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compositional and functional 
differences of the mucosal 
microbiota along the intestine 
of healthy individuals
Stefania Vaga1,15, Sunjae Lee1,15, Boyang Ji2, Anna Andreasson3,4,5, Nicholas J. Talley6, 
Lars Agréus7, Gholamreza Bidkhori1, Petia Kovatcheva‑Datchary8,9, Junseok Park10, 
Doheon Lee10, Gordon Proctor1, Stanislav Dusko Ehrlich11, Jens Nielsen2,12*, 
Lars Engstrand13* & Saeed Shoaie1,14*

Gut mucosal microbes evolved closest to the host, developing specialized local communities. There 
is, however, insufficient knowledge of these communities as most studies have employed sequencing 
technologies to investigate faecal microbiota only. This work used shotgun metagenomics of mucosal 
biopsies to explore the microbial communities’ compositions of terminal ileum and large intestine in 5 
healthy individuals. Functional annotations and genome‑scale metabolic modelling of selected species 
were then employed to identify local functional enrichments. While faecal metagenomics provided a 
good approximation of the average gut mucosal microbiome composition, mucosal biopsies allowed 
detecting the subtle variations of local microbial communities. Given their significant enrichment in 
the mucosal microbiota, we highlight the roles of Bacteroides species and describe the antimicrobial 
resistance biogeography along the intestine. We also detail which species, at which locations, are 
involved with the tryptophan/indole pathway, whose malfunctioning has been linked to pathologies 
including inflammatory bowel disease. Our study thus provides invaluable resources for investigating 
mechanisms connecting gut microbiota and host pathophysiology.

Hundreds of thousands of microbial species colonize the mammalian intestine constituting the gut  microbiota1–3. 
�is ensemble of species has co-evolved into a complex community in close proximity with the host, developing a 
symbiosis that provides the host with fundamental functions: protection against pathogens, assimilation of indi-
gestible food, production of essential vitamins, homeostasis maintenance, and immune system  development4,5.

�e gut microbiota composition is determined by host genetics, diet, lifestyle, ethnicity, and living envi-
ronment, promoting an important inter-individual  variability6. �e most dominant phyla, in a healthy adult 
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human gut, are Bacteroidetes, Firmicutes, and  Actinobacteria7,8. �e distribution of speci�c families, however, 
is determined by the above-mentioned factors and by local physiological di�erences, such as pH, oxygen, and 
 nutrients7. �e gut microbial community composition can therefore rapidly shi� in response to both localised 
and systemic changes. An altered microbiome composition can lead to dysbiosis, which has been considered 
to a�ect the onset and progression of several pathologies, such as in�ammatory bowel disease, irritable bowel 
syndrome, diabetes mellitus, obesity, and colorectal  cancer9–11.

Biogeography of gut microbes is quite  heterogeneous4,12. Compared to the gut lumen, the mucus covering 
the gut mucosa harbours fewer  bacteria7. �e mucus layer lining the epithelium, in particular, is colonised by a 
unique microbial community, including species such as Bacteroides fragilis and Akkermansia muciniphila13,14. 
�e importance of A. muciniphila is only starting to emerge in connection with several diseases: it is most ben-
e�cial to the host, although an excess has been linked to pathologies such as multiple  sclerosis15 and Parkinson’s 
 disease16. B. fragilis has been mostly studied because of its  pathogenicity17,18, although it has also been found 
to provide bene�cial  e�ects19,20. Having evolved in closer proximity with the host than any other microbe, they 
a�ect the host’s health in several ways that still lack a proper understanding. It is therefore of great interest to 
further investigate them in their own  niche7,21.

�e majority of gut microbiome studies have employed faecal sampling for microbiota screening. To inves-
tigate the gut mucosa microbiota, mucosal biopsies, di�erently from stool samples, would allow the collection 
of speci�c microbial communities. �e only studies available on colonic mucosal biopsies have employed 16S 
ribosomal DNA amplicon sequencing (16S)4,12,22,23 or RNA  sequencing24. Although 16S, in particular, has been 
successfully used to learn about the gut mucosal microbiota  composition25,26, it has been recently argued that 
this technique may not be able to reliably resolve taxonomy beyond the genus level, thus precluding a detailed 
description of locally enriched microbial  species27.

In this study, we employed shotgun metagenomic sequencing, and a set of functional analysis methods, to 
investigate the microbiome along the large intestinal mucosa in a healthy subjects’ cohort. �e main aim was to 
investigate if and how this technology can contribute to our understanding of the mucosal microbiota composi-
tion and function. We found that, while faecal samples provide a good approximation of the average gut mucosal 
microbiota, only biopsies could detail subtle but important compositional variations along the intestine. Signature 
species were identi�ed at each biopsy location, and found, through functional analyses, to a�ect speci�c pathways 
which are known to a�ect certain physio/pathologic processes.

