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Abstract 
 
We take stock of the present position of compositional data analysis, of what has been 
achieved in the last 20 years, and then make suggestions as to what may be sensible 
avenues of future research. We take an uncompromisingly applied mathematical view, 
that the challenge of solving practical problems should motivate our theoretical 
research; and that any new theory should be thoroughly investigated to see if it may 
provide answers to previously abandoned practical considerations. Indeed a main theme 
of this lecture will be to demonstrate this applied mathematical approach by a number of 
challenging examples. 
 
 
1.  A personal note  
 
In the United Kingdom recently resigning government ministers have been allowed to 
make personal statements on their reasons for resignation, pulling no punches as to the 
nature of their disagreement with their leaders. Resignation and retirement, though 
different in nature, have many similarities. Though my main concern in yet another 
attempt to retire is more concerned with the opposition, those pockets of resistance and 
confusion that I referred to in my IAMG97 lecture, I feel this is nevertheless an 
occasion for taking stock of what has been achieved and, perhaps more importantly, 
how I feel the subject should develop to meet the challenge of the many, indeed very 
many, problems that remain unanswered or not fully answered. 
 
 
2.  Some history: the four phases of compositional history 
 
The statistical analysis of compositional data has gone through roughly four phases. The 
pre-1960 phase rode on the crest of the developmental wave of standard multivariate 
statistical analysis, an appropriate form of analysis for the investigation of problems 
with sample space R D . Despite the obvious fact that a compositional vector, with 
components the proportions of some whole, is subject to a constant-sum constraint and 
so is entirely different from the unconstrained vector of standard unconstrained 
multivariate statistical analysis, scientists and statisticians alike seemed almost to 
delight in applying all the intricacies of standard multivariate analysis, in particular 
correlation analysis, to compositional vectors. We know that Karl Pearson, in his 
definitive 1897 paper on spurious correlations, had pointed out the pitfalls of 
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interpretation of such activity, but it was not until around 1960 that specific 
condemnation of such an approach emerged.  
 
In this second phase, the primary critic of the application of standard multivariate 
analysis to compositional data was the geologist Felix Chayes, whose main criticism 
was in the interpretation of product-moment correlation between components of a 
geochemical composition, with negative bias the distorting factor from the viewpoint of 
any sensible interpretation. For this problem of negative bias, often referred to as the 
closure problem, Vistelius and Sarmanov supplemented the Chayes criticism in 
geological applications and Mosimann drew the attention of biologists. These warnings 
were largely ignored and the same silly and meaningless analysis persisted in the 
application of a methodology inappropriate to the special format of compositional data. 
Unfortunately the warners, instead of working towards an appropriate methodology, 
adopted what can only be described as a pathological approach. What was the nature of 
the distortion when standard multivariate techniques were applied to compositional 
data. Doctorates were obtainable on such topics as the effect of closure on the structure 
of principal component or on the measures of similarity between samples.  
   
The third phase was the realisation by Aitchison in the 1980’s that compositions provide 
information about relative, not absolute, values of components, that therefore every 
statement about a composition can be stated in terms of ratios of components. The facts 
that logratios are easier to handle mathematically than ratios and that a logratio 
transformation provides a one-to-one mapping on to a real space led to the advocacy of 
a methodology based on a variety of logratio transformations. These transformations 
allowed the use of standard unconstrained multivariate statistics, with inferences 
translatable back into compositional statements. 
 
The fourth phase arises from the realisation that the internal simplicial operation of 
perturbation, the external operation of powering and the simplicial metric define a 
metric vector space (indeed a Hilbert space), so many compositional problems can be 
investigated within this space. There has thus arisen a staying- in-the-simplex approach 
to the solution of many compositional problems.  
 
 
3.  A comment on statistical modelling 
 
In the mid 1940’s as a mathematical student in the University of Edinburgh I attended 
two courses touching on statistics. First from Sir Edmund Whittaker a chronological 
development of mathematics including an appealing section on probability, with a 
Bayesian argument the only suggested form of inference. A simple example of a 
marksman firing at a target with his skill, probability of a hit, having a beta prior 
assigned and the outcome of a binomial trial allowing an updating of an assessment of 
his skill, elementary BUGS in modern parlance. Second, Professor A C Aitken, in a 
course on Statistical Mathematics, laid out in great elegance all sorts of mathematical 
tools associated with current statistical thought but left me blind as far as its application 
to statistical inference was concerned. It was only later in Cambridge when I decided to 
study for the Diploma in Mathematical Statistics and read Kolmogorov’s treatise on 
axiomatic probability that I recognised that a clearly defined and appropriate reference 
set (what we now refer to as a sample space) is the essential first step in statistical 
model building. 
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4.  Sample space and probabilistic structure. 
 
In probabilistic and statistical model building the role of the sample space is, I believe, 
not widely understood and we have seen this misunderstanding in recent controversy in 
the geological compositional community. The sample space is nothing more nor less 
than a convenient reference space in which to record unambiguously the possible 
outcomes of the experiment of interest. As long as there is a one-to-one correspondence 
between possible outcomes of the experiment and the elements or points of the sample 
space the basic modelling condition has been met. This can often give an amount of 
freedom in the choice of sample space and which of these sample spaces the modeller 
chooses may depend entirely on personal choice or considerations of mathematical 
simplicity or tractability. At the second stage of modelling a probability structure or 
indeed a class of probability structures is placed on the sample space. It is important to 
realise that these are separate steps in the model building, and as we shall see have 
special relevance to the problem of essential or structural zeros in compositional 
modelling. 
 
 
5.  Transformation methodology 
 
The original, largely intuitive, approach to compositional data analysis in my 1986 
monograph was by way of a logratio transformation methodology. Transformation 
techniques have been very popular and successful over more than a century, from the 
Galton-McAllister introduction of such an idea in 1879 in their logarithmic 
transformation for positive data, through variance-stabilising transformations for sound 
analysis of variance, to the general Box-Cox transformation and the implied 
transformations in generalised linear modelling. The logratio transforma tion principle 
was based on the fact that there is a one-to-one correspondence between compositional 
vectors and associated logratio vectors, so that any statement about compositions can be 
reformulated in terms of logratios, and vice versa. The advantage of the transformation 
is that it removes the problem of a constrained sample space, the unit simplex, to one of 
an unconstrained space, multivariate real space, opening up all available standard 
multivariate techniques. The original transformations were principally the additive 
logratio transformation 
 

alr x x x x x x xD D D D( ) [log( / ) log( / ), . . . log( / )])= −1 2 1  
 
and the centred logratio transformation 
  

clr x x g x x g x x g xD( ) [log( / ( )) log( / ( )) . . . log( / ( ))]= 1 2 , 
 
where g x( )  denotes the geometric mean of the components of x. 
 
Either or both, with a little care, can be used to analyse a wide variety of compositional 
problems. An important aspect of such transformations from the viewpoint of 
interpretation is that the logarithmic function is monotonic increasing. If a logratio 
increases, the ratio increases. 
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6.  TRS (Transformation resistance syndrome) and other pockets of resistance and 
confusion 
 
There is a serious condition of scientists and indeed statisticians, some of them eminent, 
that I refer to as TRS, transformation resistance syndrome. It’s been around for a long 
time, seems to be highly infectious and so far no really effective cure is available. 
That’s not quite true since the effective cure involves sensible thought though not all 
sufferers seem willing to accept that therapy.  
 
The logratio transformation methodology seemed to be accepted by the statistical 
community; see for example the discussion of Aitchison (1982). The logratio 
methodology, however, drew fierce opposition from other disciplines, in particular from 
sections of the geological community. The reader who is interested in following the 
arguments that have arisen should examine the letters to the Editor of Mathematical 
Geology over the period 1988 through 2002; in particular, see Watson and Philip 
(1989), Aitchison (1989, 1990a), Watson (1990), Aitchison (1991a), Watson (1991), 
Aitchison (1991b, 1992b), Woronow (1997a, 1997b), Aitchison (1999), Zier and 
Rehder (1998), Aitchison et al (2000), Rehder and Zier (2001), Aitchison et al (2001) 
and Aitchison, Barceló-Vidal and Pawlowsky-Glahn (2002). The transformation 
methodology has withstood these attacks, and in many ways the adverse responses have 
helped to clarify the important principles underlying compositional data analysis and to 
consolidate knowledge of the underlying algebraic-geometric structure of the simplex 
sample space. 
 
 
7.  Principles of compositional data analysis 
 
Two main principles of compositional data analysis are scale invariance and 
subcompositional coherence. Scale invariance merely reinforces the intuitive idea that a 
composition provides information only about relative values not about absolute values,  
and therefore ratios of components are the relevant entities to study. This concept is 
easily formalised into a statement that all meaningful functions of a composition can be 
expressed in terms of a set of component ratios (Aitchison 1997, 2001). 
Subcompositions of compositions are the analogue of marginals or subvectors in 
unconstrained multivariate analysis (Aitchison 1986, p.33). Subcompositional 
coherence demands that two scientists, one using full compositions and the other using 
subcompositions of these full compositions, should make the same inference about 
relations within the common parts. Working with ratios, or equivalently logratios, 
involves not only scale invariance but automatically subcompositional coherence since 
ratios within a subcomposition are equal to the corresponding ratios within the full 
composition. For details of these arguments associated with subcompositional 
coherence see Aitchison (1992a, 1994, 1997, 2001).  
 
