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Abstract

Graves’ Disease is the most common organ-specific autoimmune disease and has been linked in small pilot studies to

taxonomic markers within the gut microbiome. Important limitations of this work include small sample sizes and low-

resolution taxonomic markers. Accordingly, we studied 162 gut microbiomes of mild and severe Graves’ disease (GD)

patients and healthy controls. Taxonomic and functional analyses based on metagenome-assembled genomes (MAGs) and

MAG-annotated genes, together with predicted metabolic functions and metabolite profiles, revealed a well-defined network

of MAGs, genes and clinical indexes separating healthy from GD subjects. A supervised classification model identified a

combination of biomarkers including microbial species, MAGs, genes and SNPs, with predictive power superior to models

from any single biomarker type (AUC= 0.98). Global, cross-disease multi-cohort analysis of gut microbiomes revealed high

specificity of these GD biomarkers, notably discriminating against Parkinson’s Disease, and suggesting that non-invasive

stool-based diagnostics will be useful for these diseases.

Introduction

Graves’ disease (GD) is an autoimmune disorder that fre-

quently results in hyperthyroidism. In regions with suffi-

cient iodine intake, GD’s prevalence is about 0.5%, with

annual incidence of 20–50 cases per 100,000 people [1].

GD prevalence is sex-specific: 3% in females but 0.5% in

males during their lifespan [2]. Weight loss, fatigue, anxi-

ety, heat intolerance, tremor, and palpitations are the most

common symptoms, occurring in >50% of patients [3].
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Unambiguous identification of the factors underlying GD

has not yet been accomplished, increasing the difficulty of

disease treatment [1]. The diagnosis of hyperthyroidism is

based on characteristic clinical features, serum thyrotropin,

free thyroxine levels and thyrotropin receptor antibodies.

Although current diagnostics are sufficient for the most

severe patients, the clinical feature and blood index-based

diagnosis is complex and time-consuming, and usually

delays early diagnosis and treatment for mild GD patients.

Both GD patients and Parkinson’s patients have common

clinical and biochemical diagnostic features that make dif-

ferential diagnosis harder and mask the appearance of one

of these disorders during the course of the other [4].

Accordingly, a more convenient and accurate diagnosis

method for GD is urgently needed.

Recent studies have highlighted the essential role of the

gut microbiome in maintaining the immune system and

human health. Autoimmune disorders are a category of

diseases in which normal cells, tissues and organs are

mistakenly targeted by the immune system. An increasing

amount of evidence revealed the close relationship between

intestinal microbes and various metabolic and autoimmune

diseases, including type 2 diabetes [5], liver cirrhosis [6],

polycystic ovary syndrome [7], gout [8] and even mental or

nervous system disorders such as Alzheimer’s diseases [9]

and Parkinson’s disease (PD) [10]. Accordingly, disorders

of the gut microbiome, as well as numerous chronic disease-

specific microbial biomarkers, are being identified, and

treatment strategies targeting gut microbes are considered a

promising new approach to diagnosis and treatment.

GD-represented autoimmune thyroid disease is the most

prevalent organ-specific autoimmune disease. Altered

microbiota composition in the gut, as well as the decreased

microbial products particularly short-chain fatty acids

(SCFAs), promotes the development of autoimmune thyroid

disease by several hypothesized mechanisms including

controlling the integrity of intercellular junctions and the

microbial transcriptomic, proteomic, and metabolic changes

[11]. Several studies have focused on the microbial taxo-

nomic disorder of GD patients, and revealed a higher

abundance of intestinal Prevotellaceae and Pasteurellaceae

in GD patients, whereas Enterobacteriaceae, Veillonella-

ceae, and Rikenellaceae decreased significantly in GD

[12, 13]. However, the small sample size and limited

resolution of the 16S rRNA amplicon sequencing technol-

ogy limited the universality and significance of these stu-

dies. Larger cohorts and integration of different levels of

analysis from high-resolution shotgun metagenomics data

were therefore needed to explore the GD patients’ alteration

in gut microbial taxonomy, genes, pathways and functions,

metabolites, and mutational spectra, to establish robust

microbial biomarkers at these levels for GD diagnosis.