Results
To investigate the microbial biodiversity along the large intestine mucosa, we collected faeces samples and, a�er 
bowel cleansing, mucosal biopsies from 5 healthy Swedish adults chosen from a previously published  study28: four 
males and one female, average age 41 years (Supplementary Table 3). Biopsies were taken from three locations: 
terminal ileum (TI), transverse colon (TC), and rectum (RE). As TI was not accessible for subject P1 (Supple-
mentary Table 3), one of her biopsies was taken from an adjacent caecum (CA) location instead (Fig. 1A). All 
samples were prepared for shotgun metagenomics sequencing. In the next sections, we detail how these data 
was used to investigate the microbial compositions of the biopsies and faeces samples (Supplementary Fig. 1).

Individual microbial uniqueness is stronger than local mucosal microbiota variability. To 
evaluate the microbial biodiversity in our samples, we �rst computed their gene- and metagenomic species 
(MGS)-richness29. We downsized biopsy and faeces datasets together to take into account the di�erent sequenc-
ing depths across samples (Supplementary Fig. 2A). In the average, biopsies showed an 82,876 gene-richness, 
and a 23 MGS-richness. Both these values were about one order of magnitude lower than the corresponding 
ones for faecal samples (1,093,261 and 259, respectively). By merging the samples of all biopsy locations together, 
we observed a visible increase in their average gene-richness, as certain genes were exclusively observed in spe-
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Figure 1.  Sampling locations and general overview of the faecal and biopsy-derived metagenomic datasets. 
(A) For each of the 5 enrolled subjects, gut mucosa biopsies were collected from terminal ileum (TI), transverse 
colon (TC), and rectum (RE); in one subject, as it was not possible to reach her TI, one biopsy was taken from 
the adjacent caecum instead (CA). Faeces (FE) were also sampled. (B, C) PCoA plots of the downsized biopsy-
faeces dataset (B), colour-coded by sampling-location, and of biopsies data only (C), colour-coded by subject. 
�e only caecal sample of this study is indicated by an asterisk. (D, E) Percentage of shared metagenomic species 
(in dark red) between biopsy location pairs (D), and between biopsy locations and FE (E).
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ci�c samples (Supplementary Fig. 2B). Both gene- and MGS-richness showed no signi�cant di�erence among 
biopsy locations (Supplementary Fig. 3).

We next looked at how subject- and sampling-location factors contributed to the microbiome diversity. �e 
PCoA plot of the faeces-biopsies dataset showed that the faecal microbiome clustered separately from all the 
biopsy ones (Fig. 1B). While the biopsies microbiomes did not cluster according to their sampling-location 
(Fig. 1B), they did partially cluster based on subjects (Supplementary Fig. 4A). �is shows that faecal and biopsy 
microbiomes signi�cantly di�er from each other, and that this di�erence is stronger than individual uniqueness. 
�e PCoA plot of biopsies alone showed a clear clustering based on subjects (Fig. 1C), but no clustering based on 
sampling-location (Supplementary Fig. 4B). �is suggests that local microbiomes along the length of the large 
intestine mucosa have subtle di�erences, which are overcome by individual variability.

To better interpret these �ndings, we computed the number of shared MGSs between samples (Fig. 1D,E), 
and between subjects (Supplementary Fig. 5). We observed a considerable MGS overlap between biopsy loca-
tions (Fig. 1D), especially between TI/CA and TC (63%). On the other hand, Fig. 1E shows that, whereas almost 
all the MGSs detected in biopsies were also detected in faeces (only one MGSs detected in TC, Acetobacter, was 
not detected in faeces), the strong separation between faeces and biopsies (Fig. 1B) was due to the much higher 
faecal microbial richness. As an additional test, we merged all the data derived from any biopsy location, and we 
downsized and normalised it together with the faecal dataset. �is resulted in a tremendous loss of MGSs for the 
faecal samples due to the downsizing, which subsequently led to a slight increase in the number of biopsy-only 
MGSs (Supplementary Fig. 6). Within all the MGSs detected in any biopsy-microbiome, 30% were shared by at 
least two subjects, (Supplementary Fig. 5), while this percentage, for the faecal microbiome, reaches 54% (Sup-
plementary Fig. 5). �is indicates that individual variability is higher in biopsies than in faeces. �ese results show 
that, although biodiversity was higher in faeces, since all the MGSs found in biopsies were detected in faeces as 
well, faecal sampling provides a good approximation of the average gut mucosa microbiota.

