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Abstract 24 

 A workshop held at the 2015 annual meeting of the Canadian Society of 25 

Microbiologists highlighted compositional data analysis methods, and the importance of 26 

exploratory data analysis, for the analysis of microbiome datasets generated by high 27 

throughput DNA sequencing. A summary of the content of that workshop, a review of 28 

new methods of analysis, and information on the importance of careful analyses are 29 

presented herein. The workshop focussed on explaining the rationale behind the use of 30 

compositional data analysis, and a demonstration of these methods for the examination 31 

of two microbiome datasets. A clear understanding of bioinformatics methodologies and 32 

the type of data being analyzed is essential given the growing number of studies 33 

uncovering the critical role of the microbiome in health and disease, and the need to 34 

understand alterations to its composition and function following intervention with fecal 35 

transplant, probiotics, diet and pharmaceutical agents.   36 
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 49 

Introduction 50 

 Human microbiome studies have shown a major link between microbial 51 

composition and health and disease and dysbiosis (Fremont et al. 2013; Lourenço et al. 52 

2014; Urbaniak et al. 2014). High throughput DNA sequencing methodologies have 53 

made this possible, along with breakthroughs in culturing techniques. The former has 54 

used approaches such as 16S rRNA gene sequencing, metagenomics, transcriptomics 55 

and meta-transcriptomics, leading to vast datasets that must be simplified and analyzed 56 

(Di Bella et al. 2013). Indeed, each sample may have tens of thousands to millions of 57 

sequence reads associated with it, and the entire dataset across all samples can easily 58 

exceed many hundreds of millions of reads. Such has been the rapidity of these 59 

developments that some studies appear to have been published using methods that are 60 

potentially. The result can be papers with serious deficiencies that are publicized as 61 

major advances or breakthroughs (Reardon 2013), when in some cases the data are far 62 

from sufficient for such claims. We will examine the evidence for one of these papers 63 

below (Hsiao et al. 2013).  64 

Data for microbiome analysis are collected by the following general workflow. 65 

The sample (swab, stool, saliva, urine or other type) is collected, the DNA is isolated 66 

and used in a polymerase chain reaction with primers specific to one or more variable 67 

regions of the 16S rRNA gene. It is also possible to target other conserved genes such 68 

as the cpn60 gene (Schellenburg et al. 2009). However, analysis problems are the 69 
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same regardless of the amplification target chosen, and Walker et al. (2015) present a 70 

good summary of how choices taken upstream of data analysis affect the results. 71 

Following amplification, a random sample of the product is used to make a sequencing 72 

library, and it is common to multiplex many samples in the library. A small aliquot of the 73 

library is processed on the high throughput DNA sequencing instrument. As outlined 74 

below, this workflow imposes constraints on the resulting data.  75 

It should be recognized that the investigator is sequencing a random sample of 76 

the DNA in the library, which is itself a random sample of the DNA in the environment. 77 

Thus, it is important to ensure that any analysis takes this random component into 78 

account (Fernandes et al. 2013).  79 

Perhaps less obvious is that the number of sequencing reads obtained for a 80 

sample bears no relationship to the number of molecules of DNA in the environment, 81 

because the number of reads obtained for a sample is determined by the capacity of the 82 

instrument. For example, the same library sequenced on an Illumina MiSeq or HiSeq 83 

would return approximately 20 million or 200 million reads. That there is no information 84 

in the actual read numbers per sample is implicitly acknowledged by the common use of 85 

‘relative abundance’ values for analysis of microbiome datasets. Such datasets are 86 

referred to as compositional and there is a long history of the development of proper 87 

analysis techniques for such data in other fields (Pawlowsky-Glahn et al. 2015). 88 

Compositional data is a term used to describe a dataset in which the parts in 89 

each sample have an arbitrary or non-informative sum (Aitchison 1986), such as data 90 

obtained from high throughput DNA sequencing (Friedman and Alm 2012, Fernandes et 91 

al. 2013, 2014). These data have long been known to be problematic (Pearson 1896), 92 
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and we now understand that multivariate data analysis approaches such as ordination 93 

and clustering and univariate methods that measure differential abundance are invalid 94 

(Aitchison 1986, Warton et al. 2012, Friedman and Alm 2012, Fernandes et al. 2013 95 

Pawlowsky-Glahn et al. 2015).  96 

The essential problem is illustrated in Figure 1 where we set up an artificial 97 

example and count the number of molecules in the environment. We allow one part 98 

(shown as solid black) to increase 10-fold between samples 1 and 2, while the 99 

abundance of the other 49 parts (in open circles) remain unchanged. The proportion 100 

panel shows how the data are distorted when we convert it to relative abundances or 101 

proportions, or as happens when the sequencing instrument imposes a constant sum. 102 

The black part still appears to become more abundant, although it is less than a 10-fold 103 

change. However, the 49 other parts appear to become less abundant. This property 104 

leads to the negative correlation bias observed in compositional data, and renders 105 

invalid any type of correlation or covariance based analysis such as correlation 106 

networks, principle component analysis, and others (Pearson 1896, Aitchison 1986). 107 

