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ABSTRACT: The phase behavior of a melt of monodisperse rod-coil diblocks is studied. We derive a
Landau free energy functional for both a compositional and a nematic order parameter. The excluded
volume interaction between the rod blocks is modeled by an attractive Maier-Saupe interaction. The
incompatibility between rod and coil blocks is modeled by the usual Flory-Huggins interaction. For a
large volume fraction of the rods, a transition from isotropic to nematic to smectic C is observed upon
decreasing the temperature, whereas for small rod volume fraction, spherical, hexagonal, and lamellar
structures prevail. In the smectic C phase, the rod orientation angle with respect to the lamellar normal
increases rapidly from 35 to 40° close to the nematic/smectic-C phase boundary to values between 45
and 55°.

I. Introduction

Due to chemical incompatibility flexible AB diblocks
are known to phase separate on a microscopic scale
characterized by the radius of gyration of the blocks.
The morphology of the microphases in the melt is
successfully described in various approaches, which
treat the AB diblocks as Gaussian chains and the
incompatibility by a Flory-Huggins interaction.1-4

Rod-coil diblock copolymers are a special class of AB
diblock copolymers. Besides the usual incompatibility
between distinct blocks, the liquid crystalline behavior
of the stiff blocks can have a profound effect on the
phase behavior. The combination of phase separation
and orientational ordering gives rise to a wealth of
different phases. In this paper, a theoretical description
of both phase separation and orientational ordering is
developed.

In experiments on various rod-coil or liquid crystal-
line polymeric systems interesting phase behavior and
microstructures are observed.5-14 Linear rod-coil multi-
block oligomers can have orientationally ordered lamel-
lar, hexagonal, spherical (bcc), and bicontinuous cubic
liquid crystalline structures when the rod volume frac-
tion is less than the coil fraction.5-8 Schneider et al.9
reported results on a particular rod-coil diblock copoly-
mer melt in which microphase separation occurs for
higher temperatures than the liquid-crystalline order;
although at high temperatures the microphase is bcc
or gyroid, whenever anisotropic orientational order
starts to play a role, the lamellar or smectic phase
appears. One of the most striking features is the
appearance of smectic C phases, and so-called zigzag
and arrowhead phases10,11 for intermediate rod volume
fractions.

The theoretical description of the phase behavior of
rod-coil diblock copolymers requires the introduction
of a compositional (density) order parameter and a
(anisotropic) orientational order parameter or nematic
order parameter. In the work of Holyst and Schick,15

the interactions and the excluded volume effects such
as the steric repulsion between the rod blocks are

treated in an approximate manner via the Flory-
Huggins interaction, Maier-Saupe interaction, and the
incompressibility constraint. The stiff part of the diblocks
can be modeled by rigid rods,15 wormlike chains,16 or
freely jointed rods,17 having a Maier-Saupe interac-
tion.18 The isotropic-nematic transition in various
polymer systems was studied in a number of pap-
ers.16,19-21 Using self-consistent field theory, the inter-
play between phase separation and liquid crystalline
order has been studied ignoring morphologies other
than lamellar. 22,23 Gurovich found that copolymer melts
can order in four distinct ways under the influence of
external ordering fields (e.g., electric fields) close to the
spinodal point.24

For large rod volume fractions, the smectic behavior
of layered rod-coil diblock copolymers in the strong
segregation limit was studied.23,25-27 For small rod
volume fractions, so-called hockey puck phases might
appear in the strong segregation region28 or whenever
phase separation occurs prior to nematic ordering.29

Recently, a two-dimensional dynamic mean field model
using the Maier-Saupe interaction was employed for
a melt of semiflexible polymers.21 Also the time evolu-
tion of morphology formation was studied in two dimen-
sions for liquid-crystal/polymer mixtures showing a
large influence of nematic ordering on phase separa-
tion.30 Moreover, in two dimensions, the phase behavior
of rod-coil diblock copolymer melts was obtained using
a self-consistent field lattice model.31 Interestingly,
evidence for the existence of metastable zigzag struc-
tures which have been observed in experiments,10,11 was
found.31

In this paper, along the lines of Holyst and Schick15

and Singh et al.,17 a monodisperse incompressible rod-
coil diblock copolymer melt is studied with both a
Flory-Huggins interaction and a Maier-Saupe interac-
tion. The Maier-Saupe interaction models the steric
repulsion between the rods, and henceforth favors
alignment. Special attention is paid for the interplay
between nematic ordering and microphase separation.
One of the main questions addressed is: “How does the
nematic ordering affect the microphase separation?” The
Landau free energy is calculated up to the fourth order* Corresponding author. E-mail: m.reenders@chem.rug.nl.
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in two order parameters in the weak segregation limit.
A density order parameter describes the tendency to
microphase separation, whereas a nematic order pa-
rameter describes anisotropic alignment of rods in the
melt. For blends, the free energy up to fourth order was
already obtained by Liu and Fredrickson.16 Perhaps
another way of addressing the current issue is using
the density functional formalism; e.g., see the paper by
Fukuda and Yokoyama32 and references therein.

The setup of the present paper is as follows. In the
next section a description of the partition function
describing the rod-coil diblock melt is given, followed
by an introduction into the Landau mean field expan-
sion. Subsequently, the free energy expansion up to
second order is briefly reviewed, illustrating the insta-
bility of the isotropic phase with respect to nematic
ordering and microphase separation. Then, the actual
Landau free energy up to the fourth order is derived in
the so-called first harmonics approximation (FHA). The
minimization of the free energy and the corresponding
phase diagrams are discussed. In Appendix A, the
second-order Landau coefficient or inverse “scattering
matrix” is computed. Finally in Appendix B and C, the
pertinent three- and four-point single chain correlation
functions and vertexes are given.

II. The Model

We consider an incompressible melt of n monodisperse
rod-coil diblocks in volume V. The flexible (coil) part
of the diblock is modeled by a Gaussian chain, and the
rigid part, by a “thin” rod. Each diblock molecule
consists of N segments of which NC ) fCN are coil
segments and NR ) fRN are rod segments, with fR ) (1
- fC). Thus, the volume fraction of the coil part is given
by fC ) NC/N. We keep the total density constant, F0 )
nN/V. The characteristic length scale of the coil block
is given by the radius of gyration, Rg ) bxNC/6, with b
the statistical coil segment length scale. The length of
the rod is characterized by l ) NRb′, with b′ the rod
segment length. In this paper, we set b ) b′ ) 1; thus,
F0 ) nN/V ) 1/b3 ) 1.

The Hamiltonian for our melt contains two terms: one
describing the standard Flory-Huggins repulsion be-
tween the rod and coil blocks and a second term
describing orientational ordering of the rod blocks in the
melt. The Hamiltonian for our model is

where FC and FR are the densities of the coil and the
rod blocks, respectively, and SR

µν is the nematic order
parameter tensor. The tensor SR

µν is symmetric and
traceless. ø is the usual Flory-Huggins parameter. The
second term in eq 1 is the Maier-Saupe interaction with
the parameter ω. It effectively describes the excluded
volume interaction between the rod blocks in the melt
favoring their alignment.

The conformation of a diblock in the melt is given by
the vector function rb(τ) describing the contour of the coil,
the vector RB giving the position of the joint, and the unit
vector ub describing the orientation of the rod, see Figure
1. Then, the (single-chain) partition function of a rod-
coil diblock in external fields is

where Wµν is an external tensor field which couples to
the nematic-order operator. The normalization constant
C is chosen such that Q[0, 0, 0] ) 1. The density and
orientational operators are

From eqs 2-5, all single chain correlation functions can
be obtained by differentiating Q with respect to the
external fields.

The partition function of the whole incompressible
melt can be described by

where

After a number of Legendre transformations, we obtain

where

Figure 1. Parametrization of the configuration of a rod-coil
diblock.

Q[wR, wC, Wµν] ) C ∫ Drb dRB dub δ(rb(fC) - RB)δ(|ub| -

1) exp{- 3
2Nb2 ∫0

fC dτ|rḃ|2 + ∫wRF̂R + ∫ wCF̂C +

∫ WµνŜR
µν} (2)

F̂R(xb) )
fRN

l ∫0

l
ds δ(xb - RB - sub) (3)

F̂C(xb) ) N ∫0

fC ds δ(xb - rb(s)) (4)

ŜR
µν(xb) )

fRN
l ∫0

l
ds δ(xb - RB - sub)[uµuν - 1

3
δµνu2] (5)

Z ) {∏
m)1

n ∫ Drbm dRBm dubm P [{rbm,RBm,ubm}]}δ(1 -

F̂R(xb) - F̂C(xb)) exp{-ø ∫ dxb F̂R(xb)F̂C(xb) +

ω

2
∫ dxb ŜR

µν(xb)ŜR
µν(xb)} (6)

P [{rbm,RBm,ubm}] ) Cδ(rbm(fC) - RBm)δ(|ubm| - 1)

exp{- 3
2Nb2 ∫0

fC dτ|rḃm|2} (7)

Z ∝ ∫ DψRDψCDSR
µνDJRDJCDJµν δ(ψR + ψC) ×

δ(∫ψR)δ(∫ψC)δ(∫JR)δ(∫JC) exp{-ø ∫ ψRψC +

ω
2 ∫ SR

µν SR
µν} exp{- ∫ JRψR - ∫ JCψC - ∫ JµνSR

µν -

G[JR, JC, Jµν]} (8)

G[JR, JC, Jµν]) - n ln Q[JR, JC, Jµν] (9)

HI ) ø∫dxb FR(xb)FC(xb) - ω
2 ∫dxb SR

µν(xb)SR
µν(xb)

(µ, ν ) 1, ..., 3) (1)
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and where we have introduced the fields

Making use of the above definition of G, the Landau
mean field free energy can be obtained as an expansion
in powers of the concentration profiles ψR and ψC and
the nematic order parameter SR

µν.