 
8.  The algebraic-geometric structure of the simplex sample space 
 
Time has revealed the great importance of the basic operation of perturbation  within the 
simplex S D  (Aitchison, 1986, p.27) in the analysis of compositional data. We recall that 
given two D-part compositions x and y the perturbation x y⊕  is defined by  
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x y x y x y x y x y C x y x yD D D D D D⊕ = + + =[ , . . . , ] / ( . . . ) [ , . . . , ]1 1 1 1 1 1 , 
 

where C is the closure or constraining operator, standardising the contents of a positive 
vector to unit sum by division by the sum of the components. The inverse operation 
Θ is easily defined by 
 

x y C x y x yD DΘ = [ / . . . . , / ]1 1 . 
 
The underlying reason for this is that perturbation plays in the simplex a role precisely 
analogous to displacement or translation in real space; it is a mechanism for recording 
change. For example, if a D-part composition x changes through whatever process to a 
D-part composition X the change can be ascribed to a perturbation p satisfying 
X p x= ⊕  with solution provided in terms of the inverse perturbation operator Θ  as 
 

p X x C X x X xD d= =Θ [ / , . . . , / ]1 1 . 
 
Perturbation thus plays an important role not only in simple change as just described but 
also in describing imprecision, in characterising error in compositional regression and in 
the computation of residual compositions in compositional regression and in other 
compositional fitting techniques.  
 
It is important to realise that the perturbation operation on the simplex defines an 
abelian group on the simplex, with identity e D= ( / )[ , . . . , ]1 1 1  and inverse 
p C p pD

− =1
11 1[ / . . . . , / ] .  

   
There is a second operation in the simplex, that of powering, the analogue of scalar 
multiplication in real space, which is playing an increasingly important role in 
compositional data analysis. Given a D-part composition DSx ∈  and a real number 
a R∈ 1  the power transformed composition is 
 

a x C x xa
D
a⊗ = [ , . . . , ]1 .  

 
Note that we have used the operator symbols ⊕  and ⊗  to emphasize the analogy with 
the familiar operations of translation and scalar multiplication of vectors in the vector 
space DR . It is trivial to establish that the operations ⊕  and ⊗  define a vector or linear 
space structure on S d .  

 
The structure can be extended to produce a metric vector space by the introduction of 
the simplicial metric 0: ≥→×∆ RSS DD

S  and defined by Aitchison (1983;  p.193) as  
 

∆S
i i

i

D
dx y

x
g x

y
g y

x y S( , ) log
( )

log
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where g(. )  denotes the geometric mean of the components of the enclosed vector. The 
fact that this metric has also desirable properties, such as permutation and perturbation 
invariance, a powering effect analogous to a scalar multiplication effect in RD and  
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subcompositional dominance, relevant and indeed logically necessary for meaningful 
statistical analysis of compositional data, has been spelt out in detail, for example in 
Aitchison (1992b). The norm || ||x  consistent with the metric ∆ S  is defined by 
 

|| || ( , ) log
( )

x x e
x

g xS
i

i

D
2 2

1

2

= =








=
∑∆ ,  

 
where e D D= [ / , . . . , / ]1 1  is the identity of the perturbation group; and the associated 
inner product 〈 〉x y,  is defined by  
 

      〈 〉 =
=

∑x y
x

g x
y

g y
i

i

D
i, log

( )
log

( )1
. 

 
As for any vector space, generating vectors, bases, linear dependence, orthonormal 
bases and subspaces play a fundamental role and this is equally true for the simplex 
metric vector space. In such concepts the counterpart of ‘linear combination’ is a power-
perturbation combination such as 
 

           x u uC C= ⊗ ⊕ ⊕ ⊗( ) . . . ( )1 1β β , 
 

and such combinations play a central role. In such a specification the β ’s are 
compositions regarded as generators, and the combination generates some subspace of 
the unit simplex as the real number u-coefficients vary. When this subspace is the whole 
of the unit simplex then the β ’s form a basis. Generally a basis should be chosen such 
that the generators are ‘linearly independent’ in the sense that β β1 , . . . , C  are linearly 
independent if and only if 
 

      ( ) . . . ( ) . . .u u e u uC C C1 1 1 0⊗ ⊕ ⊕ ⊗ = ⇒ = = =β β , 
 

where e D D= [ / , . . . , / ]1 1  is the identity composition. For S D  which is essentially a  
(D –1)-dimensional space, a linearly independent basis has D –1 generators. Important 
among such bases are those which form an orthonormal basis, say with generators 
β β1 1, . . . , D− , which have unit norm || || ( , . . . , )βi i D= = −1 1 1 , and are orthogonal in 
the sense that 〈 〉 = ≠β βi j i j, ( )0 . 
 
The coefficients of a D-part composition x relative to an orthonormal basis β β1 1, . . . , D−  
are 〈 〉 〈 〉−x x D, , . . . ,β β 1  and are logratios, termed isometric logratios since the 
corresponding ilr transformation preserves the simplicial metric as the Euclidean metric 
in R D −1 . Within the ilr framework we can get different transformations corresponding 
to different orthonormal bases. 
 
As on any vector space a set of C orthonormal generators can easily be extended to form 
an orthonormal basis of S D . Later we shall see that orthonormal bases play a central role 
in a data-analytic sense in terms of the simplicial singular value decomposition of a 



 7 

compositional data set. 
 
Clearly in compositional processes rates of change of compositions are important and 
here we define the basic ideas. Suppose that a composition x t( )  depends on some 
continuous variable t such as time or depth. Then the rate of change of the composition 
with respect to t can be defined as the limit 
 

Dx t
dt

x t dt
dt

x tdt( ) lim { ( ) log ( )}]= ⊗ +−> 0

1
Θ x(t)} = C[exp{

d
 

 
where d/dt denotes ‘ordinary’ differentiation with respect to t.  Thus, for example, if  
x t h t( ) ( )= ⊕ ⊗ξ β  then Dx t h t( ) '( )= ⊗ β .? There are obvious extensions through 
partial differentiation to compositional functions of more than one variable. We note 
also that the inverse operation of integration of a compositional function x t( )  over an 
interval ( , )T T0  can be expressed as  
 

x t dt C x t dt
T

T
( ) [exp{ log ( ) }]= ∫∫

0

. 

 
For further details of this algebraic-geometric structure of the simplex see Aitchison 
(2001), Aitchison et al (2002), Barceló-Vidal,  Martin-Fernández, and  Pawlowsky-
Glahn, (2001),  Pawlowsky-Glahn and Egozcue (2001). 
 
 
9.  Limitations in the interpretability of compositional data 
 
There is a tendency in some compositional data analysts to expect too much in their 
inferences from compositional data. For these the following situation may show the 
nature of the limitations of compositional data.  
 
Outside my home I have a planter consisting of water, soil and seed. One evening 
before bedtime I analysed a sample and determined its (water, soil, seed) composition as 
x = [3/6  2/6  1/6]. I slept soundly and in the morning again analysed a sample, finding 
X = [6/9  2/9  1/9]. I measured the change as the perturbation  
 
   X x CΘ = =[( / ) / ( / ) ( / ) / ( / ) ( / ) / ( / )] [ / / / ]6 9 3 6 2 9 2 6 1 9 1 6 1 2 1 4 1 4 . 
 
Now I can picture two simple scenarios which could describe this change. Suppose that 
the planter last evening actually contained [18  12  6] kilos of (water, soil, seed), 
corresponding to the evening composition [3/6  2/6  1/6], and it rained during the night 
increasing the water content only, so that the morning content was [36  12  6] kilos, 
corresponding to the morning composition [6/9  2/9  1/9]. Although this rain only 
explanation may be true, is it the only explanation? Obviously not, because the change 
could equally be explained by a wind only scenario, in which the overnight wind had 
swept away soil and seed resulting in content of [18  6  3] kilos and the same morning 
composition [6/9  2/9  1/9]. Even more complicated scenarios will produce a similar 
change. For example a combination of rain and wind might have resulted in a 
combination of increased water and decreased soil and seed, say to a content of [27  9  
4.5] kilos, again with morning composition [6/9  2/9  1/9]. 
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The point here is that compositions provide information only about the relative 
magnitudes of the compositional components and so interpretations involving absolute 
values as in the above example cannot be justified. Only if there is evidence external to 
the compositional information would such inferences be justified. For example, if I had 
been wakened by my bedroom windows rattling during the night and I found my rain 
gauge empty in the morning I would be justified in painting the wind only scenario. But 
I slept soundly during the night. 
 
A consequence of this example is that we must learn to phrase our inferences from 
compositional data in terms which are meaningful and we have seen that the meaningful 
operations are perturbation and power.  
 
 
10.  Characteristics of compositional variability 
 
For statistical modelling we have to consider distributions on the simplex and their 
characteristics. The well-established ‘measure of central tendency’ ξ ∈S D , which 
minimizes E xS{ ( , )}∆ ξ , is the ‘centre’ 
 

         ξ = =cen x C E x( ) [exp{ (log )}].  
 

Conforming with this mean value there is a variety of equivalent forms of dispersion 
and covariance characteristics, the logratio covariance matrix Σ  (Aitchison 1986, p.77), 
the centred logratio covariance matrix Γ  (Aitchison, 1986, p.79) and the variation 
matrix Τ  (Aitchison, 1986, p.76). Importantly these dispersion characteristics are 
consistent with the simplicial metric defined above. 
  
