUR
algorithm of Section 4 used in the forward compositional algorithm. Indeed let F be
some Player 1’s position of some game G(φ, k). Clearly, F is loosing (for Player 1 the
controller) iff all its minimal successors are loosing. We get the dual of this property
when F is a position owned by Player 2 (the environment). In this case F is loosing
(for the controller) iff one of its maximal successors is loosing. Therefore to decide
whether a position is loosing, depending on whether it is a controller or an environment
position, we have to visit its minimal or its maximal successors only. In the OFTUR
algorithm, this is done by adding to the waiting list only the edges (s′, s′′) such that
s′′ is a minimal (or maximal) successor of s′. In the case of a position owned by the
controller, we can do even better. Indeed, we can add only one minimal successor in
the waiting list at a time. If it turns out that this successor is loosing, we add another
minimal successor. Among the minimal successors, the choice is done as follows: we
prefer to add an edge (s′, s′′) such that s′′ has already been visited. Indeed, this poten-
tially avoids unnecessary developments of new parts of the game. Note however that
this optimization cannot be used to compute the master plan of reachable positions, but
only some winning strategy, as some parts of the game may not be explored. In the ex-
periments, we use the backward algorithm to solve the local games and the optimized
forward algorithm to solve the global game.

6 Experimental evaluation

The compositional algorithms have been implemented in our prototype ACACIA [7].
The performances are evaluated on the examples provided with the tool LILY and on a
larger specification of a buffer controller inspirated by the IBM rulebase tutorial [9].

Lily’s test cases and parametric example We compare several methods on the real-
izable examples provided with LILY and on the parametric example of [7]. In those

benchmarks, the formulas are of the form
∧i=n

i=1
ψi →

∧j=m
j=1

φj where
∧i=n

i=1
ψi are a

set of assumptions and
∧j=m

j=1
φj are a set of guarantees. We decompose such formula

into several pieces (
∧i=n

i=1
ψi) → φj , as described in the previous section.

We compare four synthesis methods (Table 1). The first is the monolithic backward
method of [7]. The second is the monolithic forward method based on the OTFUR al-
gorithm optimized with antichains. The third method is a compositional method where
the local games are solved with the backward algorithm of [7] and the global game with
the forward algorithm OTFUR (optimized with antichains). Finally, the last method is
the third method where we use the dropping assumption heuristic. For each method,
we give the size of the automata (in the case of compositional methods it is the sum
of the sizes of every local automata), the time to construct them, the time to check for
realizability (Check Time), and the total time. The values in bold face are the best total
times among all methods.

On small examples, we can see that the benefit of the compositional approach is
not big (and in some cases the monolithic approach is even better). However for bigger
formulas (demo 3.2 to 3.7), decomposing the formulas decreases the time to construct
the automata, and the total realizability time is therefore better.

Now, we evaluate the benefit of dropping assumptions (last group of columns). For
those experiments, we only consider the subset of formulas for which this heuristic can
be applied. Our dropping heuristic does not work for demo 9 as it becomes unrealizable
after the application of dropping assumptions. As we see in the table, the benefit of
dropping assumptions is important and is growing with the size of the formulas that
are considered. The compositional algorithms outperform the monolithic ones when
combined with dropping assumptions. They also show promises for better scalability.
This is confirmed by our next benchmark.

A realistic case study Now, we consider a set of realistic formulas (Table 2). All those
formulas are out of reach of the monolithic approach as even the Büchi automaton for
the formula cannot be constructed with state of the art tools. The generalized buffer
(GenBuf) originates from the IBM’s tutorial for her RuleBase verification tool. The
benchmark has also the nice property that it can be scaled up by increasing the number

of receivers in the protocol. In this case study, the formulas are of the form
∧i=n

i=1
ψi →

φj and so they are readily amenable to our compositional algorithms.
In this case study, formulas are large: for example, the sum of the number of states

in the UCW of the components is 96 for gb(s2, r2) , and 2399 states for gb(s2, r7).
Note that the tool Wring cannot handle gb(s2, r2) monolithically.