To address these challenges, we recruited 162 subjects

and divided them into three groups: healthy controls

(Health), mild Graves’ patients (GD I) and severe Graves’

patients (GD II) according to their clinical indexes

(Fig. 1A). Shotgun metagenomic sequencing and inferred

metabolomics were applied to describe the intestinal

microbial characteristics and microbial mutations of GD

patients. Then, combined biomarkers were identified from

machine learning, including specific metagenomic species,

metagenome-assembled genomes (MAGs), MAG-derived

genes and single-nucleotide polymorphisms (SNPs).

Finally, we performed a multi-cohort analysis to confirm the

specificity of these biomarkers across different metabolic

and autoimmune diseases. This work extended our under-

standing of the microbial ecology of GD pathogenesis, and

developed a useful predictive model for GD diagnosis based

on intestinal microbial biomarkers.

Results

Graves’ Disease (GD) alters the gut microbiota and
its functions

In the present study, 162 subjects were divided into three

groups: the healthy control group (Healthy, n= 62), mild

Graves’ patient group (GD I, n= 36) and severe Graves’

patient group (GD II, n= 64) (Fig. 1A). Eleven clinical

indexes characterizing the conditions of the thyroid, liver,

and immune system were determined for each subject.

Significant differences (p ≤ 0.001, Wilcoxon rank-sum test,

two-tailed) were found in all clinical indexes between

Healthy and GD II, and in liver and thyroid indexes

between Healthy and GD I (Fig. 1B). Shotgun metagenomic

sequencing was performed on feces from each subject to

assess the gut microbiome composition. Metagenomes were

assembled and functional genes were annotated, and the

putative metabolic capacities of the microbiomes were

estimated by MelonnPan (model-based genomically

informed high-dimensional predictor of microbial commu-

nity metabolic profiles) pipeline.

We performed a combined analysis of metagenome-

derived taxonomic and functional profiles, as well as clin-

ical indexes. Mantel tests across these data types indicated

tight coupling between the intestinal bacterial profile and

the metabolic pathways, metabolites and clinical indexes

(Fig. 1C). Adonis test of major metadata variables vs

individual data matrices confirmed the dominant impact of

the disease status (Healthy, GD I and GD II) on the clinical

indexes (R2
= 64.08). Meanwhile, it also revealed strong

associations between GD status and intestinal bacteria

(R2
= 6.08), and their metabolic potentials (R2

= 17.14). In
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comparison, other demographic, behavioral and clinical

variables have no significant association with any

metagenome-derived metrics (Fig. 1D).

Alteration of intestinal microbiome and predicted
metabolites in GD patients

We constructed PCoA ordinations based on Aitchison dis-

tance (Fig. 2A) and Bray–Curtis dissimilarity (Fig. S1A)

among the taxonomic profiles. Surprisingly, intestinal

microbiota of subjects in the Healthy and GD I groups were

similar but obviously separated from the patients in the GD

II group. To quantify these differences, we performed the

Adonis test and calculated the R2 (R2
= 6.08) and p values

(p < 0.001), which indicated a serious disorder in the

intestinal microbiota of severe GD patients. The results

were confirmed in the microbial alpha diversity aspect, in

which we observed a sharp decrease in microbial alpha

diversity of GD II patients (Fig. S1B).

Accordingly, we identified species with significant dif-

ferences between the healthy and the GD II groups (Wil-

coxon rank-sum test, two-tailed) in trend changes as the

potential biomarkers (Fig. S1C). Specifically, Faecali-

bacterium prausnitzii, Butyricimonas faecalis, Bifido-

bacterium adolescentis and Akkermansia muciniphila

decreased in the GD II group, whereas Eggerthella lenta,
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Fig. 1 Experimental design and integrated analysis of the Graves’

disease microbiome. A The experimental design. A total of 162

human subjects were divided into three groups according to disease

states: healthy control (Healthy), mild Graves’ disease (GD I) and

severe Graves’ disease (GD II). Shotgun metagenomic sequencing was

applied to perform microbiome analyses of fecal samples, while

multiple clinical indexes were examined. B The violin plots showing

the differential distributions of clinical indexes among three host

groups. C The Mantel tests quantifying the correlation between each

pair of measurements (taxonomic profile, functional profile, predicted

metabolite profile and clinical indexes) from host individuals. The

values in the lower triangle indicate the Mantel R statistics, which

range from −1 to 1, representing the correlation between a pair of

measurements. The corresponding p values of the correlations are

shown in the upper triangle. D The Adonis test showed that Graves’