 
11.  Consequential results for compositional data sets 
 
In what follows we shall be concerned with compositional data sets, typically an DN ×  
matrix X with nth row composition xn . First we note that the estimate $ξ  of ξ  is given 
by  
 

         $ [ , . . . , ]ξ = C g g D1 ,  
  
where the g’s are the geometric means of the individua l components. There is for such a 
compositional data matrix a central result, analogous to the singular value 
decomposition for data sets associated with the sample space R D , on which much of 
multivariate statistical methodology is based. Any compositional data matrix X can be 
decomposed in a power-perturbation form as follows 
 

               x u p b u p bn n nR R R= ⊕ ⊗ ⊕ ⊕ ⊗$ ( ) . . . ( )ξ 1 1 1 , 
 
where $ξ  is the estimate of the centre of the data set, and p i Ri ( , . . . , )= 1  are positive 
‘singular values’ in descending order of magnitude, the b i Ri ( , . . . , )= 1  are orthogonal 
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compositions, R is a readily defined rank of the compositional data set and the u’s are 
power components specific to each composition. In practice R is commonly D − 1 , the 
full dimension of the simplex. In a way similar to that for data sets in DR  we may 
consider an approximation of order Rr < to the compositional data set given by 
 
    x u p b u p bn

r
n nr r r

( ) $ ( ) . . . ( ).= ⊕ ⊗ ⊕ ⊕ ⊗ξ 1 1 1  
 
Such an approximation retains a proportion 
  

   ( . . . ) / ( . . . )p p p pr R1
2 2

1
2 2+ + + +  

 
of the total variability of the N D×  compositional data matrix as measured by the trace 
of the estimated centered logratio covariance matrix or equivalently in terms of the total 
mutual squared distances as 
 

{ ( )} ( , ).N N x xS
m n

D

m n− −

<
∑1 1 2∆   

  
This increased understanding of the algebraic-geometric structure of the underlying 
simplex sample space has opened up the possibility of a staying- in-the-simplex 
approach to compositional data analysis, an alternative to the logratio analysis approach. 
It is important to realise that the approaches are equivalent in the sense that each, 
properly used and interpreted, will lead to identical inferences. Which is preferred by a 
particular analyst will, I believe, depend largely on personal choice, with the more 
mature mathematically probably favouring the stay- in-the-simplex approach. With the 
simplex as a metric vector space ideas such as minimum variance unbiasedness and 
least squares estimation, are available in compositional data analysis, as demonstrated 
by Pawlowsky-Glahn and Egozcue (2002). 
 
 
12.  Probability measures on the simplex 
 
A welcome addition to the various classes of parametric distributions on the simplex – 
the additive logistic normal (Aitchison and Shen, 1980; Aitchison, 1986, p.113), the 
multiplicative logistic normal (Aitchison, 1986, p.130), partitioned classes (Aitchison, 
1986, p.132) and the Dirichlet-embracing generalisation *Aitchison, 1985, 1986) – is 
the multivariate logistic skew normal based on the multivariate skew normal class on 
R D  introduced by Azzalini and Dalle Valle (1996) and further developed by Azzalini 
and Capitanio (1999). This allows for skewness in the logratio transformed data and 
promises to allow more extensive study of methods which depend on distributional 
form. For some uses of this distribution in compositional data analysis see Aitchison 
and Bacon-Shone (1999), Mateu-Figueras, Barceló-Vidal and Pawlowsky-Glahn 
(1998). An underlying difficulty with this parametric class may turn out to be the 
complex relationship among the parameters, for example in the sense that the 
correlations involve the skewness parameters.  
 
The characteristic and moment generating functions for distributions in R D are  familiar 
useful tools of distributional analysis. Study of the properties of simplicial distributions 
has been greatly eased by the introduction of the appropriate transform or generating 
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function. The transform which seems to be most suited to this purpose is a multivariate 
adaptation of the Mellin transform. Let  
 
   U

D
 = {(u1, . . .uD): u1 + . . . + uD = 0 }.  

 
Suppose that a composition  x S D∈  has density function f x( ) . Then define its Mellin 
generating function M U Rx

d: → 1  by the relationship  
 

M u x x f x dxx
u

S D
u

d
D( ) . . . ( )= ∫ 1

1 . 

 
Note that the restriction of the vector u to the hyperplane U

D 
rather than R

D
 is dictated 

by the need to meet the requirement of scale invariance, here ensured by the fact that 
integrand is expressible in terms of ratios of the components of x. 
 
The Mellin generating function has perturbation, power and limit properties similar to 
additive and scale properties of characteristic and moment generating functions for 
distributions in RD. For further details of its properties and uses see Aitchison (2001). 
 
Testing for distributional form and outlier detection has also been developed by 
Barceló, Pawlowsky and Grunsky (1996) and an attempt at a definitive form which 
overcomes the problem of choice of divisor and allows insight into the extent of 
concurrence has recently been obtained in Aitchison, Mateu-Figueras and Ng (2003). 
 
It is also worth remembering that kernel density estimation is also available for 
compositional data; see, for example, Aitchison and Lauder (1985). 
 
 
14.  Compositional processes 
 
Most scientists are interested in the nature of the process which has led to the data they 
observe.  For example, geological language contains many terms to describe a whole 
variety of envisaged geochemical processes, such as denudation, diagenesis, erosion, 
gravity transport, metasomatism, metamorphism, mixing, orogenesis, 
polymetamorphism, sedimentation, transportation, weathering. Unfortunately the 
scientist is seldom in the position of observing a closed system where fundamental 
principles such as conservation of mass and energy apply. Commonly the only data 
available take the form of compositional data providing information only on relative 
magnitudes of the constituents of the specimens. Thus there is a need to extend 
compositional data analysis to provide satisfactory models to describe such processes. 
We direct attention here to two such processes: differential perturbation processes and 
convex linear mixing processes.  
 
Differential perturbation processes.  
 
Many of the terms used to describe the compositional processes appear to envisage 
some kind of differential change in the components of the composition. Since 
differential change in compositions is simply characterised by the simplex operation of 
perturbation this seems the sensible tool for the mathematical statistical study of such 
processes. The fundamentals for such a study were set out in Aitchison and Thomas 
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(1998). Briefly the argument went as follows. 
 
    Consider a  process which results in an observable D-part composition 
x t x t x tD( ) [ ( ), . . . , ( )]= 1  which varies with some ordered variable such as time t. Since 
processes are commonly assumed to take place continuously over time we can attempt 
to describe such a process in a time-differential way by relating the composition 
x t dt( )+  at time t dt+  to the composition x(t) at previous time t in terms of a small 
perturbation. Since such an infinitesimal  perturbation will be a slight departure from  
the identity perturbation [1/D, . . . , 1/D] the process can be set out as  
 

x t dt x t D t dt t dtD( ) ( ) ( / ){ ( ) , . . . , ( ) }.+ = ⊕ + +1 1 11δ δ  
 
Sometimes  it is convenient to assume that such a perturbation is in the D-part simplex 
but since the perturbation operation is invariant with respect to scale there is strictly no 
need for such a requirement. The original development then moved to a set of 
differential  equations in logratios for which the solution is   
  

 

 
      
where x t( )0 is the known or assumed composition at time t 0 .With differentiation now 
defined on the simplex we note that an alternative expression of the process is in terms 
of the simple differential equation Dx t C t i Di( ) [exp( ( ): , . . . , ]= =δ 1  with the known 
value at t 0  being the ‘boundary condition’. 
 
An interesting and important special case is where δ γi it h t( ) ( )= , when the relationship 
takes the form of a simple compositional regression in a power-perturbation form as 
 

    x t x t H t( ) ( ) ( ) ,= ⊕ ⊗0 β   
 
where  
 

H t h t dt
t

t
( ) ( )= ∫

0

 and β γ= =C i Di[(exp( ): , . . . , ]1   

 
With actual compositional data the regression either in logratio terms or in staying- in- 
the-simplex mode is easily accomplished. The important feature here is the possibility 
of alternative approaches to interpretation. For further details and an application see 
Aitchison and Thomas (1998) and for further developments see Aitchison and  Barceló-
Vidal (2002).. 
 
A great disappointment here is that while scientists are very ready to argue that a main 
avenue of study is in process of change, (we’ve already seen the jargon of geology 
above) such as in biologal developmental processes, environmental processes, there 
seems to be little attempt to structure these in sensible probabilistic compositional 
terms.  
 

x t x t u du i Dit

t
( ) ( ) [exp ( ) ( , . . . , )],− ⊕ 


=∫0

0

1δ
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15.  Rest and be thankful 
 
To reach my home from the University of Glasgow I have to drive on a climbing road 
which was once so treacherous that the summit was accorded the name ‘Rest and be 
thankful’. I think in compositional data analysis we have reached such a position. 
However the road ahead to my home is a twisting , undulating, single track with passing 
and overtaking slots, and it is well equipped with ditches for the unwary. Driving needs 
concentration with particular attention to the variable road conditions and weather. Each 
problem, snow and ice, driving rain, reflection glare from a low sun, needs it own 
solution. I think the sensible way ahead with compositional data analysis is probably to 
be found in facing up to the applied problems which face us. This workshop with its 
emphasis on application is an opportunity to face the challenge of new problems in a 
great variety of disciplines.  
 
