
Compositional and holistic quantum computational

semantics

MARIA LUISA DALLA CHIARA1,*, ROBERTO GIUNTINI2

and ROBERTO LEPORINI3
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Pedagogiche e Filosofiche, Università di Cagliari, via Is Mirrionis 1, I-09123, Cagliari,

Italy; 3Dipartimento di Matematica, Statistica, Informatica e Applicazioni, Università di
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Abstract. In quantum computational logic meanings of sentences are identified with

quantum information quantities: systems of qubits or, more generally, mixtures of
systems of qubits. We consider two kinds of quantum computational semantics: (1) a
compositional semantics, where the meaning of a compound sentence is determined by

the meanings of its parts; (2) a holistic semantics, which makes essential use of the
characteristic ‘‘holistic’’ features of the quantum-theoretic formalism. We prove that the
compositional and the holistic semantics characterize the same logic.
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1. Introduction

The main difference between orthodox quantum logic [first proposed
by Birkhoff and von Neumann (1936)] and quantum computational lo-
gic (Dalla Chiara et al., 2003) concerns a basic semantic question:
how to represent the meanings of the sentences of a given language?
The answer given by Birkhoff and von Neumann was the following:
the meanings of the elementary experimental sentences of quantum
theory have to be regarded as determined by appropriate sets of
states of quantum objects (mathematically represented by closed sub-
spaces of a Hilbert space). The answer given in the framework of
quantum computational logics is quite different. The meaning of a
sentence is identified with a quantum information quantity: a system
of qubits or, more generally, a mixture of systems of qubits.
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We will consider two kinds of quantum computational semantics:
• A compositional semantics, where (like in classical logic) the

meaning of a compound sentence is determined by the meanings
of its parts.

• A holistic semantics, which makes essential use of the characteris-
tic ‘‘holistic’’ features of the quantum-theoretic formalism. Hence,
in this framework, the meaning of a compound sentence generally
determines the meanings of its parts, but not the other way
around.

We will prove that the compositional and the holistic semantics
characterize the same logic.

2. Qubits, quregisters and qumixes

Let us first recall some basic definitions of quantum computation.
Consider the two-dimensional Hilbert space C2 (where any vector |wæ
is represented by a pair of complex numbers). Let Bð1Þ ¼ fj0i; j1ig be
the canonical orthonormal basis for C2, where |0æ = (1,0) and
|1æ = (0,1).

Definition 2.1 (Qubit). A qubit is a unit vector |wæ of the Hilbert space
C2.

From an intuitive point of view, a qubit can be regarded as a
quantum variant of the classical notion of bit: a kind of ‘‘quantum
perhaps’’. In this framework, the two basis-elements |0æ and |1æ repre-
sent the two classical bits 0 and 1, respectively. From a physical point
of view, a qubit represents a state of a single particle, carrying an
atomic piece of quantum information. In order to carry the informa-
tion stocked by n qubits, we need of course a compound system,
consisting of n particles.

Definition 2.2 (Quregister). An n-qubit system (also called n-quregister)
is a unit vector in the n-fold tensor product Hilbert space
�nC2 :¼ C2 � � � � � C2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n�times

(where �1C
2

:¼ C2).

We will use x,y,... as variables ranging over the set {0,1}. At the

same time, jxi; jyi; . . . will range over the basis Bð1Þ. Any factorized

unit vector jx1i � � � � � jxni of the space �nC2 will be called a classical

register. Instead of jx1i � � � � � jxni we will simply write jx1; . . . ; xni.
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The set BðnÞ of all classical registers is an orthonormal basis for the

space �nC2.
Quregisters are pure states: maximal pieces of information about

the particles under consideration. Both in quantum theory and in
quantum information, one cannot help referring also to mixed states
(or mixtures), which represent pieces of information that are not max-
imal and might be enriched. In the framework of quantum computa-
tion, mixed states (mathematically represented by density operators of
an appropriate Hilbert space) are also called qumixes.

Definition 2.3 (Qumix). A qumix is a density operator of �nC2 (where
n‡ 1).

Needless to say, quregisters correspond to particular qumixes that
are pure states (i.e. projections onto one-dimensional closed subspaces
of a given �nCn). We will indicate by Dð�nC

2Þ the set of all density
operators of �nC2. Hence the set D ¼

S1
n¼1 Dð�nC

2Þ will represent
the set of all possible qumixes.