III. The Landau Mean-Field Free Energy
We can write the “entropic” and “interaction” parts,

respectively, of eq 8 as follows

with the shorthand notation

Thus the Greek index R ) R, C, S, so that

The entropic part of the Landau free energy reads

The vertexes Γ are

and

The functions W(n) are the single chain correlation
functions

where the average 〈‚‚‚〉0 is defined as

where P is given by eq 7.

IV. The Spinodal
First, we consider the Landau expansion up to second

order in the density and nematic order parameters, to
analyze the instability of the isotropic phase with
respect to microphase separation and nematic ordering.
Therefore, following the approach of Holyst and Schick15

and Singh et al.,17 we consider the free energy

where Γ(2) is a 2 × 2 “scattering matrix”. This matrix
Γ(2) can be obtained from the matrix Γ given in eq A14
in Appendix A

where

see Appendix A. For the nematic order tensor SR
µν we

have taken the ansatz

where S is a scalar function. The nematic ordering is
taken parallel to the wave vector qb.

The “scattering matrix” Γ(2) depends on qb, fR, N, and
the ratio r ) ω/ø. The spinodal is determined by the root
of the determinant of Γ(2):

The real spinodal is given by the global minimum of ø
(i.e., the highest T) with respect to qb. Whenever one of
the eigenvalues (or both of them) of Γ(2) becomes
negative, the isotropic phase becomes unstable. The
onset of the nematically ordered phase is given by the
minimum of the root ø at wave vector q ) 0. The onset
of microphase separation is given by the minimum of
the root ø at some nonzero q ) q*, which gives the
inverse characteristic length scale of the microphase.
The minimum at q ) 0 for nematic ordering gives rise
to a global nematic order parameter S(qb) f S. All this
is discussed in detail by Singh et al.,17 although for
slightly different microscopic models. The situation
where spinodal instabilities with respect to two distinct

WR1R2‚‚‚Rn

(n) (k1, k2, ..., kn-1) ≡

N-n〈F̂R1
(k1)F̂R2

(k2)...F̂Rn
(- ∑

i)1

n-1

ki)〉0 (21)

〈F [{rb,RB,ub}]〉0 ≡∫ D rbdRB dub P [{rb,RB,ub}]F [{rb,RB,ub}]

(22)

F [ψ, S] )
1

2
∑

qb
(ψ(-qb), S(-qb))Γ(2)(qb)(ψ(qb)

S(qb) ) (23)

Γ(2) ) (hRR + hCC - 2hRC - 2Nø 2(hRS - hCS)/3
2(hRS - hCS)/3 hhSS - 2Nω/3 )

(24)

hhSS ) ∑
i)1

3

hSSi(qµqν

q2
-

δµν

3 )(qFqσ

q2
-

δFσ

3 )Ti
µνFσ(q) (25)

SR
µν(qb) ) S(q)(qµqν

q2
- δµν

3 ) (26)

det Γ(2) ) 0 w ø(qb, fR, N, r) (27)

ψC(xb) ) FC(xb) - f, ψR(xb) ) FR(xb) - fR (10)

exp{-FI[φ]} ≡ exp{-IRâ ∫ φRφâ} (11)

exp{-FS[φ]} ≡ ∫ DJ exp{- ∫ JRφR - G[J]} (12)

φR ) (ψR,ψC, SR
µν) (13)

JR ) (JR, JC, Jµν) (14)

F̂R ) (F̂R, F̂C, ŜR
µν) (15)

Z ) exp{-F } ∝ ∫ Dφ exp{-F[φ]}, F ) FI + FS

(16)

NFS

V
)

1

2!V2
∑
k1

φR(k1)φâ(-k1)ΓRâ
(2)(k1) +

1

3!V3
∑
k1

∑
k2

φR(k1)φâ(k2)φγ(-k1 - k2)ΓRâγ
(3) (k1, k2) +

1

4!V4
∑
k1

∑
k2

∑
k3

φR(k1)φâ(k2)φγ(k3)φδ(-k1 - k2 -

k3)ΓRâγδ
(4) (k1, k2, k3) (17)

ΓRâ
(2)(k1) ) [WRâ

(2)(k1)]
-1 (18)

ΓRâγ
(3) (k1, k2) )

-ΓRR′
(2) (k1)Γââ′

(2) (k2)Γγγ′
(2) (-k1 - k2)WR′â′γ′

(3) (k1, k2) (19)

ΓRâγδ
(4) (k1, k2, k3) ) -ΓRR′

(2) (k1)Γââ′
(2) (k2)Γγγ′

(2) (k3)Γδδ′
(2) (-k1 -

k2 - k3)[WR′â′γ′δ′
(4) (k1, k2, k3) - δK(k1 + k2) ×

WRâ
(2)(k1)Wγδ

(2)(k3) - δK(k1 + k3)WRγ
(2)(k1)Wâδ

(2)(k2) -

δK(k2 + k3)WRδ
(2)(k1)Wâγ

(2)(k2) - WR′â′µ
(3) (k1, k2)Γµν

(2)(-k1 -

k2)Wνγ′δ′
(3) (k1 + k2, k3) - WR′γ′µ

(3) (k1, k3)Γµν
(2)(-k1 -

k3)Wνâ′δ′
(3) (k1 + k3, k2) - WR′δ′µ

(3) (k1, - k1 - k2 - k3)Γµν
(2)

(k2 + k3)Wνγ′â′
(3) (-k2 - k3, k3)] (20)
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wave vectors occur resembles the situation encountered
in comb-coil diblock copolymers.33,34

V. The First Harmonics Approximation
In the previous section, we pointed out that the

instability of the isotropic phase with respect to nematic
fluctuations gives rise to a global nematic ordering. The
density order parameters are constrained; the volume
integral of ψC and ψR should vanish. Therefore, the
Fourier components ψC(p) and ψR(p) can only give
contributions for nonzero p. The nematic order param-
eter is not constrained, and it predominantly describes
global ordering corresponding to the zero mode p ) 0
in Fourier space.

The Landau free energy given in eq 17 is not solvable
as it is. A way to solve the minimization condition for
eq 17 is to expand the order parameters in harmonics
representing certain discrete symmetries. Therefore, we
shall adopt the first harmonics approximation (FHA)
for the density order parameter ψ ) ψR ) -ψC; i.e., we
take in momentum space

with q* the radius of the first harmonics sphere, and
where Eφ(QB) is a phase factor and HS is the set of wave
vectors QB with radius |QB| ) q* describing a particular
discrete symmetry S of the structure. The number nS
is half the number of vectors in HS. For the lamellar
morphology nlam ) 1, for hexagonal nhex ) 3, for bcc nbcc
) 6. Moreover, the phase factor Eφ(QB) ) 1 for the basic
morphologies of interest. Clearly, the FHA restricts the
microphase morphologies to morphologies which can be
described by a single amplitude or order parameter ψ.
Especially the nematic ordering could give rise to more
complex morphologies which require more than one
amplitude. To keep the analysis manageable, morphol-
ogies, which would require more than one amplitude,
are not considered in this paper.

As explained in the previous section, we can assume
that the nematic ordering is global and thus described
by a space independent order parameter proportional
to the nematic director ηµην - δµν/3. Thus the ansatz
for Sµν is

where S on right-hand side is the space independent
order parameter, and |ηb| ) 1. With the ansätze 28 and
29, the free energy can be expressed as

where terms of the form ψS, ψS2, and ψS3 are absent
in this approximation. The c coefficients are given in
terms of γ functions, which are related to the Γ functions
defined in section III (see below)

and

In the above formulas the γ function are related to the
Γ functions of eq 17 in the following way. The second-
order γ functions are

with N given in eq 30, and where ψR ) εRψ, ψC ) εCψ

The third-order γ functions are (with |Q1| ) |Q2| ) |Q1
+ Q2|)

Finally the fourth-order γ functions are (with |Q1| ) |Q2|
) |Q3| ) |Q1 + Q2 + Q3|)

ψ(kB) =
A

xnS

∑
QB∈HS

Eφ(QB)δK(QB - kB), |QB| ) q* (28)

Sµν(kB) = SδK(kB)(ηµην - δµν

3 ) ) SδK(kB)N µν (29)

N µν ≡ (ηµην - δµν

3 ), N µνN µν ) 2
3

(30)

FS ) [cψψ
(2) - 2Nø]ψ2 + [cSS

(2) - Nω
3 ]S2 + cψψψ

(3) ψ3 +

cψψS
(3) ψ2S + cSSS

(3) S3 + cψψψψ
(4) ψ4 + cψψψS

(4) ψ3S +

cψψSS
(4) ψ2S2 + cSSSS

(4) S4 (31)

cψψ
(2) )