Note that this distortion will also lead to false univariate inferences as well (Fernandes 108 

et al. 2013,2014). 109 

The original issue with compositional data identified by Pearson (1896) was that 110 

of spurious correlation. That is, two or more variables can appear to be correlated 111 

simply because the data are transformed to have a constant sum. Spurious correlation 112 

also causes the correlations observed in these data to depend on the membership of 113 

the sample. For example, consider the simple case of three samples (a, b and c) with 114 
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four taxonomic variables measured to have the following absolute counts in three 115 

environmental samples (i.e., samples are in rows, taxa are in columns): 116 

abc = �470 66 839 751541 569 787 512167 906 959 504� , cor(abc)= 
 −0.68 −�. �� 0.36−0.77 �. �� −0.93−�. �� −�. �� −0.250.55 −0.95 0.62 � .  117 

The Pearson correlation for the numerical values is in the upper triangle of the 118 

right hand matrix, and we see that taxon 1 and taxon 3 have a near perfect negative 119 

correlation of -0.99 (shown in bold), and taxon 2 and taxon 3 have a positive correlation 120 

of 0.59. The lower triangle on the right hand matrix shows the Pearson correlation 121 

values that are found when these are converted to relative abundances by dividing by 122 

the total sum of counts in each sample. Now, the correlations between the same taxa 123 

have changed. The correlation between 1 and 3 is now moderately negative at -0.30, 124 

and between 2 and 3 is now -0.37. Thus, the correlation observed in compositional data 125 

is not the same as the correlation for the counts, and the correlations measured can 126 

even change sign.  127 

There is a further complication: the correlations observed in compositional data 128 

depend on the membership in the sample. So, for example, when the last value is 129 

dropped from each sample, the correlations between taxa 1 and 2 is positive (0.43), and 130 

the correlation between 2 and 3 is even more strongly negative at -0.79. Thus, 131 

correlation determined from compositional data has the potential to be wildly wrong, and 132 

normal approaches to determine correlation cannot be used (Friedman and Alm 2012, 133 

Lovell et al. 2015, Kurtz et al. 2015). It is worth noting that any method of determining 134 

correlation (including Spearman, Kendall, etc) will suffer from the same problems. Thus 135 

the current tools used to examine the analysis goals give results that may be 136 
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inconsistent, difficult to interpret and in many cases completely wrong (Filmoser et al. 137 

2009, Friedman and Alm 2012, Fernandes et al 2013, Fernandes et al. 2014, Lovell et 138 

al. 2015, Kurtz et al. 2015).  139 

The essential first step of proper compositional data analysis is to convert the 140 

relative abundances of each part, or the values in the table of counts for each part, to 141 

ratios between all parts. This can be accomplished in several ways (Aitchison 1986), but 142 

the most widely used and most convenient for our purposes is to convert the data using 143 

the centred log-ratio (clr) transformation. So if X is a vector of numbers that contains D 144 

parts: 145 

X = [x1,x2, I xD],  146 

the centered log-ratio of X can be computed as: 147 

Xclr = [log[x1/gX], log[x2/ gX], I log[xD/ gX],  148 

where gX is the geometric mean of all values in vector X (Aichison 1986). This 149 

simple transformation renders valid all standard multivariate analysis techniques 150 

(Aitchison 1986, van den Boogaart 2013, Pawlowsky-Glahn et al. 2015), and as shown 151 

in the Ratios panel of Figure 1, can reconstitute the shape of the data so that univariate 152 

analyses are also more likely to be valid. This transformation is also the starting point 153 

for essentially all compositional data analysis (CoDa) based assessments of the 154 

datasets. 155 

A CoDa approach would be robust if microbiome datasets were not sparse, that 156 

is, they did not contain any 0 values. However a frequent criticism of the CoDa 157 

approach is that the geometric mean cannot be computed if any of the values in the 158 

vector are 0. It is here we reiterate that our data represent the counts per taxon through 159 
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the process of random sampling (Fernandes et al. 2013, 2014). Thus, some 0 values 160 

could arise simply by random chance, while others arise because of true absence of the 161 

taxon in the environment. Fortunately, we can couple Bayesian approaches to estimate 162 

the likelihood of 0 values with the compositional analysis approach (Fernandes et al. 163 

2013, 2014, Gloor et al. 2016). With this paradigm we dispose of taxa with 0 counts in 164 

all or most samples (Palarea-Albaladejo and Martin-Fernandez 2015), and assign an 165 

estimate of the likelihood of the 0 being a sampling artifact to the remainder. When 166 

performing univariate tests or correlation analyses, it is often convenient to keep many 167 

such estimates of 0 and to determine the expected value of test statistics to reduce 168 

false positive inferences (Friedman and Alm 2012, Fernandes et al. 2013, Fernandes et 169 

al. 2014). 170 

Microbiome analysis tools that account for compositional data 171 

Fortunately, the compositional data analysis problem of microbiome datasets is starting 172 

to be examined by several groups and there are now an increasing number of tools 173 

available as outlined below.  174 

These tools can be applied to address three major objectives of many microbiome 175 

analyses: 176 

1. Do the data show any structure? That is, do the data partition into groups? 177 

2. What is the difference between groups? This can be between groups identified 178 

beforehand, or following the exploratory data analysis. 179 

3. What is the correlation structure of the taxonomic groups? Do any of these taxa 180 

correlate with the metadata? 181 
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These analyses are usually done using either the mothur (Schloss et al. 2009) or the 182 