Some comments at the resting place 
 
Most of us here would probably accept most of the previous rather theoretical part of 
this lecture with its theme that some logical consequences of two simple principles of 
compositional data analysis, namely scale invariance and subcompositional coherence. 
To an extent some of our problems seem to arise from an embarrassment of riches, in 
that we have available three different transformation possibilities – alr, clr ad ilr  - each 
with advantages and disadvantages, so that we have to make choices to suit the applied 
problem. The transformation alr is simple in that the logratios involve only two 
components and so are relatively easy to interpret; but care has to be taken to note that 
the simplicial metric is based on the norm alr x H alr x T( ) ( ) and so careless 
consideration of the Euclidean metric obtained after the transformation to R D −1  is 
incorrect. The transformation clr has been criticised because, while isometric and 
treating the components symmetrically, it transforms onto a hyperplane of R D  and that 
the associated  centred logratio covariance matrix is singular; these criticisms are more 
fussy than real since modern matrix algebra provides generalised inverses and 
determinants. For example, I have now designed my compositiona l regression program 
so that I regress clr(x) on the concomitants and then it is easy to pick out any two-
component logratio by a simple subtraction. The ilr transformations are especially 
useful for theoretical work where the simplicial metric is particularly important such as 
in establishing ‘least squares’ properties. I have found, however, that they are not 
particularly suited to providing simple modelling of applied problems. 
 
We now have also a staying- in-the-simplex possibility. While this is elegant and 
certainly satisfying to the mathematically adequate there must be some doubts about 
how we can serve the various disciplines in the use of the mathematical ideas in 
interpreting inferences in consultative work. 
 
Now I would like to focus on some real applied problems and see how this may alter 
our modelling, even our sample space. My argument from now on is driven by an 
applied mathematical approach. 
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16.  Caveat 1:  Is my problem compositional?  A study of the crustacean Tripartus 
Aitchisonii 
 
A biological friend, BF, has discovered, and is fish-farming a new thin-shelled 
crustacean, which he has named Tripartus Aitchisonii. It is similar to those Plymouth 
shrimps that Karl Pearson and Weldon discussed in Pearson (1997). It has a head, body 
and tail, with only the body edible. BF has just brought me the results of an experiment 
he has carried out to investigate the effects of a new hormone addition to diet, which he 
anticipates may increase the proportion of body at the expense of head and tail. His 
experiment consisted of separating a randomly selected sample of 100 Triparti 
Aitchisonii at random into two sets, each of 50. The first set was sacrificed to determine 
their compositions as proportions by weight. The second set was fed the hormone-
enhanced diet over a period of eight weeks and then sacrificed to determine their 
compositions as proportions by weight. BF is numerate and had plotted these 
compositions in the triangular diagram of Figure 1, where blue denotes before and red 
after the hormone treatment. He was excited and ready to bulk purchase the hormone. 
‘Steady’, I said. Statisticians experienced in having to deal with data from experiments 
in which they have had no part in designing will appreciate my caution. 
 
‘Have you any data other than the compositions’, I asked. ‘Oh, yes’, he replied, ‘I have 
the weights of each specimen. Here’s the complete data set.’ You can see my train of 
thought. We know that the shape (head, trunk, leg) of children change as they grow 
taller. May the obvious change in composition be solely due to natural growth in weight 
of Tripartus. It’s obviously a badly designed experiment with confounding between 
treatment and natural developmental effects. But let’s investigate the data. 
 
A histogram of the before and after weights is shown in Figure 2. Note the substantial 
differences between before and after weights and the skewness of the distributions. I 
decided to construct a lattice of hypotheses to investigate the situation. (Fig. 3). The 
maximum model M considered was 
 

M x t error x t errorb b b a a a: ( ) , ( )= ⊕ ⊗ ⊕ = ⊕ ⊗ ⊕ξ β ξ β ,  
 
where b, a denote before and after, t denotes logarithm of weight, and β βb a,  are the 
compositional form of regression coefficients. The simplest hypothesis H 0  (at the 
bottom of the lattice) is one of ‘no difference, no size effect), namely 
 

H x error x errorb a0: ,= ⊕ = ⊕ξ ξ , 
 
with at higher levels the hypotheses H1  and  H 2  of  ‘no size effect’ and ‘equal size 
effect’, respectively 
 

H x error x error

H x t error x t error
b b a a

b a

1

2

: , ,

: ( ) . ( ) .

= ⊕ = ⊕

= ⊕ ⊗ ⊕ = ⊕ ⊗ ⊕

ξ ξ

ξ β ξ β
  

 
Use of generalased likelihood ratio tests shows that we must successively reject H H0 1,  
but that H 2  cannot be rejected, the test statistic value of 11.8 to be compared against the 
5 per cent critical value 14.07 of chi-squared at 7 degrees of freedom. 
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Thus we conclude that the apparent compositional change so obvious in Figure 1 can be 
wholly explained by the increase in size. Of course, it may be that the hormone additive 
to diet is responsible for the increase in size but because of the confounding of possible 
effects within this experiment there is no way of establishing the truth. We can only 
recommend to our biologist that he conducts a properly designed experiment as in 
Aitchison and Ng (2003, in a later session in CODAWORK03). And it would obviously 
be better to have a larger number of specimens. After all I’m enjoying meals of 
Tripartus Aitchisonii.  
 
Note: The data set and Figures 1- 3 will be available at the workshop after this lecture. 
 
17.  Caveat 2:  Is the Hilbert space simplex the appropriate sample space? A study 
of how the lesser goilbird spends its time  
 
Given the elegance of the algebraic-geometric (Hilbert space) structure of the simplex it 
is easy to fall into the pure-mathematical trap that all compositional problems must 
depend on this structure, that all statistical problems should be addressed in terms of 
coordinates associated with orthonormal, isometric bases, that orthogonality is closely 
associated with statistical independence. Let me say here that I think that many of these 
ideas are important in establishing useful results. For example, such a structure is 
obviously central to establishing the counterparts of the well known Markov least 
squares theory associated with R D .  But while we recognise the simplex as our 
compositional sample space we must ensure that the ways we place probability 
measures or distributions on that sample space are appropriate to the applied 
compositional problem we face. I take an example similar to the statistician’s day 
problem in Aitchison (1986,  Sections 1.9, 10.3) for illustrative purposes. Time budgets 
have become a regular source of information in analysing behaviour patterns in many 
disciplines. Our example concerns the behaviour pattern of the lesser goilbird, a garden 
bird whose territory is confined to a particular garden. Its four activities (feeding, 
fighting | perching, sleeping) divide themselves into two natural divisions: active, 
including feeding and fighting, and passive, including perching and sleeping. Obvious 
behavioural questions are whether active and passive patterns are independent and 
whether these patterns are independent of the division of the day between active and 
passive.  
 
The time budgets of 60 goilbirds observed in 60 gardens over random days is given in 
Table 1. 
 
In terms of the generic composition [ ]x x x x1 2 3 4  we are here dealing with a partition   
[ | ]x x x x1 2 3 4  of order 1’ The relevant question in terms of logratios  is whether  
 

y x x y x x y x x x x1 1 2 2 3 4 3 1 2 3 4= = = + +log( / ), log( / ), log{( ) / ( )  
 
are distributed independently. 
 
Now it has been put to me that the way to tackle such problems is to consider an 
isometric logratio transformation, acknowledging that an appropriate representation of 
the composition is in terms of coordinates with respect to an orthonormal basis, 
resulting in  
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x x x e x x e x x x x e= ⊗ ⊕ ⊗ ⊕ ⊗log( / ) log( / ) log( / )1 2 1 3 4 2 1 2 3 4 3 , 

 
even suggesting that establishing that  
 

z x x z x x z x x x x1 1 2 2 3 4 3 1 2 3 4 3= = =log( / ), log( / ), log( / )  
 
are independent would imply independence of y y y1 2 3, , . This is simply not true, as our 
the data set will demonstrate. 
 
The correlation matrices of y y y1 2 3, ,  and z z z1 2 3, ,  are as follows 
 
         1.0000   -0.0022   -0.0861 
        -0.0022    1.0000   -0.2457 
         -0.0861   -0.2457    1.0000 
 
and 
 
      1.0000   -0.0022   -0.6227 
        -0.0022    1.0000   -0.6404 
        -0.6227   -0.6404    1.0000 
 
demonstrating clearly that there is independence associated with the real question 
whereas the pseudo-question suggests dependence between the subcompotions and the 
partition. 
 
Another line of the orthonormalists is that the appropriate modelling must indeed be in 
terms of the orthonormal coefficients  z z z1 2 3, , and then it is simply a case of expressing 
the relevant variables y y y1 2 3, ,  in terms of these coordinates. The first two relations  
are obviously straight forward but  
 

y
z z z z z z

z3

1
2 1 2 3

1
2 1 2 3

2

3
1

=
+ + + − +

+
exp{ ( ) exp{ ( )

exp( )
. 

 
This will, of course, lead to a correct analysis but my point is why go to all this 
complexity, not addressing the problem of interest in its simplest terms. Statisticians 
have over the past century addressed problems of statistical independence correctly 
without being aware of any algebraic-geometric structure of their sample spaces. My 
complaint is not that such structure is unimportant but that we must not let pure-
mathematical ideas drive us into making the statistical modelling more complicated that 
is necessary. Simplicity in modelling is important, particularly when we have to explain 
the inferences to less numerate colleagues.    
 