1

2nS
∑
Q1

∑
Q2

δK(Q1 + Q2)γψψ
(2) (Q1) (32)

cSS
(2) ) 1

2
γSS

(2)(0) (33)

cψψψ
(3) )

1

3!nSxnS

∑
Q1

∑
Q2

∑
Q3

δK(Q1 + Q2 + Q3) ×

γψψψ
(3) (Q1, Q2) (34)

cψψS
(3) )

1

2nS
∑
Q1

∑
Q2

δK(Q1 + Q2)γψψS
(3) (Q1, Q2) (35)

cSSS
(3) ) 1

3!
γSSS

(3) (0, 0) (36)

cψψψψ
(4) )

1

4!nS
2
∑
Q1

∑
Q2

∑
Q3

∑
Q4

δK(Q1 + Q2 + Q3 + Q4) ×

γψψψψ
(4) (Q1, Q2, Q3) (37)

cψψψS
(4) )

1

3!nSxnS

∑
Q1

∑
Q2

∑
Q3

δK(Q1 + Q2 + Q3) ×

γψψψS
(4) (Q1, Q2, Q3) (38)

cψψSS
(4) )

1

4nS
∑
Q1

∑
Q2

δK(Q1 + Q2)γψψSS
(4) (Q1, Q2, 0) (39)

cSSSS
(4) ) 1

4!
γSSSS

(4) (0, 0, 0) (40)

γψψ
(2) (Q) ≡ εaεbΓab

(2)(Q) ) ΓRR
(2) (Q) + ΓCC

(2) (Q) - 2ΓRC
(2) (Q)

(41)

γSS
(2)(0) ≡ N µνN FσΓSS

(2)µνFσ(0) ) N N ΓSS
(2)(0) (42)

εR ) 1, εC ) -1 (43)

γψψψ
(3) (Q1, Q2) ≡ εaεbεcΓabc

(3) (Q1, Q2) (44)

γψψS
(3) (Q1, - Q1) ≡ εaεbN ΓabS

(3) (Q1, - Q1) (45)

γSSS
(3) (0, 0) ≡ NNN ΓSSS

(3) (0, 0) (46)
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The coefficients c(2), c(3), c(4) depend on N, fR, q*, ω/ø,
ø, and the symmetry group (lam, hex, bcc). Moreover,
the coefficients c(3) and c(4) also depend on the angle θ
between the director η and the orientation of the lattice
of the microphase symmetry. The characteristic wave
vector q* depends on the architecture, N and fR.

VI. Minimization of the Free Energy
Upon minimization of the free energy eq 31, with

respect to the order parameters ψ and S and the angle
θ, we shall distinguish between seven different phases.
These phases are

The smectic phases A and C are defined as lamellar
density fluctuating microphases with either a nematic
director parallel to the lamellar director (A) or with a
nonzero angle θ between them (C).

As mentioned previously we assume that temperature
and architecture are the two dominant parameters to
play with, and therefore, following the reasoning by
Singh et al.,17 we assume that both ø and ω scale
inversely with the temperature T. This means that for
a fixed ratio r ) ω/ø and fixed N, we can draw the usual
two-dimensional øN vs f “phase diagrams”.

Clearly, in this fourth-order Landau expansion the
order parameters ψ and S should be reasonably small;
e.g., ψ, S , 1. For the usual microphase separation this
is the case close to the critical point. However, the
isotropic-nematic transition is first order due to the
presence of the third-order term in S in eq 31. Therefore,
we investigate first the “weakness” of the first-order
isotropic-nematic transition. Assuming that we are in
the region of parameter space such that ψ ) 0, we are
left with the free energy

where the coefficients are explicitly given in the Ap-
pendix. The coefficients are

The free energy (eq 51) has a first-order phase transition
to a nematic phase when

where ωc is the binodal value. [The value ωs ) 15/(2fR
2)

is the so-called spinodal value corresponding to the
change of sign of the second-order term.] The critical
value of S is given by

This is a typical value for Sc for nematic liquids.35 Thus
for large rod fractions fR, the nematic order parameter
is close to 1/3. It is well established that the Landau
expansion for coil-coil AB diblocks is highly weakly first
order even far from the critical point in the Nø-f plane.
There, the critical value, ψc, for the order parameter ψ
is at least 1 order of magnitude less than Sc (e.g., ψc =
1/30).

Now, suppose that we are in a regime (coil-rich) of
parameter space where the nematic order parameter is
zero (S ) 0) and consider the minimization of eq 31 with
respect to ψ. The free energy in this region reads

The q* was already (and can still be) determined from
the minimum of cψψ

(2) with respect to |Q|. By definition
this minimum is q*. The spinodal is then given by the
equation

In the FHA, the free energy for a lamellar morphology
corresponding to q* is known1 to be given by

where (with |Q| ) q*)

with γψψ
(2) and γψψψψ1

(4) explicitly given in the appendix.
The hexagonal and bcc morphologies have free energies

with

γψψψψ
(4) (Q1, Q2, Q3) ≡ εaεbεcεdΓabcd

(4) (Q1, Q2, Q3) (47)

γψψψS
(4) (Q1, Q2, - Q1 - Q2) ≡ εaεbεcN ΓabcS

(4) (Q1, Q2, -
Q1 - Q2) (48)

γψψSS
(4) (Q1, - Q1, 0) ≡ εaεbNN ΓabSS

(4) (Q1, - Q1, 0) (49)

γSSSS
(4) (0, 0, 0) ≡ NNNN ΓSSSS

(4) (0, 0, 0) (50)

1. The isotropic phase (I): ψ ) 0, S ) 0
Microphases (M): ψ * 0, S ) 0

2. Lamellar (LAM)
3. Hexagonal (HEX)
4. BCC (BCC)

5. Nematic phase (N): ψ ) 0, S * 0
Smectic phases (S): ψ * 0, S * 0

6. Smectic A: θ ) 0
7. Smectic C: 0 < θ e π/2

F S
nem ) [cSS

(2) - Nω
3 ]S2 + cSSS

(3) S3 + cSSSS
(4) S4 (51)

cSS
(2) ) 5

2fR
2
, cSSS

(3) ) - 25
21fR

3
, cSSSS

(4) ) 425
196fR

4
(52)

[cSS
(2) - Nω

3 ] e
[cSSS

(3) ]2

4cSSSS
(4)

w Nωc ) 3{cSS
(2) -

[cSSS
(3) ]2

4cSSSS
(4) } )

1
fR

2(715
102) (53)

Sc ) -
cSSS

(3)

2cSSSS
(4)

) 14
51

fR e
14
51

≈ 0.27 (54)

FS ) [cψψ
(2) - 2Nø]ψ2 + cψψψ

(3) ψ3 + cψψψψ
(4) ψ4 (55)

2Nøs ) cψψ
(2) (56)

F S
lam ) [cψψ

(2)lam - 2Nø]ψl
2 + cψψψψ

(4)lam ψl
4 (57)

cψψ
(2)lam )

1

2
∑

Q1∈lam
∑

Q2∈lam
δK(Q1 + Q2)γψψ

(2) (Q1) ) γψψ
(2) (58)

cψψψψ
(4)lam ) 1

4
γψψψψ1

(4) (59)

F S
hex ) [cψψ

(2)hex - 2Nø]ψh
2 + cψψψ

(3)hex ψh
3 + cψψψψ

(4)hex ψh
4

(60)

F S
bcc ) [cψψ

(2)bcc - 2Nø]ψb
2 + cψψψ

(3)bcc ψb
3 + cψψψψ

(4)bcc ψb
4

(61)

cψψ
(2)hex ) γψψ

(2) , cψψψ
(3)hex ) 2

3x3
γψψψ

(3) ,

cψψψψ
(4)hex ) 1

12
γψψψψ1

(4) + 1
3

γψψψψ2
(4) (62)
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respectively,

For fixed Nø, r, fR, and N, it is then straightforward to
find the morphology with lowest free energy.

The next step is to consider the region of the phase
diagram where ψ , S < 1. In this case, if the temper-
ature is lowered, first the isotropic to nematic transition
is encountered meaning that the lowering of the free
energy is primarily driven by the appearance of a
nonzero value for S. When the temperature is decreased
(Nø v), the appearance of a microphase structure (ψ *
0) lowers the free energy further. In this particular case,
the value of S is mainly determined by eq 51. The value
of ψ then follows from the free energy part of eq 31,

in which S should be considered as an external field.
The total free energy being FS ) F S

nem + F S
mix. In the

above eq 64 the angle θ comes into play.
For instance, if the morphology is assumed to be

lamellar, the coupling term cψψS
(3) can be written as

with Q̂ ) QB/q*, cos θ ) Q̂‚η. In case of a hexagonal
morphology (with six lattice vectors QB i), we get

and for the bcc morphology

The other coupling terms in eq 64 are decomposed as

where sym stands for either one of three basic morphol-
ogies, and

with Ω the three-dimensional space angle between the
nematic vector ηb and the orientation vector of the lattice
corresponding to the space symmetry group sym.