QIIME (Kuczynski et al. 2012) aggregated toolsets, containing approaches adapted 183 

from the field of ecology. However, the use of an analysis paradigm based on 184 

compositional data analysis (Aitchison 1986), or CoDa, offers a number of advantages 185 

over these tools, as explained below. 186 

The first objective is to determine if there is structure in the dataset.  In the 187 

microbiome field this is generally described as beta-diversity analysis. Beta-diversity as 188 

currently used requires a distance or dissimilarity measure, and popular ones include 189 

the unweighted or weighted Unifrac distance metrics (Lozopone and Knight 2005) or the 190 

Bray-Curtis dissimilarity metric. These methods are included in both the mothur and 191 

QIIME toolkits. The distance metrics from these tools can be used to generate Principle 192 

Co-ordinate (PCoA) plots that can be used to assess similarities and differences 193 

between samples and groups. Unfortunately, distance-based tools can confuse location 194 

(difference) and dispersion (variance) effects (Warton et al. 2012), and so additional 195 

approaches based on a compositional paradigm should be used for exploratory data 196 

analysis.  197 

The CoDa analysis analog to PCoA is a principle component analysis (PCA) of 198 

center-log ratio transformed data that has been modified to either remove taxa with 0 199 

observed counts, or to adjust 0 values to an estimated value (Palarea-Albaladejo and 200 

Martin-Fernandez 2015).  PCA has the advantage of being a more interpretable metric 201 

than PCoA, since it directly assesses the variance in the data and because both the 202 

locations of the samples and the contribution of each taxon to the total variance can be 203 

shown on the so-called compositional biplot (Aitchison and Greenacre 2002). The ability 204 
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to examine variation of both the samples and the taxa on the same plot provides 205 

powerful insights into which taxa are compositionally associated and which taxa are 206 

driving (or not) the location of particular samples. Thus, the biplot can serve as a 207 

summary of the entire dataset, and it is up to the investigator to attach numerical 208 

significance to the qualitative results observed. The example usage of compositional 209 

biplots is explained in detail below. 210 

The second major objective is often to determine which taxa are driving the 211 

difference observed between groups. Several methods are in widespread use to assess 212 

the difference in abundance of taxa between groups. These include microbiome specific 213 

methods such as Metastats (White et al. 2009) or LEfSe (Segata et al. 2011), and more 214 

general t-tests or nonparametric tests. However, all use as input a table of proportional 215 

abundances. As shown in Figure 1, examination of proportions can result in a gross 216 

distortion of the data, such that some taxa can appear to change in abundance when 217 

measured by proportion, when in fact, their true abundance in the environment may be 218 

unchanged. This effect can be ameliorated by the center-log ratio transformation.  219 

There are two approaches that assess differential abundance in a compositional 220 

data analysis framework. The simplest approach is the ANCOM tool (Mandal et al. 221 

2015), which assesses statistical significance on log-ratio transformed data. This is 222 

more robust than both traditional t-tests and more sophisticated approaches such as 223 

zero-inflated Gaussian methods. It should be noted that the software is not currently 224 

deposited into a public repository, and that the 0-replacement value used is fixed in the 225 

software.  226 
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A slightly more complex approach is used by the ALDEx2 package, available 227 

from Bioconductor (Fernandes et al 2013, Fernandes et al 2014). Like ANCOM, 228 

ALDEx2 centre log-ratio transforms the data prior to the assessment of statistical 229 

significance, however ALDEx2 differs greatly in how values of 0 are handled. ALDEx2 230 

estimates a large number of possible values for 0  (and any other count for a taxon in a 231 

sample), conducts significance tests on all estimated values, and takes the average 232 

significance test value as the most representative for that taxon. In essence, ALDEx2  233 

determines which taxa are significantly different between groups after accounting for the 234 

random sampling that occurs when the DNA is extracted and loaded onto the 235 

sequencing instrument. In either case, both ANCOM and ALDEx2 explicitly 236 

acknowledge the multivariate compositional nature of the data, and control for false 237 

positive identifications much better than do the usual approaches.  238 

 The third objective is to determine if there are taxa in the dataset with correlated 239 

abundances. As noted above, spurious correlation is a very large problem in 240 

microbiome datasets. Therefore, analyses that report correlations using traditional 241 

methods, such as Pearson’s or Spearman’s correlations, Kendall’s Tau or Partial 242 

correlations are likely to be wrong (Friedman and Alm 2012, Lovell et al. 2015, Kurtz et 243 

al 2015). However, there are a number of approaches that use a compositional data 244 

analytic approach to correlation. In a compositional approach, the variance between 245 

ratios of two taxa should be 0 or nearly so for two taxa to be counted as correlated 246 