A classical register jx1; . . . ; xni is called true, when xn = 1; false,
otherwise. The idea is that any classical register corresponds to a clas-
sical truth-value that is determined by its last element. Hence, in par-
ticular, the bit |1æ corresponds to the truth-value Truth, while the bit
|0æ corresponds to the truth-value Falsity.

On this basis, we can identify, in any space �nC2, two special
projection-operators (P1

(n) and P0
(n)) that represent, in this framework,

the Truth-property and the Falsity-property, respectively. The projec-
tion P1

(n) is determined by the closed subspace spanned by the set of all
true registers, while P0

(n) is determined by the closed subspace spanned
by the set of all false registers. As is well known, in quantum theory,
projections have the role of mathematical representatives of possible
physical properties of the quantum objects under investigation.
Hence, it turns out that Truth and Falsity behave here as special cases
of physical properties.

As a consequence, one can naturally apply the Born rule that
determines the probability-value that a quantum system in a given
state satisfies a given property. Consider any qumix q, which repre-
sents a possible state of a quantum system in the space �nC2. By
applying the Born rule, we obtain that the probability-value that a
physical system in state q satisfies the Truth-property P(n)

1 is the
number tr(P(n)

1 q) (where tr is the trace functional). This suggests the
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following natural definition of the notion of probability of a given
qumix.

Definition 2.4 (Probability of a qumix). For any qumix q 2 Dð�nC
2Þ:

pðqÞ ¼ tr P
ðnÞ
1 q

� �

:

From an intuitive point of view, p(q) represents the probability that
the information stocked by the qumix q is true. In the particular case
where q corresponds to the qubit

jwi ¼ c0j0i þ c1j1i;

we obtain that p(q) = |c1|
2.

Given a quregister |wæ, we will also write p(|wæ) instead of p(P|wæ),
where P|wæ is the density operator represented by the projection onto
the one-dimensional subspace spanned by the vector |wæ.

3. Quantum gates

In quantum computation, quantum logical gates (briefly, gates) are
unitary operators that transform quregisters into quregisters. Being
unitary, gates represent characteristic reversible transformations. The
canonical gates (which are studied in the literature) can be naturally
generalized to qumixes. Generally, gates correspond to some basic
logical operations that admit a reversible behaviour. We will consider
here the following gates: the negation, the Petri–Toffoli gate and the
square root of the negation. Let us first describe these gates in the
framework of quregisters.

Definition 3.1 (The negation). For any n ‡ 1, the negation on �nC2 is
the linear operator Not(n) such that for every element |x1,...,xnæ of the
basis BðnÞ:

NotðnÞðjx1; . . . ;xniÞ :¼ jx1; . . . ; xn�1i � j1� xni:

In other words, Not(n) inverts the value of the last element of any
basis-vector of �nC2.
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Definition 3.2 (The Petri–Toffoli gate). For any n ‡ 1 and any m ‡ 1
the Petri–Toffoli gate is the linear operator T(n,m,1) defined on
�nþmþ1C2 such that for every element jx1; . . . ; xni � jy1; . . . ; ymi � jzi
of the basis Bðnþmþ1Þ:

Tðn;m;1Þðjx1; . . . ;xni� jy1; . . . ;ymi� jziÞ :¼jx1; . . . ;xni
� jy1; . . . ;ymi� jxnym� zi;

where � represents the sum modulo 2.
One can easily show that both Not(n) and T(n,m,1) are unitary

operators.
Consider now the set R of all quregisters |wæ ‘‘living’’ in �nC2, for

an n‡ 1. The gates Not and T can be uniformly defined on this set in
the expected way:

NotðjwiÞ :¼ NotðnÞðjwiÞ; if jwi 2 �nC2;

Tðjwi � jui � jviÞ :¼ Tðn;m;1Þðjwi � jui � jviÞ;
if jwi 2 �nC2; jui 2 �mC2 and jvi 2 C2:

On this basis, a conjunction And, a disjunction Or, can be defined for
any pair of quregisters |wæ and |/æ:

Andðjwi; juiÞ :¼ Tðjwi � jui � j0iÞ;

Orðjwi; juiÞ :¼ NotðAndðNotðjwiÞ; NotðjuiÞÞÞ:

Clearly, |0æ represents an ‘‘ancilla’’ in the definition of And.
The quantum logical gates we have considered so far are, in a

sense, ‘‘semiclassical’’. A quantum logical behaviour only emerges in
the case where our gates are applied to superpositions. When
restricted to classical registers, such operators turn out to behave as
classical (reversible) truth-functions. We will now consider an
important example of a genuine quantum gate that transforms
classical registers (elements of BðnÞ) into quregisters that are
superpositions. This gate is the square root of the negation.
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Definition 3.3 (The square root of the negation). For any n ‡ 1, the
square root of the negation on �nC2 is the linear operator

ffiffiffiffiffiffiffiffi

Not
p ðnÞ

such that for every element |x1,...,xnæ of the basis BðnÞ:

ffiffiffiffiffiffiffiffi

Not
p ðnÞðjx1; . . . ;xniÞ :¼jx1; . . . ;xn�1i �

1

2
ðð1þ iÞjxni

þ ð1� iÞj1� xniÞ;

where i :¼
ffiffiffiffiffiffiffi

�1
p

.
One can easily show that

ffiffiffiffiffiffiffiffi

Not
p ðnÞ

is a unitary operator. The basic
property of

ffiffiffiffiffiffiffiffi

Not
p ðnÞ

is the following:

for any jwi 2 �nC2;
ffiffiffiffiffiffiffiffi

Not
p ðnÞ ffiffiffiffiffiffiffiffi

Not
p ðnÞðjwiÞ
� �

¼ NotðnÞðjwiÞ:

In other words, applying twice the square root of the negation means
negating.

From a logical point of view,
ffiffiffiffiffiffiffiffi

Not
p ðnÞ

can be regarded as a
‘‘tentative partial negation’’ (a kind of ‘‘half negation’’) that trans-
forms precise pieces of information into maximally uncertain ones.
For, we have:

p
ffiffiffiffiffiffiffiffi

Not
p ð1Þðj1iÞ
� �

¼ 1

2
¼ p

ffiffiffiffiffiffiffiffi

Not
p ð1Þðj0iÞ
� �

:

As expected, also
ffiffiffiffiffiffiffiffi

Not
p

can be uniformly defined on the set R of all
quregisters.

Interestingly enough, the gate
ffiffiffiffiffiffiffiffi

Not
p

seems to represent atypically
quantum logical operation that does not admit any counterpart either
in classical logic or in standard fuzzy logics (see Dalla Chiara et al.,
2005).

The gates considered so far can be naturally generalized to qumix-
es (Gudder, 2003). When our gates will be applied to density opera-
tors, we will write: NOT;

ffiffiffiffiffiffiffiffi

NOT
p

;T; AND; OR (instead of Not,
ffiffiffiffiffiffiffiffi

Not
p

;
T; And; OrÞ:

Definition 3.4 (The negation). For any qumix q 2 Dð�nC2Þ,

NOTðnÞðqÞ :¼ NotðnÞq NotðnÞ:
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Definition 3.5 (The square root of the negation). For any qumix
q 2 D ð�nC2Þ,

ffiffiffiffiffiffiffiffi

NOT
p ðnÞðqÞ :¼

ffiffiffiffiffiffiffiffi

Not
p ðnÞ

q
ffiffiffiffiffiffiffiffi

Not
p ðnÞ�

;

where
ffiffiffiffiffiffiffiffi

Not
p ðnÞ�

is the adjoint of
ffiffiffiffiffiffiffiffi

Not
p ðnÞ

.
It is easy to see that for any n 2 Nþ, both NOTðnÞðqÞ and
ffiffiffiffiffiffiffiffi

NOT
p ðnÞðqÞ are qumixes of Dð�nC2Þ.

Definition 3.6 (The conjunction). Let q 2 Dð�nC2Þ and r 2 Dð�mC2Þ.

ANDðn;m;1Þðq;rÞ ¼ Tðn;m;1Þðq;r;Pð1Þ0 Þ :¼ Tðn;m;1Þ q� r� P
ð1Þ
0

� �

Tðn;m;1Þ:

Like in the quregister-case, the gates NOT;
ffiffiffiffiffiffiffiffi

NOT
p

;T; AND; OR can be uni-
formly defined on the set D of all qumixes.

An interesting preorder relation can be defined on the set of all
qumixes.

Definition 3.7 (Preorder). q � r iff the following conditions hold:

(i) pðqÞ � pðrÞ;
(ii) p

ffiffiffiffiffiffiffiffi

NOT
p

ðrÞ
� �

� p
ffiffiffiffiffiffiffiffi

NOT
p

ðqÞ
� �

.
One immediately shows that � is reflexive and transitive, but not

antisymmetric. Counterexamples can be easily found in DðC2Þ.