Subsequently, the free energy is written as

with

Then for the lamellar morphology (thus smectic), these
coefficients can be expressed as

where cos θ ) (η‚QB)/q*. The functions âi are

Now the minimum of F S
mix with respect to θ corre-

sponds to the minimum of R1, since R3 does not depend
on θ. Since â1 < 0 and â2 > 0, the minimum of R1 with
respect to cos θ is

with

Numerically it turns out that γψψSS2
(4) is roughly 1 order

of magnitude larger than γψψSS1
(4) and γψψSS0

(4) for a large
range of volume fractions fC. Since the nematic order
parameter S is close to 1/3 or even larger (e.g., see eq
54), the consequence is that in general â2 . â1, and
therefore, the angle θ is close to

Thus a smectic C phase with an angle of about 54° is
obtained in the region of parameter space where ne-
matic instabilities precede density fluctuations.

However, the above conclusion is premature unless
the other two morphologies are considered. For these
morphologies, besides the terms already given in eqs
66-68, third-order density terms are present and

cψψ
(2)bcc ) γψψ

(2) , cψψψ
(3)bcc ) 4

3x6
γψψψ

(3) ,

cψψψψ
(4)bcc ) 1

24
γψψψψ1

(4) + 1
3

γψψψψ2
(4) + 1

12
γψψψψ3

(4) +

1
6

γψψψψ4
(4) (63)

FS
mix ) [cψψ

(2) + cψψS
(3) S + cψψSS

(4) S2 - 2Nø]ψ2 +

[cψψψ
(3) + cψψψS

(4) S]ψ3 + cψψψψ
(4) ψ4 (64)

cψψS
(3)lam )

γψψS
(3)

2nlam
∑

Q∈lam
P2(Q̂‚η) )

γψψS
(3)

2
[P2(Q̂‚η) +

P2(-Q̂‚η)] ) P2(cosθ)γψψS
(3) (65)

cψψS
(3)hex )

γψψS
(3)

2nhex
∑

Q∈hex
P2(Q̂‚η) )

γψψS
(3)

3
∑
i)1

3

P2(Q̂i‚η) (66)

cψψS
(3)bcc )

γψψS
(3)

2nbcc
∑

Q∈bcc
P2(Q̂‚η) )

γψψS
(3)

6
∑
i)1

6

P2(Q̂i‚η) (67)

cψψSS
(4)sym )

1

4nsym
∑

Q∈sym
[γψψSS0

(4) + γψψSS1
(4) P2(Q̂‚η) +

γψψSS2
(4) P2

2(Q̂‚η)] )
1

2
[γψψSS0

(4) + γψψSS1
(4) A1sym(Ω) +

γψψSS2
(4) A2sym(Ω)] (68)

A1sym(Ω) )
1

2nsym
∑

Q∈sym
P2(Q̂‚η)

A2sym(Ω) )
1

2nsym
∑

Q∈sym
P2

2(Q̂‚η) (69)

F S
mix ) R1ψ2 - R2ψ3 + R3ψ4 (70)

R1 ) cψψ
(2) + cψψS

(3) S + cψψSS
(4) S2 - 2Nø (71)

R2 ) - [cψψψ
(3) + cψψψS

(4) S] (72)

R3 ) cψψψψ
(4) (73)

R1 ) -2Nø + â0(q*) + â1(q*)P2(cosθ) +

â2(q*)P2
2(cosθ), R2 ) 0, R3 ) 1

4
γψψψψ1

(4) (74)

â0 ) cψψ
(2) + 1

2
γψψSS0

(4) S2,

â1 ) γψψS
(3) S + 1

2
γψψSS1

(4) S2, â2 ) 1
2

γψψSS2
(4) S2 (75)

R1 ) -2Nø + â0 -
â1

2

4â2
(76)

θmin ) arccos(xâ2 - â1

3â2
) (77)

θm ≈ arccos x1/3 ≈ 54° (78)
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consequently the coupling term

plays a role. This term is written as

with Q3 ) -Q1 - Q2 and σψψψS defined in eq B78. The
three vectors Qi can be an arbitrary triangle in the
vector space of the first harmonic sphere of the particu-
lar lattice symmetry group (HEX or BCC). However, by
comparing numerically the free energies of the hexago-
nal and bcc morphology with nonzero S in the FHA, it
turns out that the smectic C phase (thus lamellar) has
the lowest free energy in this particular region of the
parameter space.

In the coil-rich region of the parameter space, it is
possible to take a value for r ) ω/ø so that microphase
separation occurs prior to nematic ordering, i.e., with
S , ψ < 1, on decreasing the temperature. In this case
the order parameter ψ is mainly determined by eq 55.
However, now the nematic order parameter S is driven
by the field ψ which acts as an external field in the free
energy part

up to second order in S. We assume that the tempera-
ture is still above the binodal temperature (thus below
Nøc) so that nematic ordering is purely density driven.
Then

For a large region of the phase diagram with the above
constraint S , ψ < 1, it turns out that Sm , Sc as given
by eq 54. This concludes the analysis of the free energy
equation 31.

VII. The Phase Diagram
In the previous section, we outlined the various steps

in the minimization of the FHA free energy equation,
31. This section is devoted to the actual computation
and derivation of the phase diagrams. The first step in
the process is to determine q*. This wave vector q* is
given by the minimum of γψψ

(2) (q) of eq B9 with respect
to q. It is to be expected that the characteristic length
scale for microphase separation is predominantly de-
termined by the length l ) NfR of the rod part of the
diblock. At least for large N and in the rod-rich region
this is to be expected, since the length scale of the rod
part scales with N and that of the coil part with N1/2.

This means that the lowest q vector for the rod is much
smaller than the lowest q vector of the coil part. The
corresponding characteristic wave vector for the rod is
q* ) 2π/l ) 2π/(NfR). In Figure 2 the numerical value
of q* is depicted vs rod fraction fR and compared with
the above-mentioned characteristic wave vector. From
this figure, it is clear that for a large region of fR both
q* lie rather close together, supporting the view that
the rod-length scale characterizes the microphases.

With q* numerically computed as function of fR, the
higher point vertexes γ(3) and γ(4) are determined, since
these do not depend on ø and ω. Subsequently all c
coefficients of the Landau free energy equation, 31, are
computed. Depending on the values of ø, r, N the phase
diagram is constructed by minimizing the free energy
with respect to ψ, S, and θ.

As pointed out in the previous section, when there is
no Maier-Saupe interaction, there will be no account-
able or notable value for the nematic order parameter
S (i.e., S , 1/3). The phase diagram for this situation
where ω ) 0, i.e., r ) 0, is given in Figure 3 for N ) 40.
The asymmetry of the phase diagram with respect to
the AB coil-coil diblock phase diagram (as first derived
by Leibler1) is apparent. First of all, the critical point,
which is given by the root of the γψψψ

(3) vertex, is shifted
to the rod-rich part. Beyond the critical point for even
higher rod fraction the bcc phase is absent.

The coil-rich part of the phase diagram is quite
similar to an AB coil-coil diblock phase diagram with
first the appearance of a bcc phase prior to hexagonal
and lamellar phases. However, close to fraction fR ∼ 0.4,
the bcc phase disappears at the triple point, and for
increasing ø, only the hexagonal and lamellar phases

cψψψSsym
(4) )

1

3!nsymxnsym

×

∑
Q1∈sym

∑
Q2∈sym

γψψψS
(4) (Q1, Q2, - Q1 - Q2) (79)

cψψψShex
(4) ) 2

3x3
σψψψS[P2(Q̂1‚η) + P2(Q̂2‚η) + P2(Q̂3‚η)]

(80)

cψψψSbcc
(4) ) 4

3x6
σψψψS[P2(Q̂1‚η) + P2(Q̂2‚η) + P2(Q̂3‚η)]

(81)

Fmix ) [cψψS
(3) ψ2 + cψψψS

(4) ψ3] S +

[cSS
(2) + cψψSS

(4) ψ2 - Nω
3 ]S2 (82)

Sm = -
[cψψS

(3) ψ2 + cψψψS
(4) ψ3]

2[cSS
(2) - Nω/3]

(83)

Figure 2. Numerical value of the wave vector q* for N ) 40
as minimum of γψψ

(2) vs the characteristic rod wave vector q* )
2π/(NfR).

Figure 3. Phase diagram with N ) 40, r ) ω/ø ) 0. The
critical point lies in the rod-rich region near frod = 0.73, and
there is a triple point near frod = 0.42, separating the isotropic/
BCC/HEX phases.
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are encountered. This is a result of the relative small-
ness of the ratio k

as compared to coil-coil diblock copolymers.1 Whenever
k < 1 the hexagonal phase is encountered first upon
crossing the binodal curve from the isotropic phase. The
triple point corresponds to k ) 1.

The dependence on the ratio r is depicted in a series
of figures, Figures 3-7. The isotropic-nematic phase
boundary (PB) is roughly given by the spinodal curve

see note in brackets in section VI. Thus by increasing
r, øs is lowered which appears as a shifting of the
isotropic-nematic PB to the left. Whenever the nematic
phase region “overlaps” with the microphase region a
smectic C phase (lamellar) is favored over the bcc and
hexagonal morphologies; nematic ordering favors lamel-
lae. This results from the fact that, whenever a nonzero
value for S appears, the second-order coefficient R1 in
the Landau free energy for ψ (eq 70) is considerable
smaller for the lamellar phase than for the hexagonal
phase, after minimization with respect to angles. Con-
sequently, in the nematic phase region, the spinodal
curve for the lamellar morphology ()smectic) lies below

the binodal curves for the hexagonal and bcc morphol-
ogies. In the FHA, the hexagonal and bcc morphologies
are incompatible with nematic order, and a smectic
(layered liquid crystalline) phase prevails.