(Aitchison 1986, Lovell et al. 2015). The difficulty comes when placing this approach 247 

into a familiar null hypothesis test framework, or when applying a consistent scale to the 248 

measure. The simplest approach is to calculate the phi statistic for two taxa X and Y, 249 
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which is the var(log(X/Y)/var(log(X) (Lovell et al. 2015), where log() is meant to imply 250 

the clr values of X or Y. This measure has the advantage of being easily calculated and 251 

of strictly enforcing the compositional data analysis approach. The SparCC method 252 

(Friedman and Alm, 2012) uses Bayesian estimates of the value of X and Y but 253 

calculates a mean value of a measure similar to the concordance correlation coefficient.  254 

The SPIEC-EASI approach (Kurtz et al. 2015) uses clr-transformed values and infers a 255 

graphical model under the assumption of a sparse correlation network. Both of the latter 256 

approaches make strong assumptions about the sparsity of the data, and so are less 257 

rigorous for estimating correlations in compositional data than is the calculation of phi. 258 

However, they both offer the advantage of using a full or partial Bayesian approach, 259 

which is generally more powerful than point-estimate based approaches.  260 

Application of CoDa to Two Case Studies 261 

Having introduced the issue of compositional data analysis, we now present the 262 

results of two worked examples presented at the Bioinformatics Workshop was held on 263 

June 16, 2015 in Regina at the Annual Scientific Meeting of the Canadian Society of 264 

Microbiologists. This illustrates how these approaches can be applied to two different 265 

16S rRNA gene sequencing datasets from the recent literature. A full description of the 266 

methodology, the datasets and the code used to generate the figures is given in the 267 

Supplementary file workshop.Rnw (Gloor 2016). Downloading and running this file in R 268 

(R Core Team 2015) or RStudio will generate the associated workshop.pdf. The .Rnw 269 

document contains both the code and annotation for the code, and the .pdf document 270 

contains the code and the resulting figures. 271 
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The first worked example is a vaginal microbiome dataset. This dataset is from 272 

an experiment that examined the effect of treating women suffering from bacterial 273 

vaginosis (BV) with antibiotics and placebo or antibiotics plus a probiotic supplement 274 

(Macklaim et.al, 2015). For this example, we extracted only the ‘before’ (samples 275 

labeled as BXXX) and ‘after’ (AXXX) treatment samples, which were further identified by 276 

their Nugent status, a Gram stain scoring system that acts as a rough indicator of 277 

whether the subject had BV or was healthy (normal, n), or whose status was 278 

indeterminate (labeled as ‘ i’ for intermediate). In addition, individual taxa were 279 

aggregated to genus level using QIIME (Kuczynski et al. 2012), except for Lactobacillus 280 

iners and Lactobacillus crispatus, which remained as separate species in the tables. 281 

This relatively simple dataset will be used to introduce and explain the CoDa analysis 282 

methods. 283 

The compositional biplot is the essential initial tool for exploratory compositional 284 

data analysis and replaces ordinations based on Unifrac or Bray-Curtis metrics. 285 

Compositional biplots are principle component plots of the singular value decomposition 286 

of the data. This approach displays the major axes of variance (or change) in a dataset 287 

(Aitchison and Greenacre 2002). Properly made and interpreted, these plots summarize 288 

all the essential results of an experiment. However, it should be remembered that they 289 

are descriptive and exploratory, not quantitative. Quantitative tools can be applied later 290 

to support the conclusions derived from the biplot.  291 

For simplicity, we filtered the dataset to include only those taxa that were at least 292 

0.1% abundant in any sample. One of the desirable properties of compositional data 293 

analysis is that subsets of the dataset are expected to give essentially the same answer 294 
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as the entire dataset for the taxa in common between the whole and the subset dataset 295 

(Aitchison 1986).  296 

Figure 2 shows the compositional biplot for this dataset along with the associated 297 

scree plot that displays the percentage of variance explained by each sample or 298 

component. The sample names  (labeled in red for BV, blue for Normal or purple for 299 

Intermediate) illustrate the variance of the samples, and the taxa values (represented by 300 

the black rays) illustrate the variance between the taxa. In fact, the length of the arrow 301 

for each taxon is proportional to the standard deviation of the ratio of each taxon to all 302 

other taxa. There are many interpretation rules for biplots of compositional data 303 