The biopsy‑derived gut mucosal microbiomes offer a detailed insight into the biogeography 
of the large intestine. We next performed a taxonomic analysis of biopsies and faecal microbiomes, in 
order to assess which MGSs set the two groups apart, and which ones characterize speci�c biopsy locations. We 
�rst computed the total number of MGS-reads belonging to each phylum/class. Figure 2 shows all nine detected 
phyla (Fig. 2A) and the top-ten classes (Fig. 2B), sorted from the most to the least abundant in biopsies. Phylum 
Firmicutes was the dominant one, both in faeces and in biopsies, and it was mostly comprised of Clostridia. 
�e phylum Bacteroidetes was the second most represented in biopsies (all belonging to class Bacteroides), 
whereas it was third in faeces a�er Actinobacteria (Supplementary Fig. 7). We also performed a similar phylum-
enrichment analysis on the dataset previously obtained by merging all biopsies data together. �is resulted in 
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Figure 2.  Taxonomy of metagenomics species (MGSs) from terminal ileum/caecum (TI*), transverse colon 
(TC), rectum (RE), and faeces (FE); n = 5 for each group. (A, B) Top 10 most highly abundant phyla (A) and 
classes (B) in the large intestine; phyla/classes are sorted, in the legends, from the most to the least abundant in 
all three biopsy-locations. �e corresponding faecal values are also plotted for comparison, in the same order. 
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a phyla distribution that was in agreement with the one observed for separate biopsy locations (Fig. 2A), once 
again highlighting Firmicutes as the richest phylum, while the percentage of Bacteroidetes was signi�cantly 
more abundant in biopsies compared to faeces. (Supplementary Fig. 8). Our �ndings are in agreement with the 
current  knowledge7,30.

To identify the co-variations of faecal and mucosal microbiota across samples, we compared the microbiome 
of all biopsies as a group to the faeces one. To this purpose, we plotted the 41 genera that were shared by these two 
groups (Fig. 2C). �e correlation between faeces and biopsies was low  (R2 = 0.18) because of the genus Bacteroides, 
which was signi�cantly enriched in biopsies only (Fig. 2C). �e removal of this genus from the shared genera 
resulted in a signi�cantly higher correlation between biopsies and faeces  (R2 = 0.44; Fig. 2D). �e linear correla-
tion of all shared 41 genera, including Bacteroides, between single biopsy locations, was high (R > 0.84), with 
the exception of CA (R = 0.48) (Fig. 2E–G), whereas RE and faeces had a lower correlation (R = 0.57; Fig. 2H). 
While these results (Fig. 2E–H) agree with our previous observations, they also show that all the subjects equally 
contribute to all correlations. We can therefore conclude that the most relevant discrimination factor between 
faeces and biopsies is genus Bacteroides.

Intrigued by the high Bacteroides enrichment in all biopsy microbiomes, we looked at which Bacteroides 
species were detected in each biopsy location. Known to be dominant in the gut  microbiome31, B. vulgatus was 
detected in all samples. Several Bacteroides showed speci�cally high local relative abundances. B. vulgatus, B. 
thetaiotaomicron, B. uniformis, and B. caccae were highest in TI, B. faecis in TC, while B. dorei and B. nordii were 
only detected in RE. We also observed a decreasing gradient distribution of most of the dominant Bacteroides 
of TI along the large intestine, except for B. caccae (Supplementary Fig. 9).

�e most enriched genus in the faecal microbiota was the carbohydrate-fermenting genus Bi�dobacterium 
(phylum Actinobacteria) (Fig. 2C). B. adolescentis and B. longum were detected in the faecal samples of almost 
all subjects (Supplementary Fig. 10). B. adolescentis, particularly, displayed an increasing gradient distribution 
along the large intestine, although its detection in biopsies was signi�cantly lower than in faeces (Supplementary 
Fig. 10).

Our results support our hypothesis that, except Bacteroides, faeces metagenomics provides a good approxi-
mation of the average mucosal microbiota. Faecal metagenomics, however, lacks the additional dimension pro-
vided by biopsies: a measure of the subtle changes MGSs undergo along the intestine. Since certain pathologies, 
such as Crohn’s disease, are known to develop at speci�c locations along the  intestine32–34, the ability to detect a 
pathological dysbiosis at such locations is likely to be fundamental for early diagnosis.

Antimicrobial resistance genes distribution along the large intestine. As the gut microbiota is a 
reservoir of antimicrobial resistance genes (ARGs)35, we next investigated how microbial communities along the 
intestine contribute to antibiotic resistance. We found that TI was less ARG-rich than both TC and RE, while 
faeces were signi�cantly richer than any biopsy location (Supplementary Fig. 11). �is indicates that TI micro-
biome may be more susceptible to antimicrobials than those from other locations.

We then looked at how the resistomes of this study correlate with one another (Fig. 3A, Supplementary 
Fig. 12). �e faecal resistome had a low correlation both with all biopsies grouped together (R = 0.62) (Fig. 3A) 
and with each single biopsy location (Fig. 3C). Biopsies’ resistomes, on the other hand, had higher correlations 
with each other (R > 0.70). �ese results show that biopsies, besides having very similar microbiota, had highly 
overlapping resistomes as well.

We next investigated the di�erentially enriched drug classes (Fig. 3B) and resistance mechanisms (Fig. 3C). 
�e drug classes with the highest number of ARGs were cephamycin, tetracycline, �uoroquinolone, and glyco-
peptide antibiotics, particularly in TI and TC (Fig. 3B). �e mechanisms with the highest number of ARGs were 
Antibiotic e�ux, Antibiotic inactivation, and Antibiotic target alteration (Fig. 3C), with particular biopsy locations 
enrichments. Speci�cally, Antibiotic e�ux and Antibiotic target alteration were more enriched in TI and RE, while 
Antibiotic inactivation was more enriched in TC. Interestingly, some mechanisms were exclusively represented 
in one location only, such as Antibiotic target replacement in RE, and Reduced permeability to antibiotic in TI.