Disease is the dominant factor contributing to the variation in the

intestinal microbiome of human subjects. Asterisks: statistical sig-

nificance (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).
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Fig. 2 The Alteration of intestinal microbiome and microbial

metabolites in GD patients. Principal coordinates analysis (PCoA)

based on Aitchison distances of microbial species (A), and functional

features (B). Each point in the PCoA plots represents a host subject in

healthy, mild (GD I) or severe (GD II) Graves’ disease groups. The

colors of points represent the host groups. C Partial least squares-

discriminant analysis (PLS-DA) based on the microbial metabolites

predicted from the metagenomic data. D Phylogenetic tree of the

MAGs with clades colored by phylum. E MAGs of significant dif-

ference between the healthy and the GD groups. F The intestinal

microbial metabolites that differed significantly between healthy and

GD II groups (Wilcoxon rank-sum tests, two-tailed). G The network

analysis of MAG markers, predicted metabolite and clinical indexes.

The microbe-metabolite interactions were quantified by their Spear-

man’s rank correlation coefficients to exhibit the correlation between

the intestinal microbiome and Graves’ disease. The edge widths and

colors (red: positive correlated and blue: negative correlated) are

proportional to the correlation strength. The node sizes are propor-

tional to the mean abundance in the respective population.
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Streptococcus parasanguinis, Veillonella parvula, Fuso-

bacterium mortiferum and Streptococcus salivarius were

enriched.

We further assembled the metagenomic reads into con-

tigs and constructed metagenomic assembled genomes

(MAGs) in each subject. Phylogenomic analysis of the

MAGs suggested overall consistency with taxonomic

annotation (Fig. 2D and Fig. S2A). Then, we identified

MAGs with significantly differential abundance among the

three groups and constructed a heatmap with represented

MAGs (Fig. 2E and Fig. S3A). Furthermore, we reas-

sembled the significantly different MAGs for specific dif-

ferent genes identification and annotation (Fig. S3B).

After demonstrating the disorder in the intestinal

microbiota of patients in GD II group, we further explored

the changes in microbial metabolic pathways. Annotated by

the UniRef protein database, we obtained profiles of

microbial gene families and metabolic pathways. The

Aitchison distances based on the functional features sug-

gested an obvious shift in the intestinal microbial functional

capacity of GD patients (PC1 between the Healthy and GD

II groups, p < 0.05, Fig. 2B). Among the differentially

abundant metabolic pathways between Healthy and GD II

groups, mevalonate and isoprene biosynthesis, for-

maldehyde assimilation and allantoin degradation sig-

nificantly increased in relative abundance in the severe GD

patients, whereas the microbial metabolic abilities of fatty

acid biosynthesis, creatinine degradation, pyruvate fer-

mentation to hexanol, anaerobic energy metabolism and

gluconeogenesis decreased significantly in relative abun-

dance in the patients (Fig. S2B).

By performing the MelonnPan pipeline [14] based on the

gene family profile inferred by the HUMAnN (v2.0) [15]

pipeline (UniRef 90 database annotation), we predicted

metabolomics profiles including >80 metabolites, including

the SCFAs determined by GC-MS. Similarly, PLS-DA of

metabolic profiles revealed obvious differences between

GD II patients and healthy subjects (Fig. 2C). The meta-

bolites with significant differential abundance, including

acetic acid, propionic acid, cholate and chenodeoxycholate

among the three groups were identified as potential bio-

markers (Fig. 2F and Fig. S4).

Then, we constructed a network to visualize the corre-

lation among the GD-associated MAGs, metabolites and

clinical indexes based on Spearman’s rank correlation

coefficients (Fig. 2G). The network reveals well-defined

clusters separating healthy and GD-associated features. It

characterizes the increase of pathogenic bacteria and

opportunistic pathogens with detrimental metabolites as

well as the lack of mutual microbes and organic acids were

the common intestinal microbial compositional character-

istic of GD patients.

Differential genetic variations of GD-associated
microbes

Beyond the taxonomic and functional features, we further

explored the evolutionary changes at the genetic level in

intestinal microbial species. We aligned the metagenomic

data against the reference genomes of species with relative

abundance higher than 0.5% in the present cohort and

reconstructed a profile of SNPs. A total of nine common

intestinal species were annotated, with the number of SNPs

ranging from 46 to 7603 (Fig. 3A, D, G and Fig. S5).