(Aitchison and Greenacre 2002), but these rules are dependent on remembering that 304 

only the ratios between taxa can be examined. Thus, the links between the tips of the 305 

rays, or between samples contain the most information.  Keeping this in mind, we can 306 

see the following: 307 

First, the proportion of variance explained in the first component is very good, 308 

being 47%, then falling to 13% on component 2, and decreasing rapidly thereafter. This 309 

indicates that the major difference between samples can be captured in essentially one 310 

direction along component 1. While the amount of variance explained on the first 311 

component is relatively large in this dataset, a rule of thumb is that PCA plots that 312 

display less than 80% of the variance on the first two components are not necessarily 313 

accurate projections of the data. Thus, some of the quantitative results are expected to 314 

be somewhat different than is displayed in the qualitative PCA projection. 315 

Second, the longest link from the center to a taxon is the one to Lactobacillus 316 

iners. This indicates that the ratio of this taxon to all others is the most variable across 317 
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all samples. Likewise, the shortest link is to Gardnerella, implying that the ratio of this 318 

taxon to all others is the least variable. 319 

Third, the longest link is between L. iners and Leptotrichia (Sneathia). This 320 

means we can infer that these two taxa likely have the strongest reciprocal ratio 321 

relationship. That is, when one becomes more abundant relative to everything else, the 322 

other becomes less abundant relative to everything else.   323 

Fourth, the shortest link observed in the plot is between Megasphaera and 324 

BVAB2. From this we conclude that the ratio of these two taxa is relatively constant 325 

across all samples. That is, their ratio abundance is highly correlated. These two taxa 326 

should be seen to have a low value of phi, but we must keep in mind the limit of the 327 

projection of the data. 328 

Fifth, the link between Prevotella and Lactobacillus crispatus passes directly 329 

through Atopobium. This indicates that these three taxa are linearly related. In this case, 330 

it is clear when L. crispatus increases, the other two will decrease.  Likewise, this 331 

property can be extended to any linear relationships containing three or more links. 332 

Sixth, the link between L. iners and Megasphaera, and the link between 333 

Leptotrichia (Sneathia) and Lactobacillus cross at approximately 90°. The cosine of the 334 

angle approximates the correlation between the connected log ratios. Thus, we can 335 

conclude that the abundance relationship between the former pair of taxa is poorly 336 

correlated with that of the latter two taxa. In other words, these two pairs vary 337 

independently in the dataset. 338 

Some samples (A312_bv, B312_i, A282_n at the bottom), are tightly grouped, 339 

indicating that they contain similar sets of taxa at similar ratio abundances. We can see 340 
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from the biplot that these samples contain an abundance of Lactobacillus and are 341 

depleted in Leptotrichia (Sneathia). Furthermore, we can see that the samples divide 342 

into two fairly clear groups, with most of the before or “B” samples on the left, and most 343 

of the after or “A” samples on the right. We further observe that the majority of the B 344 

samples are colored red indicating a diagnosis of BV, and the majority of the A samples 345 

are colored blue indicating a diagnosis of non-BV. 346 

The result of the biplot suggested that there were two main groups that could be 347 

defined with this set of data. With a few exceptions, there appears to be a fairly strong 348 

separation between the samples containing a majority of Lactobacillus sp., and those 349 

lacking them. We can explore this by performing an unsupervised cluster analysis on 350 

the log-ratio transformed data. In traditional microbiome evaluation methodologies, 351 

clustering is based on the weighted or unweighted unifrac distances or on the Bray-352 

Curtis dissimilarity metric, for example see the standard workflow in QIIME (Kuczynski 353 

et al. 2012). These metrics are much more sensitive to the abundance of community 354 

members than is the Aitchison distance used in compositional data analysis (Martin 355 

Fernandez 1998). Thus, here we used the Aitchison distance metric that fulfills the 356 

criteria required for compositional data. In particular, by using a compositional approach, 357 

it is appropriate to examine a defined sub-composition of the data (i.e., a subset of the 358 

taxa).  359 

The results of unsupervised clustering of the dataset are shown in Figure 3. 360 

Again, it is important to remember that all distances are calculated from the ratios 361 

between taxa, and not on the taxa abundances themselves. For this figure, we used the 362 

ward.D2 method which clusters groups together by their squared distance from the 363 
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geometric mean distance of the group. There are many other options, and the user 364 

should choose one that best represents the data, although Ward.D and Ward.D2 are 365 

usually the most appropriate (Martin-Fernandez 1998).  366 

The cluster analysis supports the results of the biplot and shows the split 367 

between two types of samples rather clearly. Samples containing an abundance of 368 

Lactobacillus sp. are grouped together on the right, and samples with an abundance of 369 

other taxa are grouped together on the left. The cluster analysis helps explain and 370 

clarify the compositional biplot. For example, the four samples in the middle lower part 371 

of the biplot in Figure 2 labelled A/B312 and A/B282, group together in both the biplot 372 

and the cluster plot. These samples are atypical for both the N and BV groups, 373 

containing substantially more of the Lactobacillus taxon, and somewhat more of the 374 

taxa normally found in BV than in the other N samples. Based on these two results it 375 

would be appropriate to exclude these four samples from further analysis because of 376 

their atypical makeup.  377 

 Next, a univariate comparison between the B and A groups was performed. For 378 

simplicity of coding, we kept the outlier samples, but the reader is encouraged to 379 

remove them and see how the results change. For this, we used the ALDEx2 tool 380 