Contour lines of the angle θ are depicted also in the
figures. The dots denote “triple points”. The angle
increases rapidly from 35 to 40° close to the nematic-
smectic-C phase boundary to values between 45 and 55°.
This behavior is in agreement with the analysis in the
previous section. In Figure 7, the nematic phase region
has completely overwhelmed the microphase region.
Even in the coil-rich region there is an isotropic-
nematic transition. This means that the microphases
are absent all together and only the smectic C phase
appears for lower temperatures.

If the overall length of the diblock is increased (N v)
the critical point and the triple points will shift to the
rod-rich part. However, qualitatively, the phase dia-
grams for fixed r but with different N are quite similar,
as can be seen by comparing Figures 5 and 8.

VIII. Concluding Remarks

In this paper, we studied an incompressible melt of
rod-coil diblock copolymers. Both microphase separa-
tion and orientational ordering were investigated. We
have derived a Landau expansion of the free energy of
the melt up to fourth order in the two order parameters
ψ and S, representing, respectively, compositional and
nematic ordering. The compositional ordering or mi-
crophase separation was driven by the usual Flory-
Huggins interaction, whereas the orientational ordering
was driven by a Maier-Saupe interaction. Up to seven
different phases of the melt could be distinguished as

Figure 4. Phase diagram with N ) 40, r ) ω/ø ) 1. The
critical point still lies near frod = 0.73. The three other dots
are triple points. The dashed curves in the smectic C phase
are contour lines for the angle θ, separating intervals of 5°.
The smallest value for θ is about 30° just at the phase
boundaries near the triple points.

Figure 5. Phase diagram with N ) 40, r ) ω/ø ) 2. There is
no critical point. All dots are triple points. The dashed curves
in the smectic C phase are contour lines for the angle θ,
separating intervals of 5°.

k ≡ (cψψψ
(3)bcc

cψψψ
(3)hex)2 cψψψψ

(4)hex

cψψψψ
(4)bcc

(84)

øs ) 15/(2rfR
2) (85)

Figure 6. Phase diagram with N ) 40, r ) ω/ø ) 4. All four
dots represent triple points. The dashed curves and the thin
solid curve in the smectic C phase are contour lines for the
angle θ, separating intervals of 5°.

Figure 7. Phase diagram with N ) 40, r ) ω/ø ) 8. There
are no triple points.
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function of molecular architecture, temperature, and
relative strength of the molecular interactions. The
characteristic length scale for the microphases turned
out to be roughly the length of the rod part of the
diblock.

In comparison with the coil-coil (AB) diblocks, the
phase diagram for rod-coil diblocks is quite asym-
metric, with a critical point lying in the rod-rich region
on the spinodal curve. Nevertheless, the spinodal curve
for the rod-coil system is nearly symmetric. There is a
complete absence of the spherical or bcc microphase in
the rod-rich region, beyond the critical point. This is
perhaps not so surprising, since it is hard to imagine
spherical micelles of coil segments being embedded in
a matrix of rods. The coil-rich region is more similar to
a diblock, where the spherical microphase appears prior
to hexagonal and lamellar structures when the temper-
ature decreases. However, for intermediate rod-volume
fractions, there is an interesting suppression of the bcc
morphologies with respect to the hexagonal one. When
crossing the binodal curve from the isotropic phase, the
hexagonal phase appears instead of the bcc morphology.
There is an isotropic-hexagonal-lamellar transition.
Such a transition is rather uncommon for coil-coil (AB)
diblocks. The general features of our phase diagram are
in qualitative agreement with experiments on rod-coil
systems with small and intermediate rod volume
fractions.5-9 Moreover, in these experimental papers,
observations of bicontinuous cubic phases are reported.
The description of these more complex phases is beyond
the scope of the present paper, since it would require
the introduction of an additional order parameter,
namely, the amplitude of the second harmonics.

Most of the features mentioned above are governed
by compositional ordering, which is most prominent in
the coil-rich phase. However, different phase behavior
is obtained when the orientational or nematic ordering
is the driving force in the melt. Therefore, in the rod-
region, with reasonable values for the Maier-Saupe
interactions the main results are the suppression of
hexagonal and bcc structures in the rod-rich region of
the phase diagram whenever nematic ordering occurs
and the appearance of a smectic C phase in the rod-
rich region, with a characteristic angle 45 e θ < 55°.

We have shown that when nematic phases appear
prior to microphases upon decreasing the temperature,
instead of the usual bcc or hexagonal morphologies a
smectic C (lamellar) phase is obtained. Also we have
found no evidence for smectic A phases in the rod-rich
region of the phase diagram. As was mentioned in the

Introduction, smectic C phases and equivalent phases
have been reported for experiments on rod-coil systems
for intermediate to high rod volume fractions.10,11

Moreover, the smectic angle θ is in quantitative agree-
ment with the experimental observed values for θ, with
θ ∼ 45°.

At a first glance, the absence of a smectic A phase in
the rod-rich region might seem to contradict earlier
theoretical results,23,25-27 where the orientational align-
ment is chosen to be perfect (all rod segments are
parallel, i.e., S = 1). However, one should realize that
the present model describes a different limiting case of
the rod-coil diblock copolymer melt. Clearly the free
energy expansion in order parameters breaks down,
whenever one of the order parameters becomes too
large, e.g., when S approaches unity. Roughly speaking,
the applicability of the Landau free energy is limited
to the region in the øN-fR plane, where the spinodal
curves for order parameters ψ and S intersect or lie
reasonable close to one another. Although, it can be
shown that the Maier-Saupe interaction is a valid
approximation for the steric repulsion even when the
alignment of rod-segments is nearly or completely
parallel,18 the present model cannot really be compared
to the other works23,25-27 in great detail, due to the
breakdown of the Landau expansion for the order
parameter S.
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Appendix A: The Second-Order Vertex Γ(2)

In this appendix, we compute the second-order vertex
Γ(2). The vertex Γ(2) is the inverse of the single chain
correlation function W(2) as given by eq 18,

where the Greek index R ) R, C, S. We introduce the
matrix

where

with fR ) 1 - fC, and where the variable y is

The other functions are

Figure 8. Phase diagram with N ) 80, r ) ω/ø ) 2. In this
particular case there is no critical point and the dots are triple
points. The dashed curves in the smectic C phase are contour
lines for the angle θ, separating intervals of 5°.

ΓRâ
(2)(k1) ) [WRâ

(2)(k1)]
-1 (A1)

WµνFσ ≡ (WRR
(2) WRC

(2) WRS
(2)Fσ

WCR
(2) WCC

(2) WCS
(2)Fσ

WSR
(2)µν WSC

(2)µν WSS
(2)µνFσ ) (A2)

WRR
(2) (p) ) N-2〈F̂R(pb)F̂R(-pb)〉0 )

(fR

l )2 ∫0

l ∫0

l
ds ds′ 〈ei(s-s′)pb‚ub〉0 ) fR

2 KR1
(2)(y) ) gRR(p)

(A3)

y ) NRp (A4)

WCC
(2) (p) ) fC

2 KC1
(2)(x) ) gCC(p) (A5)

WRC
(2) (p) ) WCR

(2) (p) ) fCfRKC
(1)(x)KR

(1)(y) ) gRC(p) (A6)
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where the variable x is

and KC1
(2) ) fD is the Debye function and the K functions

are defined in Appendix C. Furthermore, the two point
single chain functions with one nematic tensor is

with ∆µν ) pµpν/p2 - δµν/3. Finally, the two point function
with two nematic tensors is expressed as

where gSSi ) fR
2KSi

(2)(y), with KSi
(2) defined in Appendix C.

The tensors are

Subsequently, the inverse of the matrix W is written
as

and the following notation is introduced:

The h functions are related to the g functions by

Hence, we have obtained Γ(2).

Appendix B: Vertexes
In this appendix, all vertexes up to fourth order which

appear in the FHA are given. First, the so-called pure
nematic vertexes are discussed.