Among them, 776 SNPs were annotated in the species of

Faecalibacterium prausnitzii, 5974 in Bacteroides vulgatus

and 7603 in Eubacterium rectale.

A larger number of SNPs indicative of higher evolu-

tionary diversity was observed in the genome of B. vulgatus

in GD patients, whereas the opposite was found in F.

prausnitzii and E. rectale genomes (Fig. 3B, E and H).

Further analysis revealed the consistency between the

relative abundance and the number of SNPs of these spe-

cies, (Fig. 3A, D and G).

Then, we compared the frequency of each SNP among

the three groups, and calculated the p values of each SNP

for the healthy group vs GD I group, healthy group vs GD II

group and GD I vs GD II groups (Wilcoxon rank-sum test,

two-tailed). The significantly different SNPs between the

control and the GD groups were identified when: i, the p

values of healthy group vs GD II group and GD I vs GD II

groups were <0.05; ii, the mean frequency was in the order

of: healthy group > GD I group > GD II group, or healthy

group < GD I group < GD II group. Accordingly, 275 SNPs

were identified as significantly different SNPs between the

healthy and GD groups. They were annotated in the genome

of B. vulgatus (n= 90), F. prausnitzii (n= 119) and

E. rectale (n= 66). These SNPs are mainly located in genes

encoding for of xylanase activity, mannonate dehydratase

activity, beta-lactamase activity, transporter activity and

beta-galactosidase activity (Fig. 3C, F, I).

Combined microbial marker types predictive of GD
status

Using the Random Forest method, we trained a supervised

classification model for the disease status based on the

combination of intestinal species, MAGs, MAG-related

genes and SNPs (Fig. 4A). The resulting predictive model

with the highest accuracy (area under the receiver operating

characteristic curve, or AUC= 84.50%) encompassed 32

biomarkers, including four species, 19 MAGs, six related

genes and three SNPs (Fig. 4B). We ranked the 32 bio-

markers according to their contribution to the predictive

model. The predictive model was applied to three test sets

Compositional and genetic alterations in Graves’ disease gut microbiome reveal specific diagnostic. . . 3403
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Fig. 3 The SNP profile of the target species in each group. A, D, G

(top panel) The number of SNPs annotated in the three species among

the three groups, and the mutational frequency of each SNPs annotated

in the three intestinal species. A, D, G (bottom panel) The correlation

analysis revealed a high consistency between the relative abundance

and the number of SNPs of the mutational species. B, E, H Genomic

locations and contexts of SNPs in the species of Bacteroides

vulgatus (B, n= 90), Faecalibacterium prausnitzii (E, n= 119) and

Eubacterium rectale (H, n= 66), which exhibited the significant dif-

ference in mutational frequency between the healthy and GD groups.

C, F, I The functions of the mutated genes (red) carried the SNP

markers were annotated at the bottom panel.
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and exhibited high accuracy (Fig. 4C). It effectively dis-

tinguished severe (AUC= 98.08%) and mild (AUC=

78.11%) Graves’ patients from healthy subjects, and

determined the disease status from all three subject groups

(AUC= 88.21%).

Meanwhile, we constructed three separate predictive

models, each of which was based on one type of feature

(MAGs, genes or SNPs). We found that 16 MAGs or 16

genes were needed to accurately classify the samples in the

training set (AUC= 74.60% and 79.85%, respectively)

(Fig. S6A, B), but as many as 64 intestinal microbial SNPs

or 64 selected species could reach similar accuracy (AUC=

79.53%) (Fig. S6C). The results could be confirmed by the

confusion matrix of the test group (Fig. S6D). However,

the performance of the combined biomarkers from multiple

feature types (see above) outperformed that of the bio-

markers of any single type (AUC diff. 4.65–9.90%).

Specificity of GD biomarkers against other
metabolic diseases

To test the performance of the 32 combined GD biomarkers

developed above in a broader background, we performed a

multi-cohort analysis across another healthy cohort and six
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learning approach and the multi-cohort analysis reveals gut
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metabolic diseases cohorts including ankylosing spondyli-

tis, liver cirrhosis, colorectal cancer, PD, rheumatoid

arthritis and type 2 diabetes. The specificity of the combined

biomarkers was calculated. Among the 32 biomarkers, we

highlight the importance of five MAG markers under the

family Erysipelotrichaceae and the genera Coprobacillus,

Streptococcus and Rothia that are enriched in all GD

patients (Fig. 4D, red), which exhibited unique specificity

among all cohorts. The discrimination was quantified and

confirmed by the violin plot constructed with the CLR-

transformed abundance of the five MAGs across all cohorts

(Fig. 4E).