This case study allows us to illustrate the effect of different strategies for exploiting
associativity of the product operation. In particular, we use different ways of parenthe-
sizing the local games. In all those examples, the local games and intermediate com-
bination of local games are solved with the backward compositional algorithm, while
the last compositional step (at the top) is done with the forward method. In each strat-
egy we first compute the master plan of each sub-formula. Then the column Flat refers
to the strategy that check global realizability directly. The column Binary refers to
the strategy that computes global realizability incrementally using the binary tree of
sub-formulas. Finally, the column Heuristic refers to the strategy that computes global
realizability incrementally using a specific tree of sub-formula defined by the user. The

column UCW OPT refers to the time to optimize the automata with Lily’s optimizations
(this time was included in the UCW time in Table 1).

Monolothic Compositional Compositional + DA

BACKWARD FORWARD FORWARD(global) FORWARD(global)

(Acacia’09) BACKWARD(local) BACKWARD(local)

ex
am

p
le

s

|t
b
U

C
W
|

(s
ta

te
s)

tb
U

C
W

T
im

e(
s)

C
h
ec

k
T

im
e(

s)

T
o
ta

l
ti

m
e(

s)

C
h
ec

k
T

im
e(

s)

T
o
ta

l
ti

m
e(

s)

Σ
i
|t
b
U

C
W

i
|

tb
U

C
W

T
im

e(
s)

C
h
ec

k
T

im
e(

s)

T
o
ta

l
ti

m
e(

s)

Σ
i
|t
b
U

C
W

i
|

tb
U

C
W

T
im

e(
s)

C
h
ec

k
T

im
e(

s)

T
o
ta

l
ti

m
e(

s)