1. Nematic Vertexes. The pure nematic vertexes are
those involving correlation functions of the nematic
order parameter SR

µν. Clearly, these are γSS
(2), γSSS

(3) , and
γSSSS

(4) . For instance, the vertex γSS
(2) can be obtained from

ΓSS
(2)µνFσ as defined in the previous appendix.
In what follows, the limit p f 0 is considered, with pb

parallel to the orientational vector ηb. [One can show that
parallel alignment of pb and ηb has highest instability
temperature.17 In other words close to the spinodal, the
angle θ between pb and ηb is zero.] Consequently ∆µν f
N µν. Thus

The three-point nematic vertex is

where we have used the identities

and

hab ) gab
-1 - 2

3
gac

-1gcShbS (A18)

haS ) 3
2

gbSgba
-1

(gcSgcd
-1gdS + 5gSS1 - 4gSS2 - gSS3)

(A19)

hSS1 ) 1
4
gSS1

-1 (A20)

hSS2 )
gSS1

-1gSS2

4(gSS2 - gSS1)
(A21)

hSS3 ) 1
2
(3gcShcS + 32gSS1hSS1 - 16gSS2hSS1 -

10gSS3hSS1 - 16gSS1hSS2 + 8gSS2hSS2 +

8gSS3hSS2)
1

5gSS1 - 4gSS2 - gSS3
(A22)

γSS
(2)(0))N µνN FσΓSS

(2)µνFσ(0) ) ∑
i)1

3

hSSiu i
µνFσN µνN Fσ )

-
20

9
hSS1(0) +

16

9
hSS2(0) +

4

9
hSS3(0) )

- lim
pf0

[gCS(p)gCD
-1(p)gDS(p) + 5gSS1(p) - 4gSS2(p) -

gSS3(p)]-1 )
5

fR
2

(B1)

γSSS
(3) (0, 0) ) NNN ΓSSS

(3) (0, 0) )

- [N ΓSS
(2)(0)]3WSSS

(3) (0, 0) ) - [ 15
2fR

2]3
NNN WSSS

(3) (0, 0) )

- [ 15
2fR

2]3
fR

3(23)3 2
35

) - 1
fR

3
50
7

(B2)

N µνΓSS
(2)µνFσ(0) ) lim

pf0
∑
i)1

3

hSSi(p)u i
µνFσ(p)N µν )

15

2fR
2

N Fσ

(B3)

x ) Nc p2/6 (A7)

WRS
(2)µν(p) ) WSR

(2)µν(p) ) (pµpν

p2
- δµν

3 )fR
2 KRS

(2)(y) )

∆µνgRS(p) (A8)

WCS
(2)µν(p) ) WSC

(2)µν(p) ) (pµpν

p2
- δµν

3 )fRfCKC
(1)(x)KS0

(1)(y) )

∆µνgCS(p) (A9)

WSS
(2)µνFσ(p) ) fR

2 ∑
i)1

3

KSi
(2)(y)u i

µνFσ(p) )

∑
i)1

3

u i
µνFσ(p)gSSi(p) (A10)

u 1
µνFσ(p) ≡ δνFδµσ + δνσδµF - 14

9
δµνδFσ - 2δνF pσpµ

p2
-

2δνσ pFpµ

p2
- 2δµF pνpσ

p2
- 2δµσ pFpν

p2
+ 8

3
δµν pFpσ

p2
+

8
3

δFσ pµpν

p2
(A11)

u 2
µνFσ(p) ≡ δνF pσpµ

p2
+ δνσ pFpµ

p2
+ δµF pσpν

p2
+ δµσ pFpν

p2
-

4
3

δµν pFpσ

p2
- 4

3
δσF pµpν

p2
+ 4

9
δµνδFσ (A12)

u 3
µνFσ(p) ≡ (pµpν

p2
- δµν

3 )(pFpσ

p2
- δFσ

3 ) (A13)

ΓµνFσ ≡ (ΓRR
(2) ΓRC

(2) ΓRS
(2)Fσ

ΓCR
(2) ΓCC

(2) ΓCS
(2)Fσ

ΓSR
(2)µν ΓSC

(2)µν ΓSS
(2)µνFσ ) (A14)

Wab
(2) ) gab, Γab

(2) ) hab (A15)

WcS
(2)µν ) ∆µνgcS, ΓcS

(2)µν ) ∆µνhcS (A16)

WSS
(2)µνFσ ) ∑

i)1

3

u i
µνFσgSSi, ΓSS

(2)µνFσ ) ∑
i)1

3

u i
µνFσhSSi

(A17)
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Subsequently, the four-point nematic vertex function
can be computed,

where we have used that

2. Density Coefficients. Now the expressions for the
pure density vertexes are listed. The coefficient γψψ

(2) is
given by

where the Roman indices a, b sum over R, C. At this
point, we introduce the shorthand notation

The coefficient γψψψ
(3) is

with |Q1| ) |Q2| ) |Q1 + Q2| (thus Q̂1‚Q̂2 ) - 1
2

) and
where

hence

The three-point single chain correlation functions are

(again with Q̂1‚Q̂2 ) - 1
2

)

where wRRC ) wRCR ) wCRR and wRCC ) wCCR ) wCRC.
Again the K functions are given in Appendix C.

The coefficient γψψψψ
(4) is (with |Q1| ) |Q2| ) |Q3| ) |Q1

+ Q2 + Q3|)

where

Parts of the form

though formerly present in eq 20, are not included in
eq B20, since these parts can be shown to be negligible
with respect to the other terms comprising the four-
point density vertex.

We can compute the four-point single chain correla-
tion functions. Their contribution is decomposed as

where

WRRR
(3) (Q1, Q2) ) wRRR, wRRR ) fR

3KR1
(3)(y, - 1

2) (B14)

WRRC
(3) (Q1, Q2) ) wRRC, wRRC ) fR

2fCKC
(1)(x)KR2

(2)(y, - 1
2)

(B15)

WRCC
(3) (Q1, Q2))wRCC, wRCC ) fRfC

2 KC2
(2)(x, - 1

2)KR
(1)(y)

(B16)

WCCC
(3) (Q1, Q2) ) wCCC, wCCC ) fC

3 KC1
(3)(x, - 1

2) (B17)

γψψψψ
(4) (Q1, Q2, Q3) ) εaεbεcεdΓabcd

(4) (Q1, Q2, Q3) )
M1(Q1, Q2, Q3) + M2(Q1, Q2, Q3) (B18)

M1(Q1, Q2, Q3) ) -za(Q1)zb(Q2)zc(Q3) ×
zd(-Q1 - Q2 - Q3)Wabcd

(4) (Q1, Q2, Q3) (B19)

M2(Q1, Q2, Q3) ) za(Q1)zb(Q2)zc(Q3)zd(-Q1 - Q2 -

Q3)[Wabe
(3) (Q1, Q2)Γef

(2)(-Q1 - Q2)Wfcd
(3)(Q1 + Q2, Q3) +

Wace
(3) (Q1, Q3)Γef

(2)(-Q1 - Q3)Wfbd
(3) (Q1 + Q3, Q2) +

Wade
(3) (Q1, - Q1 - Q2 - Q3)Γef

(2)(Q2 + Q3)Wfcb
(3)(-Q2 -

Q3, Q3) + δK(Q1 + Q2)Wab
(2)(Q1)Wcd

(2)(Q3) + δK(Q1 +

Q3)Wac
(2)(Q1)Wbd

(2)(Q2) + δK(Q2 + Q3)Wad
(2)(Q1)Wbc

(2)(Q2)]
(B20)

zazbzczdWabS
(3) ΓSS

(2) WcdS
(3) (B21)

WRRRR
(4) (Q1, Q2, Q3) ) fR

4 KR
(4)(y, c1, c2), y ) lq* (B22)

WCRRR
(4) (Q1, Q2, Q3) ) fCfR

3 KC
(1)(x)KR2

(3)(y, c1, c2) (B23)

WCCRR
(4) (Q1, Q2, Q3) ) fC

2 fR
2 KC2

(2)(x, c1)KR2
(2)(y, c1) (B24)

WCCCR
(4) (Q1, Q2, Q3) ) fC

3fRKC2
(3)(x, c1, c2)KR

(1)(y) (B25)

WCCCC
(4) (Q1, Q2, Q3) ) fC

4 KC
(4)(x, c1, c2) (B26)

c1 ≡ Q1‚Q2

|Q|2
, c2 ≡ Q1‚Q3

|Q|2
, c3 ≡ Q2‚Q3

|Q|2
) -1 - c1 - c2

(B27)

N µνN FσN κλWSSS
(3)µνFσκλ(0, 0) ) fR

3(2/3)3〈[P2(cosθ)]3〉0 )

fR
3(2/3)3 ∫-1

1
dx [P2(x)]3/2 ) fR

3(2/3)3(2/35) (B4)

γSSSS
(4) (0, 0, 0) ) NNNN ΓSSSS

(4) (0, 0, 0)

) - [N ΓSS
(2)(0)]4WSSSS

(4) (0, 0, 0) + 3[N ΓSS
(2)(0)]4WSSS

(3) (0, 0)

ΓSS
(2)(0)WSSS

(3) (0, 0) + 3[N ΓSS
(2)(0)]4WSS

(2)(0)WSS
(2)(0)

) 1
fR

4
2550
49

(B5)

NNNN WSSSS
(4) (0, 0, 0) ) fR

4(2/3)4〈[P2(cosθ)]4〉 )

fR
4(2/3)4(3/35) (B6)

NN WSSS
(3) (0, 0) ) fR

3(2/3)2(2/35)N (B7)

NN WSS
(2)(0) ) fR

2(2/3)2(1/5) (B8)

γψψ
(2) (Q) ) εaεbΓab

(2)(Q) ) hRR(Q) + hRR(Q) - 2hRC(Q)
(B9)

γab ) Γab
(2)(Q) (B10)

γψψψ
(3) (Q1, Q2)

) εaεbεcΓabc
(3) (Q1, Q2)

) - za(Q1)zb(Q2)zc(-Q1 - Q2)Wabc
(3) (Q1, Q2) (B11)

za(Q) ≡ εa′Γa′a
(2)(Q) (B12)

zR(Q) ) hRR(Q) - hRC(Q), zC(Q) ) hRC(Q) - hCC(Q)
(B13)
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Also, we have (with c ) Q1‚Q2/|Q|2)

For the three morphologies it is sufficient to consider
four particular configurations of “four vectors adding up
to zero” for γψψψψ

(4) (Q1, Q2, Q3). These configurations are,
using eq B27

where γψψψψi
(4) ≡ γψψψψ

(4) (Q1, Q2, Q3).
3. Mixed Vertexes or Coupling Terms. The most

interesting vertexes are those involving both nematic
as well as density order parameters, since these will give
rise to coupling between nematic ordering and mi-
crophase ordering.