Most notably, we observed that the five GD-enriched

MAG markers also exhibited excellent discrimination in PD

(Fig. 4D, upper panel in red box), a disease often invol-

ving thyroid dysfunction and is difficult to distinguish from

GD in diagnosis [14]. To confirm this observation, we

further validated the specificity of the five markers in two

separate PD cohorts. The abundance of the five MAG

markers was significantly higher in GD patients compared

with that in PD patients (Fig. 4E). The predictive model

constructed based on these five markers also exhibited high

accuracy (AUC= 97.31%) in discriminating GD and PD

subjects (Fig. S7).

Discussion

In this study we explored the relationship between GD and

gut microbiome. A combined analysis of shotgun metagen-

ome and predicted metabolite data of fecal samples and

clinical parameters of the subjects revealed a clear dysbiosis

of the gut microbiome in severe GD patients, as compared

with healthy controls and subjects with mild GD. The study

provided evidence that such alteration is not shared with other

diseases. We identified microbial species and metabolic

pathways differentiating healthy subjects from patients,

revealing a clear bipartite pattern in a co-occurrence network

spanning the two subject groups. Specifically, some com-

mensal microbes including Faecalibacterium prausnitzii and

Bifidobacterium adolescentis [16, 17] and beneficial microbial

metabolites such as SCFAs significantly decreased in the gut

of severe GD patients. F. prausnitzii reportedly has anti-

inflammatory properties and contributes to gut health through

butyrate production [18]. Gut microbes such as F. prausnitzii

and Bifidobacterium sp. are often referred to as “beneficial

bacteria” because they exhibit health-promoting properties

[16, 17]. It is proposed that elevated abundance of

F. prausnitzii and Bifidobacterium sp. in the gut leads

to increased production of SCFAs, which improve gut health

by increasing the intestinal barrier function and reducing

the translocation of bacterial endotoxins across the gastro-

intestinal wall, where they could cause inflammation and

insulin resistance [5]. The significant depletion of F. praus-

nitzii and Bifidobacterium sp. is a typical feature of intestinal

microbiota disorder, our observation of reduced F. prausnitzii

and Bifidobacterium sp. and decline in SCFA is in line with

these reports.

Analysis of different data layers derived from shotgun

metagenomic data has provided an invaluable wealth of

information for understanding the connections between

human-associated microbiome and health conditions. To date,

most of these efforts have focused on taxonomic units,

functional modules, and predicted metabolic products

[6, 19–21]. The evolutionary dynamics of microbial associ-

ates is largely overlooked. Despite that genetic variations of

microbial genomes, such as SNPs and structural variants have

long been noted [22], it was not until recently that researchers

started to associate microbial genetic variations with host

health [23, 24]. Here we explored the evolutionary changes at

the molecular level in intestinal microbial species, and com-

bined information with the classical intestinal microbial fac-

tors listed above. A large number of SNPs indicative of higher

evolutionary diversity were observed in the genome of

B. vulgatus in GD patients, and the opposite pattern in the

genomes of F. prausnitzii and E. rectale. These mutations

may be the driving force of the species colonization in the

host gut, implicating the correlation between evolutionary

elasticity and bacteria fitness [25], and further implicating the

connection with the development of the disease, which is

worth further validation using experimental approaches.

Biomarker discovery is the key goal in many microbiome

studies as they implicate potentials for developing rapid,

non-invasive diagnostic approaches. The complex nature of

microbiome-host interaction dictates that single biomarkers

revealed by classical correlation analyses are usually not

adequate in predicting the phenotype. As of today, utilizing

a comprehensive collection of microbiome features for

machine learning analysis is popular and has shown its

power in relating microbiome with health conditions

[26, 27]. It has even been suggested that microbiome-based

models outperform host genome-based models [28]. How-

ever, to our knowledge, such studies are so far limited to the

use of a single marker type, such as taxonomic or functional

units. However, to our knowledge, such studies are so far

limited to the use of a single marker type, such as taxo-

nomic or functional units. Only a few studies have

attempted to combine biomarkers types. In one recent

example, combined metagenomic and metabolomic markers

were successful in discriminating major depressive disorder

from healthy individuals. [29] Similarly, in this study, we

combined four data layers derived from shotgun metage-

nomics: reference-based species assignments, reference-free

MAGs, MAG-annotated genes, and SNPs, to construct a

model that predicts GD status. Our model optimization

analysis demonstrated that a combination of 32 biomarkers
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from all four feature types yielded the highest accuracy in

both the training set and three different test sets, and this

model notably outperformed models constructed and opti-

mized using any single biomarker type. This interesting

finding underscores the importance of integrating multiple

layers of information for developing more accurate diag-

nostic models in microbiome studies.