(Fernandes et al. 2013, 2014) that incorporates a Bayesian estimate of taxon 381 

abundance into a compositional framework, with the results shown in Table 1 and the 382 

effect plot (Gloor et al. 2016) shown in Figure 4. Of note, ALDEx2 examines differential 383 

abundance by estimating the measurement error inherent in high throughput DNA 384 

sequencing experiments, including the measurement error associated with 0 count taxa, 385 
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and uses the assumptions of compositional data analysis to normalize the data for the 386 

differing number of reads in each sample (Fernandes et al. 2013, Lovell et al. 2015).  387 

When interpreting these results, it is important to remember that we are actually 388 

examining ratios between values, rather than abundances. Thus, we are examining the 389 

change in abundance of a taxon relative to all others in the dataset. The user should 390 

also remember that all values reported are the means or medians over the number of 391 

Dirichlet instances as given by the mc.samples variable in the aldex.clr function and 392 

explained more fully in the supplementary material and the original papers (Fernandes 393 

et al. 2013, 2014).  394 

In the examples given in Table 1, we filtered to show only those taxa where the 395 

expected Bejamini-Hochberg (1995) adjusted P value was less than 0.05, meaning that 396 

the expected likelihood of a false positive identification per taxon is less than 5%, with 397 

the actual value per taxon given in the wi.eBH column. Using L. iners, we note that the 398 

absolute difference between groups can be up to −2.25. Thus, the absolute fold change 399 

in the ratio between L. iners and all other taxa between groups for this organism is on 400 

average 4.76 fold  (1/2-2.25): being more abundant in the A samples than in the B 401 

samples. However, the difference within the groups (roughly equivalent to the standard 402 

deviation) is even larger, giving an effect size of −0.79. Thus, the difference between 403 

groups is less than the variability within a group, a result that is typical for microbiome 404 

studies.  405 

 These quantitative results are largely congruent with the biplot, which showed 406 

that the taxa represented here were the ones that best explained the variation between 407 

groups, and that the Leptotrichia (Sneathia) and Lactobacillus taxa were not contributing 408 
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to the separation of the two large groups and so would not be expected to be 409 

significantly different, despite being highly variable.  410 

The left panel of Figure 4 shows a plot of the within (diff.win) to between (diff.btw) 411 

condition differences, with the large black dots representing those that have a BH 412 

adjusted P value of 0.05 or less. Taxa that are more abundant than the mean in the B 413 

samples have positive y values, and those that are more abundant than the mean in the 414 

A samples have negative y values. These are referred to as ‘effect size’ plots, and they 415 

summarize the data in an intuitive way (Gloor et al. 2015). The grey lines represent the 416 

line of equivalence for the within and between group values. Small black dots represent 417 

taxa that are less abundant than the mean taxon abundance: here it is clear that the 418 

abundance of rare taxa, are generally difficult to estimate with any precision.  419 

The middle plot in Figure 4 shows a plot of the effect size vs. the BH adjusted P 420 

value, with a strong correspondence between these two measures. In general, an effect 421 

size cutoff is preferred because it is more robust than P values. The right plot in this 422 

figure shows a volcano plot for reference.  423 

Finally, we can determine which taxa are most correlated or compositionally 424 

associated. As noted above, correlation is especially problematic, and the only way to 425 

avoid false positive associations is to identify those taxa that have constant or nearly 426 

constant ratios in all samples: this is the underlying basis of the phi measure (Lovell et 427 

al. 2015). In the example shown in the supplementary material, we calculate the mean 428 

phi using the same philosophy as outlined above for univariate statistical tests.  429 

In the context of microbiome datasets, the phi metric (Lovell et al. 2015) seeks to 430 

identify those pairs of taxa that have a near constant ratio abundance across all 431 
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samples. Applying this approach to the dataset shows that the two most compositionally 432 

associated taxa are Prevotella sp. and Megasphaera sp. Note, that these taxa do not 433 

have the shortest links in the compositional biplot, indicating that the amount of variance 434 

explained is not high enough to provide an accurate projection of the dataset. 435 

For the second worked example we include in the workshop.Rnw document a 436 

second example based on the data of Hsiao et al. (2013) that examined the effect of 437 

Bacteriodes fragilus supplementation on the microbiome composition of a mouse model 438 

of autism. This paper determined that there was a strong functional association between 439 

B. fragilus supplementation and mouse behavior. One of the major conclusions was that 440 

this functional change in behavior was associated with changes in abundance of a 441 

number of bacteria that composed the mouse gut microbiome. We will focus our 442 

analysis only on the conclusions derived from the analysis of the microbiome data that 443 

were presented in Figure 4 of the paper.  444 

  Figure 5 shows a compositional biplot of this dataset, and it is obvious that there 445 

is little evidence of difference between the poly-IC treated control (IC) and poly-IC 446 

treated mice supplemented with B. fragilus (Bf) groups when analyzed using this 447 

approach. This is in accordance with their conclusions when analyzing the data using 448 

an unweighted Unifrac distance based approach. Interestingly, the compositional biplot 449 

shows that the Bf samples are generally closer to the origin of the plot than are the IC 450 

samples, suggesting that the Bf samples have lower dispersion than the IC samples. 451 