The coupling vertex γψψS
(3) is

where we have defined

and

It is straightforward to show that

Hence

where wRCS ) wCRS.
The four-point vertex γψψSS

(4) reads

with

For instance, WRRSS
(4) is

and

Thus

Also

WRRR
(3) (Q1, Q2) ) fR

3 KR1
(3)(y, c) (B28)

WRRC
(3) (Q1, Q2) ) fR

2fCKC
(1)(x(2 + 2c))KR2

(2)(y, c) (B29)

WRCR
(3) (Q1, Q2) ) fR

2fCKC
(1)(x)KR3

(2)(y, c) (B30)

WCRR
(3) (Q1, Q2) ) fR

2fCKC
(1)(x)KR3

(2)(y, c) (B31)

WRCC
(3) (Q1, Q2) ) fRfC

2 KC3
(2)(x, c)KR

(1)(y) (B32)

WCRC
(3) (Q1, Q2) ) fRfC

2 KC3
(2)(x, c)KR

(1)(y) (B33)

WCCR
(3) (Q1, Q2) ) fRfC

2 KC2
(2)(x, c)KR

(1)(y x2 + 2c) (B34)

WCCC
(3) (Q1, Q2) ) fC

3 KC1
(3)(x, c) (B35)

c1 ) -1, c2 ) -1, c3 ) 1 f γψψψψ1
(4) (B36)

c1 ) -1, c2 ) -1, c3 ) 1 f γψψψψ2
(4) (B37)

c1 ) -1, c2 ) - 1
2
, c3 ) 1

2
f γψψψψ3

(4) (B38)

c1 ) -1/2, c2 ) - 1
2
, c3 ) 0 f γψψψψ4

(4) (B39)

γψψS
(3) (Q, -Q)

) εaεbN ΓabS
(3) (Q, -Q)

) -za(Q)zb(Q)N ΓSS
(2)(0)WabS

(3) (Q, -Q)

) -za(Q)zb(Q)N ΓSS
(2)(0)NN (3/2)WabS

(3) (Q, -Q)

) - 2
3

za(Q)zb(Q)zSWh abS
(3) (Q, -Q) (B40)

zSN µνN Fλ ≡ ΓSS
(2)µνFλ(0) w zS ) 45

4fR
2

(B41)

Wh abS
(3) (Q, -Q) ) N WabS

(3) (Q, - Q) (B42)

WRRS
(3)µν(Q, -Q) ) fRWRS

(2)µν(Q) (B43)

WRCS
(3)µν(Q, -Q) ) fRWCS

(2)µν(Q) (B44)

WCCS
(3)µν(Q, -Q) ) 0 (B45)

Wh RRS
(3) (Q, -Q) ) wRRSP2(Q̂‚η), wRRS ) 2

3
fR

3 KRS
(2)(y)

(B46)

Wh RCS
(3) (Q, -Q) ) wRCSP2(Q̂‚η),

wRCS ) 2
3

fR
2fC KC

(1)(x)KS0
(1)(y) (B47)

WCCS
(3)µν(Q, -Q) ) 0, wCCS ) 0 (B48)

γψψSS
(4) (Q, -Q, 0) ) εaεbNN ΓabSS

(4) (Q, -Q, 0) )

-(23)2
za(Q)zb(Q)zS

2[Wh abSS
(4) (Q, -Q, 0) -

Wh SS
(2)(0)Wab

(2)(Q) - zSWh abS
(3) (Q, -Q)Wh SSS

(3) (0, 0) -

2Wh aSc
(3) (Q, 0)Γcd

(2)(Q)Wh dbS
(3) (Q, -Q)] (B49)

Wh abSS
(4) (Q, -Q, 0) ) NN WabSS

(4) (Q, -Q, 0) (B50)

Wh SS
(2)(0) ) NN WSS

(2)(0) (B51)

Wh abS
(3) (Q, -Q) ) N WabS

(3) (Q, -Q) (B52)

Wh RRSS
(4) (Q, -Q) ) fR

2 WSS
(2)µνFσ(Q)N µνN Fσ )

fR
4 ∑

i)1

3

KSi
(2)(y)NN u i(Q) (B53)

u 1
µνFλ(Q)N µνN Fλ ) - 16

9
P2(Q̂‚η) - 4

9
(B54)

u 2
µνFλ(Q)N µνN Fλ ) 8

9
P2(Q̂‚η) + 8

9
(B55)

u 3
µνFλ(Q)N µνN Fλ )4

9
[P2(Q̂‚η)]2 (B56)

Wh RRSS
(4) (Q, -Q) ) wRRSS0 + wRRSS1P2(Q̂‚η) +

wRRSS2P2
2(Q̂‚η) (B57)

wRRSS0 ) fR
4(23)2

(-KS1
(2)(y) + 2KS2

(2)(y)) (B58)

wRRSS1 ) fR
4(23)2

(-4KS1
(2)(y) + 2KS2

(2)(y)) (B59)

wRRSS2 ) fR
4(23)2

KS3
(2)(y) (B60)
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and

The three-point single chain correlation parts of eq B49
can be obtained from eqs B46-B48 and eq B7.

Subsequently the γψψSS
(4) vertex is decomposed in the

following way

where

Finally, we have the four-point vertex function γψψψS
(4)

with Q3 ) -Q1 - Q2. In the FHA, the terms WAB
(2) WCS

(2)

vanish.
It can be shown that the correlation function Wh RRRS

(4)

is

and

The correlation function Wh CCRS
(4) is (with Q3 ) -Q1 - Q2)

The correlation function ŴCCCS
(4) vanishes in the FHA.

We can derive that, using eqs B71, B73, and B75, the
four-point vertex (which is fully symmetric in its argu-
ments) is

with Q3 ) -Q1 - Q2, and where

and zR ) zR(q*), zC ) zC(q*). Note that indices a, b, c, d,
e ) R, C.

Appendix C: Definition of Coil and Rod
Functions

In this appendix, we list the so-called coil and rod
functions which appear in single chain correlation
functions and vertexes as given in the previous ap-
pendices. The superscript of such a K denotes the
number of integrations or internal points involved. For
most K functions an explicit expression can be given,
however for certain rod functions the integral form is
retained, since no analytical form could be obtained.

The coil functions are

and

Wh RCSS
(4) (Q, -Q)

) fR
3fCKC

(1)(x)∑
i)1

3

KSi
(1)(y)NN u i(Q)

) wRCSS0 + wRCSS1P2(Q̂‚η) + wRCSS2P2
2(Q̂‚η) (B61)

wRCSS0 ) fCfR
3 KC

(1)(x)(23)2
(-KS1

(1)(y) + 2KS2
(1)(y)) (B62)

wRCSS1 ) fCfR
3 KC

(1)(x)(23)2
(-4KS1

(1)(y) + 2KS2
(1)(y)) (B63)

wRCSS2 ) fCfR
3 KC

(1)(x)(23)2
KS3

(1)(y) (B64)

Wh CCSS
(4) (Q, -Q) ) fR

2 fC
2 KC1

(2)(x) 4
45

) wCCSS0 (B65)

γψψSS
(4) (Q, -Q, 0) ) γψψSS0

(4) + γψψSS1
(4) P2(Q̂‚η) +

γψψSS2
(4) P2

2(Q̂‚η) (B66)

γψψSS0
(4) ) - (23)2

zS
2[zR

2wRRSS0 + 2zRzCwRCSS0 +

zC
2wCCSS0 - wSS(zR

2wRR + 2zRzCwRC + zC
2wCC)]
(B67)

γψψSS1
(4) ) - (23)2

zS
2[zR

2wRRSS1 + 2zRzCwRCSS1 -

zS(zR
2wRRS + 2zRzCwRCS)wSSS] (B68)

γψψSS2
(4) ) - (23)2

zS
2[zR

2wRRSS2 + 2zRzCwRCSS2 -

2zazbwacSγcdwdbS] (B69)

γψψψS
(4) (Q1, Q2, Q3) ) εaεbεcN ΓabcS

(4) (Q1, Q2, Q3)

) - 2
3
za(Q1)zb(Q2)zc(Q3)zS[Wh abcS

(4) (Q1, Q2, Q3) -

Wabe
(3) (Q1, Q2)Γef

(2)(Q3)Wh fcS
(3) (-Q3, Q3) -

Wace
(3) (Q1, Q3)Γef

(2)(Q2)Wh fbS
(3) (-Q2, Q2) -

Wh aSe
(3) (Q1, 0)Γef

(2)(-Q1)Wfcb
(3)(Q1, Q3)] (B70)

Wh RRRS
(4) (Q1, Q2, Q3) ) wRRRS[P2(Q̂1‚η) + P2(Q̂2‚η) +

P2(Q̂3‚η)] (B71)

wRRRS ) 2
3

fR
4 KS

(3)(y) (B72)