 
18.  Caveat 3.  Is the Hilbert space simplex the appropriate sample space?  A study 
of multiplicative subjective probability assessments. 
 
A less well known niche of compositional problems is where subjects are presented 
with a series of cases of unknown category, given information about each case and 
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asked to assign probabilities to each of the possible categories. See, for example, 
Taylor, Aitchison and McGirr (1970), Aitchison and Kay (1976). for some typical 
situations. In one diagnostic situation involving three possible categories (a diagnosis of 
malignancy in adrenal carcinoma, or one of two benign adrenal conditions, namely 
adenoma or hyperplasia) each subject was asked first to divide the available unit of 
probability between malignancy and benignancy, say as x1  and 1 1− x ; then to divide the 
remaining 1 1− x  between adenoma and hyperplasia as x2  and x3 . The natural way of 
investigating the resulting composition [ ]x x x1 2 3  is in terms of the ratios 
x x x x1 1 2 31/ ( ), /− , or their logratios, and leading as above to a much simpler and 
direct analysis than what would be attained by insisting on working within the Hilbert 
space coordinate systems 
 
I suspect that there are many problems of this ‘remaining space’ nature waiting to be 
tackled along compositional lines, for example in developmental biology and in the 
earth sciences. See, for example, the discussion of Niggli remaining space in Chayes 
(1983)..   
 
 
19.  Convex linear mixing 
 
A popular way in some disciplines, such as sedimentology and environmental pollution 
studies, of studying compositional data is in terms of convex linear modelling 
processes. Such an approach is based on some such assumption as conservation of mass. 
There is, of course, no way that compositional data can be used to support such a mass 
conservation hypothesis since compositions carry no information about mass. 
Compositions can, however, be analyzed within models which assume conservation of 
mass. All these models assume that there are source compositions, say ξ ξ1 , . . . , C , from 
which a generic observed composition x arises as a convex linear combination 
 

x C C= + +π ξ π ξ1 1 . . .  ,  
 
where π π π= ∈[ , . . . , ]1 C

CS is the vector of mixing proportions. The form of modelling 
obviously depends on the extent of the information about the number of sources and the 
source compositions. At the ‘ignorance end’ neither the number of sources nor their 
compositions are known – the so-called endmember problem as presented, for example, 
in Renner (1993) and Weltje (1997). At the opposite extreme the problem may be to test 
a hypothesis that the sources are specified compositions ξ ξ1 , . . . , C . Many intermediate 
situations can be visualised: an example is the pollution problem analysed by Aitchison 
and Bacon-Shone (1999), where there are not only samples from the target set but also 
sampled compositions from the sources. 
 
Note that the basic operation here is an additive one, so that all the nice distributional 
properties associated with perturbation and power are not available. For example,  given 
that ξ ξ1 , . . . , C  are independently distributed as L LD D

C C
( ( , ), . . . , ( , )α α1 1Ω Ω  and that 

π is a constant or has some given logistic normal distribution, no explicit form for the 
distribution of the convex linear mixture x  can be found. It is only by the determination 
of good approximations to the distribution that Aitchison and Bacon-Shone (1999) can 
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resolve their pollution problem. I suspect that the full solution to other problems in this 
area will depend on our ability to construct such approximations.  
 
    The additive nature of such modelling does not mean that basic principles of 
compositional data analysis should be neglected. In solutions of the endmember 
problem there has been a tendency to avoid the simplicial metric and to revert to 
Euclidean distance and classical least squares in estimating mixture vectors. This is 
certainly not necessary and the more appropriate simplicial metric may be used. For 
example an approach to the so-called endmember problem where a set of say C 
endmember compositions ξ ξ1 , . . . , C  is sought such that each composition  
xn

  (n = 1, . . . , N) of the data set can be expressed as a convex linear combination xn  of  
b bC1 , . . ., , uses as criterion of success the magnitude of  

       

 
while monitoring the magnitude of  
 

      ∆ S
b c

b c
2

<
∑ ( , )ξ ξ . 

 
See Aitchison and  Barceló-Vidal (2002) for further details and an example of a method 
of comparing the adequacy of differential perturbation and convex linear mixing 
processes. In the computation for such analysis a basic algorithm is obviously required 
for the maximisation or minimisation of a function on the simplex and we now have 
efficient search algorithms based on perturbation techniques. 
 
 
20.  Perturbation and subcompositional stability analysis 
 
In standard multivariate statistical analysis common hypotheses of interest concern 
changes in mean vectors and subvectors and there is a substantial methodology to deal 
with such applied problems. In compositional data analysis it is now well established 
that compositional change is most readily described in terms of the simplicial operation 
of perturbation and that subcompositions replace the marginal concept of subvectors. 
Since it is obvious that hypotheses concerning perturbations and subcompositions are 
manageable within the framework of either logratio or staying- in-the-simplex analysis it 
is surprising that little application has been undertaken in this area. We have seen a 
simple application of perturbation hypothesis testing in Section 12. Since a later paper 
in this workshop (Aitchison and Ng, 2003a) will present the challenge of such 
hypothesis testing in the analysis of two experiments in food production I will not go 
into further details here.  
 
 
21.  Joint compositional distributions  
 
Some years ago, having been asked by several geologists, whether logratio analysis 
would apply to bicompositions such as major oxide by trace element compositions I 
submitted a paper to Math Geology showing how the analysis could be done on the 
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basis of partition modelling, with a number of examples to illustrate the methodology.  
The first referee, a geologist, could not see any real geological problem in practice 
(despite the fact of the requests from geologists) and damned the paper with faint praise. 
The second appeared to be a statistician of sorts, with no idea about the  nature of 
compositional problems and made objections on the basis of what would arise from 
application of standard multivariate analysis. I complained to the editor about the 
quality of the refereeing and the paper was put to a third referee, an arbiter who ‘sat so 
firmly on the fence’ .that I withdrew the paper. I think many of us here may have had 
similar experiences and I’ll have something to say about the quality of refereeing later. 
The form of analysis used is still, in my view valid, and of course would apply equally 
to other situations, where for example the bicomposition consists of (hair colour, eye 
colour) proportions within different sections of a population as in the study of Tocher 
(1908), in the study of (blood, urine) compositions in clinical medicine, in  psephology 
in trying to relate the US Presidential vote composition by state to the (ethnic, rural) 
bicomposition. 
 
One point which is worth making is that in geochemistry major oxides and trace 
element compositions are essentially a single composition though measured usually in 
different units, percentages by weight and parts per million. The conversion to common 
units can be simply made in terms of a perturbation of the data. Since perturbation 
affects only the centre of a compositional distribution and not the dispersion the 
methodology for analysing such compositional variability is essentially invariant under 
perturbation.. 
.  
There are still issues involved, and many areas of application to major oxides and trace 
elements in geology, to blood and urine compositions in clinical medicine, to various 
genotype compositions. 
  
 
22.  Multiway compositional problems  
 
A school pupil has a hair colour and an eye colour. In the Tocher (1908) study hair 
colour and eye colour of every Scottish schoolboy and girl was recorded and for each of 
33 regions the hair and colour compositions for the regional population were recorded 
separately. While this is obviously of interest so much more information might have 
been obtained if the two-way composition had been recorded. What proportion of pupils 
have blue eyes and red hair? I suspect that Tocher may have such detail in mind because 
he records such a two-way composition for one of the regions. Perhaps his research 
money ran out?  
 
Aware of the possibilities of investigating hypotheses associated with such multiway 
tables I had a PhD student (C. K. Li) in Hong Kong investigate the nature of such 
problems. It was to an extent theory looking for an application since the only daa set we 
could find in the literature was a two-way classification of a small sea-bed study and 
there were no obvious hypotheses of interest. There is no doubt that other data sets and 
associated problems exist. Granulometric data appear to be not only classified by 
diameter of particle but also by nature of particle. And in the US Presidentail Election 
data it would obviously be interesting to have the state compositions presented in a two-
way manner in terms of ethnic x rural/urban. 
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So we have here an example of adequate theory awaiting a real application. 
 
 
23.  Graphical aids  
 
Harker and related diagrams. It is now over four decades since Felix Chayes warned 
geologists of the dangers of attempting to interpret Harker and similar diagrams where 
one component of a composition is plotted against another. Yet a recent search of the 
web under ‘Harker diagram’ produced some 60 sites, many of them instructing students 
in the use of such ‘graphical aids’. The only legitimate use of such diagrams is in terms 
of the ratios, that is in terms of the rays from the origin to the data points. In my view 
Harker diagrams are best condemned as misleading and best left out of any attempts to 
interpret compositional variability.  
 
Ternary diagrams. Like Harker diagrams these should be treated with caution. For 
example, in the past there has been substantial discussion on the nature of data sets with 
apparent curvature within a ternary diagram ( Butler 1979)  Are these trends or not? 
With our knowledge of the algebraic structure of the simplex we now know that 
constant logcontrast ‘curves’ are indeed the ‘straight lines’ of the simplex and so any 
interpretation of curvature within the ternary diagram should be treated with substantial 
caution. See Aitchison and Thomas (1998) for an example where such curvature can 
indeed be interpreted as a trend or compositional process.  
 
Ratio and logratio scattergrams. If scattergrams are to be used in interpreting 
compositional data then because of the necessity to meet the demands of the principle of 
scale invariance they should involve ratios or logratios. A good example of how such 
diagrams can be used for exposition is to be found in the discrimatory example in 
Thomas and Aitchison (1998). 
 