Since the authors concluded that there was no evidence for multivariate 452 

differences between groups, and the CoDa approach agrees, it is generally not advised 453 
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to conduct a univariate analysis since it is likely that only false positive results would be 454 

obtained (Hubert and Wainer 2012).  455 

However, these authors went on to identify a number of univariate differences in 456 

taxon abundance between groups using the LEfSe and Metastats tools that are 457 

standard in the field (White et al. 2009, Segata et al. 2012), but that do not assume the 458 

data are multivariate compositions. When examining univariate differences with the 459 

ALDEx2 tool, we found that none of the univariate differences reported in the original 460 

paper were supported by subsequent analysis. In particular, the authors indicated that 461 

the largest differences between groups were found for six taxa labeled as 53, 145, 638, 462 

836, 837, and 956 in Figure 4 of the paper. The reason for this discrepancy is that 463 

inspection of the original paper reveals that raw, and not Benjamini-Hochberg adjusted 464 

P values were reported. Thus it is likely that the majority, if not all, of the taxa different 465 

between the control and treatment groups are false positive identifications. This result is 466 

congruent with the multivariate results found in both the original paper, and by the 467 

compositional biplot. Finally, in support of this assertion, we observe that all of these 468 

predicted differences become insignificant following a multiple test correction using 469 

either the P values reported in the paper, or P values calculated using the ALDEx2 470 

software.  471 

While we have been critical of the microbiome analysis methods used in this 472 

paper, we must acknowledge that other published papers exhibit many of the same 473 

flaws: namely an over-reliance on tools that do not treat the data as compositions, the 474 

identification of extremely rare taxa as the most ‘significantly different’ taxa between 475 

groups, and a general lack of corrections for multiple hypothesis testing. 476 
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 Summary 477 

Because the total number of reads is uninformative in high throughput DNA 478 

sequencing datasets, the only information available is the ratio of abundances between 479 

components: thus these data are compositional. Using two 16S rRNA gene sequencing 480 

datasets, we have illustrated that microbiome data can be examined using a 481 

multivariate CoDa approach where the data are ratios between the OTU count in a 482 

sample and geometric mean for that sample. Dirichlet Monte-Carlo replicates coupled 483 

with the centered log-ratio transformation can ameliorate the sparse data problem 484 

inherent in microbiome datasets.  485 

In essence, we argue here that 16S rRNA gene sequencing datasets are not 486 

special and do not need their own unique statistical analysis approaches. The data 487 

generated can be examined by a general multivariate approach after accounting for the 488 

compositional nature of the data, and such an analysis is comparable or superior to 489 

domain-specific approaches, such as those used in the second example paper (Hsiao 490 

et al. 2013).  491 

With the human body associated with a large number and diversity of bacteria, 492 

we need to understand the evolution of this association and how and when this intimate 493 

association develops. Such understanding will in turn lead us to robust approaches 494 

focussed on when and how to influence the microbiome by probiotic supplementation or 495 

by nutrient or antimicrobial means. More and more studies are exploring how the 496 

microbiome can predict outcomes, including following fecal transplant, probiotic, dietary 497 

and drug treatment (David et al. 2014; Kwak et al. 2014; Seekatz et al. 2014; Rajca et 498 

al.  2014). Such work will require carefully designed studies with high quality clinical 499 
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documentation, and samples that are processed using some of the methods described 500 

herein. As the compositional toolkit for microbiome analysis evolves, these studies will 501 

reveal aspects of human life not previously envisaged. In order to have confidence in 502 

such findings, datasets must be interrogated with rigour. The public is thirsty for 503 

knowledge and the media anxious to attract attention. Reliance on pharmaceutical 504 

agents is longer acceptable, and the ability to manipulate the microbiome is not only 505 

appealing but actually feasible. Thus, studies that help to understand how such 506 

manipulations occur, what communication is taking place between microbes and the 507 

host, will allow for more precisely targeted interventions, even to some extent 508 

personalized. In particular for the latter, as precise knowledge of microbiome 509 

components and activity will be critical.  510 

Interested readers wishing to progress beyond this demonstration should consult 511 

the compositional data literature, but in particular the original book by Aitchison (1986) 512 

and a comprehensive book by Pawlowsky-Glahn et al. (2015) that outlines the essential 513 

geometric problem of compositional data as it is understood at present. For a guide that 514 

goes beyond the introduction given here and in the supplementary material, a book 515 

outlining how to use the compositions R package by Van den Boogaart and Tolosana-516 