Wh CRRS
(4) (Q1, Q2, Q3) + Wh RCRS

(4) (Q1, Q2, Q3) +

Wh RRCS
(4) (Q1, Q2, Q3) ) wRRCS[P2(Q̂1‚η) + P2(Q̂2‚η) +

P2(Q̂3‚η)] (B73)

wRRCS ) 2
3

fR
3fCKC

(1)(x)KCS
(2)(y) (B74)

Wh CCRS
(4) (Q1, Q2, Q3) + Wh CRCS

(4) (Q1, Q2, Q3) +

Wh RCCS
(4) (Q1, Q2, Q3) ) wCCRS[P2(Q̂1‚η) + P2(Q̂2‚η) +

P2(Q̂3‚η)] (B75)

wCCRS ) 2
3

fR
2 fC

2 KC2
(2)(x)KS0

(1)(y) (B76)

γψψψS
(4) (Q1, Q2, Q3) ) σψψψS[P2(Q̂1‚η) + P2(Q̂2‚η) +

P2(Q̂3‚η)] (B77)

σψψψS ) -
2

3
zS[zR

3wRRRS + zR
2zCwRRCS +

zRzC
2wCCRS] +

2

3
zS ∑

a,b,c,d,e
zazbzcwabdγdewecS (B78)

KC
(1)(x) ) 1

x
[1 - e-x] (C1)

KC1
(2)(x) ) fD(x) ) 2

x2
[e-x + x - 1] (C2)

KC2
(2)(x) ) 2KC

(1)(x) - KC1
(2)(x) (C3)
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The coil functions involving three or four integrals are

and

with c3 ) -1 - c1 - c2. Clearly explicit expressions for
these integrals can be obtained, these are already given
elsewhere.

The particular rod functions of interest are

and

Finally, we list the K function which appear as factors
in vertexes with nematic order parameters

KC2
(2)(x, c)

)∫0

1
dτ1 ∫0

1
dτ2 e-x(1+c)(2-τ1-τ2)+xc|τ1-τ2|

)
e-2(1+c)x + (1 + 2c) - 2(1 + c)e-x

(1 + 3c + 2c2)x2
, c * - 1

2
, -1

(C4)

KC1
(2)(x) ) KC2

(2)(x, -1) ) fD(x) (C5)

KC2
(2)(x) ) KC2

(2)(x, - 1
2) ) 2

x2
[1 - (1 + x)e-x] (C6)

KC3
(2)(x, c) )

∫0

1
dτ1 ∫0

1
dτ2 e-x(1+c)|τ1-τ2|-x(1+c)(1-τ2)+xc(1-τ1)

) [e-2(1+c)x + (3 + 8c + 4c2) - 2(1 + c)(2 + x + 2c

(1 + x))e-x] × 1
2(1 + c)(1 + 2c)x2

, c * - 1
2
, - 1 (C7)

KC3
(2)(x, - 1

2) ) 2
x2

[1 - (1 + x)e-x],

KC3
(2)(x, -1) ) 1

x
[1 - e-x] (C8)

KC1
(3)(x, c) )

∫0

1
dτ1 ∫0

1
dτ2 ∫0

1
dτ3 e-x(1+c)|τ1-τ3|-x(1+c)|τ2-τ3|+xc|τ1-τ2|

(C9)

KC1
(3)(x, - 1

2) ) 6
x3

[x(1 + e-x) - 2(1 - e-x)] (C10)

KC2
(3)(x, c1, c2) ) ∫0

1
dτ1 ∫0

1
dτ2 ∫0

1
dτ3

exc3(1-τ1+|τ2-τ3|)+xc2(1-τ2+|τ1-τ3|)+xc1(1-τ3+|τ1-τ2|) (C11)

KC
(4)(x, c1, c2) ) ∫0

1
dτ1 ∫0

1
dτ2 ∫0

1
dτ3 ∫0

1
dτ4

exc3(|τ1-τ4|+|τ2-τ3|)+xc2(|τ2-τ4|+|τ1-τ3|)+xc1(|τ3-τ4|+|τ1-τ2|) (C12)

KR
(1)(y) )

Si(y)
y

(C13)

KR1
(2)(y) ) 2

y2
[-1 + cos y + y Si(y)] (C14)

KR2
(2)(y, c) ) ∫0

1
ds1 ∫0

1
ds2

sin y xs1
2 + s2

2 + 2s1s2c

yxs1
2 + s2

2 + 2s1s2c
(C15)

KR3
(2)(y, c) )

∫0

1
ds1 ∫0

1
ds2

sin yxs1
2 + s2

2(2 + 2c) - s1s2(2 + 2c)

yxs1
2 + s2

2 (2 + 2c) - s1s2(2 + 2c)
(C16)

KR1
(3)(y, c) ) ∫0

1
ds1 ∫0

1
ds2 ∫0

1
ds3

sin yxτR1
(3)

yxτR1
(3)

(C17)

τR1
(3) ) (s1 - s3)

2 + 2(s1 - s3)(s2 - s3)c + (s2 - s3)
2

KR2
(3)(y, c1, c2) ≡ ∫0

1
ds1 ∫0

1
ds2 ∫0

1
ds3

sin yxτR2
(3)

yxτR2
(3)

τR2
(3) ) s3

2 + (s1 - s3)
2 + (s2 - s3)

2 - 2s3(s1 - s3)c1 -
2s3(s2 - s3)c2 - 2(s1 - s3)(s2 - s3)(1 + c1 + c2) (C18)

KR
(4)(y, c1, c2) ≡

∫0

1
ds1 ∫0

1
ds2 ∫0

1
ds3 ∫0

1
ds4

sin yxτR
(4)

yxτR
(4)

,

τR
(4) ) (s1 - s4)

2 + (s2 - s4)
2 + (s3 - s4)

2 +
2(s1 - s4)(s2 - s4)c1 + 2(s1 - s4)(s3 - s4)c2 -

2(s2 - s4)(s3 - s4)(1 + c1 + c2) (C19)

Also, there are the so-called mixed terms

KRS
(2)(y) ) 1

y3
[4y - y cos y - 3 sin y - y2 Si(y)] (C20)

KCS
(2)(y) ) ∫0

1
ds1 ∫0

1
ds2

s2(2s2 - s1)

τCS
(2)5y3

[(y2τCS
(2)2 - 3) ×

sin(yτCS
(2)) + 3yτCS

(2)cos(yτCS
(2))],

τCS
(2) ) xs1

2 + s2
2 - s1s2 (C21)

KS0
(1)(y) ≡∫0

1 ds
s2(- d2

dy2
+ 1

y
d
dy) sin ys

ys

) (- 1
2y3)[3y cos y - 3 sin y + y2 Si(y)] (C22)

KS1
(1)(y) ≡ ∫0

1 ds
s4 ( 1

y2
d2

dy2
- 1

y3
d
dy) sin ys

ys

) 1
8y5

[y4Si(y) + y(y2 + 6) cos y + (y2 -

6) sin y] (C23)

KS2
(1)(y) ≡ ∫0

1 ds
s4(1y d3

dy3
- 1

y2
d2

dy2
+ 1

y3
d
dy) sin ys

ys

) 1
8y5

[y4Si(y) + y(y2 - 18) cos y + (18 -

7y2)sin y] (C24)
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KS3
(1)(y) ≡ ∫0

1 ds
s4 ( d4

dy4
- 6

y
d3

dy3
+ 15

y2
d2

dy2
- 15

y
d
dy) sin ys

ys

) 1
8y5

[3y3Si(y) - 5y(y2 - 42) cos y + 15(5y2 -

14)sin y] (C25)

KS1
(2)(y) ≡ ∫0

1 ∫0

1 ds ds′
(s - s′)4 ( 1

y2
d2

dy2
- 1

y3
d
dy) sin y(s - s′)

y(s - s′)

) ( 1
12y5)[3y4 Si(y) - 8y3 + 3y(y2 - 2) cos y +

3(y2 + 2) sin y] (C26)

KS2
(2)(y) ≡ ∫0

1 ∫0

1 ds ds′
(s - s′)4 (1y d3

dy3
- 1

y2
d2

dy2
+

1
y3

d
dy) sin y(s - s′)

y(s - s′)

) ( 1
4y5)[y4 Si(y) + y(y2 + 6) cos y + (y2 -

6) sin y] (C27)

KS3
(2)(y) ≡ ∫0

1 ∫0

1 ds ds′
(s - s′)4 ( d4

dy4
- 6

y
d3

dy3
+ 15

y2
d2

dy2
-

15
y

d
dy) sin y(s - s′)

y(s - s′)

) ( 1
12y5)[9y4 Si(y) - 64y3 + y(9y2 -

210) cos y - 15(y2 - 14) sin y] (C28)

KS
(3)(y) ) ∫0

1
ds1 ∫0

1
ds2 ∫0

1
ds3

(s1 - s3)(s2 - s3)

τS
(3)5y3

×

[(y2τS
(3)2 - 3) sin(yτS

(3)) + 3yτS
(3) cos(yτS

(3))]

τS
(3) ) xs1

2 + s2
2 + s3

2 - s1s2 - s1s3 - s2s3 (C29)
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