4. The compositional quantum computational semantics

Both the compositional and the holistic semantics are based on the fol-
lowing intuitive idea: any sentence a of the language is interpreted as
an appropriate qumix, that generally depends on the logical form of a;
at the same time, the logical connectives are interpreted as special
operations defined in terms of gates. We will consider a minimal (sen-
tential) quantum computational language L that contains a privileged
atomic sentence f (whose intended interpretation is the truth-value
Falsity) and the following primitive connectives: the negation ( :), the
square root of the negation

ffiffiffiffi:pð Þ, a ternary conjunction
V

(which
corresponds to the Petri–Toffoli gate). For any sentences a and b, the
expression

V

ða; b; fÞ is a sentence of L. In this framework, the usual
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conjunction a �b is dealt with as metalinguistic abbreviation for the
ternary conjunction

V

ða; b; fÞ.
Let FormL be the set of all sentences (formulas) of L. We will use

the following metavariables: q, r... for atomic sentences and a,b,... for
sentences. The connective disjunction (�) is supposed to be defined
via de Morgan ( a _ b :¼ :ð:a ^ :bÞ). This minimal quantum compu-
tational language can be extended to richer languages containing
other primitive connectives.

We will first introduce the notion of compositional quantum compu-
tational model (briefly, compositional QC-model or qumix-model).

Definition 4.1 (Compositional QC-model). A compositional QC-mod-
el of L is a map Qum that associates a qumix to any sentence a of L,
satisfying the following conditions:

QumðaÞ :¼

adensityoperatorofDðC2Þ ifa is anatomic sentence;
P0 ifa¼ f;

NOTðQumðbÞÞ ifa¼:b;
ffiffiffiffiffiffiffiffi

NOT
p

ðQumðbÞÞ ifa¼ ffiffiffiffi:p b;
TðQumðbÞ;QumðcÞ;QumðfÞÞ ifa¼

V

ðb;c;fÞ:

8

>
>
>
>
<

>
>
>
>
:

The concept of compositional QC-model seems to have a ‘‘quasi
intensional’’ feature: the meaning Qum(a) of the sentence a partially
reflects the logical form of a. In fact, the dimension of the Hilbert
space where Qum(a) ‘‘lives’’ depends on the number of occurrences of
atomic sentences in a.

Definition 4.2 (The atomic complexity of a).

AtðaÞ ¼
1 if a is an atomic sentence;
AtðbÞ if a ¼ :b or a ¼ ffiffiffiffi:p b;
AtðbÞ þ AtðcÞ þ 1 if a ¼

V

ðb; c; fÞ:

8

<

:

Lemma 4.1 If At(a) = n, then QumðaÞ 2 Dð�nC2Þ.

We can say that the space �AtðaÞC2 represents the semantic space
where all possible meanings of a should ‘‘live’’. Accordingly we will
also write Ha instead of �AtðaÞC

2
.
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Given a model Qum, any sentence a has a natural probability-
value, which can be also regarded as its extensional meaning with
respect to Qum.

Definition 4.3 (The probability-value of a in a model Qum).

pQumðaÞ :¼ pðQumðaÞÞ:

As we already know, qumixes are preordered by the relation �. This
suggests a natural definition of a logical consequence relation.

Definition 4.4 (Consequence in a model Qum). A sentence b is a
consequence in a model Qum of a sentence a ða �Qum bÞ iff
QumðaÞ � QumðbÞ.

Definition 4.5 (Logical consequence). A sentence b is a logical conse-
quence of a sentence a (a � b) iff for any model Qum, a �Qum b.

We call quantum computational logic (QCL) the logic that is
semantically characterized by the logical consequence relation we have
just defined. Hence, b is a logical consequence of a in the logic QCL

(a �QCL b) iff b is a consequence of a in any model Qum.
So far we have considered models, where the meaning of any

sentence is represented by a qumix. A natural question arises: do den-
sity operators have an essential role in characterizing the logic QCL?
This question has a negative answer. In fact, one can prove that
quregisters are sufficient for our logical aims in the case of the
minimal quantum computational language L.

Let us first introduce the notion of qubit-model.

Definition 4.6 (Qubit-model). A qubit-model of L is a function Qub
that associates a quregister to any sentence a of L, satisfying the
following conditions:

QubðaÞ :¼

a qubit inC2 if a is an atomic sentence;
j0i if a¼ f;

NotðQubðbÞÞ if a¼:b;
ffiffiffiffiffiffiffiffi

Not
p

ðQubðbÞÞ if a¼ ffiffiffiffi:p b;
TðQubðbÞ;QubðcÞ;QubðfÞÞ if a¼

V

ðb;c;fÞ:

8

>
>
>
>
<

>
>
>
>
:
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The notions of consequence and logical consequence are defined like in
the case of qumix-models, mutatis mutandis.