Compositional biplots.  The development of biplot techniques for compositional data is 
a substantial advance in the study of compositional data sets.  
 
The biplot (Gabriel, 1971, 1981) is a well established graphical aid in other branches of 
statistical analysis. Its adaptation for compositional data is simple and can prove a 
useful exploratory and expository tool. For a compositional data set the biplot is based 
on a singular value decomposition of the doubly centered logratio matrix. For details of 
biplot construction see Aitchison (1990b, 1997, 2001) and Aitchison and Greenacre 
(2002). Such biplots, consisting of vertices, rays, links and case markers, allow an 
overall view of compositional covariance structure, subcompositional analysis, the 
relationship of individual compositions to parts, and provide useful interpretations of 
near-coincident vertices, collinear vertices and orthogonal links. 
 
There are obviously extensions of biplot methodology to bicompositions and to 
conditional biplots.  
 
 
24,  Compositional regression 
 
Compositional regression, where the composition is the regressand and we seek an 
explanation of its variability in terms of factors and/or concomitant variable, has been 
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extensively discussed and illustrated in Aitchison (1986, 7.6–7.9) and need not be 
further discussed here. Such linear modelling within the alr-transformation 
methodology is simple and can rely on standard multivariate techniques. The expression 
of compositional regression by the staying- in-the-simplex approach is by way of power-
perturbation combinations. A composition x depends on concomitants t t1 2, , . . . as 
 

x t t p= ⊕ ⊗ ⊕ ⊗ ⊕ ⊕α β β( ) ( ) . . .1 1 2 2 , 
 
where the composition α is the analogue of ‘intercept’ in ordinary regression, the 
compositions β β1 2, , . . .    are the analogues of the ‘regression coefficients’ and p is the 
perturbation error. Clearly interpretation here is dependent on a sound mathematical 
appreciation of the algebraic-geometric structure of the simplex. 
 
 
25.  Ordination 
 
A popular pursuit in some disciplines is that of ordination whereby some statistical 
means is sought to place the multivariate specimens in some linear ordering which may 
have some significance within the discipline. A standard method os attempting this is to 
order on the basis of the magnitude of the first principal component. In compositional 
terms this takes the form of a principal logcontrast analysis and a good example is to be 
found in von Eynatten, Barcelo-Vidal and Pawlowsky-Glahn (2003). An alternative 
staying in the simplex is to perform a compositional singular value decomposition of the 
data set as in Section 11 above and use an ordering of the u n Nn1 1( , . . . , )= . 
 
26.  Subcompositions and logcontrasts 
 
It is worth pointing out that a subcomposition can be simply identified with a special set 
of logcontrasts. For example there is a one-to-one relationship between the  (1, 2, 3, 4) 
subcomposition and the values of the logcontrasts: 
 

log log . log log log , log log log logx x x x x x x x1 2 1 2 3 1 2 3 42 3− + − + + − . 
 
The reader will see here the elements of a Helmert transformation. One feature to note is 
that in such a representation the parts of the composition are in a specific order. 
 
 
27.  Natural laws  
 
The discovery of any ‘natural law’ from compositional observations has been the 
subject of debate recently. The tools for such discovery are again either principal 
logcontrast analysis or, equivalently, singular value decomposition. For details of such 
discoveries through principal logcontrast analysis see Aitchison (1999) and through 
biplot analysis see Aitchison and Greenacre (2002). 
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28.  Compositions in an explanatory or regressor role 
 
Aitchison (1986, Chapter 12) gave a number of practical situations where compositions 
play an explanatory or regressor role, where we may wish to see how a composition is 
changed by different treatments, where in experiments with mixtures we may attempt to 
determine the mixture which will provide the optimum response, and in classification or 
diagnostic problems where we may wish to use a composition as a convenient or 
efficient means of determining type or to find out if any subcomposition accounts for 
the substantive difference between the types.  
 
Binary logistic discrimination. I take the classification-diagnostic problem to illustrate 
how simple the technique here may be developed. For two types (t = 0, t = 1) a useful 
model is the binary logistic model, using a logcontrast 
 

lc x x xD D D( , ) log . . . log ( . . . )α α α α α α= + + + + + =0 1 1 1 0  
 
as the regressor. More specifically, 
 

pr t x pr t x
lc x

lc x
( | ) ( | )

exp{ ( , )}
exp{ ( , )}

= = = =
+

0 1
1

α
α

 . 

 
Maximum likelihood estimation of the parameter α  is straightforward. The beauty of 
this model is that the adequacy of a subcomposition say (1, . . .  , C) can readily be 
tested since this hypothesis can be expressed as α αC D+ = = =1 0. . . . Thus the whole 
lattice of subcompositional hypotheses can be investigate and any adequate 
subcomposition identified. Examples of this procedure can be found for hongite-kongite 
discrimination and Permian and post-Permian: discrimination (Aitchison 1986, Sections 
12.6, 12.7). Such reduction to subcomposition; can be important because it may 
eliminate expensive determinations. 
 
Probably the most dramatic example of such discrimination is in the Thomas and 
Aitchison (1998) analysis of Scottish metamorphosed limestones, where out of a 17-part 
geochemical composition a 3-part subcomposition is found to be an adequate 
discriminator. A further discussion of this will be given later in this workshop (Thomas 
and Aitchison, 2003).  
 
With such a powerful tool available it is disappointing that no other applications seem 
to have been undertaken. 
 
While I have confined attention above to two types the modelling is easily extended to 
more than two types. 
 
Sequential discrimination. Even with more than two types the above binary logistic 
regression approach may be possible, even sensible. For example, in cliinical medicine 
when a possible case of Cushing’s syndrome presents itself, the possibilities are five: 
the patient’s condition is (1) normal, (2) ectopic carcinoma, (3) adrenal carcinoma, (4) 
adrenal adenoma, (5) adrenal hyperplasia. The compositional problem here is that 
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diagnosis is based on 14-part urine steroid metabolite compositions. Following a 
suggested model of the clinician’s thought processes we might consider a four binary 
step sequence towards a diagnosis: discriminate between 
 

(i) 1 and (2, 3, 4, 5),       
 (ii) If not 1, then (2, 3) against ((4,5), 

(iii) If (2, 3) then (2) against (3), 
(iv)  If (4, 5) then (4) against (5). 

 
A possible advantage of this sequential process is that it may be found that different  
subcompositions are important at different stages and this may have some importance in 
the treatment of the disease. 
 
It would be interesting to see if such sequential processes have any bearing in other 
disciplines, for example in geology in the classification of rock types. 
 
 
29.  Experiments with mixtures 
 
Within this category of compositional problems is a large set where the aim is to 
investigate some response, commonly univariate and quantitative, but possibly even 
compositional, to different mixtures (and so compositions) of ingredients. For example, 
how does the micro-hardness of glass depend on the composition of the rare element 
additive. Here the simplex is the design space. Within this niche the question arises of 
which mixtures should be used, essentially the question of the efficient or optimum 
design of the experiment.  
 
 
30.  Problems of zero components, in particular essential or structural zeros     
 
The replacement method (Aitchison, 1986, p. 266) of rounded or trace zeros is not 
subcompositionally coherent and should now be replaced by the method arrived at 
independently by Fry, Fry and McLaren (2000) and Martin-Fernández, Barceló-Vidal 
and Pawlowsky-Glahn (2000), which preserve the ratios of non-zero components. Such 
replacement procedures still appear to be the most viable methods available provided 
sensitivity analysis over a sensible range of replacement values is used as a check.  
 
One of the tantalising remaining problems in compositional data analysis lies in how to 
deal with data sets in which there are components which are essential zeros. By an 
essential zero we mean a component which is truly zero, not something recorded as zero 
simply because the experimental design or the measuring instrument has not been 
sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many 
compositional situations, such as household budget patterns, time budgets, pollen 
zonation studies. Devices such as non-zero replacement and amalgamation are almost 
invariably ad hoc and unsuccessful. An alternative approach through ranking of 
components is given by Bacon-Shone (1992).  
 
For some essential or structural zeros careful consideration of the questions being asked 
can sometimes remove the problem; see for example the predator-prey example in 
Aitchison (1986, Section 11.7) 
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Research is under way to attempt to construct two-stage models for the treatment of 
essential or structural zeros. In such modelling it seems sensible to build up a model in 
two stages, the first determining where the zeros will occur and the second how the unit 
available is distributed among the non-zero parts. Two reports on this promising line of 
research will be presented later in this workshop by Aitchison and Kay (2003) and 
Bacon-Shone (2003).   
 
 
31.  Implications of compositional data analysis for other sample spaces 
 
The experience of researchers in compositional data analysis has some lessons for 
workers with other forms of data. The importance of the identification of the principles 
such as scale invariance and subcompositional coherence, the clear definition of an 
appropriate sample space and recognition of the basic operations of change such as 
perturbation and power, have led us to meaningful systems of statistical inference. The 
same has been true of the analysis of directional data based on the special algebraic-
geometric structure of the sphere. It is now being recognised that many, even most, 
standard multivariate data problems are concerned with positive (or non-negative) 
vectors and that perhaps we should pay particular attention to the peculiar properties of 
the appropriate sample space. Included within this category would be ratio data. See 
Aitchison and Ng (2003b) for a discussion of this. 
 