Moreover, because a large number of microbial markers

have been identified and reported in various diseases, the

inevitable overlap could potentially challenge the specificity

of prediction using those biomarkers, limiting their appli-

cation in clinical use [30]. Accordingly, we further tested the

performance of the GD biomarkers in a broader background,

including seven cohorts of six other metabolic diseases and

another healthy cohort. The GD biomarkers exhibited pre-

ferable specificity. In particular, our predictive model has

high performance in distinguishing GD and PD. The two

diseases share highly similar symptoms such as rigidity,

hypokinesia, facial hypomimia, and voice abnormalities,

causing diagnostic confusion in clinical practices, especially

for elders suffering GD and/or PD [4, 31, 32]. Five GD-

enriched MAGs related to genera Coprobacillus and Strep-

tococcus exhibited excellent specificity. Detection of these

biomarkers in fecal samples could potentially be a rapid and

convenient diagnostic approach to determine whether a

patient is suffering from GD or PD, in spite of the clinical

observations shared by the two diseases.

Conclusions

In this study we explored the relationship between GD and

gut microbiome. A combined analysis of shotgun meta-

genome and predicted metabolite data of fecal samples and

clinical parameters of the subjects revealed a clear dysbiosis

of the gut microbiome in GD, patients, and provided evi-

dence that such alteration is not shared with other diseases.

A supervised classification model identified a combination

of biomarkers including microbial species, MAGs, genes

and SNPs, with predictive power superior to models from

any single biomarker type (AUC= 0.98). This work

extended our understanding of the microbial compositional

and genetic of GD pathogenesis, and developed a useful

predictive model for GD diagnosis based on intestinal

microbial biomarkers.

Materials and methods

Experimental design and subject recruitment

All subjects were recruited from the Hainan Provincial

People’s Hospital, Haikou, China. The subjects’ basic

information (gender, age, BMI, smoking, and alcoholism)

and clinical indexes were recorded in Table S1. Fecal

samples were collected from each subject in the healthy

group in the morning before the first meal. The cohort

consisted of three groups: the healthy control group

(Healthy, n= 62), the mild GD patient group (GD I, n=

64) and the severe GD patient group (GD II, n= 36)

according to their thyroid-related diagnostic results

(Fig. 1A). For each GD patient, their fecal and blood

samples were collected by a doctor during their clinical

visit. After the weight of the fecal materials was deter-

mined, a sample protector (CW0592M, CWBIO, China)

was added at a ratio of five-to-one to the sample to sta-

bilize nucleotides. The samples were stored at −20 °C

until further processing.

Ethics approval and consent to participate

The study was reviewed and approved by the Ethics

Committee of the Hainan General Hospital (2018-109), and

informed consent was obtained from all volunteers in

written form before they were enrolled in the study. Sam-

pling and all described subsequent steps were conducted in

accordance with the approved guidelines.

Clinical indexes determination

A total of 11 clinical indexes including alanine amino-

transferase (ALT), direct bilirubin, free triiodothyronine

(FT3), free thyroxine (FT4), thyroid-stimulating hormone

(TSH), thyroid peroxidase antibodies, thyroid-stimulating

hormone receptor antibodies and immune indexes

interleukin-17A (IL-17A) and IL-23 were determined by

using the enzyme-linked immunosorbent assay method.