One can prove that the qubit-semantics and the qumix-semantics
characterize the same logic (see Dalla Chiara et al., 2003).

Quantum computational logic turns out to be a non-standard form
of quantum logic. Conjunction and disjunction do not correspond to
lattice operations, because they are not generally idempotent
ða �QCL a ^ a; a _ a �QCL aÞ. Unlike Birkhoff and von Neumann�s
quantum logic, the weak distributivity principle breaks down
ðða ^ bÞ _ ða ^ cÞ �QCL a ^ ðb _ cÞÞ. At the same time, the strong dis-
tributivity, that is violated in orthodox quantum logic, is here valid
ða ^ ðb _ cÞ �QCL ða ^ bÞ _ ða ^ cÞÞ. Both the excluded middle and the
non-contradiction principles are violated. As a consequence, one can
say that the logic arising from quantum computation represents, in a
sense, a new example of fuzzy logic.

The axiomatizability of QCL is an open problem.

5. Quantum trees

The meaning and the probability-value of any sentence a can be natu-
rally described (and calculated) by means of a special configuration
called quantum tree, that illustrates a kind of reversible transforma-
tion of the atomic subformulas of a.

The notion of quantum tree can be dealt with either in the
framework of the qubit-semantics or in the framework of the qumix-
semantics. In the first case quantum trees will be called qubit trees,
while in the second case we will speak of qumix trees. Before dealing
with quantum trees, we will first introduce the notion of syntactical
tree of a sentence a (abbreviated as STreea). Consider all subformulas
of a.

Any subformula may be:
• an atomic sentence q (possibly f);
• a negated sentence :b;
• a square-root negated sentence

ffiffiffiffi:p b;
• a conjunction

V

ðb; c; fÞ.
The concept of syntactical tree can be illustrated as follows. Every

occurrence of a subformula of a gives rise to a node of STreea. The
tree consists of a finite number of levels and each level is represented
by a sequence of subformulas of a:
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LevelkðaÞ
..
.

Level1ðaÞ:

The bottom-level (denoted by Level1(a)) consists of a. From each node
of the tree at most 3 edges may branch according to the branching-
rule (Figure 1). The second level (Level2(a)) is the sequence of subfor-
mulas of a that is obtained by applying the branching-rule to a.
The third level (Level3(a)) is obtained by applying the branching-rule
to each element (node) of Level2(a), and so on. Finally, one obtains
a level represented by the sequence of all atomic occurrences of a.
This represents the top-level of STreea. The height of Streea (denoted
by Height(a)) is then defined as the number of levels of STreea.

As an example, consider the following sentence:
a ¼ q ^ :q ¼

V

ðq;:q; fÞ. The syntactical tree of a is the following:

Level3ðaÞ ¼ ðq; q; fÞ;
Level2ðaÞ ¼ ðq;:q; fÞ;
Level1ðaÞ ¼

^

ðq;:q; fÞ:

For any choice of a qubit-model Qub, the syntactical tree of a deter-
mines a corresponding sequence of quregisters. Consider a sentence a
with n atomic occurrences (q1,...,qn). Then, Qub ðaÞ 2 �nC2 (where
�nC2 represents the semantic space Ha of a). We can associate a
quregister |wi to each Leveli(a) of STreea in the following way. Sup-
pose that:

LeveliðaÞ ¼ ðb1; . . . ; brÞ:

Then:

jwii ¼ Qubðb1Þ � � � � � QubðbrÞ:

Figure 1. Branching rules for the construction of syntactical trees.
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Instead of Qubðb1Þ � � � � � QubðbrÞ, we will briefly write Qub(Leveli(a)).
Notice that all QubðLeveliðaÞÞ belong to the space Ha.

The notion of qubit tree of a sentence a (QubTreea) can be now de-
fined as a particular sequence of unitary operators that is uniquely
determined by the syntactical tree of a. Let Leveli

j(a) represent the jth
element of Leveli(a). Each node Leveli

j(a) (where 1 £ i < Height(a))
can be naturally associated to a unitary operator Opi

j, according to
the following operator-rule:

Opji :¼

Ið1Þ ifLeveli
jðaÞ is anatomic sentence;

NotðrÞ ifLeveli
jðaÞ¼:bandQubðbÞ2�rC2;

ffiffiffiffiffiffiffiffi

Not
p ðrÞ

ifLeveli
jðaÞ¼ ffiffiffiffi:p bandQubðbÞ2�rC2;

Tðr;s;1Þ ifLeveli
jðaÞ¼

V

ðb;c;fÞ;QubðbÞ2�rC2 andQubðcÞ2�sC2;

8

>
>
<

>
>
:

where I(1) is the identity operator of C2.
On this basis, one can associate an operator Ui to each Leveli(a)

(such that 1 £ i<Height(a)):

Ui :¼b
jLeveliðaÞj
j¼1 Opji;

where |Leveli(a)| is the length of the sequence Leveli(a).