3 20 0.49 0.00 0.49 0.01 0.5 28 0.40 0.01 0.41 17 0.06 0.00 0.06

5 26 0.71 0.00 0.71 0.01 0.72 42 0.70 0.02 0.72 34 0.40 0.02 0.42

6 37 1.22 0.02 1.24 0.02 1.24 57 1.14 0.03 1.17 45 0.79 0.06 0.85

7 22 0.60 0.00 0.60 0.01 0.61 41 0.66 0.02 0.68 33 0.40 0.02 0.42

9 13 0.13 0.01 0.14 0.00 0.13 31 0.26 0.00 0.26 na na na na

13 7 0.00 0.00 0.00 0.01 0.01 4 0.01 0.00 0.01 na na na na

14 14 0.11 0.00 0.11 0.01 0.12 27 0.77 0.01 0.78 15 0.03 0.00 0.03

15 16 0.06 0.02 0.08 0.00 0.06 22 0.11 0.03 0.14 na na na na

16 21 0.22 0.31 0.53 0.07 0.29 45 0.20 0.14 0.34 na na na na

17 17 0.16 0.04 0.20 0.03 0.19 23 0.16 0.05 0.21 na na na na

18 22 0.34 0.21 0.55 0.19 0.53 45 0.35 0.16 0.51 na na na na

19 18 0.31 0.01 0.32 0.01 0.32 27 0.25 0.03 0.28 27 0.26 0.01 0.27

20 105 2.67 0.01 2.68 0.01 2.68 154 2.43 0.03 2.46 101 1.52 0.02 1.54

21 27 7.38 0.22 7.60 0.28 7.66 43 1.40 0.52 1.92 44 0.55 0.51 1.06

22 45 7.08 0.03 7.11 0.02 7.1 80 10.26 0.05 10.31 49 1.51 0.13 1.64

3.2 36 0.94 0.02 0.96 0.00 0.94 40 0.79 0.02 0.81 na na na na

3.3 56 1.80 0.15 1.95 0.02 1.82 60 1.21 0.06 1.27 na na na na

3.4 84 3.12 1.24 4.36 0.04 3.16 80 1.63 0.10 1.73 na na na na

3.5 128 3.52 9.94 13.46 0.12 3.64 100 2.04 0.17 2.21 na na na na

3.6 204 10.22 100 110.22 0.46 10.68 120 2.40 0.39 2.79 na na na na

3.7 344 26.48 660 686.48 2.35 28.82 140 2.96 1.02 3.98 na na na na

Table 1. Performance comparison on Lily’s benchmark and parametric example

Conclusion We have provided compositional algorithms for full LTL synthesis. Our
algorithm are able to handle formulas that are several pages long (see [2]). We believe
that our compositional approach is an essential step to make realizability check more
practical. As future works, we plan to improve our tool by considering symbolic data-
structures. Currently, the alphabet of signals is handled enumeratively and we believe
that substantial gain could be obtain by handling it symbolically. This algorithmic im-
provement is orthogonal to the ones presented in this paper. It should be noted that the
compositional approach we propose is general and can be applied, for example, if some
sub-games are not specified using LTL but constructed directly from another specifica-
tion language. This is important as in practice some modules could be easily specified
directly by deterministic automata instead of LTL. Exploring the use of such mixed
specification methodology is part of our future works.

FLAT BINARY HEURISTIC

k Σ
|t
b
U

C
W
|

tb
U

C
W

T
im

e(
s)

U
C

W
O

P
T

T
im

e(
s)

C
h
ec

k
T

im
e(

s)

C
h
ec

k
T

im
e(

s)

C
h
ec

k
T

im
e(

s)

|M
o
o
re

m
ac

h
in

e|

gb s2 r2 2 91 4.83 0.08 0.84 0.99 0.98 54

gb s2 r3 2 150 8.52 0.17 7.33 36.27 6.99 63

gb s2 r4 2 265 15.64 0.53 36.88 125.60 24.19 86

gb s2 r5 2 531 26.48 2.11 154.02 266.36 70.41 107

gb s2 r6 2 1116 50.70 14.38 889.12 1164.44 335.44 132

gb s2 r7 2 2399 92.01 148.46 2310.74 timeout 1650.83 149

Table 2. Performance comparison on a scalability test for the forward methods

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive

systems. In ICALP, LNCS 372:1–17, 1989.
2. Acacia. Available at http://www.antichains.be/acacia, 2009.
3. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer. Specify,

compile, run: Hardware from psl. Electr. Notes Theor. Comput. Sci., 190(4):3–16, 2007.
4. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly algorithms for

the analysis of timed games. In CONCUR, LNCS 3653:66–80, 2005.
5. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm for

checking universality of finite automata. In CAV, LNCS 4144:17–30, 2006.
6. Doyen, L., Raskin, J.F.: Improved algorithms for the automata-based approach to model-

checking. In TACAS, LNCS 4424:451–465, 2007.
7. E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability. In CAV,

LNCS 5643:263–277, 2009.
8. K. Greimel, R. Bloem, B. Jobstmann, and M. Y. Vardi. Open implication. In ICALP’08,

LNCS 5126:361–372, 2008.
9. www.research.ibm.com/haifa/projects/verification/RB Homepage/tutorial3/

10. B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD, pp 117–124.

IEEE.
11. W. Kuijper and J. van de Pol. Compositional control synthesis for partially observable sys-

tems. In CONCUR, LNCS 5710:431–447, 2009.
12. O. Kupferman and M. Y. Vardi. Safraless decision procedures. In FOCS, pp 531–542, 2005,

IEEE.
13. O. Kupferman, N. Piterman, and M. Y. Vardi. Safraless compositional synthesis. In CAV,

LNCS 4144:31–44, 2006.
14. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pp 179–190,

1989, ACM.
15. R. Rosner. Modular synthesis of reactive systems. Ph.d. dissertation, Weizmann Institute of

Science, 1992.
16. S. Safra. On the complexity of ω automata. In FOCS, pp 319–327, 1988.
17. S. Schewe and B. Finkbeiner. Bounded synthesis. In ATVA, LNCS 4762:474–488. 2007.
18. S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for ltl games. In FMCAD, pp

77–84, 2009, IEEE.
19. W. Thomas. Church’s problem and a tour through automata theory. In Pillars of Computer

Science, LNCS 4800:635–655, 2008.
20. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff Higher Order

Workshop, LNCS 1043:238–266, 1995.