Functional analysis by KEGG orthology, antiSMASH, and genome‑scale metabolic models. To 
gain a deeper insight into the roles played by locally dominant species along the gut mucosa, we employed a 
set of functional analysis tools. We �rst measured how each sample was enriched in speci�c molecular func-
tional orthologs by assigning KEGG  orthologies36–38 (https ://www.genom e.jp/kegg/ko.html) to genes detected at 
each biopsy location. Two KEGG orthology pathways were found to be signi�cantly enriched (p-value < 0.05) at 
speci�c biopsy locations (Supplementary Fig. 13): carotenoid biosynthesis and oxidative phosphorylation. �e 
second was enriched in TI, because of locally dominant bacteria such as Bacteroides vulgatus and Bacteroides 
uniformis, while carotenoid biosynthesis was enriched in TC due to Bacteroidetes vulgatus, Akkermansia mucin-
iphila, Faecalibacterium prausnitzii, Parabacteroides distasonis, among others. As carotenoids have been shown 
to play a protective role in the human gut by regulating immunoglobulin A (IgA)  production39, we speculate 
these microbes may play a role not only in carotenoid synthesis but also in regulating and preserving the gut 
immune system.

�e antiSMASH  database40 was next employed to annotate the faecal and the biopsy-derived data, to predict 
which secondary metabolites (SMs) are preferentially secreted by the microbes found in a speci�c sample-
type. We found a greater enrichment of such predicted metabolites in the faeces samples, compared to all the 
biopsy locations, due to the higher number of microbial species detected in faeces (Supplementary Fig. 14A). 
Within biopsies, TC was the most enriched location for number of identi�ed species with secondary metabolites 
detected. Nine SMs were predicted to be enriched in all biopsy locations, and an additional �ve were only detected 
in TC and RE (Supplementary Fig. 14B). Among these, we found anti-bacterial SMs resorcinol and bacteriocin 

https://www.genome.jp/kegg/ko.html
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(secreted by B. dorei, B. faecis, B. massiliensis, and B. cellulosilyticus, among others), and aryl polyene (secreted 
by Akkermansia muciniphila, and by most Bacteroides species), which provides bacteria with protection from 
oxidative stress similarly to  carotenoids41.

We then employed genome-scale metabolic modelling (GEM) to investigate how locally-enriched microbes 
contribute to the metabolism of the gut microbiota and the host. Speci�cally, we constructed and simulated 
GEMs of all the Bacteroides detected in biopsies, and of all the species that were most highly enriched at a single 
biopsy location, in at least two subjects (Supplementary Fig. 15).

�e Jaccard similarity analysis between the simulation results of all modelled species was in agreement with 
our former observations: there was no marked di�erence between biopsy locations (Fig. 4A). However, several 
metabolites were especially, although not exclusively, predicted to be produced/secreted at certain biopsy loca-
tions because of locally-enriched species (Fig. 4B,C). In particular, we report a gradual shi� from sugar to amino 
acid consuming microbes (Fig. 4B). As  expected42, acetate secretion (highest in TI) was predicted to be greater 
than propionate’s, which was greater than butyrate’s (Supplementary Table 2). Formate and butyrate produc-
tion was highest in RE (Fig. 4B), where Ruminococcus lactaris, Eubacterium rectale, and B. nordii were enriched 
(Fig. 4C), while propionate production was highest in TI (Fig. 4B), which had higher concentrations of B. caccae, 
B. vulgatus, and B. fragilis (Fig. 4C).

Our simulations yielded novel interesting insights into several metabolic pathways whose relevance to health 
or disease has already been assessed, but whose mechanisms are still largely obscure. In particular, we predicted 
signi�cantly enriched indole secretion and l-tryptophan (Trp) consumption in TI and TC (Fig. 4C), mainly due 
to B. thetaiotaomicron, B. uniformis, B. vulgatus, B. faecis, and B. xylanisolvens. Trp is an essential amino acid 
involved in several important functions, mostly connected with the host-microbiome interaction. As a fraction 
of Trp is known to be metabolised into indole by the gut  microbiota43, our results show that this process is likely 
to happen in TI and TC (Fig. 4C).

Finally, by simulating the growth of the modelled species with varying oxygen concentrations, we predicted 
di�erent responses from locally dominant Bacteroides. In particular, B. vulgatus (dominant in TI) was predicted 
to have a high oxygen-resistance (Fig. 4D), whereas B. faecis (dominant in TC) is likely to be more sensitive 
(Fig. 4E), and B. dorei (dominant in RE) could be quite oxygen-sensitive (Fig. 4F).
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Discussion
�e current ideal strategy to study gut mucosal microbial communities is to sample them through biopsies and 
to employ a shotgun sequencing technology to measure their microbial species composition. A number of fac-
tors, however, need to be taken into account when choosing the most practical strategy for each speci�c study, 
including sample size, sequencing costs, and desired sequencing depth. �is study was designed to explore the 
advantages and limitations of using shotgun metagenomics and gut mucosal biopsy samples to quantify local 
microbiomes along the intestine of healthy subjects.