Being the tensor product of unitary operators, every Ui turns out
to be a unitary operator. One can easily show that all Ui are defined
on the same space, Ha.

Definition 5.1 (The qubit tree of a). The qubit tree of a (denoted by
QTreea) is the operator-sequence

ðU1; . . . ;UHeightðaÞ�1Þ

that is uniquely determined by the syntactical tree of a.

As an example, consider again the sentence: a ¼
V

ðq;:q; fÞ.
In order to construct the qubit tree of a, let us first determine the

operators Opi
j corresponding to each node of Streea. We will obtain:

• Op11 ¼ Tð1;1;1Þ, because
V

ðq;:q; fÞ is connected with ðq;:q; fÞ (at
Level2(a));

• Op12 = I(1), because q is connected with q (at Level3(a));

• Op22 ¼ Notð1Þ, because :q is connected with q (at Level3(a));

• Op2
3 = I(1), because f is connected with f (at Level3(a)).
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The qubit tree of a is represented by the operator-sequence
(U1,U2), where:

U1 ¼ Op11 ¼ Tð1;1;1Þ;

U2 ¼ Op12 �Op22 �Op32 ¼ Ið1Þ � Notð1Þ � Ið1Þ:

Apparently, QTreea is independent of the choice of Qub.

Theorem 5.1 Let a be a sentence whose qubit tree is the operator-se-
quence (U1,...,UHeight(a)-1), and let Qub be a qubit-model. Then,

UiðQubðLeveliþ1ðaÞÞ ¼ QubðLeveliðaÞÞ

(for any i such that 1 � i<HeightðaÞ).

The qubit tree of a can be naturally regarded as a quantum circuit
that computes the output Qub(a), given the input Qub(q1),...,Qub(qn)
(where q1,...,qn are the atomic occurrences of a). In this framework,
each Ui is the unitary operator that describes the computation per-
formed by the ith layer of the circuit.

Let us now turn to the notion of qumix tree. Consider a qumix-
model Qum and let a be a sentence such that At(a) = n and
Height(a) = k. Let U1,...,Uk-1 be the qubit tree of a. Suppose that
Leveli(a) = b1,...,br. Like in the case of qubit-models, we will briefly
writeQum(Leveli(a)) for Qumðb1Þ � � � � � QumðbrÞ. We can now define
the following sequence of functions on the set DðHaÞ:

DU1ðqÞ ¼ U1qU�1
� � �

DUk�1ðqÞ ¼ Uk�1qU�k�1:

Lemma 5.1 For any q 2 DðHaÞ;D U1ðqÞ is a density operator of
DðHaÞ.

Lemma 5.2 DUiðQumðLeveliþ1ðaÞÞÞ ¼ QumðLeveliðaÞÞ.

The sequence ðDU1; . . . ;DUk�1Þ (obtained from the qubit tree
(U1,...,Uk-1)) is called the qumix tree of a (and indicated by Qum-
Treea).
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6. Holistic semantics

In the compositional semantics, the meaning of a molecular sentence is
determined by the meanings of its parts. As a consequence, in this
framework, the meaning of a molecular a cannot be a pure state,
when some atomic parts of a are proper mixtures. How to generalize
the quantum computational semantics in order to represent some typ-
ical quantum holistic situations, including the possibility of entangled
meanings?1

As we have seen, any qumix-model assigns to the top-level of the
syntactical tree of a sentence a a factorized meaning, Qumðq1Þ � � � � �
QumðqnÞ (where q1,...,qn are the atomic sentences occurring in a). The
holistic semantics2 is based on the following ‘‘more liberal’’ assump-
tion: the meaning of the top-level of the syntactical tree of a sentence
a might be any qumix (not necessarily factorized) ‘‘living’’ in the
semantic space of a. As a consequence, also the meanings of all other
levels of STreea are not necessarily factorized.