 
32.  Implications of compositional data analysis for simplex parametric spaces 
 
Multinomial and contingency table data depend for their analysis on the assignment of 
probabilistic parameters within a model, or by way of a hypothesis, to the categories or 
boxes of the contingency table. Such assignments are mathematically similar to 
compositions since they are divisions of the unit of probability to the categories or 
boxes. The contribution of compositional analysis here is through forms of Bayesian 
analysis, simple or hierarchical, where logistic normal distributions are assigned in 
various ways to the parameter vector. For an excellent example of such an approach, see 
Billheimer, Guttorp and Fagan (1997):. 
 
 
33.  A personal view of the future of compositional data analysis 
 
I think the reader will have reached the conclusion that I think that the interesting future 
of compositional data analysis will lie in statisticians searching for real applied 
problems in as many disciplines as possible. A recent search of the web under 
‘compositional data’ located over 3000 sites varying over a wide variety of disciplines, 
so there is plenty of challenges in this direction. Equally important is that applied 
workers in these disciplines should search out statisticians and present them with the 
challenge of answering their compositional questions. Tchebycheff, in his Theory of 
Maps has the fundamental idea: 
 
 Real progress is made when theory and the needs of application go hand in hand.  
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A substantial problem for those of us who have tried to promote understanding of the 
special features of compositional data analysis has been, to put it crudely, the closed 
minds of referees of journals and, to an extent, editors. I have a collection of referees’ 
reports ranging from the head in the sand, who think that the simplex is nothing more 
than a subset of real space and ‘There isn’t a special problem’,  through those who insist 
that the new methodology should be doing little more than corroborating views already 
obtained and firmly held from previous incorrect analysis, to some who have probably 
spent a lifetime looking at raw correlations and pitifully know that their life’s work is 
being attacked. I am not sure how we counter all the ignorance and prejudice. It is in my 
view a general trend in the quality of refereeing.  
 
Finally one thought out of fifty years of statistical consultative work. Take time for 
patient discussions between statistician and person with a compositional problem. My 
experience is that consultees often have great difficulty in formulating precisely the 
purpose of their experiment or observational study. It’s worth the effort. I end with my 
favourite quotation from Sir Harold Jeffreys, a mathematician-scientist, who preferred 
the simple to the complicated, and the first quotation in my 1986 monograph.     
 
It is sometimes considered a paradox that the answer depends not only on the 
observations but on the question: it should be a platitude, 
 
 
References 
 
Aitchison, J., 1981, A new approach to null correlations of proportions: Math. Geology, 
v. 13, p. 175-189. 
 
Aitchison, J., 1982, The statistical analysis of compositional data (with discussion):  J. 
R. Statist. Soc. B, v.44, p. 139-177. 
  
Aitchison, J., 1983, Principal component analysis of compositional data: Biometrika, v.  
70, p. 57-65. 
 
Aitchison, J., 1985, A general class of distributions on the simplex: J. R. Statist. Soc. B, 
v. 47, p. 136-146. 
 
Aitchison, J., 1986, The Statistical Analysis of Compositional Data: Chapman and Hall, 
London. Reprinted in 2003 with additional material by The Blackburn Press. 
 
Aitchison, J., 1989, Letter to the Editor. Measures of location of compositional data 
sets: Math. Geology, v. 21, p. 787-790. 
 
Aitchison, J., 1990a, Comment on "Measures of variability for geological data" by D. F. 
Watson and G. M. Philip: Math. Geology, v. 22, p. 223-226. 
 
Aitchison, J., 1990b, Relative variation diagrams for describ ing patterns of variability of 
compositional data: Math. Geology, v. 22, p. 487-512. 
 
Aitchison, J., 1991a,. Letter to the Editor. Delusions of uniqueness and ineluctability:  
Math Geology, v. 23, p. 275-277. 



 25 

 
 
Aitchison, J., 1991b, A plea for precision in Mathematical Geology: Math Geology, v. 
23, p. 1081-1084. 
 
Aitchison, J., 1992a, The triangle in statistics in Mardia, K.V., ed., The Art of Statistical 
Science. A Tribute to G.S.Watson : Wiley, New York, p. 89-104. 
 
Aitchison, J., 1992b, On criteria for measures of compositional differences: Math. 
Geol.ogy, v. 24, p. 365-380. 
 
Aitchison, J. 1994,. Principles of compositional data analysis: in Anderson, T.W., 
Olkin, I. and Fang, K.T., eds., Multivariate Analysis and its Applications: California: 
Institute of Mathematical Statistics, Hayward, p. 73-81. 
 
Aitchison, J., 1997, The one-hour course in compositional data analysis or  
compositional data analysis is easy, in Pawlowsky Glahn, V., ed., Proceedings of the 
Third Annual Conference of the International Association for Mathematical Geology: 
CIMNE, Barcelona, p. 3-35. 
 
Aitchison, J., 1999, Logratios and natural laws in compositional data analysis: Math. 
Geology, v. 31, p. 563-589. 
 
Aitchison, J., 2001, Simplicial inference, in Viana, M.A.G. and Richards, D.St.P., eds., 
Algebraic Methods in Statistics and Probability: Contemporary Mathematics Series 287, 
American Mathematical Society, Providence, Rhode Island,  p. 1-22. 
 
Aitchison, J. and Bacon-Shone. J., 1999, Convex linear combinations of  compositions: 
Biometrika, v. 86, p. 351-364.  
 
Aitchison, J. and Barceló-Vidal, C., 2002,. Compositional processes: a statistical search 
for understanding, in Proceedings of the Eighth Annual Conference of the International 
Association for Mathematical Geology, to appear. 
 
Aitchison, J., Barceló-Vidal, C., Egozcue, J.J. and Pawlowsky-Glahn, V., 2002, A 
concise guide to the algebraic-geometric structure of the simplex, the sample space for 
compositional data analysis, in Proceedings of the Eighth Annual Conference of the 
International Association for Mathematical Geology, to appear, 
 
Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J.A. and Pawlowsky-Glahn, V.,  
2000, Logratio analysis and compositional distance: Math. Geology, v. 32, p. 271-275. 
 
Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J.A. and  Pawlowsky-Glahn, V.,  
2001, Reply to Letter to the Editor by S. Rehder and U. Zier on ‘Logratio analysis and 
compositional distance’

  
by J. Aitchison, C. Barceló-Vidal, J. A. Martín-Fernández and 

V. Pawlowsky-Glahn: Math. Geol.ogy, v. 33, p. 849-860. 
 
Aitchison, J. Barceló-Vidal, C., and Pawlowsky-Glahn, V., 2002, Some comments on 
compositional data analysis in archaeometry, in particular the fallacies in Tangri and 
Wright’s dismissal of logratio analysis: Archaeometry, v. 44, p. 295-304... 



 26 

 
Aitchison, J. and Greenacre, M., 2002, Biplots for compositional data: Appl. Statist., v. 
51.. p. 375-382. 
 
Aitchison, J. and Kay, J.W., 1975,. Principles, practice and performance in decision-
making in clinical medicine, in Bowen, K. C. and White, D.G., eds., Proceedings of the 
1973 NATO on The Role and  Effectiveness of Decision Theories in Practice: English 
Universities Press, London.. 
 
Aitchison, J. and Kay, J.W., 2003, Possible solutions of some essential zero problems in 
compositional data analysis: paper in CODAWORK03. 
 
Aitchison, J. and Lauder. I.J., 1985, Kernel density estimation for compositional data: 
Appl. Statist., v. 34, p. 129-137. 
 
Aitchison, J., Mateu-Figueras, G. and Ng, K.W., 2003, Characterisation of distributional 
forms for compositional data and associated distributional tests: Math Geology, to 
appear.. 

 
Aitchison, J. and Ng, KW., 2003a, Aitchison, J. and Ng, KW., 2003a, Compositional 
hypotheses of subcompositional stability and specific perturbation change and their 
testing: paper in CODAWORK03. 
 
Aitchison, J. and Ng, KW., 2003b, The statistical analysis of positive data: a review: in 
preparation. 
  
Aitchison, J. and Shen, S.M., 1980, Logistic-normal distributions: some properties and 
uses: Biometrika, v. 67, p. 261-272. 
 
Aitchison, J. and Thomas, C.W., 1998, Differential perturbation processes: a tool for the 
study of compositional processes, in Buccianti, A., Nardi, G. and Potenza, R., eds.,  
Proceedings of IAMG98, The Fourth Annual Conference of the International 
Association for Mathematical Geology: De Frede, Naples, p. 499-504. 
 
Azzalini, A. and Dalla Valle, A., 1996, The multivariate skew-normal distribution:  
Biometrika, v. 83, p. 715-726. 
 
Azzallini, A. and Capitanio, A., 1999, Statistical application of the multivariate skew-
normal distribution: J. R. Statist. Soc. B, v. 61, p. 579-602.. 
 
Bacon-Shone, J., 1992, Ranking methods for compositional data: Appl. Statist., v. 41,  
p. 533-537. 
 
Bacon-Shone, J., 2003, Modelling structural zeros in compositional data analysis: paper 
in CODAWORK03. 
 
Barceló, C.,  Pawlowsky, V. and Grunsky, E., 1996, Some aspects of transformations of 
compositional data and the identification of outliers: Math. Geology, v. 28, p. 501-518. 
 