We show that faecal samples are richer in biodiversity. �is is due, at least partially, to the expected lower 
number of reads mapping to microbial genes in biopsy-derived samples, as these contain higher amounts of 
human DNA. We also found important individual di�erences, particularly in the biopsy microbiota, less so in 
the faecal ones. �ese observations are in agreement with the �ndings of Zoetendal et al., who compared faecal 
and mucosal biopsy samples of human subjects by 16S, highlighting signi�cant di�erences between the mucosal 
microbiota compositions of di�erent  individuals44. Biodiversity was, therefore, the main discriminating factor 
between faeces and biopsies microbiota, followed by individual variability, while biopsy sampling-location o�ered 
the least discriminating power across biopsies. Although not signi�cantly di�erent in composition, di�erent 
gut locations vary in species concentrations: the same species may be found in most or all the biopsy locations, 
but with a di�erent prevalence within each local community. Such variations are of crucial interest, as they may 
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Figure 4.  Simulation results of the genome-scale metabolic models of all Bacteroides and Bi�dobacterium 
species detected in biopsy samples, plus the most highly enriched species at one biopsy location only in at least 
two patients (Supplementary Fig. 10; Supplementary Table 1). Results are reported by biopsy location: terminal 
ileum plus caecum (TI*), transverse colon (TC), and rectum (RE). (A) Jaccard index for each modelled species. 
(B) Biopsy location-based summation of the secretion of the main bacterial metabolites. (C) Uptake and 
secretion of the metabolites showing a variation across the modelled species. (D–F) Growth rate plots of the 
modelled species as a function of environmental oxygen level for TI (D), TC (E), and RE (F). �e most enriched 
Bacteroides of the three biopsy locations are highlighted in red (C–F).
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a�ect the host metabolism and homeostasis, or the onset and development of certain diseases where an altered 
composition of local communities is linked with such processes.

Despite the richer faecal biodiversity, faecal microbiota included almost all the MGSs found in mucosal 
biopsies. Additionally, faecal and biopsy microbiomes correlate with each other very well, except Bacteroides. 
�is suggests that faeces metagenomics provides a good approximation of the average gut mucosal micro-
biota composition, in health. Regarding sequencing depth, we applied a downsizing (rarefaction) approach to 
avoid possible biases. �ere are, however, reports in the literature describing the low impact of downsizing on 
read-counts of shotgun metagenomics, as this method does not signi�cantly confound biological  e�ects45. Our 
downsizing approach reduced the number of species identi�ed, but it allows for an unbiased understanding of 
the faecal and mucosal microbiome.

Both faeces and biopsies were particularly rich in Firmicutes, a phylum known to be dominant in the gut 
 microbiota7. Several microbial species belonging to genus Bacteroides were, however, signi�cantly enriched in 
biopsies only, whereas species from genus Bi�dobacterium were mainly enriched in faeces. �ese results are in 
agreement with the phyla distribution described by 16S  studies4. Bacteroides are known as obligate anaerobic, 
bile-resistant bacteria, and one of the dominant genera in the  gut46. Although they o�en behave as commensal 
organisms, some of their features allow them to turn into  pathogens46,47. Bacteroides species have been recently 
discovered to enhance gut homeostasis by secreting immunomodulatory  factors48. B. fragilis, in particular, is the 
most studied species of this phylum. It has been shown to play an anti-in�ammatory role, to promote mucosal 
colonization, and to enforce the epithelial barrier of the  gut49–51. �ere is thus increasing interest in Bacteroides 
species for their potential in the treatment of a number of diseases. �ey are among the rare prokaryotes pro-
vided with membrane sphingolipids, which are believed to enhance their ability to detect and cope with an 
unstable  environment52. Furthermore, Bacteroides’ outer membrane comprises  lipopolysaccharides53; although 
they usually trigger the host immune response, Bacteroides species-speci�c lipopolysaccharides structural di�er-
ences prevent  that54. Overall, Bacteroides are equipped with a unique interface with the host. Besides providing 
them with the capability to quickly detect and react to environmental changes, it also allows them to a�ect and 
modulate the host immune  system54. Moreover, faecal microbiota transplantation has been shown to signi�cantly 
increase the abundance of Bacteroidetes in the gut  mucosa55. �e enrichment of Bacteroidetes in the gut mucosa 
is therefore likely due to a number of niche selection factors that allow this phylum to thrive in this environment 
even a�er perturbations, such as the bowels cleansing all our individuals were subjected to before colonoscopy. 
Among the most enriched Bacteroides, we showed B. thetaiotaomicron and B. fragilis to gradually decrease from 
TI to RE, while B. faecis was signi�cantly enriched in TC. Being among the best-studied Bacteroides, they are 
known as �exible foragers, capable of adapting to changes in microbial composition and glycan  availability56,57. 
�eir enrichment may, therefore, have been caused by the depletion of other genera caused by bowel cleansing.