Delgado (2013) is particularly helpful, although none of the examples are drawn from 517 

the biological literature.  For others wishing to understand bioinformatics and data 518 

analysis of sequencing data in general terms, hopefully this paper will prove helpful, and 519 

encourage people to enroll in specialized courses. The temptation may be to rely on 520 

proprietary third party systems, even at a cost, but the ‘devil is in the details’ and for 521 
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thoroughness we recommend developing the highest level of skill possible, especially to 522 

continue to create new analytical tools.  523 

We hope that this report will help researchers to better understand their data and 524 

thereby conduct analyses that are more likely to be robust, and more importantly to 525 

bring badly needed breakthroughs in prevention, treatment and cure of disease.   526 

  527 
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Figure Legends 657 

Figure 1: The difference between counting, proportions and ratios. The ‘Counts’ panel 658 

shows a scatter plot of a simulated dataset with two samples composed of 49 invariant 659 

taxa in open circles, and 1 taxon that changes in count 10-fold (black-filled circle). This 660 

is the type of data that most current analysis tools in the microbiome field expect is 661 

being analyzed. The ‘Proportions’ panel shows the same samples after they have been 662 

sequenced and so constrained to have a constant sum. With such a constraint, their 663 

representation is the same whether the sum is 1 (as shown here) or an arbitrarily larger 664 

number (such as would be obtained from a sequencing instrument). The distortion in the 665 

data is obvious: the black-filled circle still appears to be more abundant, but the open 666 

circles appear to have become less abundant! It is obvious that we would draw incorrect 667 

inferences regarding abundance changes in these data, yet these are the data as used 668 

by existing tools. The third panel shows that much of this distortion can be removed 669 

using a ratio transformation where each count (or proportion) is divided by the 670 

geometric mean of the 50 taxa in the sample. Examination of the data after this 671 

transformation can thus provide more robust inferences. 672 

Figure 2: The left figure shows a covariance biplot of the abundance-filtered dataset, 673 

the right figure shows a scree plot of the same data. This exploratory analysis is 674 

encouraging, but not definitive, because the amount of variance explained is substantial 675 

with 0.469 of the variance being explained by component 1, and 0.139 being explained 676 

by component 2. The numbers on the left and right indicated unit-scaled variance of the 677 

taxa, the numbers on the top and right indicate unit scaled variances of the samples. 678 

Samples are colored in red if diagnosed as BV, blue if healthy, and purple if 679 
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intermediate. The scree plot also shows that the majority of the variability is on 680 

component 1. We can interpret this biplot with some confidence, although it is likely that 681 

any associations will be found to have large variation.  682 

Figure 3: Unsupervised clustering of the reduced dataset. The top figure shows a 683 

dendrogram of relatedness generated by unsupervised clustering of the Aitchison 684 

distances, which is a distance that is robust to perturbations and sub-compositions of 685 

the data (Aitchison 1986). The bottom figure shows a stacked bar plot of the samples in 686 

the same order. The legend indicating the colour scheme for the taxa is on the right side.  687 

Figure 4:  An effect plot showing the univariate differences between groups (Gloor et al. 688 

2015). The left plot shows a plot of the maximum variance within the B or A group vs. 689 

the difference between groups. Large black points indicate those that have a mean 690 

Benjamini-Hochberg adjusted P-value of 0.05 or less using P values calculated with the 691 

Wilcoxon rank test. The middle plot shows a plot of the effect size vs. the adjusted P 692 

value. In general, effect size measures are more robust than are P values and are 693 

preferred. For a large sample size such as this one, an effect size of 0.5 or greater will 694 

likely correspond to biological relevance. The right plot shows a volcano plot where the 695 

difference between groups is plotted vs the adjusted P value.  696 

Figure 5:  A form biplot of the Hsiao et al. (2013) dataset that best represents the 697 

distances between samples. Here we can see that the control and experimental 698 

samples are intermingled, suggesting no separation between the groups. Furthermore, 699 

the proportion of variance explained in the first component is not large when compared 700 

to the other components. The evidence of structure within this dataset is thus weak. 701 
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Table 1: List of significantly different taxa. 703 

Taxon diff.btw diff.win effect overlap wi.ep wi.eBH 

Atopobium 0.86 1.51 0.53 0.30 0.007 0.037 

Prevotella 1.41 1.77 0.75 0.22 0.000 0.002 

L. crispatus -1.07 1.78 -0.49 0.23 0.000 0.004 

L. iners -2.25 2.68 -0.79 0.20 0.000 0.001 

Streptococcus -1.14 2.38 -0.37 0.30 0.008 0.041 

Dialister 0.89 1.38 0.59 0.25 0.001 0.009 

Megasphaera 1.56 2.31 0.63 0.28 0.002 0.015 

diff.btw: median difference between groups on a log base 2 scale 704 

diff.win: largest median variation within group H or BV 705 

effect: effect size of the difference, median of diff.btw/diff.win 706 

overlap: confusion in assigning an observation to H or BV group. Smaller is better 707 

wi.ep: expected value of the Wilcoxon Rank Test P-value 708 

wi.eBH: expected value of the Benjamini-Hochberg corrected P-value 709 

 710 

 711 
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