 27 

Barceló-Vidal, C., Martin-Fernández, J.A. and  Pawlowsky-Glahn, V., 2001,  
Mathematical  foundations of compositional data analysis, in Ross, G, ed., Proceedings 
of the Seventh Annual Conference of the International Association for Mathematical 
Geology: Volume CD, electronic publication. 

Billheimer, D,. Guttorp, P. and Fagan, W.F., 1997, Statistical analysis and interpretation 
of discrete compositional data:  NRCSE technical report 11, University of Washington  

Butler, J.C., 1979, Trends in ternary petrologic variation diagrams: J. Amer. Mineral., v. 
64, p. 1115-1121.  
 
Chang, T.C., 1988,.Spherical regression: Ann. Statist., v. 14, p. 907-924. 
 
Chayes, F., 1983, Detecting non-random associations between proportions by tests of 
remaining space variables: J. Math Geol., v. 15, p. 197-206. 
 
Fry, J.M., Fry, T.R.L and McLaren, K.R., 2000, Compositional data analysis and zeros 
in micro data: Appl. Economics, v. 2, p. 953-959. 
 
Gabriel, K.R., 1971, The biplot-graphic display of matrices with application to principal 
component analysis: Biometrika, v. 58, p. 453-467. 
 
Gabriel, K.R., 1981, Biplot display of multivariate matrices for inspection of data and 
diagnosis, in Barnett, V., ed., Interpreting  Multivariate Data: Wiley, New York, p. 147-
173.  
 
McAlister, D., 1879, The law of the geometric mean: Proc. Roy. Soc., v. 29, p. 367-375. 
 
Martin- Fernández, J.A.  Barceló-Vidal, C. and Pawlowsky-Glahn, V., 2000, Zero 
replacement in compositional data sets, in Kiers, H., Rasson, J,, Groenen, P. and M. 
Shader, M., eds., Studies in Classifiacation, Data Analysis and Knowledge 
Organisation. Proceedings of 7th Conferencee of the International Federation of 
Classification Societies: Springer-Verlag, Berlin, p. 155-160. 
  
Mateu-Figueras, G., Barcelo-Vidal, C. and Pawlowsky-Glahn. V., 1998, Modeling 
compositional data with multivariate skew-normal distributions, in Buccianti, A. Nardi, 
G. and Potenza, R., eds., Proceedings of IAMG98, The Fourth Annual Conference of 
the International Association for Mathematical Geology: De Frede, Naples, p. 532-537. 
 
Pawlowsky-Glahn, V. and Egozcue, J.J., 2001,. Geometric approach to statistical 
analysis on the simplex:  SERRA, v. 15, p. 384-398. 
 
Pawlowsky-Glahn, V. and Egozcue, J.J., 2002, About BLU estimators and 
compositional data: Math Geology., v.34. p. 259-274..  
 
Pearson, K., 1897, Mathematical contributions to the theory of evolution: on a form of 
spurious correlation which may arise when indices are used in the measurements of 
organs: Proc. R. Soc., v. 60, p. 489-498. 
 
Rehder, U. and Zier, S., 2001, Comment on “Logratio analysis and compositional 



 28 

distance by Aitchison et al. (2000)”: Math. Geology, v. 33, p. 845-848. 
 
Renner, R.M., 1993, The resolution of a compositiional data set into mixtures of fixed 
source components: Appl. Statist., v. 42, p. 615-631. 
 
Taylor, T.R., Aitchison, J. and McGirr, E.M., 1971, Doctors as decision-makers: a 
computer-assisted study of diagnosis as a cognitive skill: Brit. Med. J., v. 3, p. 35-40. 
 
Thomas, C.W. and Aitchison, J., 1998, The use of logratios in subcompositional 
analysis and geochemical discrimination of metamorphosed limestones from the 
northeast and central Scottish Highlands, in Buccianti, A., Nardi, G. and Potenza, R., 
eds., Proceedings of IAMG98, The Fourth Annual Conference of the International  
Association for Mathematical Geology: De Frede, Naples, p. 549-554.. 
 
Thomas, C.W. and Aitchison, J., 2003, Exploration of geological variability and 
possible processes through the use of compositional data analysis: the example of 
Scottish metamorphosed limestones: Paper in CODAWORK03. 

Tocher, J.F., 1908, Pigmentation survey of school children in Scotland: Biometrika, v, 
6, p. 129-235. 

von Eynatten, H., Barcelo-Vidal, C. and Pawlowsky-Glahn, V., Modelling 
compositional change: the example of chemical weathering of granitoid rocks: Math. 
Geology.  

Watson, D.F., 1990, Reply to Comment on "Measures of variability for geological data" 
by D.F. Watson and G.M. Philip: Math. Geology, v. 22, p. 227-231. 
 
Watson, D.F., 1991, Reply to "Delusions of uniqueness and ineluctability" by J. 
Aitchison: Math. Geology, v. 23,  p. 279. 
 
Watson, D.F. and Philip, G.M., 1989, Measures of variability for geological data: Math. 
Geology, v. 21, p. 233-254. 
 
Weltje, G.J., 1997, End-member modeling of compositional data: numerical-statistical 
algorithms for solving the explicit mixing problem: Math. Geology, v. 29, p. 503-549. 
 
Woronow, A., 1997a, The elusive benefits of logratios, in Pawlowsky-Glahn, V., ed., 
Proceedings of IAMG97, The Third Annual Conference of the International Association 
for Mathematical Geology: CIMNE, Barcelona, p. 97-101. 
 
Woronow, A., 1997b, Regression and discrimination analysis using raw compositional 
data - is it really a problem?, in: Pawlowsky-Glahn, V., ed., Proceedings of IAMG97, 
The Third Annual Conference of the International Association for Mathematical 
Geology: CIMNE, Barcelona, p. 157-162. 
 
Zier, U. and Rehder, S., 1998, Grain-size analysis - a closed data problem, in  Buccianti, 
A., Nardi, G. and Potenza, R., eds., Proceedings of the Fourth Annual Conference of the 
International Association for Mathematical Geology: Naples: De Frede, p. 555-558..  
 



 29 

Table 1. Time budgets of 50 goilbirds 
 
 
    feeding   fighting  perching  sleeping 
 
 
    0.5476    0.0107    0.0113    0.4303 
    0.5385    0.0253    0.0090    0.4271 
    0.4712    0.0175    0.0211    0.4902 
    0.4830    0.0091    0.0553    0.4526 
    0.4340    0.0031    0.1003    0.4627 
    0.5220    0.0169    0.0321    0.4290 
    0.5939    0.0027    0.0115    0.3919 
    0.5781    0.0229    0.0222    0.3767 
    0.4733    0.0047    0.0122    0.5098 
    0.4863    0.0309    0.0096    0.4732 
    0.5277    0.0220    0.0058    0.4445 
    0.4440    0.0128    0.0044    0.5389 
    0.5106    0.0076    0.0215    0.4603 
    0.5264    0.0016    0.0406    0.4313 
    0.5323    0.0088    0.0262    0.4327 
    0.4396    0.0119    0.0258    0.5227 
    0.5981    0.0067    0.0191    0.3761 
    0.5453    0.0312    0.0121    0.4115 
    0.3141    0.0063    0.1560    0.5236 
    0.4096    0.0049    0.0227    0.5628 
    0.4630    0.0112    0.0068    0.5190 
    0.3388    0.0073    0.0235    0.6304 
    0.6120    0.0095    0.0107    0.3679 
    0.5121    0.0063    0.0205    0.4611 
    0.5489    0.0020    0.0149    0.4341 
    0.4105    0.0011    0.0129    0.5755 
    0.5107    0.0048    0.0046    0.4798 
    0.5914    0.0396    0.0116    0.3574 
    0.5500    0.0071    0.0050    0.4378 
    0.5452    0.0171    0.0190    0.4186 
    0.5218    0.0257    0.0477    0.4048 
    0.4907    0.0046    0.1617    0.3429 
    0.4085    0.0047    0.0442    0.5425 
    0.6490    0.0143    0.0231    0.3136 
    0.3846    0.0101    0.0721    0.5333 
    0.5142    0.0218    0.0323    0.4317 
    0.4805    0.0504    0.0682    0.4009 
    0.6062    0.0520    0.0137    0.3281 
    0.4494    0.0251    0.0280    0.4975 
    0.5978    0.0162    0.0100    0.3759 
    0.4533    0.0070    0.0128    0.5269 
    0.5091    0.0075    0.0133    0.4701 
    0.5280    0.0314    0.0428    0.3978 
    0.4216    0.0040    0.0290    0.5454 
    0.5417    0.0066    0.0039    0.4478 
    0.6328    0.0029    0.0801    0.2842 
    0.4924    0.0146    0.0418    0.4512 
    0.6818    0.0126    0.0035    0.3021 
    0.4337    0.0131    0.0186    0.5346 
    0.7006    0.0065    0.0167    0.2762 
    0.4954    0.0032    0.0118    0.4895 
    0.5156    0.0059    0.0206    0.4579 
    0.4277    0.0006    0.0367    0.5350 
    0.3431    0.0073    0.0761    0.5734 
    0.4692    0.0057    0.0068    0.5183 
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    0.4886    0.0578    0.0083    0.4453 
    0.5483    0.0169    0.0114    0.4234 
    0.3339    0.0367    0.0348    0.5946 
    0.3455    0.0070    0.0980    0.5495 
    0.4376    0.0279    0.1273    0.4072 
 
 