We next performed a set of analysis on functional capacity to investigate the roles possibly played by locally 
dominant species. First, we explored the local enrichment of antibiotic resistance genes. �e higher ARG-richness 
found in faeces was due to the greater MGS-richness of these samples. Interestingly, the number of resistance 
genes corresponding to several resistance mechanisms was higher in some biopsy locations, particularly TI and 
RE, than in faecal samples. In particular, although TI had the lowest gene/MGS-richness, and no unique MGSs of 
its own, it had the highest number of signi�cantly changing ARGs. Some ARGs may exist as a result of acquired 
resistance to antibiotic use. Antibiotic resistance is known to have signi�cant variations between  countries58. 
�e most commonly prescribed antibiotics in Sweden, where the individuals of this study are from, are mainly 
penicillins, classi�ed as penam, followed by tetracycline and �uoroquinolone antibiotics (https ://resis tance map.
cddep .org/index .php). In our study, the highest number of ARGs was detected for cephamycin, tetracycline, and 
�uoroquinolone antibiotics, whereas less ARGs were detected for penams. Furthermore, although a few ARGs 
were shared among more than one drug class, many of them were speci�c to other classes that, to our knowledge, 
were not commonly prescribed in Sweden in the past twenty years. Some of these, like ARGs conferring resistance 
to cephamycin and glycopeptide antibiotics, were quite prominent in our results, and could be derived either 
from intrinsic resistance or from acquired resistance via horizontal gene  transfer59,60.

We next performed a KEGG orthology analysis, which resulted in two pathways being signi�cantly enriched, 
at two separate locations: carotenoid biosynthesis in TC, and oxidative phosphorylation in TI. Our analysis also 
allowed the identi�cation of the microbial species that most signi�cantly contributed to these local enrichments. 
Not enough information is however currently available to draw any sound conclusions relative to the oxidative 
phosphorylation enrichment in TI. Additionally, since our GEMs were simulated in anaerobic conditions, our 
simulation could not be used to shed light on this enrichment either. Carotenoid biosynthesis, on the other 
hand, was enriched in TC because of the local prevalence of a few microbes, including Bacteroidetes vulgatus 
and Akkermansia muciniphila. �e carotenoid biosynthesis pathway is responsible for producing beta-carotene, 
a precursor for retinol metabolism, and vitamin A. It has been shown that carotenoids play a protective role on 
the human gut by regulating IgA  production39, and that retinol de�ciency speci�cally a�ects Bacteroides vulgatus’ 
growth in the  gut61. Our data allows us to speculate that microbes possessing genes from this pathway, and locally 
enriched in TC, may play an important role in the retinol turnover of the gut, and in regulating IgA production.

GEM modelling was used to investigate the secretion/uptake of fermentation metabolites by the most enriched 
microbial species at each biopsy location. �e simulations of our models provided new insights into partially 
known metabolic mechanisms involving microbial species which were found, in this work, to be dominant at 
speci�c locations only. We observed, for instance, a gradual shi�, along the intestine, from sugar to amino acid 
consuming microbes, and we reported unprecedented oxygen-resistance details of speci�c Bacteroides species. 
Of particular interest was the discovery that Trp consumption and indole production were both signi�cantly 
increased in TI and TC. Trp is an essential amino acid that plays fundamental roles in regulating nitrogen bal-
ance, gut immune system homeostasis, and serotonin  production62,63. A fraction of Trp is metabolised to indole 
and its derivatives by the gut microbiota, consistently with our simulation  results62. Several diseases have been 

https://resistancemap.cddep.org/index.php
https://resistancemap.cddep.org/index.php
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linked with reduced e�ciency of this  mechanism63,64. In particular, in�ammatory bowel disease has been associ-
ated with decreased serotonin production and Trp  imbalance65. Bacteroides are among the few known microbes 
possessing Trp metabolism catalytic  enzymes63. �e main Bacteroides found in TI and TC that, according to 
our GEM simulation, were responsible for Trp consumption and indole secretion, were B. thetaiotaomicron, B. 
uniformis, B. vulgatus, B. faecis, and B. xylanisolvens. �is novel information is extremely valuable, particularly as 
the impact of this mechanism is only starting to be uncovered in connection with a growing number of diseases. 
�e Bacteroides species we report here in connection with Trp/indole metabolism will thus require further tar-
geted investigation, as that could help prevent and treat such pathologies. As the results derived from our GEM 
simulation were obtained in silico, further targeted experiments will be required to validate them.