Short-chain fatty acid determination

As mentioned before, the SCFAs in the gut, which included

acetic acid, propionic acid, butyric acid and valeric acid, were

analyzed by the gas chromatography-mass spectrometry (GC-

MS). Firstly, fecal samples were thawed, weighted, and

diluted in isooctane for 1:10 (w/v). Secondly, fecal mixture

was homogenized about 15min into the suspension and

centrifuged for 10 min with 5000 g. 500 μL supernatants were

absorbed and dried with SpeedVac (Thermo Science) over-

night. Then the dried extraction was dissolved in 50 μL

methoxyamine hydrochloride solution. After adding 20mg/

mL pyridine, the mixture was stirred for 2 min. Methoxylation

was carried out about 30min at 70 °C. Next, 40 μL N-(tert-

butyl dimethylsilyl)-N methyltrifluoroacetamide and 1% tert-

butyl dimethyl chlorosilane were mixed and derivatized at

70 °C for 1 h. Finally, the samples were analyzed by gas

chromatography (Agilent7890B) and mass spectrometry

Compositional and genetic alterations in Graves’ disease gut microbiome reveal specific diagnostic. . . 3407



(Agilent5977A) using HP-5MS column (30m × 0.25 mm i.d.

coated with 0.25 μm film thickness, Agilent). The GC tem-

perature program was as follows: 50 °C for 1 min, heat up to

200 °C by 10 °C/min, 200 °C for 5 min, heat up to 220 °C by

5 °C/min, 220 °C for 10 min, heat up to 250 °C by 15 °C/min

and maintain 10min. The inlet temperature was 250 °C and

the mass range was 35–400MHz. The ion source chamber

temperature was 230 °C, the transmission line temperature

was 250 °C, and the electron energy is 70 eV.

Fecal DNA extraction, shotgun metagenomic
sequencing and data quality control

The QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Ger-

many) was used for DNA extraction from the fecal samples.

The quality of the extracted DNA was assessed by 0.8%

agarose gel electrophoresis, and the OD 260/280 was

measured by spectrophotometry. All of the DNA samples

were subjected to shotgun metagenomic sequencing by

using a HiSeq 2500 instrument (Illumina, CA, USA) in the

Novogene Company (Beijing, China). Libraries were pre-

pared with a fragment length of ~300 bp. Paired-end reads

were generated using 100 bp in the forward and reverse

directions. The quality of the reads were controlled by

FastQC and were subsequently aligned to the human gen-

ome to remove the host DNA fragments. The details of

sequencing statistics were exhibited in Table S2, the values

of reads number were quality controlled.

Identification of microbial species, functional genes,
and metabolic pathways

The shotgun reads were assembled into contigs and scaf-

folds using MEGAHIT (v1.0) [33] with the default para-

meters. For metagenomic species annotation (Table S3 and

Table S4), the Bracken software was applied [34]. For

metagenomic functional features and metabolic pathway

annotation (Table S5), HUMAnN (v2.0) [15] was per-

formed by using the UniRef90 database. More information

was listed in “code availability”. Accordingly, we got the

relative abundance of intestinal microbial taxonomic, gene

families and metabolic pathway profiles. Differential

abundance analysis was performed using Songbird [35], a

compositionality-aware statistical method.

Construction of metagenome-assembled genomes
(MAGs) and reconstruction of a phylogenomic tree
of MAGs

For metagenomic species analysis, MetaBAT (v1.0) [36]

was applied to generate MAGs by binning shotgun reads

(Table S6). After reassembling, each MAG was assigned to

a reference genome if more than 80% of the sub-gene

identified by Prodigal matched the same genome using

BLASTn at a threshold of 95% identity over 90% of the

gene length. If >80% of the genes from a MAG had the

same taxonomic level of assignment, that MAG was

identified as the same microbe. Recovered MAGs were

subjected to phylogenomic reconstruction using Phy-

loPhlAn2 [37] under a high diversity setting (the “Pro-

karyotes Tree of life reconstruction” protocol). The

resulting phylogenetic tree was visualized using iTOL (v4)

[38].

Integrated analysis of clinical and microbiome-
derived features

The Mantel test [39] was performed to quantify the corre-

lation between distance matrices of each pair of data types

across subjects. The Adonis test [40] was performed to

quantify the contribution of the subjects’ physical variables

to the microbiome.

Intestinal metabolites prediction and the GD
characterized intestinal microbiome network
construction

MelonnPan (Model-based Genomically Informed High-

dimensional Predictor of Microbial Community Metabolic

Profiles) pipeline [14] was used to predict the metabolite

composition (Table S7) from microbiome sequencing data.

At last, we constructed the network including the MAGs,

metabolites and clinical indexes above by calculating the

Spearman’s rank correlation coefficient among them and

visualized the network by Cytoscape (v3.7.1) [41] software

to exhibit the correlation between the intestinal microbiome

and GD.