Suppose that:

LeveliðaÞ ¼ ðb1; . . . ; brÞ:

The space Ha can be naturally regarded as the Hilbert space of a
compound physical system consisting of r parts (mathematically rep-
resented by the spaces Hb1 ; . . . ;Hbr), where each part may be com-
pound. On this basis, for any qumix qi (associated to Leveli(a)) and
for any node Level ji (a), we can consider the reduced state redj(qi) with
respect to the jth subsystem of the system described by qi. From an
intuitive point of view, redj(qi) describes the jth subsystem on the
basis of the global information qi. We recall that redj(qi) is the unique
density operator that satisfies the following condition: for any
self-adjoint operator Aj of Hbj ,

trðredjðqiÞAjÞ ¼ trðqiðI1 � � � � � I j�1 � A j � I jþ1 � � � � � I rÞÞ;

where Ih is the identity operator of Hbh .
As a consequence, we obtain that qi and redj(qi) are statistically

equivalent with respect to the jth subsystem of the compound system
described by qi.

Since Leveli(a) = (b1,...,br), the qumix redj(qi) (which is a density
operator of the space Hbj) can be regarded as a possible meaning of
the sentence bj.
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We can now introduce the basic definitions of the holistic seman-
tics.

Definition 6.1 (Atomic holistic model). An atomic holistic model is a
map HolAt that associates a qumix to any sentence a of L, satisfying
the following conditions:

(1) HolAtðaÞ 2 DðHaÞ;
(2) Let At(a) = n and LevelHeight(a) = q1,...,qn. Then,
(2.1) qj ¼ f) red jðHolAtðaÞÞ ¼ P0;
(2.2) if q j and qh are two occurrences in a of the same atomic sen-

tence, then red jðHolAtðaÞÞ ¼ red hðHolAtðaÞÞ.

Apparently, HolAt(a) represents a global interpretation of the
atomic sentences occurring in a. At the same time, red j(HolAt(a)),
the reduced state of the compound system (described by HolAt(a))
with respect to the jth subsystem, represents a contextual meaning
of qj with respect to the global meaning HolAt(a). Conditions (2.1)
and (2.2) guarantee that HolAt(a) is well behaved. For, the contex-
tual meaning of f is always the Falsity, while two different occur-
rences (in a) of the same atomic sentence have the same contextual
meaning.

The map HolAt (which assigns a meaning to the top-level of the
syntactical tree of any sentence a) can be naturally extended to a map
HolTree that assigns a meaning to each level of the syntactical tree of
any a, following the prescriptions of the qumix tree of a.

Consider a sentence a such that:

QumTreea ¼ ðDU1; . . . ;D UHeightðaÞ�1Þ:

The map HolTree is defined as follows:

HolTreeðLevelHeightðaÞÞ ¼ HolAtðaÞ

HolTreeðLeveliðaÞÞ ¼D UiðHolTreeðLeveliþ1ðaÞÞ

where Height(a)>( i ‡ 1).
On this basis, one can naturally define the notion of holistic model

of L.
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Definition 6.2 (Holistic model). A holistic model of L is a map Hol that
assigns to any sentence a a qumix of the space Ha, according to the
following condition:

HolðaÞ ¼ HolTreeðLevel1ðaÞÞ:

Given a sentence c, Hol determines the contextual meaning, with
respect to the context Hol(c), of any occurrence of a subformula b in
c.

Definition 6.3 (Contextual meaning of a node). Let b be a subformu-
la of c occurring at the jth position of the ith level of the syntactical
tree of c. We indicate by b[ij] the node of STreec corresponding to
such occurrence. The contextual meaning of b[ij] with respect to the
context Hol(c) is defined as follows:

Holcðb½ij	Þ ¼ redjðHolTreeðLeveliðcÞÞÞ:

Hence, we have:

HolcðcÞ ¼ HolTreeðLevel1ðcÞÞ ¼ HolðcÞ:

Lemma 6.1

1. Let b[ ij ] be a node of STreec and let :b i�1
h

� �

be the node of STreec

obtained by applying the negation : to the occurrence of b at the
node b[ ij ]. Then,

Holc :b i�1
h

� �� �

¼ NOT Holc b i
j

h i� �� �

:

2. Let b[ij] be a node of STreec and let
ffiffiffiffi:p b i�1

h

� �

be the node of
STreec obtained by applying the square root of the negation

ffiffiffiffi:p to
the occurrence of b at the node b[ ij]. Then,

Holc ffiffiffiffi

:
p

b i�1
h

� �� �

¼
ffiffiffiffiffiffiffiffi

NOT
p

Holc b i
j

h i� �� �

:

3. Let b [ij ], d[ij+1], f[ij+2] be three nodes of STreec and let
V

b; d; fð Þ i�1
h

� �

be the node of STreec obtained by applying the
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conjunction
V

to the occurrences of b, d, f at the nodes b[ ij ],
d[ j+1

i ], f[ j+2
i ]. Then,

Holc
^

ðb; d; fÞ i�1
h

� �
� �

¼ T

	

Hol

c

b i
j

h i� �

; Holc d i
jþ1

h i� �

;

Holc f i
jþ2

h i� �



:

Lemma 6.2 If b[ij] and b[hk] are two nodes of the syntactical tree of c,
representing two occurrences of the same subformula b, then:

Holc b i
j

h i� �

¼ Holc b h
k

� �� �

:

In other words, two different occurrences of one and the same subfor-
mula in a sentence c receive the same contextual meaning with respect
to the context Hol(c).

On this basis, one can define the contextual meaning of a subfor-
mula b of c, with respect to the context Hol(c):

HolcðbÞ :¼ Holc b i
j

h i� �

;

where b[ij] is any occurrence of b at a node of STreec.
Suppose now that b is a subformula of two different formulas c

and d. Generally, we have:

HolcðbÞ 6¼ HoldðbÞ:

In other words, sentences may receive different contextual meanings
in different contexts!

Apparently,Holc is a partial function that only assigns meanings to
the subformulas of c. Given a sentence c, we will call the partial func-
tionHolc a contextual holistic model of the language.

Lemma 6.3 Any compositional model Qum uniquely determines a
holistic model Hol such that:

1. Qum(a) = Hol(a), for any sentence a;
2. Qum(a) = Holc(a), for any c such that a is a subformula of c.
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Proof. Given Qum, define HolAt as follows. For any a s.t. LevelHeight(a)

= q1,...,qn,

HolAtðaÞ ¼ Qumðq1Þ � � � � � QumðqnÞ:

h

We can now define the notion of logical consequence in the holistic
semantics.

Definition 6.4 (Consequence in a given contextual model Holc). A
sentence b is a consequence of a sentence a in a given contextual
model Holcða �Holc bÞ iff

1. a and b are subformulas of c;
2. HolcðaÞ � HolcðbÞ.

Definition 6.5 (Logical consequence (in the holistic semantics)). A
sentence b is a consequence of a sentence a (in the holistic semantics)
(a 2 b) iff for any sentence c such that a and b are subformulas of c
and for any Hol,

a �Holc b:

We call HQCL the logic that is semantically characterized by the log-
ical consequence relation we have just defined. Hence, a 2HQCL b iff
for any sentence c such that a and b are subformulas of c and for any
Hol,

a �Holc b:

Theorem 6.1 HQCL and QCL are the same logic.

Proof.

1. a �HQCL b) a �QCL b. Suppose a �HQCL b and aKQCLb. Then,
there exists a compositional model Qum, such that: QumðaÞ�
QumðbÞ. By Lemma 6.3, there exists a holistic model Hol such that:

MARIA LUISA DALLA CHIARA ET AL.



Hola^bðaÞ ¼ QumðaÞ; Hola^bðbÞ ¼ QumðbÞ:

Hence, Hol a^bðaÞ�Hola^bðbÞ, against the hypothesis!

2. a �QCL b) a �HQCL b. Suppose a �QCL b and a2HQCLb. Then,
there exist a holistic model Hol and a sentence c that contains a
and b as subformulas, such that:

HolcðaÞ�HolcðbÞ:

Consider STreec and suppose that:

LevelHeightðcÞ ¼ q1; . . . ; qn:

Define the following compositional model Qum:

QumðqjÞ ¼
HolcðqjÞ; if qj 2 fq1; . . . ; qng;

P0; otherwise:

�

Lemma 6.4 If d is a subformula of c then

HolcðdÞ � QumðdÞ; QumðdÞ � HolcðdÞ:

As a consequence of Lemma 6.4, we obtain:

QumðaÞ�QumðbÞ;

because a and b are subformulas of c. Against the hypothesis! h

Notes

1 The basic features of an entangled state |W> can be sketched as follows: (1) |W>
is a maximal information (a pure state) that describes a compound physical system

S; (2) the pieces of information determined by |W> about the parts of S are, gen-
erally, non-maximal (proper mixtures). Hence, the information about the whole is
more precise than the information about the parts.

2 In Dalla Chiara et al. (2005) we have presented a weaker version of holistic semantics.
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