One of the main limitations of this study was the small number of subjects that could be enrolled. Very strict 
inclusion criteria were applied to ensure that all the included subjects were healthy, thus without any organic 
�ndings or gastrointestinal symptoms at the time of enrolment, which could have in�uenced the microbiota 
composition. Also, the sequencing depth of the biopsy-derived samples (0.15 million unique read-counts) was 
limited by the large number of human genes sampled together with the microbes. �e lower sequencing depth 
led to a partial measurement of the gut mucosal microbiota, which mainly emphasised the most abundant spe-
cies. �is is another important limitation of metagenomics. A number of studies investigated the composition of 
the gut mucosal microbiota by 16S instead. �is technology allowed them to detect larger numbers of microbial 
species, including rare ones than our study could. �e enormous potential of metagenomics was hampered by 
the extremely high host genome content in combination with insu�cient sequencing depth. Additionally, the 
bowels cleansing procedure that was required prior to colonoscopy is likely to have caused substantial altera-
tions to the gut mucosal  microbiota66. As for the coverage of ARGs from the catalogue used here, we recently 
discovered a new study suggesting a larger set of putative antibiotic resistant genes identi�ed by a deep learning 
 approach67. �e additional use of this new set may help better understand the di�erences in ARG-richness in 
a more comprehensive manner. In addition, a deeper sequencing may lead to the identi�cation of more ARGs 
from both faecal and mucosal samples. Additionally, normalizing for microbiota richness may provide better 
understandings of the di�erences of antibiotic resistance capacity between faecal and mucosal microbiota. While 
these are important and expected limitations, we still chose to use this method to assess what can be learnt from 
it. Biopsies can provide information that faeces cannot: subtle and otherwise undetectable variations in local 
microbiomes along the intestine that faeces cannot detect. Such variations are of great interest since, as discussed, 
they can a�ect the onset and progression of serious pathologies. We thus believe these results, although still not 
optimal, provide new valuable insights into the mucosal gut microbiota. New methods will need to be devised to 
better isolate microbial species from human tissues, thus increasing the detection of microbial species. In order 
to achieve results that are at least comparable to those of 16S, a much higher sequencing depth must also be 
obtained by, for instance, multiple resequencing of the same samples. Additionally, given the promising results 
here described, larger cohorts now need to be investigated.

In conclusion, the current study showed that faecal samples provide a good approximation of the gut mucosal 
microbiome, although only metagenomics of gut mucosal biopsies can detect subtle variation in the local micro-
bial communities’ composition along the large intestine. Functional analysis of the biopsy metagenomics data was 
in agreement with the current knowledge while providing new fundamental information. Our GEM simulation, 
in particular, could detail which species are involved in only partially known metabolic mechanisms connected 
with health or disease. Our work provides novel insights into which microbial species are associated with the 
gut mucosal microbiota of healthy individuals a�er bowels cleansing. Such valuable information will provide 
the starting point for more targeted future investigations on the gut microbiota.

Materials and methods
Study population. Five healthy adult volunteers from Stockholm were selected from the participants to 
a study previously  described28. Colonoscopy preparation included a clear liquid diet and bowel cleansing with 
45 mL Phosphoral oral intake twice within 4 h. At colonoscopy, biopsies were collected from terminal ileum or 
caecum, transverse colon, and rectum. Faecal samples were collected at home, before bowel cleansing and colo-
noscopy, and sent by post to the research facility where they were frozen at − 80 °C. All subjects were free from 
any objective �nding at colonoscopy. �ey had not undergone any previous gastrointestinal surgeries and had 
no current or previous diseases of the gastrointestinal tract (for exclusion criteria, see Supplementary Materials). 
�e study was approved by the Karolinska Institutet ethical review board (Forskningskommitté Syd, nr 394/01). 
All participants provided written informed consent.

DNA extraction. Total genomic DNA was isolated from biopsy tissue or from 100 to 120 mg faecal sample 
using repeated bead beating, following a protocol previously  described68. Brie�y, samples were placed in Lysing 
Matrix E tubes (MP Biomedicals), and sterile lysis bu�er (4% w/v SDS; 500 mmol/L NaCl; 50 mmol/L EDTA; 
50 mmol/L Tris·HCl; pH 8) was added. Biopsy samples were incubated with 50 µl mix of mutanolysin (5U/µL) 
and lysozyme (100 mg/mL) at 37 °C for 30 min. Both biopsy and faeces samples were lysed twice with bead 
beating at 5.0 m/s for 60 s in a FastPrep-24 Instrument (MP Biomedicals). A�er each bead-beating, samples 
were heated at 85 °C for 15 min and centrifuged at full speed for 5 min at 4 °C. Supernatants from the two lysate-
fractions were pooled and puri�ed. Total genomic DNA was eluted in AE bu�er (10 mmol/L Tris·Cl; 0.5 mmol/L 
EDTA; pH 9.0). All the experimental protocols employed in this study were in accordance with the relevant 
guidelines and regulations.