Evolutionary analysis based on shotgun
metagenomic data of gut microbiota

We employed the MIDAS (v1.0 Metagenomic Intra-Species

Diversity Analysis System) to perform intestinal microbiota

mutations annotation [42]. Briefly, a reference genome

database including 33 species with the abundance more than

0.1% was constructed. Then the shotgun metagenomic

sequencing reads were mapped to the database for intestinal

species SNP calling. Then, the samples in the control group

were set as the standard for bacterial mutation judgment of

other samples in the GD groups to identify the significant

difference SNPs among the groups (Table S8). The SNPs

profiles (Table S9) for these intestinal microbes were

deposited in GitHub: https://github.com/zhjch321123/Gra

ves_Disease_Microbiome.git.
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The machine learning approach for disease-state
classification and identification of potential GD-
related biomarkers

Our machine learning analysis systematically exploited a

total of four types of microbiome quantitative profiles:

reference-based taxonomic species-level relative abun-

dances by Bracken, reference-free taxonomic relative

abundances of MAG and gene-family and pathway-relative

abundances, and the presence and absence patterns of SNPs.

The random forest algorithm [43] was employed to train

sample classifiers for discriminating disease states using a

combined feature set with four types of microbiome pro-

files. We applied the R package “ranger” (v0.12.1) to

implement the random forest algorithm in each classifica-

tion task with the default hyperparameters except the

number of trees was set as 5000. The prediction perfor-

mance of RF models was evaluated with a fivefold cross-

validation approach. We further validated the performance

using the 50–50% training and testing splits. The final

performance (accuracy) was compared across different

cross-validation approaches and reported the accuracy in the

50% holdout test set in the results.

To determine how many features can maximize the

model performance, we built disease classifiers using a

series of reduced sets (e.g., n= 2, 4, 8, 16, 32, 64, 128, 256,

etc.) of microbial features and compared their performance.

The rationale is to observe the increase or peak in prediction

accuracy when additional features are added into a

classification model.

Publicly available human gut metagenomes of
seven metabolic diseases and the specificity of the
GD biomarkers

To extend the significance of the present research, we

performed a multi-cohort analysis across eight metabolic

diseases, including: ankylosing spondylitis (SRP100575),

liver cirrhosis (SRP011011 and ERP005860), colorectal

cancer (ERP008729), PD (two cohorts including a Eur-

opean cohort (PDA) and a Chinese cohort (PDB),

PRJNA433459 and ERP019674), rheumatoid arthritis

(ERP006678) and type 2 diabetes (SRP008047). Mean-

while, we detected the specificity of the present GD bio-

markers by performing the same annotation pipeline of the

present research.

Data availability

The authors declare that the data supporting the findings of

this study are available within the paper and its additional

files. The sequence data reported in this paper have been

deposited in the NCBI database (resequencing and meta-

genomic sequencing data: PRJNA602729, PRJNA602731,

PRJNA602732, PRJNA638403, PRJNA638404 and

PRJNA638405). More details about the figure construction

and repeatable can be found in the document “Project

analysis code and figure reproducibility” deposited in

GitHub: https://github.com/zhjch321123/Graves_Disease_

Microbiome.git.

Code availability

All statistical analyses were performed using the R soft-

ware. PCoA analysis was performed in R using the “ade4”

package (v1.7.13). Considering the compositional nature of

taxonomic and functional profiles of gut microbiome,

Central log-ratio (CLR) transformation was performed prior

to differential abundance analysis by the “zCompositions”

package (v1.3.2). To perform CLR-transformation of raw

relative abundances of taxa and functional genes, zero

values in the raw matrix were replaced with the 1/10 of the

minimum non-zero value in the matrix. Wilcoxon rank-sum

test was employed to identify the differentially abundant

microbial features (i.e., species-level, functional genes, and

predicted metabolites) between each pair of healthy, GD I

and GD II groups. The statistical significance was declared

at a 0.05 nominal level of corrected p values with

Benjamini–Hochberg (BH) method (for controlling the

false discovery rate). Heatmaps were constructed using the

“pheatmap” package (v1.0.12). For boxplot construction,

the package “ggpubr” (v0.2.3) was used. The edges of the

network were calculated by the Spearman’s rank correlation

coefficients and visualized in Cytoscape v3.7.1 [41].
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