Analysis of shotgun metagenomics. Extracted DNA was processed into a paired-end library and 
sequenced by Illumina HiSeq 2,500 (2 × 100 bp), generating an average of 5.9 million paired-end reads per sam-
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ple. Whereas faecal samples yielded an average of 5.8 million unique read-counts mapping to the integrated 
reference catalogue of the human gut microbiome database, only an average of 0.15 million unique read-counts 
mapped to microbial genes in the biopsy-derived samples. �is was due to the majority of reads, in biopsy-
derived samples, mapping to human genes (97%). �ese data were thus used to generate two separately nor-
malised gene-count tables and, correspondingly, MGSs abundance pro�les (Supplementary Table 4): one for 
faeces and one for biopsies. Raw data was quality checked with FastQC (https ://www.bioin forma tics.babra ham.
ac.uk/proje cts/fastq c), processed with  METEOR69, and mapped onto the integrated reference catalogue of the 
human gut  microbiome70. Host DNA was removed. Reads that were aligned to the gene catalogue by bowtie2 
were counted when both paired-end reads were aligned to given genes. Gene abundances were estimated from 
the summation of uniquely mapped read counts and normalized shared read counts by occurrences. Estimated 
gene abundance from uniquely and shared mapped reads were normalized by the length of given genes by 
MetaOMineR R  package29.

Downsizing was performed in order to take into account the di�erent sequencing depths across samples. 
Strain/species-level abundances of MGS—i.e., co-abundant genes with more than 100 genes originated from 
microbial  species71,72—were pro�led for each sample. Downsizing was performed for the whole biopsy-faeces 
dataset, then also for biopsy and faeces datasets separately. MGS pro�les were estimated as the mean abundance 
of the 50 genes of a given MGS (centroid of the clustered genes) and used to perform taxonomic investigations. 
Based on the orthologous genes from the KEGG  database73, we annotated the quanti�ed bacterial genes, and 
performed functional analysis of the genes detected in the biopsy dataset.

Statistical analysis. To assess if and how much each set of data (either sampling location- or patient-spe-
ci�c) di�er, in the average, from the others, paired di�erence tests were performed. In particular, as the available 
data was not large and did not appear to be normally distributed, statistical assessments were performed with the 
Wilcoxon signed-rank  test74, in MatLab.

Antibiotic resistance genes. All fastq �les were mapped against the nucleotide_fasta_protein_homolog_
model from the antimicrobial resistance database CARD3.0.075 (https ://card.mcmas ter.ca/) using Bowtie2 
(ver.2.3.4.3). Unmapped reads were �ltered out, and resistance genes with mapped reads coverage below 
90% were discarded. Each resistance gene was annotated with Drug Class and Resistance Mechanism using 
CARD3.0.0 metadata. R package Deseq2 was used to normalize the resistome dataset, and to perform statistical 
evaluation of signi�cantly changing resistance genes.

Secondary metabolite prediction via antiSMASH pipeline. All the gene sequences of the 606 
metagenome species we identi�ed were retrieved from the reference gene  catalogue70, and the antiSMASH stan-
dalone program was used to annotate their biosynthetic genes by minimal run options focused on core detection 
modules (version 5)76. �e antiSMASH program was loaded onto the Amazon cloud computing platform (AWS) 
as docker image, and its mining process was executed per metagenomics species with all processes massively 
parallelized. All detected secondary metabolite clusters per metagenomics species were then associated with the 
sampling locations of each metagenomics sample.

Genome scale metabolic model (GEM) reconstruction and simulation. We reconstructed the 
GEMs of the bacteria (Supplementary Table 1) belonging to genera Parabacteroides, Anaerostipes, Bacteroides, 
Bi�dobacterium, Eubacterium, Ruminococcus, and Blautia, using the KO annotation provided in the gut cata-
logue. �e KO pro�les were converted to metabolic network and reaction score pro�les regarding the KBase ref-
erence model. To make the functional models regarding the provided biomass objective function, the gap �lling 
was done using the raven toolbox. All models were constrained by the general UK diet (https ://fdnc.quadr am.ac.
uk/). Simulations were run anaerobically to calculate the growth rate for each model, and the production pro�les 
of the bacteria. �e resulting biomass �gures were proportioned by species abundances based on colon locations. 
We added an initial source of acetate and lactate based on the average production pro�le of each microbe. For the 
second simulation, models were constrained both by the predicted biomass of the bacteria and by the diet. �e 
�ux balance analysis result (Supplementary Table 2) was used to �nd metabolite importance for each part of the 
colon. �e sensitivity of the models to oxygen was simulated regarding the oxygen-uptake of the intestine (2 mL 
 O2/min × 100 g tissue), where the micro-aerobic condition was considered as 5%  O2-uptake. All references rela-
tive to the GEM method here described are available in Supplementary Materials.

Graphs generation and figures formatting. All graphs were generated with R, version R-3.5.2 (https ://
www.r-proje ct.org/). Figures were then created and formatted with Adobe Illustrator 2019 (https ://www.adobe 
.com).

Data availability
All raw metagenomic data have been deposited in the public EBI/NCBI Database under accession number 
PRJEB33194.
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